RECURSIVE INTEGRAL EQUATIONS FOR THE
DETECTION OF COUNTING PROCESSES†

F. B. Dolivo

and

F. J. Beutler

Computer, Information and Control Engineering Program
The University of Michigan, Ann Arbor, Michigan 48104

September 1974

† This research was sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under Grant No. AFOSR-70-1920C, and the National Science Foundation under Grant No. GK-20385.
ABSTRACT. A recursive stochastic integral equation for the detection of Counting Processes is derived from a previously known formula [5] of the likelihood ratio. This is done quite simply by using a result due to Doléans-Dade [4] on the solution of stochastic integral equations.

1. INTRODUCTION. Recently modern martingale theory has been used to describe Counting Processes (hereafter abbreviated CP) in a way specially appropriate to the problems of detection and filtering. This has given rise to the notion of Integrated Conditional Rate (ICR) [5], which generalizes the notion of random rate.

Expressions for likelihood ratios (involving ICR's) for the detection of CP's have been obtained in [5] using a three-step technique introduced by Kailath [9] and Duncan ([6], [7]) in their works on detection of a stochastic signal in white noise. The three steps are the Likelihood Ratio Representation Theorem ([2], [5], [6]), the Girsanov Theorem ([5], [8], [13]) and the Innovation Theorem ([2], [5], [9]). By this method likelihood ratios for a large class of CP's can be found. These expansions represent a generalization of the formulas given in [1] and [12] in the context of Poisson processes and [2] in the context of CP's which admit a conditional rate.

The purpose of this paper is not to present a proof of the likelihood ratio formula (for that see [5]) but to derive from this formula stochastic integral equations by which the likelihood ratio can be computed recursively. This can be done quite simply using a result due to Doléans-Dade [4] on the solution of stochastic integrals equations involving semimartingales. These recursive equations are most useful in applications as they give a way of
implementing the computation of the likelihood ratio continuously in time.

2. PRELIMINARIES. Let \((\Omega, \mathcal{F}, P)\) be a complete probability space. By \((X_t)\) we denote a real valued stochastic process defined on \(\mathbb{R}_+\), the positive real line and by a Counting Process (CP) we mean

Definition 2.1: A CP is a stochastic process having sample paths which are zero at the time origin and consisting of right-continuous step functions with positive jumps of size one.

The time of \(n\)th jump \(J_n\) of a CP \((N_t)\) is the stopping time defined by

\[
J_n = \begin{cases}
\inf \{t: N_t \geq n\} \\
\infty \text{ if the above set is empty.}
\end{cases}
\]

Let \((\mathcal{F}_t)\) be a right-continuous increasing family of \(\sigma\)-subalgebras of \(\mathcal{F}\) with \(\mathcal{F}_0\) containing all the \(P\) negligible sets, and suppose \((N_t)\) is a CP, adapted to \(\mathcal{F}_t\), with the sole assumption that \(EN_t\) is finite for each \(t\). Then, as a consequence of the Doob-Meyer decomposition for supermartingales we can associate to \((N_t)\) a unique natural increasing process \((A_t)\), dependent on the family \((\mathcal{F}_t)\), which makes the process \((M_t \triangleq N_t - A_t)\) a martingale (see [11]).

This decomposition \((N_t = M_t + A_t)\) is intuitively a decomposition into the part \((M_t)\) which is not predictable and \((A_t)\) which can be perfectly predicted. This unique process \((A_t)\) is called the Integrated Conditional Rate (ICR) of \((N_t)\) with respect to \((\mathcal{F}_t)\) ("the \((\mathcal{F}_t)\) ICR of \((N_t)\)"") and has been studied in [5].

The terminology ICR is motivated by the fact that when \((N_t)\) satisfies some
sufficiency conditions its ICR takes on the form \((\int_0^t \lambda_s \, ds)\) where \((\lambda_t)\) is a nonnegative process called the conditional rate (with respect to \((\mathcal{F}_t)\)) satisfying \(\lambda_t = \lim_{h \to 0} \mathbb{E}[h^{-1}(N_{t+h} - N_t) | \mathcal{F}_t]\) ([5], Section 2.5). The existence of CP's possessing a bounded conditional rate with respect to the family of \(\sigma\)-algebras generated by the process itself has been first shown in [2] and in [5]. Sufficiency conditions for the existence of a conditional rate have been given in [5]. By a change of time we can show similar results (i.e., existence (see [5], Corollary 3.1.3) and sufficiency conditions) for \((\mathcal{F}_t)\) ICR's of the form \((\int_0^t \lambda_s \, dm_s)\) where \((\lambda_t)\) is a locally bounded predictable process and \(m_t\) a deterministic increasing right-continuous function with \(m_0 = 0\).

Denote by \(\mathcal{A}(\mathcal{F}_t)\) the class of all locally bounded predictable (with respect to \((\mathcal{F}_t)\)) processes (see [3], p. 98). For example, processes adapted to \((\mathcal{F}_t)\) and having left-continuous sample paths belong to \(\mathcal{A}(\mathcal{F}_t)\).

Remark 2.2: Let the ICR \((A_t)\) be of the form \((\int_0^t \lambda_s \, dm_s)\) and denote by \(\Lambda\) the union of all intervals of \(\mathbb{R}_+\) on which the function \(m_t\) is constant. Observe that the ICR \((A_t)\) is not affected by a change of values of \((\lambda_t)\) for \(t \in \Lambda\) and we may well have \(\lambda_t = \infty\) for \(t \in \Lambda\). To avoid problems due to this indeterminacy we adopt the following convention: for \(t \in \Lambda\) we set \(\lambda_t\) equal to unity.

We assume here that modern martingale theory ([11], [3]) is known. Recall that a semimartingale \((X_t)\) is a process which can be written as a sum \((X_t = X_0 + L_t + A_t)\) where \(X_0\) is \(\mathcal{F}_0\)-measurable, \((L_t)\) is a \((\mathcal{F}_t)\) local martingale and \((A_t)\) is a right-continuous process adapted to \((\mathcal{F}_t)\)
having sample paths of bounded variation on every finite interval and with

\(A_0 = 0 \) a.s. (see [3]). A result basic to this study and due to Doléans-Dade [4] is the following: the stochastic integral equation

\[
Z_t = 1 + \int_0^t Z_s \, dX_s
\]

where \((X_t)\) is a semimartingale has a unique solution, which is a semimartingale given by

\[
Z_t = \exp(X_t - \frac{1}{2} <X^C>_t) \prod_{s \leq t} (1 + \Delta X_s) \exp(-\Delta X_s)
\]

where the product in the right hand side converges a.s. for each \(t\). Here we define \(<X^C>_t\) as the unique natural increasing process (see [3]) associated to the continuous part of the local martingale \((L_t); \quad <X^C>_t\) is identically zero when \((X_t)\) is a semimartingale with sample paths of bounded variation on every finite interval (see [3]).

3. THE DETECTION PROBLEM. Let \(P_0\) and \(P_1\) be two measures carried on \((\Omega, \mathcal{F})\). Suppose that \((N_t)\) is a CP defined on \((\Omega, \mathcal{F})\) and denote by \(\mathcal{N}_t\) the minimal \(\sigma\)-algebra generated by \((N_t)\) up to and at time \(t\). The notation \(E_i(\cdot)\) for \(i=0, 1\) is intended for the expectation operator with respect to the measure \(P_i\).

Definition 3.1: For a \((\mathcal{N}_t)\) stopping time \(R\) (possibly infinite) denote by \(P_i^R\) for \(i=0, 1\) the restriction of the measure \(P_i\) to the \(\sigma\)-algebra \(\mathcal{N}_R\).

\[\text{\dag} \quad \text{When } f_t \text{ is a right-continuous function with left-hand limits } \Delta f_t \text{ denotes the jump } f_t^- - f_t^-.\]
We have the inclusion $\mathcal{N}_R \subset \mathcal{G}$ so that if $P_0 \ll P_1'$ then $P^R_0 \ll P^R_1$ and the Radon-Nikodym derivative dP^R_0 / dP^R_1 is well defined. We examine now the meaning of this Radon-Nikodym derivative. In the case where the stopping time R is equal to a constant a then $\mathcal{N}_R = \mathcal{N}_a = \sigma(N_u, 0 \leq u \leq a)$ so that dP^a_0 / dP^a_1 is the likelihood ratio for testing the two hypotheses H_i for $i=0, 1$: P_1 is the probability measure on (Ω, \mathcal{G}), by observations on the CP (N_t) for $t \leq a$. The detection scheme then consists in selecting H_0 or H_1 according as dP^a_0 / dP^a_1 is above or below a given threshold. Now in the case where R is a stopping time which is not a constant we know that $\mathcal{N}_R \supset \sigma(N_{u \wedge R}, 0 \leq u)$ (this follows from the fact that $N_{u \wedge R}$ is \mathcal{N}_R measurable by Theorem 49-IV of [11]) but the reverse inclusion is not necessarily true. For this reason dP^R_0 / dP^R_1 is not the likelihood ratio for our detection problem when the time of observation is the stochastic interval $[0, R]$, as one could have conjectured. But one can interpret dP^R_0 / dP^R_1 as a likelihood ratio if we assume that the information accessible to the observer is \mathcal{N}_R and not simply $\sigma(N_{u \wedge R}, 0 \leq u)$. For $i=0, 1$ with the measure P_i carried on (Ω, \mathcal{G}) suppose that the CP (N_t) has the process $\left(\int_0^t \lambda^i_s dm_s \right)$ for (\mathcal{G}^i_t) ICR, where (\mathcal{G}^i_t) is a family of σ-algebras with $\mathcal{G}^i_t \supset \mathcal{N}_t$, $(\lambda^i_t) \in \mathcal{P}(\mathcal{G}^i_t)$ is a positive process, and m_t is an increasing deterministic function with $m_0 = 0$.

It is known that we can make a change of measure under which (N_t) is a CP of independent increments with mean $m_t = E N_t$ under the new measure P. (Theorem 2.6.1 of [5]). Using this fact and the three-step technique $P_0 \ll P$ means that the measure P_0 is absolutely continuous with respect to P while $P_0 \sim P$ indicates that the two measures are equivalent.
of Duncan and Kailath (see Introduction) the likelihood ratio for detecting
CP's has been obtained according to

THEOREM 3.2 (Theorem 3.4.4 of [5]): For \(i = 0, 1\) let \((N_t)\) be,

under the measure \(P_i\), the CP described above. Assume

(a) \(P_0 \ll P\) and \(P \sim P_1\) and define for \(i = 0, 1\) the \((P, \mathcal{F}_t)\) martingale

\[
L_t^i = E\left(\frac{dP_i}{dP} \bigg| \mathcal{F}_t\right);
\]

(b) For \(i = 0, 1\), the stopping times \(T^i_n\) are such that there exists increas-

ing sequences of stopping times \((T^i_n)\) for which \(T^i_n = \lim_{n \to \infty} T^i_n\) a.s. and

\[E(\ln L_{T^i_n})^2 < \infty\]

for each \(n\). Let \(T = \bigwedge_{i=0}^1 T^i\);

(c) For \(i = 0, 1\)

\[
E \int_0^T \lambda_s^i \, dm_s < \infty.
\]

Then

\[
\frac{dP_{0 \wedge T}}{dP_{1 \wedge T}} = \prod_{n < T \wedge T} \frac{\lambda^0_n}{\lambda^1_n} \exp\left[\int_0^{T \wedge T} (\lambda^1_s - \lambda^0_s) \, dm_s\right]
\]

where \(\lambda^i_t \triangleq E \left(\lambda^i_t \big| \mathcal{F}_t\right)\) for \(i = 0, 1\) and \(J_n\) is the time of \(n^{\text{th}}\) jump of \((N_t)\). By

convention the product \(\prod(\cdot) = 1\) for \(J_{1} > T \wedge T\).

Remark 3.3: (a) The stopping time \(T^i\) which is the first time

after which the martingale \((L_t^i)\) can behave badly may take the value \(+ \infty\).

It is in fact desirable for \(T^i\) to be as large as possible.

(b) By our convention (Remark 2.2) condition (c) above insures that

the process \((\lambda^i_t)\) is well defined.
4. RECURSIVE INTEGRAL EQUATIONS FOR LIKELIHOOD RATIOS

We show here that the likelihood ratio (1) of our detection problem can be obtained as the unique solution of a stochastic integral equation. This stochastic integral equation can be mechanized by a feedback scheme tantamount to a recursive filter, as shown in Figure 1.

THEOREM 4.1: The likelihood ratio \(\frac{dP_{t \wedge T}}{dP_{T \wedge 1}} \) of Theorem 3.2 is the unique solution of the following stochastic integral equation:

\[
Z_t = 1 + \int_0^t Z_s \, dX_{s \wedge T}
\]

where

\[
X_t = \int_0^t \left\{ \frac{A^0_s}{A^1_s} - 1 \right\} \, dN_s + \int_0^t (A^1_s - A^0_s) \, dm_s
\]

Proof: By assumption \((\lambda_t^i), \ i=0,1\), is positive a.s. finite for all \(t\) (by condition (c) of Theorem 3.2 and Remark 2.2). The process \((N_t)\) has a finite number of jumps in any finite interval so that the process \(\int_0^{t \wedge T} (\frac{A^0_s}{A^1_s} - 1) \, dN_s\) has sample paths of bounded variation on any finite interval; and so does the process \(\int_0^{t \wedge T} (A^1_s - A^0_s) \, dm_s\) by assumption (c) of Theorem 3.2. Hence \((X_{t \wedge T})\) is a semimartingale with sample paths of bounded variation on any finite interval so that \(\langle X^C \rangle_{t \wedge T} = 0\) (see the remark, on p. 90, following proposition 3 of [3]). Then by Theorem 1 of [4] the unique solution of (2) is given by

\[
Z_t = \exp(X_{t \wedge T}) \prod_{s \leq t} (1 + \Delta X_{s \wedge T}) \exp(-\Delta X_{s \wedge T})
\]
Now \(\Delta X_{s \wedge T} = (\lambda_{s}^{0}/\lambda_{s}^{1} - 1)\Delta N_{s \wedge T} \) and hence the product in (4) becomes

\[
\Pi (\cdot) = \prod_{s \leq t} \left[1 + \left[\frac{\lambda_{s}^{0}}{\lambda_{s}^{1}} - 1 \right] \Delta N_{s \wedge T} \right] \exp \left[\sum_{s \leq t} \left[\frac{\lambda_{s}^{0}}{\lambda_{s}^{1}} - 1 \right] \Delta N_{s \wedge T} \right]
\]

\[
= \prod_{J \leq t} \left[\frac{\lambda_{J}^{0}}{\lambda_{J}^{1}} \right] \exp \left[- \int_{0}^{t} \left[\frac{\lambda_{s}^{0}}{\lambda_{s}^{1}} - 1 \right] dN_{s} \right]
\]

Substituting the above relation and expression (3) in (4) gives the desired result (compare with (1))

\[
Z_{t} = \prod_{J \leq t} \left[\frac{\lambda_{J}^{0}}{\lambda_{J}^{1}} \right] \exp \left[\int_{0}^{t} \left(\frac{\lambda_{s}^{1} - \lambda_{s}^{0}}{\lambda_{s}^{1} - \lambda_{s}^{0}} \right) dm_{s} \right] = \frac{dF_{t \wedge T}^{0}}{dF_{t \wedge T}^{1}}
\]

Observe that if under the measure \(P_{1} \) the CP \((N_{t}) \) is a process of independent increments with mean \(m_{t} \) then \(P \equiv P_{1} \), \(\lambda_{1}^{t} = 1 \) and Eq. (3) becomes

\[
X_{t} = \int_{0}^{t} (\lambda_{s}^{0} - 1) d(N_{s} - m_{s})
\]

The process \((M_{t} \Delta N_{t} - m_{t}) \) is a \((P, \mathcal{N}_{t})\) martingale. Hence (5) shows that the process \((X_{t \wedge T}) \) is a local martingale. In turn, (2) then implies that the process \((Z_{t}) \) is a local martingale. In this case we in fact have

\[
Z_{t} = E_{1}[dF_{0}^{00}/dF_{1}^{00} | \mathcal{N}_{t \wedge T}], \text{ i.e. the likelihood function is a uniformly integrable martingale.}
\]

In applications, Eqs. (2) and (3) give a way of implementing the computation of the likelihood ratio continuously in time. They represent recursive
equations if one also obtains the best estimates \(\hat{\lambda}_t \) in a recursive manner.

The block diagram of this implementation is given in Figure 1.
Recursive Scheme for Obtaining the Likelihood Function Z_t.

Figure 1
REFERENCES

2. P. M. Brémaud, A martingale approach to point processes, Memorandum No. ERL-M345, Electronic Research Laboratory, University of California, Berkeley, California, August 1972.

