
Math. Ann. 292, 127 147 (1992) Mathematische 
Annalen 
�9 Springer-Verlag 1992 

The distribution of bidegrees 
of smooth surfaces in Gr(l,  p3) 
Mark Gross 

Department of Mathematics, University of Michigan, Ann Arbor, MI48109-1003, USA 

Received November 12, 1990; in revised form April 11, 1991 

0 Introduction 

The study of algebraic surfaces in Gr (1, p3), the Grassmann variety parametrising 
lines in projective three-space, was a popular one for algebraic geometers of the 
late nineteenth and early twentieth centuries. Calling them line congruences, 
researchers such as Kummer,  Fano, Roth and many others published many 
papers on the topic, classifying congruences and studying their invariants. Since 
that time, the field has lain dormant until very recently. 

The classical geometers identified two numbers associated with a given 
congruence: the order and the class. Thinking of a congruence as a two 
dimensional family of lines, the order is the number of lines in the family passing 
through a general point in p3, and the class the number of lines in the family 
contained in a general plane. Together, these two numbers make up the bidegree of 
the congruence. In modern terms, the bidegree gives the class of the congruence in 
the Chow ring of Gr (1, p3). 

In this paper, we consider the question: "for what values of a and b does there 
exist (or not exist) a smooth congruence of  bidegree (a, b)?" In particular, we try to 
find restrictions on the bidegree, using an approach suggested by Dolgachev and 
Reider in [8]. This approach is to study the restriction of the universal bundle g of 
Gr (1, p3), which appears in the exact sequence 

0.... .45__ 4 4 f i t  ~0Gr (1, p3) --4" "---~ 0 , 

to a surface Y __ Gr (1, p3). If g lr is semistable, we find by Bogomolov's theorem 
that c~(gl r) < 4c2(~flr) implies a < 3b, where (a, b) is the bidegree of Y. 

We are unable to prove that g restricted to any surface is semistable. Instead, 
we show that the hypothesis that g[r  is unstable leads to a strong bound on the 
hyperplane section genus of Y, which in turn leads to a bound on a versus b. To 
summarize our results, we have 
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Theorem. I f  Y ~= Gr (1, p3) is a smooth surface o f  bidegree (a, b), then 
a) i f  Y is not of  general type, then a < 3b; 
b) if  Y is of  general type and b < 19, then a < 3b; in general a < (5'(~4/3). 

While these results are not as strong as one could hope for, it is a start, a < 3 b is 
certainly the best linear bound one can achieve, as there exist surfaces of bidegree 
(3, 1) and (6, 2). However, the asymptotically best examples for producing surfaces 
for which a differs widely from b (Remark 3.17) yield a sequence of surfaces such 
that a/b converges to 1. Note that complete intersections have a = b; surfaces with 
[a - b l large compared to a + b can be considered unusual. 

These results immediately extend to give information about codimension 2 
subvarieties of higher dimensional Grassmannians, augmenting results of [23] and 
[17] (Proposition 1.4). 

In Sect. 1, we give standard preliminary notation and results on Gr (1, p3). 
In Sect. 2, we study surfaces Y ~ Gr (1, p3) for which there is a curve C =c p3 

such that every line of Ypasses through C. This is an important special case needed 
for our general results. We find 

Theorem. I f  Y ~= Gr (1, p3) is a smooth surface ofbidegree (a, b) all of  whose lines 
pass through a curve C ~ p3, y not contained in a hyperplane section of Gr (1, p3), 
then either 

a) Y is given as the set ofbisecants of  a twisted cubic or an elliptic quartic in p3, of  
bidegree (1,3) or (2, 6) respectively," or 

b) C is a non-singular plane curve, and a < b. 

This is an extension of an unpublished result of Cossec, Dolgachev and 
Verra, [7]. 

I Preliminaries 

We will work over an algebraically closed ground field k, char k = 0 (we will need 
this especially to apply Bogomolov's theorem). Let Q = Gr(1,p3), the Grass- 
mannian of lines in projective three-space over k. We identify Q with the image of 
its Plficker embedding as a hyperquadric in ps. Given a point p ~ Q, we denote by 
l v the corresponding line in p3. 

We state some well known facts about Q. (See, for example, [13, Chap. 1, Sect. 5 
and Chap. 6, Sect. 1].) The Chow ring of Q is A I ( Q ) =  Z, A Z ( Q ) = Z G Z ,  
A 3 (Q) = Z, Ag(Q) = Z, generated by the Schubert cycles. The generators are: Z 
for A 1 (Q), representing a hyperplane section of Q. The Schubert cycle represent- 
ing it is the locus of points in Q corresponding to the set of lines intersecting a fixed 
line in p3. This corresponds to a singular hyperplane section of Q. I f / i s  a fixed line 
o f P  3, we denote by Z (l) the corresponding Schubert cycle. A three-fold contained 
in Q is called a complex, and if its class is nZ in A 1 (Q), we call it a complex of degree 
n. A complex is always the complete intersection of Q and a four-fold of degree n in 
ps. 

The generators of A 2 (Q) are denoted by ~/and ~/', and are the Schubert cycles 
consisting of lines through a given point of P 3, and lines contained in a given plane 
of p3 respectively. Both these cycles are isomorphic to p2. Denote, for a given 
point P ~ p3, the locus in Q of lines through P by r/(P), and for H ___ p3 a plane, the 
locus in Q of lines contained in H by t7' (H). 
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The generator o f A  3 (Q) is denoted by l, and is represented by a pencil of lines in 
p3. The generator of A 4(Q) is a point in Q, denoted pt. 

From this description, it is easy to see what the intersection pairing on A* (Q) is: 

z2  = r/-t- r/' , Z . q = Z . q ' = l ,  Z . l = p t  

~l . q = q' . t f  --- p t, q . q' = O. 

An arbitrary surface Y ~ Q is represented by a cycle in A z (Q) which can be 
written as aq + brf. In classical terminology, Y is called a line congruence, and a 
ray of the congruence is a line lp in p3 withp e Y. The pair (a, b) of integers is called 
the bidegree of Y. By the above pairing, (aq + bq') �9 q =- a, and (a t /+  br/') �9 i/' = b, 
so that a is the number of rays of Y through a general point in p3, and b is the 
number of rays contained in a general plane of p3. 

Example  1.1. The locus of points in Q corresponding to lines intersecting two 
given, disjoint lines in p3 is a congruence of  bidegree (1, 1). The number of rays 
through a general point of Pa can be seen to be 1, by projecting the two given lines 
from the point. The ray in a general plane is the one connecting the two points of 
intersection of the two lines with the plane. It is easy to see that this locus is 
smooth, isomorphic to p1 x W. 

This surface is an example of a complete intersection, being the intersection of 
two linear complexes. More generally, an intersection of a complex of degree n and 
a complex of degree m gives a congruence of bidegree (nm, nm). Thus complete 
intersections lie along the diagonal of the (a, b) plane, and we would expect more 
special types of surfaces to lie off, but not too far from, the diagonal. 

Example  1.2. The locus of points in Q corresponding to bisecants of a twisted 
cubic curve C in p3 forms a congruence ofbidegree (1,3) and the locus of points in 
Q corresponding to bisecants of an elliptic quartic curve in p3 forms a congruence 
of bidegree (2, 6), as can be checked as above. These are also examples of smooth 
congruences (see [3]). 

By surface, we will mean, unless otherwise specified, a smooth, irreducible 
surface. We have the following standard proposition. 

Proposition 1.3. For a smooth surface Y c= Q with hyperplane section H, canonical 
divisor K, arithmetic genus p , ,  hyperplane section genus ~, second Chern class ca, 
and bidegree (a, b), the following formula  holds: 

aZ + b 2 -  7 ( a + b ) -  K Z - 4 H  �9 K-} -c  2 = 0 .  

P r o o f  See, for example, [l 8]. 

We prove the next result in order to demonstrate the significance of our results 
to higher dimensional Grassmannians. 

Recall that Aa(Gr(d,P")) is generated by the Schubert cycle x, which is 
represented by the set of d-planes intersecting a given n - d -  1-plane, and 
A2(Gr(d,P")) is generated freely by x 2 and an additional Schubert cycle y, 
represented by the d-planes intersecting a given n - d - 2-plane, if0 < d < n - 1. 
In [17] the authors showed that, in Gr (2, ps), if the class ax 2 -t- by is represented by 
a non-singular variety, then b - 0 mod 4. In addition, in [23], the author showed 
the same result for Gr (2, P"), n > 8. To gain more information about these cases, 
we have 
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Proposition 1.4. Suppose there is no smooth surface Y ~ Q of  class 
aZ  2 + btl = (a + b)q + atf . Then there is no smooth subvariety of  Gr (d, P ' ) f o r  
0 < d < n - 1 represented by ax 2 + by. 

Proof. Assume d < n/2-otherwise we can use the isomorphism G r ( d , P ' )  
G r ( n -  d -  1,P"). Embed Gr  (1,p3) into Gr  (d,P") as follows. Choose 

a linear subspace L of  P" of  dimension d -  2 (empty if d =  1). Choose a L' = p3 
P" which doesn't  intersect L (which is possible since d < n/2). Then we get a 

map Gr (1, p3) ~ Gr (d, P") by taking a line l in L' to the join of  L and l. This is 
easily seen to be an embedding. 

Now PGL(n)  acts on Gr (d ,P ' ) ,  and if Y____ G r ( d , P ' )  is a non-singular, 
codimension 2 subvariety, we may apply Kleiman's theorem [16, III, Theorem 
10.8] to see that with a suitable choice of  L and L', the image of  the imbedding 
Gr  (1, p3) ~ Gr  (d, P") intersects Y in a smooth surface. If  Y has class ax 2 .~_ by, it 
is enough to show that x restricts to Z and y to r / to  prove the theorem, for then 
Y ~ Gr (1, p3) is a smooth surface having class aZ 2 A- btl in Gr (1, p3), contradict- 
ing the hypothesis of  the proposition. 

The class x is described as the Schubert cycle of  d-planes intersecting a given 
n - d -  1-plane. Choose the n - d -  1-plane M to intersect L' in a line m and 
intersect the join of  L and L' only in the line m. Since the join of  L and L' has 
dimension d + 2, this may be done. Then l ~ E intersects m if and only if the join 
of  l and L intersects M. Thus this Schubert cycle restricts to Z(m) ,  which has 
class Z. 

The class y is similarly described as the Schubert cycle of  d-planes intersecting a 
given n - d - 2-plane M. Again, choosing M to intersect L' in a point and to avoid 
the join of  L and L' elsewhere, we see the restriction of y to Gr (1, p3) is ~/. [] 

Finally, recall that Q comes equipped with two vector bundles, the universal 
subbundle and the universal quotient bundle, appearing in the exact sequence 

0 - - , g ~  0~ ~ ' ~ 0 .  

(Here ~ '  is the dual of the bundle #' .)  The fibre o f 5  ~ a tp  e Q can be thought of as 
the two dimensional subspace of  k 4 corresponding to lp ~ p3. ~,p is then the 
quotient space of  this subspace. 5 ~ and 5 ~' are interchangeable: the dual exact 
sequence 

o-+ e'-+ o 

expresses Q as Gr  (1, ~3). A 2 o~, induces the embedding of  Q into ps. The Chern 
classes of  # and g '  are well-known, for example by [13, p. 410] 

= - 1 ,  = ( 0 , 1 ) ,  

C a ( i f ' )  = - -  1 ,  C 2 (d ~') = ( 1 , 0 ) .  

A surface in Q is called degenerate if it is contained in a hyperplane section of  Q. 
We have the following well-known classification of  such surfaces. 

Theorem 1.5. Any degenerate smooth surface in Q of  even degree is a complete 
intersection and is thus o f  bidegree (n, n) for  some n. Any degenerate smooth surface 
in Q of  odd degree is contained in a cone over a non-singular quadric surface, and is 
linked to a plane, and thus is o f  bidegree (n - 1, n) or (n, n - 1)for some n. 
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Remark 1.6. If Y = Q is degenerate and is biedgree (n - 1, n), we see Y __ Z (l) for 
some 1. Furthermore, there are two pencils I F[ and IF'l, cut out by the two fami- 
lies of planes in Z(l) .  We see that F ~ q'(L) n Y for L ~ l, and F' c__ r/(P) c~ Y, for 
P ~ l, with F .  H = n - 1 and F ' .  H = n. In addition, F + F' = H, and I F] is base- 
point free. ] F'I is not base-point free, having one basepoint x ~ Y with l x = l. It is 
not difficult to construct degenerate surface of each possible bidegree. 

2 Singular points and planes 

A singular point of a congruence Y was defined classically to be a point P e pz such 
that dimr/(P)c~ Y = 1, and a singular plane to be a plane L e P  3 such that 
dim ~/' (L) c~ Y = I. The degree of a singular point would be the degree of  the one 
dimensional component  of  q (P) c~ Y. I shall use the term "singular point" as it 
was universally used classically, and hope that it is not confused with the usual 
meaning of  the term. 

Much classical work (for example [10, 26]) ignores congruences with an infinite 
number of singular points. They seem to regard them as pathological cases which 
they exclude from consideration, much as we exclude surfaces which are not 
smooth. These congruences are very special, and we can obtain a satisfactory 
partial classification which will be necessary for our results of  Sect. 3. Here we 
show that there are two types of  such congruences. Congruences of one class are 
determined by the bisecants of a twisted cubic or an elliptic quartic. Congruences of 
the other type have all their rays passing through a non-singular plane curve. We also 
find tight restrictions on the bidegrees of such surfaces. Partial unpublished results 
have been obtained in this direction by Cossec, Dolgachev and Verra. 

First, we shall study elementary properties of singular points and planes. 

Definition-Lemma 2.1. The incidence relation I~= p 3 x  Q deft'ned by I =  
{(P, q)l Pelq} is isomorphic to P(g(1 ) )  as a projective space bundle over Q, or to 
P(~p3(2)) as a projective space bundle over p3. Furthermore, i f  p 1 and p2 are the 
projections onto p3 and Q respectively, then p~ Z = cl ((gp~ap~(2))(1)) and p~f L = 
c I ((9pw~1))(1)), where L is the class of  a plane in pz. 

Proof. I is the flag manifold {0 ~ V 1 ~ V 2 ____ k4[dim V~ = i}, and it is well known 
(e.g. [11, 14.2.1]) this is isomorphic to P(g(1) )  or P(f2p3(2)). We can verify the 
second statement by using (p* L)(p* Z)  4 = 2, where L is the class of a plane in 
p3. [] 

Thus we have a diagram pl 
p3 ~ p(d~(1)) 

O.  
We may restrict P2 to p~ ~ (Y), to get a diagram 

Pt  

p3 ~ P(~(1)I r )  

Y .  
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The map Pl sends p~-l(q) to the corresponding ray, lo. A point P e P  3 is then a 
singular point of  Y if and only if dimp~ t (P)  > 1. 

Let L be a singular plane. As a section of  g(1)  vanishes on r/'(L), the 
corresponding section of  g (1 ) l r  vanishes on a one-dimensional scheme. This 
scheme can be decomposed into a divisor and a 0-dimensional residual compo- 
nent. To make this precise, we have 

Proposition 2.2. Let  L ~ p3 be aplane and 
diagram 

Z 

C ---"-~ q' (L) x 

y c= Q a smooth surface. Then we have a 

Q Y ~  Y 

[, 
i q' (L) - - - - ~  Q 

where q'( L ) x e Y is' the scheme theoretic intersection of  q'( L ) and Y, ja  embeds' C as 
an effective Cartier divisor on Y andj '  a embeds' C as an effective Cartier divisor on 
~I' (L). Furthermore a, b are embeddings, Z has finite length, and 

Jn'CL)• = Jc / r  " 3r �9 

Furthermore, C and Z are the unique schemes with this property, and there is an 
exact sequence on Y 

o ~ r ( c )  ~ ~ d ) I Y  ~ r ( H - -  C) | ~162 ~ O. 

Proof. We show this locally. Let Spec A = U = Q be an open affine subscheme 
such that g (1)Iv is free, coming from M = A | A. Let s e H ~ (g (1)) be the section 
which vanishes on q' (L), and let sly = (f ,  g) e M.  Then the subscheme of  U on 
which s l v vanishes is given by the ideal (f, 9). If  I __c A is the ideal of Y r~ U in U, 
then S lr~, v vanishes on the subscheme given by the ideal (.~ •), where fand  ff are the 
classes o f f  and 9 in A' = AlL  Thus it is clear that the zero-scheme of Sir is 
q'(L)  x Q Y. 

Define C as the effective Weil divisor on Y locally on U as 

~, length (A'v/(.~ 9)) P" 
p~SpecA' 

h t p =  1 

Let {(Ui,f)} define the associated Cartier divisor w i t h f  e F(Ui ,  (gr). Then define 
Z locally on Ui by the ideal ( f / f i ,  g / f ) .  It is clear that Jc / r"  J z / v  = J, ' tL) • Qr/Y, and 
this is the only choice for C to ensure Z is a zero dimensional subscheme. 
Furthermore,  C is a subscheme of  t/' (L) x ~ Y, and thus a subscheme of t/' (L) and 
must be embedded as a divisor on ~/' (L). 

On Ui, we have the exact sequence 

0 ~ (gv, ~ Cv, | (gv, ~ Jz~,v, ~ 0 

given by 1 ~ ( f / f ,  9l~) and (x, y) ~ y f / f  - x ~ / f .  This patches to give an exact 
sequence 

0 ~ C r ( C )  ~ d~(1)[r ~ C r ( H -  C) | Jz ~0 ,  

as desired. [] 
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In the notation of  the above proposition, the degree of the singular plane L is 
C . H .  

We can then apply the following well-known result: 

Proposition 2.3. Let  o~ be a rank 2 vector bundle on a smooth surface Y, and let 
t = c 1 ((9vr Also, let C be a f i x e d  Cartier divisor on Y. Then there is a one-to- 
one correspondence between exact sequences 

o --, (9 ( c )  ~ ~ ~ ~r | (9 ( c ' )  -~ o ,  

where Z is a dimension 0 subscheme, and quasi-sections Y'  o f  ~ : P ( ~ )  --* Y, with Y' 
o f  class t - ~*C. ( A quasi-section Y'  o f  ~ is an irreducible (but possibly singular) 
surface in p(o~)  which ~ maps birationally to Y. Alternatively, it is a surface 
Y' ~ P ( ~  ) f o r  which the generic f ibre intersects Y' once, or an irreducible surface 
whose class in Pic P ( Y ) is t - ~* C f o r  some divisor C. ) Here C + C' = c 1 ( ~ ), and 

: Y'  --* Y fails  to be an isomorphism exactly on the support o f  Z. 

Proof. See [25, Proposition 4]. [] 

Thus any plane L ~ p3 gives rise to an exact sequence 

O ~ (gr(C) ~ W (1)lr ~ ( 9 r ( H -  C) | J z  ~ O, 

which in turn gives rise to a quasi-section Y' of P(~(1)lr) ,  of class t - ~*C, for 
some C effective, and C = 0 if and only i fL is not a singular plane. We shall call the 
restriction of the map Pl to Y' Pew), with the inclusion (9 (C) ~ E (1)It understood. 
In this case, Pew) maps Y' to L, and geometrically, this map sends the general p ~ Y 
to I v ~ L. 

We say a subsheaf (9 (C) of ~ (1)ly is saturated if ~ (1)It/(9 (C) is torsion-free: 
i.e. we have an exact sequence 

O ~ (9(C) ~ ~ (1)lr ~ J z  Q ( 9 ( H -  C) ~ O. 

Any locally free subsheaf of  8 (1)It is contained in a saturated subsheaf of ~ (1) It- 
Finally, the intersection theory of P (~ (1)It) is as follows. A* (P (g (1)It)) is 

generated by 

t = c l  ( (gp~r  

and p* Pic Y, and 

t 2 -= p *  Ht  - b 

where b indicates the pull-back of  a zero-cycle of  degree b on Y, and 

t 3 = p* H t  2 - -  bt 

= ( H  2 - b )  t 

= a t .  

Thus we can consider the degree of  a divisor in P (g(1)[r)  with respect to t (t need 
not be ample). If D = P(d~ is a divisor, define degtD = t z �9 D. If  D is an 
irreducible surface in P (g (1)[r), then deg, D is equal to the product  of  the degree of 
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Pl (D) as a surface in p3 and the degree of the map from D to Pl (D) (which is 0 if 
dimpl (D) < 1). In particular, given a quasi-section Y' of class t -p~ '  C, we have 

deg, Y' = t 2 (t - p *  C) 

= a - C . H .  

This number must always be non-negative. 
All comments apply equally to the dual situation with P (g '  (1)]r). 

Proposition 2.4. Let Y ~= Q be a smooth surface of  bidegree (a, b) which b not a plane, 
and let C be a Cartier divisor, with (9(C) ~= 6'(1)1 r. Then 

a) i f  Y has a finite number of  singular planes, then C . H < b; if  in addition Y is 
irrational, then C" H < b - 1. 

b) I f  (9 (C) ~ 6*'(1)Iv is saturated then the residual zero-dimensional subscheme 
defined by the quotient has length a - C.  H + C 2. 

Dually, i f  D is a Cartier divisor, with (9(D) ~ ~(1)[r ,  then 
c) i f  Y has a finite number of  singular points, then D . H < a; if  in addition Y is 

irrational, then D �9 H < a - 1. 
d) If(9 (D) ~ ~ (1)Jr is saturated then the residual zero-dimensional subscheme 

defined by the quotient has length b - D �9 H + O 2. 

Proof a) One can assume (9 (C) is a saturated subbundle ofg ' (1) ly;  this will only 
increase C" H. It then gives rise to a map P~tc): Y' ~ ~,a, where Y' is the quasi- 
section associated to (9(C) ~ g(1) l r .  Since degt Y '=  b - C.  H, we must have 
C .  H < b. If C .  H = b, then Y' maps to a curve, and thus there are an infinite 
number of singular planes. If C .  H = b - 1, then p~ tc) is a birational map to a plane, 
so Y', hence, K is rational. 

b) We have 

deg Z = c2 ((~' (1) [ y) ( - C)) 

= c 2 ( g ' ( 1 ) l ~ ) -  C .  H +  C 2 

= a - C . H + C  z, 

as claimed. 
c) and d) are dual. [] 

We now consider congruences which have an infinite number of singular points 
or planes. The following theorem gives tight restrictions on such surfaces. This 
theorem was proved independently by Cossec, Dolgachev and Verra, but is 
unpublished. 

Theorem 2.5. Let Y ~= Q be a non-degenerate smooth surface with an infinite 
number o f  singular points. Then either 

a) Y is the locus of  bisecants to a twisted cubic or elliptic quartic, being of  
bidegree (1,3) or (2, 6), respectively; or 

b) Each one dimensional component of  the locus of  singular points is a non- 
singular plane curve of  degree d, each o f  whose points is a singular point of  degree e, 
and Y has bidegree ( e d -  D, ed), where e, d, and D satisfy the equation 

d e ( d -  1 ) ( e -  1) + D[1 + 2 e -  2de] + D 2 = O. 

Proof. Let C be a one dimensional, irreducible component of the set of singular 
points of Y. Then all the rays of  Yintersect C. Indeed, the set of lines intersecting C 
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is a complex X' which must contain a two-dimensional component  of  Y, and hence 
Y itself. Let p: (~ --* C be the normalization of  C, and let X = PC (P* f2p3 (2)). From 
the interpretation of  P(Qp~(2)) in Lemma 2.1, we set there is a natural map 
X ~ ! -~ Q, where the image of X is X', and the fibers of  rc : X -~ ~ are mapped to 
the corresponding q-planes in Q. Xis non-singular, and X ~ X' is generically 1-1,  
so X ~ Q gives a natural birational desingularization of X'. 

There are now two cases. If Yis not contained in the singular locus of X', let I 7 
be the proper transform of Y. In this case Yis birational to Y. If  Yis contained in 
the singular locus of  X', let 17 be an irreducible component of  the inverse image of 
Y in X which maps surjectively to Y. We have the following diagram: 

?~A~ _~ ~p3 

r==x'~=Q 

Case 1. Y --* Y is not birational. In this case, each ray of  Ymust intersect C at least 
twice, counted with multiplicities. I ? ~  Y cannot be more than generically 2-1.  
For  if the map is 3-1 or more, the rays of  Y correspond to trisecants of C, and if C 
is not a plane curve, it cannot have a doubly infinite family of trisecants ([1, 
p. 110]). C cannot be a plane curve in this case, for then all rays of  Yare contained 
in C's plane. Thus Y is a component  of  the set of  bisecants of  C, and C is not a 
plane curve. Now there is a rational map f : ~ x  ~ ~ Y defined by taking 
(x, y) e ~ x (~ to the point of  Q corresponding to the line joining p (x) and p (y), if 
p(x) + p(y). If  p(x) is a non-singular point, then f ( x , x )  is the point of  Q 
corresponding to the tangent line to C at p (x). This map may be undefined for 
points (x, y) ~ C x C such that p (x) = p 0') is a singular t~oint. 

This rational map factors through the quotient of C x ~ by the involution 
interchanging the two factors, so we obtain a birational transformation 
f ' :  $2C ~ Y. This map can be factored as a sequence of blowing-ups and blowing- 
downs: let Z be a smooth surface with birational morphisms .~ : Z --* 82(~ and 
f2 : Z --* Y, with f '  = f2 o,/~-~ 

As the t ransformat ionf '  contracts no curves, the exceptional set off2 must be 
contained in the exceptional set off~. Now let C'x c__ S 2 ~ be the image of  {x} x ~ or 

x {x}, x e C. C;, is smooth, isomorphic to C, and for general x, avoids the finite 
number of  points blown-up by f l .  Thus the proper transform of  C'x on Ymust  be 
smooth. Call this proper transform Dx. 

It is clear that Dxc=q(p(x))c~Y, and that D~ is then isomorphic to the 
projection of C to a plane from x, for the set of  bisecants of  C through x form a 
cone over this projection. But by Castelnuovo's bound on arithmetic genus for 
space curves, the only curves which can be projected to a smooth curve from a 
point on the curve into p2 is a twisted cubic or an elliptic quartic. We have already 
computed the bidegrees of  these congruences in Example 1.2. 

Case 2. ~--* Y is birational. If Y ~ Yis not an isomorphism, it must contract a 
curve D on Y, by Zariski's main theorem. Since each fibre of  the map X ~ C maps 
isomorphically to Q, D cannot be contained in one fibre, and so D maps 
surjectively to C. But then the ray corresponding to the contraction of D must pass 
through every point of  C, thus C is a line, which contradicts Y ~ Z(l) for any l. 
Thus Y--, y is an isomorphism. Thus in particular, I? is non-singular, 

Finally, I claim C is actually smooth. First of  all, suppose tha tp  : C ~ C is not 
one-to-one. Then the map f :  X ~ Q maps two planes of  C to the same plane of  Q, 
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and thus two fibres of I 7 are mapped to plane curves which intersect, contradicting 
1 7 ~ Y  

Now suppose p ' C  ~ C is one-to-one, but not an isomorphism. The map 
f : X - - ,  Q factors through the natural map X--* X" with X " =  P(12p3(2)]c), with 
n':X"--* C the projection. Let x s  C be a singular point of  C. Then n ' - l ( x )  is 
contained in the singular locus of  X", and so f ( n -  ~ (p- ~ (x))) is contained in the 
singular locus of  X'. Now consider the induced map on tangent bundles 
f . :Yx- -+f*Y '~ .  For  any point y ~ L = n - l ( p - l ( x ) ) ,  the map on fibres 
Wx, y--> f *  ~ ,  : ~y)cannot be injective; otherwise f ( y )  is a smooth point of X' if y is 
general in L. Furthermore,  since L is mapped isomorphically to a plane M in Q, 
the tangent space of  X at y must be mapped to the tangent space of M at f (y ) .  
Hence the image o f f .  lL' ~--X[L--->f*YQ]L is YM. Now 5-x] L -- (gL | YL, as can 
easily be seen from the exact sequence 

0 --* rc*12 c ~ I2 x ---, 12x/O ~ O, 

rc*f2O[c ~ (9c, and f2x/olL ~- f2c. Thus we see that the kernel o f f ,  It is Co. 
Now we have Y = Y N X. Let D = Y c~ L, and let D' be an irreducible, reduced 

component  of D. For  any point y e D ' ,  the tangent space Yr,y ~ Y-x.y cannot 
contain the kernel o f f ,  y; otherwise J%,y is not mapped injectively into f * . ~ ,  :(y), 
and f is not an embedding of Y at y. We have an exact sequence 

0 --+ : , ,  --> Y-x I r --> ~ / x  -> 0 ,  

and restricting to D', we obtain a sequence 

0 -+ Y-r I~, -+ (9o, | ~1~ ,  -+ Co,(e) --> 0. 

We now work with P ((9 D, @ OL [D')" One recalls a point of  this space corresponds to 
a one-dimensional subspace of a fibre of Coo, @ ~[D ' .  Let ~ be the natural 
projection to D'. Now dualize and projectivize: the surjection 

(9o' 0 [2LID' ~ Or[D' -'+ 0 

determines an inclusion T = P (g2 r [v') --- P ((90' G f2LID'), and the surjection 

(9o' | f2L[O' ~ (9~' ~ 0 

determined by the exact sequence 

o , (9,,, , : x l , , ,  :* ' JMI , , ,  , o 

determines a section K ___ P ((90, @ t'2L]O'), K ~- D'. If T and K intersect at a point 
over y e D', then ~r , r  contains the kernel o f f ,  r . By construction, the restriction 
of (gP(~o ~a~l~) (1) to K is (gr, and the invertible sheaf associated to the divisor T is 
(gr,(~o,~'raLio,)'(1) @ ot*C,,,(e). Restricting this sheaf to K, we obtain an invertible 
sheaf of  degree e degD' ,  which is positive, so K ~  T :t= 05. Thus f :  Y ~  Q is not an 
embedding. 

Thus C = C is non-singular. 
Now let 9 = Pa (C), d = deg C. Suppose that the degree of  the locus of rays 

passing through a general point of  C is e. We wish to compute the invariants of Y 
and determine if 17can actually be embedded in Q. We compute the bidegree of Y, 
its Chern classes, and its hyperplane section genus. 

Note that 17 is a divisor of X, and P icX is generated by t = ca ((91,to,lb.3(2))(1)) 
and Pic C. Since c~ (12p3 (2)) = 2L, where L is the class of  a plane in p3, we have 
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t 3 = 2re*Lt 2. Suppose the class o f  I? is a t  - re*D, where D is a divisor on C. I f  
P e C, the fact that  the rays o f  Y th rough  P form a cone o f  degree e is translated 
into the formula  

d e g ( ~ t -  re*D) �9 re*P �9 t = e,  

which gives ~ = e. 
Fur thermore ,  the degree o f  Y is given by d e g ( e t -  re*D) 

�9 t 2 = d e g ( 2 e r e * L -  re*D)t 2 = 2 e d -  degD.  N o w  a general plane intersects C 
in d points,  f rom each o f  which radiate e rays, each group  of  rays distinct 
f rom every other g roup  o f  rays. Thus  the bidegree o f  Y is ( e d -  deg D, ed). 

To compu te  c 2 and c2 o f  Y, we first compute  the Chern classes o f  J x ,  and then 
use the sequence 

o ~ ~ y  ~ Y-xl~ ~ Yy /x  ~ o .  

~2x appears  in the exact sequence 

0 ~ re*Qc ~ C2x ~ ~ x / c  ~ O, 

and the relative Euler sequence gives 

0 -+ O x / c ( t  ) --+ re*p*f2p3 (2) -+ C x ( t  ) ~ O, 

where a twist by t means tensoring by (~pCp, s~ps~2))(1).  
We obtain  

c , ( J y )  = ca (Yx  I 0 / c , ( ~ @ / x )  

= c = ( Y x l 0 / ( 1  + (ell-  rc*D)~) 
= 1 - ( r e * K c + 2 r e * L + ( e - - 3 ) H - r e * D ) ~  

+ [(2e - 4) H r e * L  + (e(e - 3) + 3) H 2 + (e - 3) H r e * K  c 

- (2e - 3) Hre*D] 0~ 2 . 

Thus we have 

and 

K r = 2re*L + re*K c + ( e -  3) H -  re*D, 

c2 = (2e - 4)de  + (e(e - 3) + 3) ( 2 e d -  d e g D )  

+ ( e -  3) e ( 2 9 - 2 )  - ( 2 e -  3) e d e g D .  

We also have 

H .  Ky  = 2 e d +  ( 2 9 - 2 ) e  + ( e -  3) ( 2 e d - d e g D )  - e d e g D  

and 

K 2 = ( e -  3) 2 ( 2 e d - d e g D )  + 2 ( e -  3) [ 2 e d + e ( 2 g - 2 )  - e d e g D ] .  

N o w  take all o f  these formulas  and plug them into the equat ion o f  
Proposi t ion  1.3. Then  we get an equat ion  

2d2e 2 - 4de 2 - 2e29 - 2de - 2e 9 + 2e 2 + 2e 
+ (degD)[1 + 2 e  - 2de] + (degD) 2 = 0. ( ,)  

We wish to know,  for a given d, wha t  values o f  9 give a solution�9 
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The discriminant of the above equation must be non-negative, yielding the 
equation 

1 + ( 4 d + S g - 4 ) e + [ S d + 8 9 - 4 - 4 d Z ] e  2 > 0 .  

d 2 1 = ( d -  1)2/2 > ( d -  1) N o t e t h a t 8 d +  8 9 -  4 -  4d  2 > 0implies9 > ~ - -  d +  

�9 ( d -  2)/2, so that the coefficient of  e 2 is always negative. Thus for a given d 
and 9, there are a finite number of  possible e's. Since e > 0, we can require the 
larger root  of the inequality for e to be > 1. This gives 

4d + 89 - 4 + l / 0 - d +  8 9 -  4) 2 -  4 ( 8 d +  8 9 -  4 -  4d2) 
> 2(4d 2 -  8 d + 4 - 8 g ) ,  

o r  

] / / (4d§ 8 9 -  4) 2 - 4 ( 8 d + 8 9 - 4 - 4 d  2) > 8d 2 - 2 0 d +  12 - 249.  

d 2 5d 1 
I f  g < 3 6 § 2 '  then the righthand side is positive. Note that if C is not a 

d 2 
plane curve, theng < ~-  - d + 1, so that the righthand side is positive, and we can 

square both sides of  the inequality without changing the relations. So assuming C 
is not a plane curve, we get an inequality quadratic in 9: 

- -  51292 + (384d 2 - 8 9 6 d +  480) 9 

-- 64d 4 + 320d 3 - 560d 2 + 4 1 6 d -  112 > 0,  

which gives 
4d  2 -  12d + 7 d 2 -  2d + 1 

16 = 9 <  2 

The upper bound is trivial, while the lower bound is larger than the genus of any 
non-planar curve, for d > 3. Thus C is a plane curve. This gives the result of the 
theorem, and the equation is obtained by setting 9 = ( d -  1) ( d -  2)/2 in (*), and 
writing D instead of degD. [Z] 

In the special case that e = 1, so that Y is a scroll, Goldstein has completed the 
classification in [12]. 

Corollary 2.6. I f  Y ~= Q is a non-degenerate smooth surface with an infinite number 
of  singular points, o f  bidegree (a, b), then a < b. 

Proof. For  the inequality a < b, we need only observe that D > 0. Indeed, 
consider the function 

f ( D )  = d e ( d -  1) ( e -  1) + D(1 + 2 e -  2de) + D 2 . 

f obtains its minimum at 

2de - 2e - 1 
D -  > 0  

2 
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for e > 0, d > 1, and so to check that any solution o f f ( D )  = 0 is positive, it is 
sufficient to check that f ( 0 )  > 0. But f (0 )  = de ( d -  1 ) ( e -  1) > 0 for e > 0, d > 1. 
Thus D > 0. [] 

This is all the information we need for our results of Sect. 3. However, we note 
the following conjecture. 

Conjecture 2.7. The only smooth non-degenerate surfaces with an infinite number of 
singular points are the scrolls of bidegree (2, 2) and (3, 3), a conic bundle of bidegree 
(3, 6), and the surfaces of bidegree (1,3) and (2, 6). 

3 Limitations on bidegrees 

We now consider the question: "for  what values of a and b does there (or does there 
not) exist a smooth surface of bidegree (a, b)?" The best general approach we have 
for this question is to consider the semi-stability of 8 (1), in the sense of Mumford 
and Takemoto (see [22]), restricted to a surface Y __ Q. This was originally 
suggested to me by Dolgachev. 

Definition, Let ~- be a rank 2 vector bundle on a smooth surface Y, and let H 
be an ample divisor. Then ~ is H-stable (H-semistable) if for every rank 1 subsheaf 
~-' o f ~ ,  2c1(~- ' ) '  H < c1(~- ) �9 H ( 2 c x ( ~ ' ) .  H < c l ( ~ ) ' H ) .  

Proposition 3.1. I f  Y ~ Q is a smooth surface of bidegree (a, b), and 8 (1)1r is H- 
semistable, then a <= 3 b. 

Proof. We have cx (8 (1) It) = H and c2 (8 (1) [ r) = b; thus Bogomolov's theorem 
[6] tells us that a + b = H 2 ~ 4b, or a < 3b. [] 

Before we attack this problem, we give an example showing that additional 
hypotheses are needed. 

Example 3.2. Let a smooth surface Y be contained in a singular linear complex 
Z(1), with bidegree (n + 1, n) (such a surface exists). By Remark 1.6, if L ~ l is a 
plane containing the line I in p3, then q' (L) intersects Yin a curve of  degree n + 1. 
Now there is a section s of  8 (1) vanishing on the plane r/' (L), and restricting s to Y, 
we get a section of  8 (1)It vanishing on a curve C of degree n + 1. This tells us 
(9(C) is a s u b s h e a f o f S ( 1 ) l r , b u t  2 C .  H = 2n + 2 z~ H z = 2n + 1. Thus 8(1)[ r 
is H-unstable. 

Thus we make the following two conjectures: 

Conjecture 3.3. 1.1: Y ~ Q is a smooth, non-degenerate surface then 8 (1)It is H- 
semistable. 

Conjecture 3.4. I f  Y ~ Q is a smooth surface of bidegree (a, b), then a < 3b. 

Conjecture 3.4 follows from Conjecture 3.3, Proposition 3.1, and Theorem 1.5. 
We shall actually work primarily on Conjecture 3.4. 

We use the setup and notation of  Sect. 2, which is useful for studying any 
subbundle (9 (C) ___ 6 (1)[ r.  We preserve the meaning of  p l ,  P2, t, Z, etc. 

If  we have a saturated subbundle (9 (C) of  8 (1)It,  we have an exact sequence 

o ~ (9 ( c )  ~ 8 0 ) 1 ~  ~ : z  | (9 (c')  -~ o 
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where Z is a scheme of finite length. We have C 1 (~ '~ (1 ) ly )~- - -H,  the hyperplane 
section, and in addition e z ( ~ ( 1 ) l r )  = b. Thus H "~ C + C',  and so C'  ~ H - C. 
Furthermore,  

d e g Z  = b -  C �9 H +  C a . 

(Proposition 2.4 d). 
Furthermore,  the exact sequence 

0 ~ (9 (C) ~ g (1)1 r ~ J z  | (9 ( H -  C) --* 0 

gives rise to a quasi-section Y' of  P (g (1)[r), birational to Y, and the class of  Y' is 
(Proposition 2.3) 

[Y'] = t - p * C .  

Restricting Pl and P2 to Y', we obtain a diagram 

p3 ~ P~(c) y,  

Y 

where P,~c), q2 denote the restrictions. Y' is the blowing up of Y at Z. 
Denote by S the image of Y' under P,~c). 
We can compute the degree of  Y' relative to t as 

degt Y' .'= deg t 2 �9 (t - p ~  C) 

= a - C . H .  

This must  be a non-negative number.  Note  also that 

( H -  C) 2 - d e g Z  = H E -  2 C .  H + C 2 - ( b -  C .  H +  C 2) 

= degt Y' .  

Proposition 3.5. I f  a <= b, then •(1)ly is H-semistable.  

P r o o f  I f  (_9 (C) is a saturated subsheaf of  ~ (1)ly, then (a + b)/2 >_ a >_ C" H, so 
C(1)[ r is semi-stable. [] 

To proceed, we will need the following bound: 

Theorem 3.6. Let  Y ~ Q be a non-degenerate smooth surface with hyperplane 
section genus n and degree d. Then i f  d >= 9, 

n = < nl  (d) = [ 

t 
P r o o f  
above n l (d)  must  be contained 

d 2 - 4d  + 8 
8 , d ~ 0 m o d 4 ;  

d z - 4 d  + 3 
d - -  1,3 mod4 ;  

8 

d z - 4d  + 4 
8 , d = 2 mod  4. 

By [9, Theorem 3.15], any non-degenerate curve in p4 whose genus falls 
in a surface of  degree 3. Let L N p5 be a 
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hype rp l ane  which intersects  bo th  Q and  Y smooth ly .  I f  n > n l ( d ) ,  then 
L ~ Y __ S, a surface o f  degree 3. There  are  no surfaces o f  degree 3 con ta ined  in 
L n Q, a smooth  quadric  three-fold, so Lea Y ~ S c~ Q, where S c~ Q is a curve of  
degree 6. Thus the degree of  Y is < 6, a contradiction.  [] 

Theorem 3.7. Let Y ~= Q be a non-degenerate surface of  degree d > 9 with a finite 
number of  singular points, and let L ~= p3 be a plane. Let C be the effective Cartier 
divisor of  Proposition 2.2. Then C . H  < d/2. Thus C(C)__cg(1)]r is not a 
destabilising subsheaf o f  g (1)ly.  

Proof. Let  c = deg C = C .  H. Because C is a d iv isor  on the p lane  r/' (L), we mus t  
have p ,  (C)  = (c - 1)(c - 2)/2. We can  wri te  Z (1) c~ Y = C + D = H,  for  any line l 
con ta ined  in L, where  D is effective. I t  is c lear  dim [ D] > 2 and  [D [ has  no f ixed 
componen t s .  

N o w  we show p ,  (D) < 0. F o r  we have 

2 p , ( D )  - 2 = ( H -  C) �9 ( H -  C +  K)  

= H 2 - -  2c + C 2 + H  . K -  C .  K 

= 2 n - - 2  + C Z - C .  K - 2 c  

= 2n --  2 - C 2 - C ' K + 2 C  2 - 2c 

= 2 n -  2 - c ( c -  3) + 2 C  2 - 2c .  

We can use two es t imates  at  this  poin t .  F i rs t ,  use the  b o u n d  for  n o f  T h e o r e m  3.6: 

d 2 -  4 d +  8 
n <  V d > 9  

~--- 8 

Also,  we have  C2H 2 <= (C.  H )  2 = c 2, so C 2 __< c2/d. Thus  we have 

d 2 - 4d 2c 2 
- = c 2 + c +  d 2pa(D) 2 < 4 

d 2 - 4d 
- 4 c 2(1 - 2 / d )  + c ,  

and  

d 2 - 4 d + 8  c2 ( 2)  c 
p,(D)<= 8 2 1 -  + ~ .  

Let  c o be the la rger  real  r oo t  (if  it  has one) o f  the equa t ion  

C2( 2)(.' d2 - 4d  + 8 _ O 
2 1 -  + ~ +  8 " 

Then  i f  c > c o, p,  (D) < O. 
N o w  

d + d ] / d  2 - 6 d + 1 7 - 1 6 / d  
Co - 2 d  - 4 ' 

d + l  
and  we wish to show tha t  co < - - ~ - .  One  can reduce this  inequa l i ty  to one  o f  
degree 3: 

0 < 8d  3 - 68d 2 + 96d  + 16. 
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The largest root of this polynomial is less than 8, and so the desired result 
p,  (D) < 0 holds for d => 9. It is worthwhile to note, using a calculator, that c o is 
only very slightly less than (d+  1)/2, and we cannot achieve any better bound 
using this technique. This seems to suggest that there is something deeper going 
on, but I 'm not sure what it is. 

Now (gp(~(l)ly)(1) restricts to Y' to determine the linear system ~ =c [D'[, which 
induces the mapp~tc): Y' ~ p3, with q2,O (O') = or z @ (9 (O), where Z is determined 
by the exact sequence 

0 ~ (9(C) ~ $(1)lr  ~ J z |  (9(D) ~ 0 .  

If  D'r 9 ,  then since p~ (D) < 0, Pa (D') < 0, and so the general member of ID'l is 
reducible, and thus ~ is composed of a pencil. Thus the image of the map induced 
by ~ is a curve. This contradicts the assumption that there are a finite number of 
singular points. [] 

We have, as a corollary of the proof, the following which is useful in other 
applications: 

Corollary 3.8. Let Y ~ Q be a non-degenerate surface of  degree d and hyperplane 
section genus ~z, with a finite number of  singular points, and let L ~ p3, with the one- 
dimensional component o f  q' (L) c~ Y the effective Cartier divisor C. Then 

O < 2~ - (C" H)2 ( 1 -  2d) + C" H.  

Proof  From the estimates in the proof of Theorem 3.7, we see 

2 p a ( D ) - 2 < 2 ~ - 2 - ( C . H ) 2 ( 1  - 2 )  + C . H ,  

and furthermore, we must have Pa(D) g 0. [] 

We will now explore the consequences of the possibility that 8 (1)]r is unstable. 
For  the following sequence of results, we shall use 

Hypothesis (*). Let y c= Q be a smooth, non-degenerate surface with a finite number 
o f  singular points, o f  bidegree (a, b), and let (9 (C) be a saturated subbundle of  
8(1)]r," i.e. we have an exact sequence 

0 ~ ( 9 ( c )  ~ ~ ( 1 ) l r  --' -r  | (9(H-- C) ~ 0. 

Let Y', P~(c), q2, and S be as in the above discussion. 

Proposition 3.9. Given (*), suppose (9(C)~= d~(1)lv is destabilising. Then S is a 
surface o f  degree >= 2. 

Proof  I fp  r Y, then I v = Pl CO21 Co)), so lp c~ S @ q~. Thus if S is a point, then Y is 
an q-plane, and if S is a curve, then Y has an infinite number of  singular points, 
violating (*). Thus S is a surface. Suppose it is a plane. 

Pulling back the plane S to P (8 (1)[r), we get a divisorp~- ~ (S) ~ t. I fy  r Y, then 
either ly __ S, or otherwise p ;  ~ (y) c~p~- 1 (S) consists of one point. Also, since Y' 
maps to S, p~- I (S) decomposes into Y' and p~- ~ (D) for some curve D ~ Y. Since 
Y' has class t - p* C, we must have D ~ C, and all the rays of D are contained in S. 
Thus, in the language of Sect. 2, S is a singular plane o f  degree C . H. However, this 
cannot happen, by Theorem 3.7. [] 
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F r o m  this poin t  on, we provide  a series o f  es t imates  which will p rovide  progress  
on Conjecture  3.4. 

T h e o r e m  3.10. Given Hypothesis (*), with (9(C) c= ~ ( l ) l r  destabilising, suppose 

deg t Y ' = a - C . H > n .  

Then 
a <= max(3b,  b 2 / n + b + n ) .  

Proof. Recall  a - C .  H = ( H -  C) 2 - deg Z,  so we have 

n < a - H . C < ( H - C )  2 <  ( H . ( H - C ) )  2 ( a + b - H . C )  z 
= = = H 2 = a + b  

a + b  
and C .  H > ~ .  Let  x = C .  H. Then  we have the two inequalities 

a + b  
a - - n ~ x > - -  

2 

and 

o r  

N o w  suppose  tha t  

(a + b) ( a -  x) < (a + b -  x) 2, 

f ( x )  = x 2 - (a 4- b) x + b (a Jr- b) > O. 

First  evaluate  f ( x )  at x - 
2 

(a + b) 2 (a + b) 2 

4 2 

a >= max(3b ,  b Z / n + b + n ) .  

a + b  
- - - ,  and  we get a negat ive result: 

a + b  
+ b ( a + b )  > 0r - ~ -  + b > 0 

~ a < 3 b ,  

which we have ruled out.  
Secondly,  evaluate  f ( x )  at x = a - n, and  again we get a negative result: 

( a  - -  n )  2 - -  ( a  Av b) (a - n) + b (a + b) > 0 r - an + bn + n z + b e > 0 

b 2 
r  

n 

Thus  we see tha t  in the a l lowable  range for  x, f ( x )  is a lways negative,  and  hence 
a contradic t ion.  Thus  we see tha t  

a < m a x ( 3 b ,  b2/n + b + n ) .  [] 

Remark3.11.  N o t e  that  the above  theorem still holds if  Y is singular,  by 
consider ing f :  Y' ~ Q where  Y' is a dis ingular izat ion of  Y. In this case, we study 
f *  g (1). In  this m o r e  general  setting, the theorem is tight: any  surface of  degree d in  
p3 can be m a p p e d  to Q by giving a surjective m a p  (94 -~ (9 (1) • (9 (k), for  a rb i t ra ry  
k, l > 1. This  gives a (singular) surface in Q o f  bidegree ((l + k) z d -  Ikd, lkd). I f  
l < k, then C(k) ~ (9(1) �9 (9(k) is destabilising, and with n = lZdin  Theorem 3.10, 
we see we obta in  equali ty.  However ,  these surfaces are never  smooth .  
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Lemma 3.12. Given Hypothesis (*), let H c__ Y be a general hyperplane section, and 
let H ' =  q21(H),  H'~- H. Then Pl gives a birational map from H' to pl(H') .  

Proof H' cannot map to a point under Pl ; otherwise every ray of H would pass 
through the point, and H would be a plane curve. Thus the map H' --+pl(H') is 
finite. 

Let ~ = P(H~ be the linear system of  hyperplane sections (linear 
complexes) of Q, and let W __c @ x Y' be the universal divisor: i.e. 

W = { (Z ,y ) l yeq21(Zc~  Y)}. 

Consider the map q~ from Wonto  its image W' _c ~ x S, defined by q~ (Z, y) = (Z, 
P~c)(Y)). 

We will show q5 is birational, and hence the general hyperplane section is 
mapped birationally to S. To show ~b is birational, it is enough to show that there is 
a dense set on which it is one-to-one, and then apply generic smoothness. 

Let P c  S be a point which is not  a singular point of Y. Then p~-~)(P) is a finite 
set, and q2 (P~-~ (P)) __c y c~ q (P). Since the general linear complex intersects q (P) 
in a line, it is clear that 

{Z e @IZ contains at least two points of q2 (P~-~)(P))} 

is a closed subset of 

{Ze  ~ [ Z  contains at least one point of  q2 (P~-~)(P))} �9 

This shows that the set of  points of  (c~ x {P}) m W' on which q~ is one-to-one is 
dense. Thus by generic smoothness for char k = 0, ~b is birational. [] 

Theorem 3.13. Let Y c= Q be a smooth surface of bidegree (a, b), not of  general type. 
Then a < 3 b. 

Proof. Suppose a > 3b. By Corollary 2.6, we can assume Yhas a finite number of  
singular points. Then there exists a C for which Hypothesis (*) holds, and 
(9 (C) __c 6 (1)It is destabilising. Now a - C.  H < b, for i fa  - C .  H > b, we have 
by Theorem 3.10 that a < 3b. The general hyperplane section H is mapped 
birationally to a curve in p3 of degree 

d e g p ~ H t '  ( t - p ' C )  = H .  ( H -  C) 

= a + b - C . H < 2 b .  

Furthermore,  it is contained in a surface S which is of  degree between 2 and 
a -  C . H ,  so the curve pr163 is not contained in a plane. Hence 
Castelnuovo's bound tells us 

< (H. ( H -  C) /2-  1) 2 

< (b - 1) z. 

This is a very strong bound in the sense that it does not depend on a. This bound, 
along with the classification of surfaces, gives us our needed result. 
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First, for  Pa < 0, we have K 2 ~  Spa + 8. Put t ing this into Proposi t ion  1.3, 
along with H .  K < 2(b - ] ) 2  _ 2 - a - b, we get 

O > a 2 + b e - 7 a - 7b - 2 (8 p~ + 8) - 4 (2(b - 1 )  2 - 2 - a - b ) + 1 2 +  12pa 

= a 2 + b 2 - -  7a - 7b - 4p ,  - 4 - 4 ( 2 ( b -  1) 2 - 2 - a - b) 

a 2 ~- b 2 - 7a  - 7b - 4 ( 2 ( b -  1)  2 - 2 - a - b) 

= a 2 - -  7 b  2 - 3 a  + 1 3 b  

>=(a - -2 )  2 - 7 b  2 + 1 3 b - 4 ,  

or (a -- 2) 2 ~ 7b 2, so a < ] ~ b  + 2, which is (for b > 3) a contradic t ion with the 
assumpt ion  a > 3b. Being more  careful, we see this holds for b = 2, also. Thus  
a < 3b for surfaces with negative ari thmetic genus. 

For  rat ional  surfaces, p ,  = 0 and K 2 < 9, giving us similar results. 
Finally, observe that  for surfaces with ~c = 0 or  1, p ,  > - 1 and K 2 =< 0 ,  and 

again a similar compu ta t i on  completes this case. [] 

Unfor tunate ly ,  this b o u n d  isn' t  quite s t rong enough  to handle surfaces o f  
general type. To handle this case, the best we can do at the m o m e n t  is 

Theorem 3.14. Let  Y ~= Q be a surface o f  general type with bidegree (a, b). In the 
notation o f  Hypothesis  (*), suppose a - C .  H = n. Then 

(r ( 4o  63a ) 0 < ~ - +  -- n3+ b2+~--~+ - t - -  3 + 3 n 

ab 2 11 a 2 b 4 
. . . .  a 3 + b Z - b 3 +  6 "  + ~ a2 b + 2ab + 3 

Proof. Using Miyaoka ' s  inequali ty K 2 =< 9Z, and f rom Proposi t ion  1.3 

122' = - - a  2 - b 2 Jr- 7 ( a + b )  + 2 K  2 + 4 H '  K,  

s o  

3 - b 2 + 7 ( a + b )  + 2 K  2 + 4 H . K )  K 2 < 9Z = ~ ( -  a 2 

o r  

2 K2 (**) 0<- - a Z - b Z  + 7 ( a + b ) + ~  + 4 H ' K .  

N o w  we use the two estimates 

H .  K < 2((b + n ) / 2 -  1) 2 -  2 - a -  b ,  

obtained f rom Cas te lnuovo ' s  b o u n d  for a curve o f  degree H .  ( H -  C) = b + n in 
p3, and 

K 2 <= ( H .  K ) Z / H  2. 

We obta in  the given formula  by substituting these estimates in (**) and 
mult iplying th rough  by H 2. [] 

Thus,  we have two counterac t ing  forces. I f  n is large, then Theorem 3.10 acts to 
eliminate tha t  case, and i fn  is small, Theorem 3.14 acts best. Thus  for a given b, in 
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order to find the largest a for which these constraints are satisfied, we have to find 
an n where the max imum of the two constraints is maximized. 

Theorem 3.15. I f  Y c__ Q is a surface o f  bidegree ( a, b ), and b < 19, then a < 3 b. In 
general, a is bounded by a function f ( b )  = C(b4/3). 

Proof. Using MACSYM A,  we can solve the queation of  Theorem 3.14, and find 
the surprisingly simple solution 

1/  l/b2- b + a 2 -  a -  4 (a+b)  + 4 -  b + 2 

Let nmi,(a) be the minimum of this root and b. Then a < b2/nmln(a) + b + nmi,(a), 
and so the largest possible a for which this equation holds gives us the upper  bound 
for a. Using a computer ,  one can check that a < 3b for b < 19. 

To see that the general bound is (9(b4/3), note that if there exists a surface of  
bidegree (a, b) with a > 3b, then nmin(a ) < b. The inequality 

]// V 6  a ~  [/b2 - b + a2 - a - 4(a + b) + 4 - b + 2 < b 

reduces to a polynomial  inequality of degree 3 in a and degree 4 in b, and one can 
estimate the order of growth to be a <= C(b4/3). [] 

Remark  3.16. To give a feeling for the growth of the bound obtained, we note that 
if b = 50, then a __< 169, and if b = 100, a __< 382. 

Remark  3.17. The values of  bidegrees of  smooth surfaces which we can currently 
construct which are closest to the bound a __< 3b are obtained by taking 
dependency loci of  sections of  S" (g (1)), obtaining a sequence of surfaces Y, with 
ideal sheaf resolutions 

0 --, (9~" --. S " ( g  (1)) --* J r ( n  (n + 1)/2) --* 0. 

For  n = 2, 3, 4 and 5, we obtain surfaces of  bidegree (2, 6), (11,21), (35, 55), and 
(85,120) respectively. I f  Y, has bidegree (a, ,  b,), then we have 

l i m a ,  
n~oo ~nn = 1 .  

I f  Yis a surface ofbidegree (3, n), it is known (see [15]) that n < 7. This suggests 
a better bound than a < 3b is obtainable,  but different methods must  be applied. 
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