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Holomorphic Mappings from the Ball and Polydisc 
H. Alexander 

Introduction. The holomorphic self-homeomorphisms ("automor- 
phisms") of the open unit ball B, in ~L TM have long been known [1] - they 
are given by certain rational functions which are holomorphic on a 
neighborhood of Bn and induce a homeomorphism of the boundary, 
bB,, of the ball. Our first result can be viewed as a local characterization 
of these automorphisms: For n > 1, a nonconstant holomorphic mapping 
into ~" which is defined in a neighborhood of a point of bB, and which 
maps bB, into itself is necessarily an automorphism, or, more precisely, 
extends to be an automorphism. We apply this to obtain some informa- 
tion on the as yet unsettled question as to whether every proper holomor- 
phic self-mapping of Bn is an automorphism. In particular, we recover 
(Cor. 1.1) a result of Pelles ([3, 5]). 

In the second part, we consider holomorphic mappings from 
polydiscs. According to a classical theorem of Poincar6, there exists no 
biholomorphism from the polydisc U z in C 2 with the ball B2. We 
obtain some integral formulas which yield a quantitative explanation 
of this phenomenon, 

Finally I wish to acknowledge that the above characterization of automorphisms 
may have been known to the late Professor L6wner, at least for two complex variables. 
I want to thank Professors L. Bers and C. Titus for this information on their oral communica- 
tion with L6wner. 

1. The main result of this section is the following characterization of 
automorphisms of the unit ball. 

Proposition 1.1. Let F = ( f  l, f 2 ... .  ,f~): I 2 ~ "  be holomorphic on a 
connected neighborhood I2 of some point of the boundary bB. of the open 

unit ball Bn in C"(n > 1). Suppose that ~ Ifj(z)l 2 - 1 for z E I2nbB.. Then 
1 

either F is a constant map or F extends to be an automorphism of B,. 
As a consequence we have that a proper holomorphic self-mapping 

of the ball which extends to be holomorphic across a single boundary 
point in bB, is necessarily an automorphism. In particular, since a 
rational function is regular on an open dense subset of bB, we get the 
following result of Pelles (published under the former name Eisen-. 
man [3, 5]). 

Corollary 1.1. A rational proper self-mappin# of B.(n> 1) is an 
automorphism. 
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Proof of  Proposition 1.1. We consider two cases. 

(i) Suppose det(JF)= 0 on t2n  bB., where J F  is the Jacobian matrix 
of F. We show that F is a constant map in this case. 

As det(JF) is holomorphic and bB, has real codimension one, 
det(JF) = 0 on t2. Let r be the maximum rank of (JF) (z) for z ~ I2. Then 
r is also the maximum rank of JF  on f2n bB.. Without loss of generality, 
we suppose e , = ( O , . . . , O , l ) ~ b B ,  c~g2 and rank JF(e , )=r .  By the 
implicit function theorem, there is a neighborhood of e. on which one of 
the f j  is functionally dependent on the others: Say f , ( z )=g( f l ( z ) ,  ... 
.... f , - l ( z ) )  for z e ~ ' ~ f 2  where t 2 ' = B , c ~ { z : R e z , > l - 6 }  for some 
6 > 0 and g is holomorphic in a suitable domain. Fix z ° ~ t7 and let V 
be the irreducible component of {ze t2' :fs(z)=fs(z°),  1 ~ j < n -  1} 
which contains z °. Then V is a subvariety of fl' of dimension at least one 
and so V meets bfl'. Since the function z--, e ~" does not attain its maximum 
on V at points where z. = l - 6 we see that V meets bB, at some point z 1. 
Then f i (z  °) = f j (z  1) for t ~ j  < n - 1 and therefore 

f .(z°) = g ( f ,  (z°), .-. , f . - 1  (z°)) = 9 ( f  , (zl), ... , f . - 1  (z t)) = f . ( z  1). 

Hence 2 lf~(z°)l 2 = lf~(zl)t 2 = 1. Thus 2 lf~l 2 = t on O'. It is an easy 
1 1 1 

exercise (see [2], p. 155) to see from this that the f j  are constant functions, 
as claimed. 

Before giving the second case, we shall prove the following result 
which will be needed for the value m = 0; the parameter m occurs in 
the proposition in order to accommodate a proof by induction. A 
complex line is a complex linear subspace oftL TM of dimension one over C. 

Proposition 1.2. Let f l, ..., f , ;  f ,+ l . . . . .  f ,+,. be holomorphic func- 
tions on W = B , n { z  : Izd < 6} for some 6 > 0  with f/(0) = 0, t ~ j <  n + m, 
where n >= 1 and m > O. Suppose 

(a) z ~ ( f l ( z ) ,  . . . , f ,(z)) is 1 - 1 on a neighborhood of  W, 
n+ra 

(b) ~ lfj(z)l 2 - 1 for z ~ b n . n  W, 
j = l  

(c) f ,+ i is a linear combination of  f l, f 2 . . . . .  f~ for 1 < j < m. 
Then each f ~ f j is constant on complex lines (intersected with W). 

Proof. By induction on n. For  n = l, the conclusion is clear because 
of(c). Observe that for n = 1, (b) becomes vacuous if6 < 1. 

Now say n > l  and assume the proposition for n - 1 .  Write 

f , + j =  ~ C~kfk, I < j < m  and let C = ( C j k ) ,  an m x n  matrix. Define 
k = l  t~ 

the differential operators Tj = ~ , D j -  ~jD, for 1 < j  <- n -  1 where Dk = dZk" 

Note that Tfi fu)  = fT j (u)  if f is a holomorphic function and therefore 
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(A) the TSs c o m m u t e  and  

(B) if T = Tj, T~2... Tj,, then T = P, D j, D j2... Dis + terms with coeffi- 
cients vanishing for zl . . . . .  z . _ l = 0  and so (Tu)(O .. . . .  O,z,) 
= ~,(Dj~... D ju)  (0, . . . ,  O, z.). 

N o w  let T be a product  of one or more  of the TSs; each T~ is a tangen-  
tial differential ope ra to r  on bB,, (see [4], p. 31) and therefore so is T. 

As 2 LA---I on bB.nW, we get 0 = r  Af~ = 2 Lrf~ on 
1 k k = l  k = l  n 

bB.c~W. Since T f . + j =  ~ CikTfkfor 1 _<_j =< m we get 
k = l  

Xk Tfk--O (t) 
k = l  

on i c,j.+,_-x, i i In 
matr ix  te rms  J = ~ ~= 1 ~ = 1 

X2 = (I + C 'C)  . 

\ L /  

Observe  that  I + U ¢7 is nons ingular  as C' C is Hermi t i an  positive semi- 
definite. Therefore  since f~,  . . . , f ,  have a c o m m o n  zero only at the 
origin by (a), it follows that  XI ,  Xz . . . . .  X,  also have the origin as their 
only c o m m o n  zero on W. 

Since z~(f l (z) , . . . , f . (z))  is 1 - 1  on a ne ighborhood  of W, the 
Jacobian  matr ix  J(f~ . . . . .  f,) = (D~fj) has a nonzero  determinant .  Hence  
the cofactors of  the last row have no c o m m o n  zeros on W. Let 
al(z,)  . . . . .  a,,(z,,) be the restrict ions of these cofactors to z~ = 0, . . . ,  z,_ ~ = 0; 
aj is a ho lomorph i c  function for Iz,t =< 1. 

N o w  apply  (1) n times for T=T~,  T2 . . . . .  T._~ and for an a rb i t ra ry  
T. Setting then z 1 = z2 = = z,_ 1 =  0 and recalling (B) above,  we get, 
after mult iplying by z, (or a power  of  z, in the last case), a homogeneous  
system of n equat ions  for X . . . . .  X,:  

~,(D,fk)Xk=O 
1 

n 

Y~ (D~A) x~ = o 
1 

?1 

Y~(O.-,A)Xk=0 
1 

n 

2 (oA) xk = 0 
1 

for  I z , ] = l  zl  . . . . .  z , _ l = 0  
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where D is a product of one or more of the Dj. As the Xk's have no common 
zeros for zl, ..., z. in this range, it follows that the determinant of the 
system vanishes. Expanding it on the last row and observing that the 
cofactors of its last row are exactly those of J(fx . . . .  , f .)  we get 

ak(z,,) (O fk) (0,..., O, z,) -- 0 (2) 
k = l  

for Iz.I = 1. As these functions are holomorphic we conclude that (2) 
holds for Iz.I < t. 

If f is an analytic function on W, we have for (z'; z.)e W where 
z ' = ( z ~  . . . .  ,z.-1):  

f (z ' ,  z,) = Y ~ .  (D~T) (0; z,) Z t~ 

where ~ = ( ~ l , . . . , ~ , - x )  and D'=(DO'I . . . (D,_O ~"-1. By (2) for ~ = 0 ,  
Iz.I-< i, 

ak(z.) (D'fk) (0, z,) =- O. 
k = l  

Multiplying by z" and summing over a, we get, for (z', z,) ¢ I4t: 

i a~(z,) fk(z', z,,) = b(z,,) 
k = l  

where b(z,)=Eak(z,)fk(O,z,). As the f j  vanish at the origin, b(0)=0. 
Put z .  = 0 and get 

ak(0) fk(z', 0) = 0 (3) 
k = l  

II-1 

for z 'e  W'={(z l  . . . . .  z . - l ) e C  "-1 : lzal~6 and ~ IzklZ< 1}. 
1 

We have seen that some aj(0) is nonzero; say a,(0)4: 0. Then, by (3), 
f ,  is a linear combination of f~ . . . .  , f ,_~ on W'. Also (a) implies that 
z '~ ( f l ( z ' )  . . . . .  f.-x(z')) is 1 - 1 on W'. We can now apply the induction 
hypothesis to f~ , . . . , f , _~ ;  fn . . . . .  f .+ , ,  on W'_~C "-1 to conclude that 
each f j f ~  is constant on complex lines in the hyperplane z, =0.  

By making a small rotation of coordinates and applying the induction 
hypothesis with a slightly smaller 6, we obtain by the previous argument 
that each fi'/fj is constant on complex lines near the hyperplane z, = 0. 
By analytic continuation, each f j f ~  is constant on all complex lines. 

We can now complete the proof of Proposition 1.1. 
(ii) Suppose .IF is nonsingular at some point of OnbB, ,  say at 

e l = ( l , 0 ,  .... 0), with no loss of generality. Then F is 1 - 1  on some 
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ne ighborhood  of el.  Choose  0 < r < 1 so that F is 1 - 1 on a ne ighborhood  
ofB,  n { z ~ E " : R e z l  >r} .  Fix r < a <  ! and define an au tomorph ism ~p 
of  B, by ~o(zl,...,z,,)=((zl +a)/(l +azO, z2 l / t -aZ / ( l  +azO .... 
.... z,,]/-i-~-a-Z/(1 + a zO). As F is defined and 1 - 1 on a ne ighborhood of  

{z ~ ~E" : II zll _-< 1 and z 1 = a}, F o ~p is defined and 1 - 1 on a ne ighborhood  
of {z ~ ~" :  Ilzll < 1, Izll _-< ,~} for some 6 > 0. Let z be an au tomorphism of 
B, for which z(F(aeO)= O(F(aeO~ 13, by the max imum principle applied 
to the subharmonic  function ZIJ~I2). The ho lomorphic  mapping 
P =T  o F o~0 is such that (1) f is defined and 1 - 1 on a ne ighborhood of 
W = {z o ~ ,  : Ilzll _-< 1, tzd _<- 0}, (2) F(0) = 0, and (3) [IP(z)l[ = 1 ifz~ Wnbn,,. 
If we can prove that  F extends to be an au tomorph ism of B,, it is clear 
that the same will be true for F. Thus,  without  loss of  generality, we 
may assume that (1), (2), and (3) hold for F in place o f F .  

We apply Propos i t ion  1.2 to f l ,  ..., f ,  and conclude that each f i / f j  
is constant  on complex lines. The zero set of f j  is a set of complex lines. 
For  i f p ( ~  0) ~ W and fj(p) =0 ,  then, as z~( f l ( z ) ,  ...,f,(z)) is 1 - 1 on W, 
there is k such that  fk(P)~e 0; as fj/fk is constant  on the complex line 
through p and equal to zero at p itself, f j  - 0 near p on this complex line 
and so f j  =-0 on the entire complex line (intersected with W). Since 
JF(O) is nonsingular,  (dfi) (0):~ 0. It follows that  each f j  is of the form 
f j=  kiw j on W, where kj is a linear homogeneous  polynomial  and tpj 
is a nowhere  vanishing analytic function on W. Next  we observe that  the 
functions ~pJWj are constant  on complex lines and so are all constant  
multiples of a single function. Thus f j  = hj~p on W, where hj is a linear 
homogeneous  polynomial  and ~p is non-vanishing on W. Let L be a fLxed 
complex line close enough to the hyperplane zl = 0  so that Lc~ W is a 
discA of radius one in L; i.e., bA ~_ bB,. Then Z Ifj(z)[ z -- 1 on hA. As the 
Ihj[ are constant  on bA, we conclude that  [~P[ is constant  on bA. Being non- 
vanishing on A, tp is constant  on A. Hence ~p is constant  on W. Therefore  
F is the restriction to W of a (complex) linear t ransformat ion of~E". Since 
llF(z)ll = 1 for z on an open subset o f b B ,  it follows that  F is (a restriction 
of} a uni tary linear t ransformation.  Q.E.D. 

Remark. We have assumed that F is ho lomorph ic  across a point  of 
the boundary  but  it is clear from the proof  that we need only have assumed 
that F be C °~ up to the boundary  and ho lomorphic  in the interior. 

2. We shall now consider bounded  ho lomorph ic  functions on the 
polydisc U " =  {ze lE" :  Izl[ < 1, . . . ,  [z,l < 1}. The  topological  boundary  
of U" is made up of n pieces each of which is a product  of a unit circle 
and n -  1 unit discs and thus carries a natural  induced surface measure 
of total mass 2n(n)"-  1. We let a be the normal ized surface measure on 
b U"; i.e., tr = (2r r" n)-  ~# where/~ is surface (i.e., Hausdorf f  2n - 1) measure 
on b U", so that  a(b U") = 1. Haar  measure on the torus T" will be denoted  
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by m. We recall that  a ho lomorph ic  function f = Y, a, z a on U" is in the 
Hardy  space HE(U ") ([8]) if H f b[ 2 = (E la,]2) 1/2 < o0. 

Proposition 2.1. Let f ~ HZ(u ") with f ( 0 ) = 0 .  Then 

n + l  
[f[2 do < - -  ~ [f[2 dm. (I) 

be- = 2n T- 

Proof. Implicit in the assertion is the fact that  the boundary  value 
function of f on b U" exists in the L 2 sense for the measure tr. Since the 
functions which are ho lomorph ic  on U -'~ are dense in Hz(U"), it will 
suffice to verify (1) for such functions. Let S, be the part  of bU" given by 
[zll < 1 . . . . .  Iz.- x[ < 1, Iz,I = 1. Let ), be planar Lebesgue measure. Then  

~. If(z 1 . . . . .  z,_ 1, ei°)lZ d2(z0 . . ,  d2(z,_ 1) dO 
$. 

= X (~lz=l 2 d2(zl).., d2(z,_ x) dO)la=l 2 

= X 2 n " l a = l  2 = y. 2rc"(~. + 1) l a f  

(cq + 1)... (a,_ x + 1) (al + 1)... (or, + l) " 

A similar formula holds for the n - 1 other  faces of b U", adding these and 
normalizing, we get 

~lf l  2 d a - -  l y ~  (~1 + ~ 2 + " "  + ~ , + n )  
n (al + 1)... (~, + 1) la'12" 

As f (0 )  = 0, I~l = ~1 + " "  + o~, > 0 in this sum and so 

(oq + . . .  + 0~, + n)/(oq + 1)... (or, + 1) __< ([0t[ + n)/([~l + 1) < (1 + n)/2. 

Therefore  we get ~lf l  2 do  < (n + 1)/2nX la~l 2 = (n + 1)/2n~lfl 2 din. 

Remark. If we do not  assume that f (0 )  = 0, we can apply (1) to f - f (0 )  
and obtain 

~lfl2 d a <  n - 1  n + l  2n If(0)12+ -~-n ~'lfl2dm" (1)' 

Here  we have used the fact that S fdm = f ( 0 ) =  ~.fda. 
Put  f oo=sup{I f ( z ) l : zeU"}  for bounded  f on U". Since 

[Ifll~ --< Ilfl oo we have 

Corollary 2.1. I f  f ¢ H°°(U ") and f(O)= O, then 

Slfl2 da< n + l  
= 2n [Ifll2°~" 

This corol lary implies, for n >  1, that there is no non-cons tant  
bounded  ho lomorph ic  function f on U" with IIf[Ioo = 1 and [fl  = 1, a 
a.e. on b U". (If such a function f existed, we could obtain one vanishing 
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at the origin: ( f -  f(0))/(l - f ( 0 ) f ) ) .  Whether such a function ("an inner 
function") exists on the unit ball (n > 1) is an interesting open question 
(cf. [7]). This question could be answered negatively if an analogue to 
Corollary 2.1 - with (n + 1)/2n replaced by any constant less than o n e -  
could be proved for the ball (da would be normalized surface measure 
on b B,). 

/ s \1 /2  

For F ' f 2 ~  with F = ( f l  . . . .  ,f,), we let IIFlf (z)= {~  Ifi(z)l 2} " 
\ 1  / 

Corollary 2.2. Let F : U" ~ B k be a holomorphic map. Then 

n + l  n--1  
~llFIlZd°'< 2 ~  + ~ [IF(0)tl2" (2) 

Proof. Apply (1)' to each fj,  1 __<j < k, and add to get 

[[F[[ 2 da < (n + 1)/2n~ [IF][ 2 dm + (n - 1)/2n I[V(0)[[2. 

Since [[F[[ < 1, the assertion follows. 

Remark. From (2) we conclude that there is no proper holomorphic 
mapping from U"(n > 1) to Bk; for i fF  were proper, then [IF[I- 1 on bU" 
would imply that the left side of (2) were one, while the right side is 
clearly less than one. This gives a quantitative explanation for the non- 
existence theorem of Poincar6. An alternate proof of the non-existence 
of proper maps is given by the methods of [8] (§ 7.3). More general results 
on the non-existence of holomorphic covering correspondences have 
been obtained by Stein and Rischel [9]. 

Still another way of viewing the Poincar6 theorem comes from the 
following L 2 formula. For a function f defined on U" write f ( z l  ;0) 
for f ( z l , 0  . . . . .  0) for Izll< 1. 

Proposition 2.2. Let F = ( f  l, ..., fk) : U" ~ Bk be a holomorphic map. 
Then 

1 ~(l_[if(e,O;O)ll2)dO. (3) [[F(z)-F(zl;O)l[ z am(z)< ~ o 
T n 

where the integrands are the a.e. defined boundary functions. 

Proof. Since ~ f ( z ) ~ d m =  ~lf(zl;0)l  2 dm for f~H2(U"), we 
get ~ Ifi(z) - f~(zl ; 0)12 dm= ~ tfjl 2 d m -  ~ lfj(z 1; 0)l z din. Adding for 

< - <  • 2 2 2 1 k we obtain F F z  ,0  dm F dm F z , O  dm = 1 =  SII - (1")II  = ll tl - II )ll 
t 2~  1 2f~ 

< 1 - - - ~  ~ I[F(ei°;O)[12 dO= T-~ ~(1-lIF(ei°;O)l[2)dO. 
o 

Remark. From (3) we see that a measure of the independence of F 
from the variables z2 . . . . .  z. (in the L 2 sense) is given by the closeness of 
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IIFII to one on the boundary of the disc Iz l l<  l, z2 . . . . .  z~=0.  In 
particular, if the restriction of F to this disc is a proper mapping into Bk, 
then F is independent of z2, ..., z n. This can be paraphrased as follows: 
If F o : U---, B k is proper and holomorphic, then, viewing U as U x {0} 
c___ U x U ~- 1 ~ U n, i.e., as a subvariety of U"(n > 1), the only extension of 
Fo to a holomorphic map  U " ~  Bk is the obvious extension which is 
independent of z2, ..., zn. This fact, of course, contains the Poincar6 
theorem. It  is also of interest to compare  it to a recent result of Royden [6] 
who proves that ifFo : U ( =  U x {0} =c U~)~f2 is a holomorphic embedd- 
ing, where 12 is a complex n-manifold, then for any 0 < r < 1, there exists 
an extension of Fo to a holomorphic  embedding F :  (r U) x U ~- 1 ~ [2. We 
see that r < i is needed in Royden's  theorem. 
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