Power Series Spaces $\Lambda(\alpha)$ and Associated $\Lambda(\alpha)$-Nuclearity*

M. S. Ramanujan

Introduction

The class of strongly nuclear spaces was introduced by Martineau [8] and also rediscovered by Brudovskii [1, 2]. The definition of strongly nuclear maps is related to the space s of rapidly decreasing sequences (see [9]). In this paper we introduce the class of $\Lambda(\alpha)$-nuclear maps, where $\Lambda(\alpha)$ is a general power series space, known to include as special cases the familiar spaces s and Γ, the space of entire functions (see [3]). We define then the notion of $\Lambda(\alpha)$-nuclear spaces and obtain a criterion for the $\Lambda(\alpha)$-nuclearity of sequence spaces $\lambda(P)$. Köthe [7] has proved such a criterion for the s-nuclearity of $\lambda(P)$. Some applications of this criterion are given and finally we obtain a product of several copies of $[\Lambda(\alpha)]_b$ as a universal $\Lambda(\alpha)$-nuclear space.

Preliminaries

For terminology not explained here, see Köthe [5].

Suppose $a = (a_n)$ and $b = (b_n)$ are two sequences of scalars. Write $a < b$ if there exists a $M > 0$ such that $|a_n| \leq M |b_n|$ for all n. Let P be a set of sequences $a = (a_n)$ such that (i) $a_n \geq 0$ for each n, (ii) for each n there exists an $a \in P$ such that $a_n \to 0$ and (iii) P is directed by $<$. Define now the sequence space $\lambda(P) = \{x = (x_n) : p_a(x) = \sum |x_n| a_n < \infty \text{ for each } a \in P \}$. The (normal) topology on $\lambda(P)$ is generated by the seminorms $\{p_a\}$.

We recall here the Grothendieck-Pietsch criterion for the nuclearity of $\lambda(P)$ with the above topology (see Pietsch [9], p. 88).

Lemma 1. $\lambda(P)$ is nuclear if and only if for each $a \in P$ there exists a $b \in P$ and a $c \in l^1$ such that $a_n \leq b_n c_n$ for all n.

Consider next a sequence $\alpha = (\alpha_n)$ such that $0 \leq \alpha_0 \leq \alpha_1 \leq \cdots \leq \alpha_n \to \infty$. Let P be the set of sequences (ϱ^{α_n}), $0 < \varrho < \varrho_0$ (fixed). The sequence space $\lambda(P)$ obtained from this set P is called the power series space $\Lambda(\alpha)$. Throughout this work $\varrho_0 = \infty$ and $\Lambda(\alpha)$ is provided with the topology indicated earlier and generated by the seminorms $p_R(x) = \sum |x_n| R^{\alpha_n}$, $R = 1, 2, \ldots$.

The case $\alpha_n = \log(n + 1)$ gives the space s of rapidly decreasing sequences and $\alpha_n = n$ yields the space Γ of entire functions, discussed extensively by

* The author thanks Professor G. Köthe for his encouragement and for his hospitality at the University, Frankfurt. Acknowledgement of several discussions with Mr. P. Spuhler is also due. Support from the Alexander von Humboldt Stiftung is gratefully acknowledged.
Ganapathy Iyer [3]. The space $A(\alpha)$ has received brief mention in the unpublished thesis of Somasundaram [10]. Observe that $A(\alpha) \subset l^1$.

Condition G. The sequence (α_n) is defined to satisfy condition G if the following growth condition holds: there exists a $R > 1$ such that $\sum R^{-\alpha_n} < \infty$.

The spaces s and I mentioned above meet this requirement. If $\alpha_n = \log \log(n + k)$, k fixed, then the condition G is not met.

We shall list now some simple consequences of condition G.

In what follows we shall adopt the convention that if $\alpha_n = 0$ for $n < N$ and $\alpha_n \neq 0$ for $n \geq N$, then any statement involving the sequence $(1/\alpha_n)$ is to be interpreted as the corresponding statement on the sequence starting from the N-th term onward. Our assumption that $\alpha_n \uparrow \infty$ guarantees that $\alpha_n \neq 0$ for all $n \geq N$, for some N.

Lemma 2. If $\alpha = (\alpha_n)$ satisfies condition G then $A(\alpha) = \{a = (a_n) : |a_n|^{1/\alpha_n} \to 0\}$.

Proof. Let $a = (a_n) \in A(\alpha)$ and if possible, let $|a_n|^{1/\alpha_n} \to 0$. Then there exists some $\varepsilon > 0$ and a sequence of integers (n_i) such that $|a_{n_i}|^{1/\alpha_{n_i}} > \varepsilon$ for $n = n_1, n_2, \ldots$. Choose now R such that $\varepsilon R > 1$. Then $\sum |a_{n_i}|R^{\alpha_{n_i}} > \sum \varepsilon^{\alpha_{n_i}}R^{\alpha_{n_i}} = \infty$ and this violates that $a \in A(\alpha)$.

Conversely, suppose that $|a_n|^{1/\alpha_n} \to 0$ and that condition G is fulfilled. Thus we have that $\sum u^{\alpha_n} < \infty$ for some $0 < u < 1$. Now given any R, choose $\varepsilon > 0$ such that $\varepsilon R = u$. Since $|a_n|^{1/\alpha_n} \to 0$, we can find N such that $|a_n|^{1/\alpha_n} < \varepsilon$ for $n \geq N$. Then $\sum |a_{n_i}|R^{\alpha_{n_i}} < \sum \varepsilon^{\alpha_{n_i}}R^{\alpha_{n_i}} < \infty$ and this completes the proof of the lemma.

Lemma 3. If $\alpha = (\alpha_n)$ satisfies condition G and $\beta = (\beta_n)$ is such that $\beta_n \geq \alpha_n$ for all n then β also satisfies condition G and $A(\beta) \subset A(\alpha)$.

Lemma 4. If α satisfies condition G then $A(\alpha)$ is nuclear.

Lemma 5. If α satisfies condition G then $\frac{\log(n + 1)}{\alpha_n}$ is bounded.

The proof of Lemma 3 is trivial while Lemma 4 follows from Lemma 1. Lemma 5 follows easily from the inequalities $\sum_{i=0}^n R^{-\alpha_i} \leq M$ for some $R > 1$ and for some $M > 1$ and therefore $(n + 1)R^{-\alpha_n} \leq M$ for all n.

Lemma 6. If α satisfies condition G and the sequence $b = (b_n)$ is such that $|b_n|^{1/\alpha_n}$ is bounded then $b \in [A(\alpha)]'$, the topological dual of $A(\alpha)$.

Lemma 6 is an immediate consequence of the following result of Köthe [6] and of Lemma 4.

Lemma 7. If $\lambda(P)$ is nuclear then the strong topological dual $\lambda_b' = \lambda'(Q)$ where $Q = \{a \in \lambda(P), a_n \geq 0\}$ and $\lambda'(Q)$ has its normal topology.
A(\alpha)-Nuclearity

Throughout the rest of the paper we assume that (\alpha_n) satisfies condition G. Let \(E\) and \(F\) be two normed linear spaces and \(T\) be a linear map on \(E\) into \(F\). Suppose \(T\) admits the representation

\[Tx = \sum_{n=0}^{\infty} \lambda_n \langle x, a_n \rangle y_n, \quad \text{for each } x \in E \]

(1)

where \((\lambda_n) \in \Lambda(\alpha), a_n \in E', \|a_n\| \leq 1\) and \(y_n \in F\) with \(\|y_n\| \leq 1\). Then \(T\) is said to be a \(\Lambda(\alpha)\)-nuclear map on \(E\) into \(F\). It is easy to see that each \(\Lambda(\alpha)\)-nuclear map is continuous, nuclear and therefore precompact.

We define next a linear map \(T\) on \(E\) into \(F\) to be quasi-\(\Lambda(\alpha)\)-nuclear if there exist \(a_n \in E'\) such that \((\|a_n\|) \in \Lambda(\alpha)\) and \(\|Tx\| \leq \sum |\langle x, a_n \rangle|\) for each \(x \in E\).

It is trivial that each \(\Lambda(\alpha)\)-nuclear map is quasi-\(\Lambda(\alpha)\)-nuclear. In the opposite direction we prove the following result.

Proposition 1. Suppose the Banach space \(F\) has the property that if \(S\) is an arbitrary closed subspace of \(\Lambda(\alpha)\) and \(L\) is an arbitrary quasi-\(\Lambda(\alpha)\)-nuclear map of \(S\) into \(F\) then \(L\) has a continuous linear extension to the whole of \(\Lambda(\alpha)\). Then for arbitrary normed linear spaces \(E\), each quasi-\(\Lambda(\alpha)\)-nuclear map of \(E\) into \(F\) is indeed \(\Lambda(\alpha)\)-nuclear.

Proof. Let \(T\) be a quasi-\(\Lambda(\alpha)\)-nuclear map on \(E\) into \(F\). Determine \((a_n), a_n \in E', (\|a_n\|) \in \Lambda(\alpha)\) such that \(\|Tx\| \leq \sum |\langle x, a_n \rangle|\). Define the maps \(T_1 : E \to l_\infty\), by \(T_1 x = (\langle x, a_n/\|a_n\| \rangle)\) and \(T_2 : l_\infty \to \Lambda(\alpha)\) by \(T_2 [(y_n)] = (\sqrt{\|a_n\| y_n})\). Then \(T_1\) is linear and continuous and \(T_2\) is a \(\Lambda(\alpha)\)-nuclear map since \((\sqrt{\|a_i\|}) \in \Lambda(\alpha)\), by

Lemma 2 and \(T_2 [(y_n)] = \sum_{i=1}^{\infty} \langle (y_n), \sqrt{\|a_i\| e_i} \rangle e_i\), where \(e_i\) is the usual unit vector with 1 in the \(i\)-th coordinate. Consider the subspace \(S = T_2 T_1 (E)\) of \(\Lambda(\alpha)\) and on this space define \(\Phi : S \to F\) by \(\Phi (T_2 T_1 x) = T x\). Then \(\Phi\) is quasi-\(\Lambda(\alpha)\)-nuclear since \(\|\Phi (T_2 T_1 x)\| = \|Tx\| \leq \sum |\langle x, a_n \rangle| = \sum |\langle T_2 T_1 x, \sqrt{\|a_n\| e_n} \rangle|\) and \(\Phi\) is a quasi-\(\Lambda(\alpha)\)-nuclear map on \(S\) into \(F\). Use next the hypothesis to obtain a continuous linear extension of \(\Phi\) to the whole of \(\Lambda(\alpha)\) and call this extension \(T_3\). Now \(T = T_3 T_2 T_1\), where \(T_2\) is \(\Lambda(\alpha)\)-nuclear and the other two are linear and continuous and therefore \(T\) is \(\Lambda(\alpha)\)-nuclear.

Corollary. If \(F\) has the bounded extension property then each quasi-\(\Lambda(\alpha)\)-nuclear map of a normed linear space \(E\) into the Banach space \(F\) is \(\Lambda(\alpha)\)-nuclear.

For any linear, continuous map \(T\) on \(E\) into \(F\) define the \(n\)-th approximation number \(\alpha_n(T)\) by \(\alpha_n(T) = \inf \|T - A_n\|\), where the infimum is taken over all linear maps \(A_n\) of \(E\) into \(F\) which have a range of dimension at most \(n\). Obviously \(\alpha_n(T) \geq \alpha_{n+1}(T)\) for each \(n\). If \((\alpha_n(T))\) belongs to a specified sequence space \(\lambda\) we say that \(T\) is of type \(\lambda\).

Proposition 2. Each \(\Lambda(\alpha)\)-nuclear map of a normed linear space \(E\) into a normed linear space \(F\) is of type \(\Lambda(\alpha)\).
Proof. Let T be $\Lambda(\alpha)$-nuclear and have the representation (1). Consider maps A_i defined by $A_i x = \sum_{n=0}^{i-1} \lambda_n \langle x, a_n \rangle y_n$. Now $\|T - A_i\| \leq \sum_{n=i}^{\infty} |\lambda_n|$ and thus $\alpha_i(T) \leq \sum_{n=i}^{\infty} |\lambda_n|$. For $R \geq 1$, $\sum_{i=0}^{\infty} \alpha_i(T) R^x_i \leq \sum_{i=0}^{\infty} \left(\sum_{n=i}^{\infty} |\lambda_n| \right) R^x_i = \sum_{n=0}^{\infty} |\lambda_n| \sum_{i=0}^{n} R^x_i \leq \sum_{n=0}^{\infty} |\lambda_n| (n+1)^x R^{x n}$. Consider now the sequence $\{(n+1)^{1/x_n}\}$. From Lemma 5 it follows that this sequence is bounded and thus $\sum_{n=0}^{\infty} |\lambda_n| (n+1)^x R^{x n} < \infty$ since $(\lambda_n) \in \Lambda(\alpha)$.

Consider next a bounded sequence (d_n), $d_n > 0$ and the diagonal transformation D on l^1 into itself defined by $D[(x_n)] = (d_n x_n)$. Let Π denote a permutation of the positive integers I^+. Köthe [7] proves the following result.

Lemma 8. The map D is s-nuclear on l^1 into l^1 if and only if there exists a permutation Π of I^+ such that $(d_{\Pi(n)}) \in s$.

The proof of the sufficiency in the above lemma is immediate. In proving the necessity, Köthe observes that a s-nuclear map on l^1 into l^1 is compact and consequently $d_n \to 0$. Since a permutation Π can be found so that $d_{\Pi(n)}$ is monotone decreasing, it suffices to prove that for a positive monotone decreasing sequence (d_n) converging to zero, the corresponding diagonal transformation D is s-nuclear implies $(d_n) \in s$. This last statement is achieved by showing $\alpha_n(D) = d_{n+1}$.

In view of the above analysis of the proof of Köthe's theorem and proposition 2 above we state below a criterion for the $\Lambda(\alpha)$-nuclearity of D and omit its proof.

Proposition 3. A diagonal transformation $D = (d_n)$, $d_n \geq 0$ is a $\Lambda(\alpha)$-nuclear map on l^1 into l^1 if and only if the d_n which are different from zero can be rearranged into a sequence in $\Lambda(\alpha)$.

The above proposition provides the proof of the existence of maps which are nuclear but not $\Lambda(\alpha)$-nuclear. The sequence (2^{-n}) provides a diagonal map of l^1 into l^1 which is nuclear but not Γ-nuclear (see also proposition 7).

$\Lambda(\alpha)$-nuclear Spaces

Let E be a locally convex space and U be an absolutely convex neighbourhood, with p_U being its gauge. Set $E(U) = E/N(U)$, where $N(U)$ is the null space of p_U. $E(U)$ is normed by p_U. For another such neighbourhood V which is absorbed by U (written $V \prec U$), the canonical map $\tilde{K}(V, U)$ is the map on $\tilde{E}(V)$ into $\tilde{E}(U)$ which associates to the equivalence class $x(V)$ the element $x(U)$. The map \tilde{K} is continuous.
Now define the locally convex space E to be a $\Lambda(\alpha)$-nuclear space if a fundamental system \mathcal{U} of absolutely convex neighbourhoods in E (or equivalently, each such system) has the property that for each $U \in \mathcal{U}$ there exists a $V \in \mathcal{U}$ such that $V < U$ and the canonical map $\tilde{K}(V, U)$ is $\Lambda(\alpha)$-nuclear. The equivalence stated above results from the fact that the composition of linear continuous maps with $\Lambda(\alpha)$-nuclear maps will be $\Lambda(\alpha)$-nuclear.

We postpone giving examples of $\Lambda(\alpha)$-nuclear spaces. First we obtain a criterion for a sequence space $\lambda(P)$ to be $\Lambda(\alpha)$-nuclear. The result is the analogue of the Grothendieck-Pietsch criterion for the nuclearity of $\lambda(P)$ and is motivated by the Köthe's corrected version of a result of Brudovskii [1, 2] on the s-nuclearity of $\lambda(P)$.

Proposition 4. The sequence space $\lambda(P)$ is $\Lambda(\alpha)$-nuclear if and only if to each $a \in P$, there exists a $b \in P$ such that $a \prec b$ and such that the sequence (a_k/b_k) with $a_k \neq 0$ can be rearranged into a member of $\Lambda(\alpha)$.

Proof (Sketch). The sets $U_a = \{x: p_a(x) \leq 1\}$, $a \in P$, form a fundamental system of neighbourhoods in $\lambda(P)$. Let $M(a)$ denote the set of indices k for which $a_k \neq 0$. If now $E = \lambda(P)$, then as is well-known, $\tilde{E}(U_a)$ is norm isomorphic to $l^1[M(a)]$, $a \prec b$ is equivalent to $U_b < U_a$ and the canonical map $\tilde{K}(U_b, U_a)$ can be identified with the diagonal transformation $(y_a) \rightarrow (a_k b_k^{-1} y_a)$ of $l^1[M(b)]$ into $l^1[M(a)]$. Now the desired result is a consequence of Proposition 3.

Corollary. The power series space $\Lambda(\gamma)$ is $\Lambda(\alpha)$-nuclear if and only if there exists a $R > 1$ and a permutation Π of 1^+ such that $\Pi(R^{-\gamma}) \in \Lambda(\alpha)$.

Proof. Suppose $\Lambda(\gamma)$ is $\Lambda(\alpha)$-nuclear. Since $\Lambda(\gamma)$ is generated by the stufen system $(R^{-\gamma})$, $R = 1, 2, \ldots$ it follows from Proposition 4 that given R, there exists S and a permutation Π such that $\Pi(R^{-\gamma}/S^{-\gamma}) \in \Lambda(\alpha)$. But $S^{-\gamma} \leq R^{-\gamma} S^{-\gamma}$ and also $\Lambda(\alpha)$ is a normal sequence space. Thus $\Pi(S^{-\gamma}) \in \Lambda(\alpha)$.

Conversely, let there exist R and Π such that $\Pi(R^{-\gamma}) \in \Lambda(\alpha)$. Now, given any $(T^{-\gamma})$ belonging to the stufen system, let S denote the max(R, T). Then $S^{-\gamma} \leq R^{-\gamma}$ and therefore $\Pi(S^{-\gamma}) \in \Lambda(\alpha)$. Consider now $(T^{-\gamma} S^{-\gamma}) = (T^{-\gamma} S^{-\gamma}) (S^{-\gamma}) \leq (S^{-\gamma})$ and therefore $\Pi(T^{-\gamma} S^{-\gamma}) \in \Lambda(\alpha)$. Since $(S^2^{-\gamma})$ is also a member of the stufen system, Proposition 4 now gives the desired result.

For a result of this type for Schwartz spaces, see Terzioglu [11].

Examples of $\Lambda(\alpha)$-nuclear spaces are provided by means of the following two simple propositions both of which are consequences of Proposition 4.

Proposition 5. If $(\alpha_n/\beta_n) \rightarrow 0$ then $\Lambda(\beta)$ is $\Lambda(\alpha)$-nuclear.

The proof follows immediately from Lemma 2 and the corollary to Proposition 4 since $(2^{-\beta_n/\alpha_n}) \rightarrow 0$.

Proposition 6. The strong dual $[\Lambda(\alpha)]_b$ of $\Lambda(\alpha)$ is $\Lambda(\alpha)$-nuclear.

Proof. If $a = (a_n) \in \Lambda(\alpha)$ and $a_n \geq 0$, it follows easily that $\sqrt{a} = (\sqrt{a_n})$ is also in $\Lambda(\alpha)$. Now the result is a consequence of Lemma 7 and Proposition 4.
It is well known that \(l^1 \) is not nuclear; Brudovskii [1] states that \(s \) is not \(s \)-nuclear. We conjecture that in general it is true that \(\Lambda(\alpha) \) is not \(\Lambda(\alpha) \)-nuclear. The following proposition supplements the two known results quoted above and the proof is also of some interest.

Proposition 7. If \(\alpha_n = n^m, m > 0 \) and fixed, then \(\Lambda(\alpha) \) is not \(\Lambda(\alpha) \)-nuclear.

Proof. After the corollary to Proposition 4 we need only show that whatever be \(R > 1 \), there exists no permutation \(\Pi \) such that \(\Pi(R^{-\alpha_n}) \in \Lambda(\alpha) \); i.e., for each permutation \(\Pi, (R^{-\alpha_n}/\Pi(n)) \) does not converge to zero. This is equivalent to showing that there exists no permutation \(\Pi \) of \(I^+ \) such that \((\alpha_n/\Pi(n)) \to \infty \). If possible let there exist a \(\Pi \) such that \((\alpha_n/\Pi(n)) = (n/\Pi(n))^m \to \infty \) or equivalently \((\Pi(n)/n) \to 0 \). Then \(\Pi(n)/n < 1/k \), for \(n \geq N \), where we pick \(k \) to be an integer larger than 2 and choose \(N \) such that \(N \equiv 0(\text{mod } k) \). Then

\[
\Pi(N + i) < (N/k) + 1, \quad i = 0, 1, 2, \ldots, k;
\]

\[
\Pi(N + j) < (N/k) + 2, \quad j = k + 1, k + 2, \ldots, 2k,
\]

and proceeding thus we get,

\[
\Pi(N + l) < (N/k) + p, \quad l = (p - 1)k + 1, \ldots, pk.
\]

Thus, since \(\Pi \) is a \(1 - 1 \), onto map of \(I^+ \) to \(I^+ \), we have to find \(pk \) positive integers less than \((N/k) + p \). Choosing \(p = N/k \), we get \(N < 2(N/k) \) or \(k < 2 \), setting up a contradiction.

Remark. It follows from Proposition 5 and 7 that the space \(\Lambda(\alpha), \alpha_n = n^m \), while being not \(\Lambda(\alpha) \)-nuclear, is \(\Lambda(\gamma) \)-nuclear for \(\gamma_n = n^{m-\epsilon}, m \geq \epsilon > 0 \); in particular, the space \(\Gamma \) is \(\Lambda(\gamma) \)-nuclear for \(\gamma_n = n^\delta, 0 \leq \delta < 1 \).

Following Köthe [7], we say that \(\lambda(P) \) is uniformly \(\Lambda(\alpha) \)-nuclear if there exists a “universal” permutation \(\Pi \) such that for each \(a \in P \) there exists a \(b \in P \) such that \(b > a \) and \(a_{\Pi(n)} \leq c_n b_{\Pi(n)} \) for a suitable \(c = (c_n) \in \Lambda(\alpha) \). Terzioglu [12] proves that the strong dual of a uniformly \(s \)-nuclear space is nuclear and therefore, by a theorem of Köthe [7], strong dual of a metrizable \(s \)-nuclear space is nuclear. Martineau [8] and Brudovskii [1] announce that the strong dual of a metrizable \(s \)-nuclear space is \(s \)-nuclear. In this context we prove now the following result which is analogous to that of Terzioglu and Köthe.

Proposition 8. The strong dual of a uniformly \(\Lambda(\alpha) \)-nuclear sequence space \(\lambda(P) \) is \(\Lambda(\beta) \)-nuclear for each \(\beta = (\beta_n) \) such that \((\alpha_n/\beta_n) \to \infty \).

Proof. Since \(\lambda(P) \) is uniformly \(\Lambda(\alpha) \)-nuclear, to each \(a \in P \) there exists a \(b \in P \) such that \(b > a \) and \(a_{\Pi(n)} \leq c_n b_{\Pi(n)} \) for a suitable \(c = (c_n) \in \Lambda(\alpha) \). Consider now the sequence \((2^{-\alpha_n}) \). By Lemma 2 it is in \(\Lambda(\beta) \); also, by Lemma 6, \((2^{\alpha_n}) \) is in \([\Lambda(\alpha)]' \). Therefore \((c_n 2^{\alpha_n}) \in l^1 \).

Consider next an arbitrary \(x = (x_n) \in \lambda(P) \), with \(x_n \geq 0 \). Let \(a \in P \) be arbitrary and determine \(b \) and \(c \) as above. Since \(x \in \lambda(P) \) and \(b \in P \), we have \(\sum x_n b_n = \sum x_{\Pi(n)} b_{\Pi(n)} < \infty \). But \(\sum x_{\Pi(n)} a_{\Pi(n)} 2^{\alpha_n} \leq \sum x_{\Pi(n)} b_{\Pi(n)} c_n 2^{\alpha_n} < \infty \). Thus for each \(a \in P \), we have \(\sum x_n 2^{\alpha_n - (1-n)} a_n < \infty \) and consequently \((x_n 2^{\alpha_n - (1-n)}) \in \lambda(P) \).
Also \(\Pi \left(\frac{x_n}{x_n 2^{a_{n+1}^{(n)}}} \right) = (2^{-a_n}) \) in \(\Lambda(\beta) \). The proof is now complete by appealing to Lemma 7 and Proposition 4.

Remark. The above result yields in particular that the strong dual of a uniformly \(\Gamma \)-nuclear space is \(\Lambda(n^{1-\varepsilon}) \)-nuclear for each \(\varepsilon \) such that \(1 \geq \varepsilon > 0 \), and also \(s \)-nuclear.

Universal \(\Lambda(\alpha) \)-nuclear Spaces

Komura and Komura [4] exhibit \([s]^A \) as a universal nuclear space and Martineau [8] states that \([s']^A \) is a universal \(s \)-nuclear space. We prove the following general imbedding theorem.

Proposition 9. The locally convex space \(E \) is \(\Lambda(\alpha) \)-nuclear if and only if it is (topologically) isomorphic to a subspace of an \(I \)-fold product \(([\Lambda(\alpha)])_b \).

Proof. In an (as yet) unpublished work P. Spuhler proves that subspaces and arbitrary products of \(\Lambda(\alpha) \)-nuclear spaces are \(\Lambda(\alpha) \)-nuclear and since \([\Lambda(\alpha)]_b \) is \(\Lambda(\alpha) \)-nuclear the proof of the sufficiency is complete.

Suppose now that \(E \) is \(\Lambda(\alpha) \)-nuclear. Let \(\mathcal{U} = [U_i, i \in I] \) be a fundamental system of absolutely convex neighbourhoods in \(E \), where \(I \) is a suitably determined index set. Since \(E \) is \(\Lambda(\alpha) \)-nuclear, to each \(U_i \) we can find a \(V_i \in \mathcal{U} \) such that \(V_i < U_i \) and the canonical map \(\tilde{K}_i(V_i, U_i) \) of \(\tilde{E}(V_i) \) onto \(\tilde{E}(U_i) \) is \(\Lambda(\alpha) \)-nuclear and therefore can be written as

\[
x(U_i) = \tilde{K}_i[x(V_i)] = \sum_n \lambda_n^{(i)} \langle x(V_i), a_n^{(i)} \rangle y_n^{(i)},
\]

with \(\lambda_n^{(i)} = (\lambda_n^{(i)}) \in \Lambda(\alpha) \), \(a_n^{(i)} \in [E(V_i)]', \|a_n^{(i)}\| \leq 1 \) for each \(n \) and \(y_n^{(i)} \in \tilde{E}(U_i) \) with \(\|y_n^{(i)}\| \leq 1 \); thus we can get \(b_n^{(i)} \in V_i^0 \) for each \(n \), so that

\[
P_{V_i}(x) \leq \sum_n |\lambda_n^{(i)}| \|\langle x, b_n^{(i)} \rangle\| \leq P_{V_i}(x) \sum |\lambda_n^{(i)}|.
\]

Define now the map \(\Phi_i : E \to [\Lambda(\alpha)]_b \) by \(\Phi_i(x) = (\langle x, b_n^{(i)} \rangle) \). Since for each \(z = (z_n) \in \Lambda(\alpha) \) with \(z_n \geq 0 \), we have \(\sum |\langle x, b_n^{(i)} \rangle| z_n \leq P_{V_i}(x) \sum |z_n| \) it follows from Lemma 7 that \(\Phi_i(x) \in [\Lambda(\alpha)]' \).

Next define \(\Phi : E \to \Pi [\Lambda(\alpha)]_b = [\Lambda'] \) by the relation \(\Phi x = [\Phi_i x, i \in I] \). Since \(\Phi \) and \(\Phi_i \) are linear, it follows from (2) above that \(\Phi \) is \(1 - 1 \). Now given an arbitrary \(\gamma = (\gamma_n) \in \Lambda(\alpha) \) or equivalently, an arbitrary seminorm generating the topology of \([\Lambda(\alpha)]' \), we have, for each \(i \in I \), \(\sum |\gamma_n| |\langle x, b_n^{(i)} \rangle| \leq \varrho P_{V_i}(x) \) where \(\varrho = \sum |\gamma_n| \). This proves the continuity of the linear maps \(\Phi_i \) and since \(\Phi_i = p_i \circ \Phi \), where \(p_i \) is the projection of \([\Lambda'] \) onto \(\Lambda' \) we get that \(\Phi \) is continuous. To prove the continuity of \(\Phi^{-1} \) consider the neighbourhood

\[
N_i = \{ z = (z_n) \in \Lambda' : \sum |z_n| |\lambda_n^{(i)}| \leq 1 \}
\]

in \(\Lambda' \). Then \(\tilde{N}_i = p_i^{-1}(N_i) \) is a neighbourhood in the product space. It is easy to verify, using (2), that \(\Phi^{-1}(\tilde{N}_i) \cap E \subset U_i \) and the proof is complete.
Added in proof. (Oct. 1, 1970). Mr. P. Spuhler has now informed the author that the product of even two \(A(\alpha) \)-nuclear spaces need not be \(A(\alpha) \)-nuclear. In view of this remark, Proposition 9 needs to be revised as follows: If \(E \) is \(A(\alpha) \)-nuclear then it is topologically isomorphic to a subspace of \(([A(\alpha)])' \); if arbitrary products of \(A(\alpha) \)-nuclear spaces is \(A(\alpha) \)-nuclear, then the converse of the above statement holds.

References

Professor M. S. Ramanujan
Department of Mathematics
University of Michigan
Ann Arbor, Mich. 48104, USA

(Received April 17, 1970)