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1 Introduction 

In this paper, we study the moduli spaces of  semistable parabolic bundles o f  
arbitrary rank over a smooth curve X with marked points in a finite subset P 
of  X.  A parabolic bundle consists of  a holomorphic bundle g over X together 
with weighted flags in the fibers 8p for each p C P. The moduli space .Ill 
of semistable parabolic bundles was constructed by Mehta and Seshadri as the 
space o f  semistable holomorphic structures modulo s-equivalence. In [19], it is 
proved that o/g is a normal projective variety which is smooth for a generic 
choice of  weights. They also observe that sufficiently close generic weights 
have isomorphic (in fact, identical) moduli. 

We consider the problem further by studying the effect on the moduli of  
varying the weights. The space of  admissible weights is a simplicial subset of  
R N which we denote W. For ~ E W, we denote by ~/~ the corresponding mod- 
uli space o f  parabolic bundles. The collection o f  weights with respect to which 
there exist strictly semistable bundles is a union of  hyperplanes. Our main result 
is that if c~ and 13 are generic weights which lie on either side o f  a given hy- 
perplane H,  then ~ '~ and jc't~ are related by a special birational transformation, 
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which is similar to a flip in Mori theory. To see what this means, assume 
? E H does not lie on any other hyperplane and let X; C J [ ;  denote the set 
of  s-equivalence classes of  strictly semistable bundles. This is in general the 
singular locus of  ~ ; '  with a few possible exceptions (cf. Remark 3.3). Then 
X;' is smooth and the theorem states that there are two canonical projective 
maps qS~, ~ 

. . l l  ~ .ill I~ 

J/I;' 

which are isomorphisms on the complement of  X;' and are pe~, pe I, (locally 
trivial) fibrations over X;. Moreover, e~ + eli + 1 = codim S;. 

This implies, for instance, the cohomology formula 

p(  j/[~) = p (  j/[/J) + ( p ( p e , )  _ p(pe/, ) )p(E;' ) 

where P ( Y )  = ~ i  dim Hi(y, Z ) t  i denotes the Poincar~ polynomial o f  Y. Addi- 
tionally, one checks easily that one of  the two maps ~b~ and ~/~ must be a small 
resolution (cf. [12]). In fact, we believe that for each singular moduli space 
~l;', there is a smooth moduli space ~,/4 '~ so that the canonical map d l  ~ - ~  J / l , '  

is a small resolution (Conjecture 4.8) 
Another related but much simpler problem is the effect o f  choosing 7 on 

the boundary of  the weight space. This corresponds to the degeneration of  the 
complete flag to a partial flag (see Proposition 3.4). 

A natural next step is to understand the more singular moduli spaces. In 
Sect. 4, we use the Jordan-H61der filtration of  semistable bundles to introduce 
a natural stratification on the singular moduli J / ; '  whose strata are products o f  
moduli o f  lower rank and whose index set consists of  7-admissible partitions 
(Definition 4.3). (It is possible that this stratification coincides with the sym- 
plectic stratification of  the representation variety of  the fundamental group of  
surfaces given in [10] using the Mehta-Seshadri theorem.) We then prove a 
stratified version of  Theorem 3.1 (see Theorem 4.5). 

When the singular moduli is defined by a weight on the boundary of  the 
weight space, things become a little different. As before, the Jordan-H61der 
filtration defines a natural stratification on the moduli, except that now because 
the quotients of  the filtration need not be distinct, the strata are symmetr ic  prod- 
ucts of  lower dimensional moduli. Nevertheless, we prove a stratified version 
of  Proposition 3.4 (see Proposition 4.7). 

Although all of  the results in Sect. 2 - Sect. 4 are proved under the as- 
sumption that the genus 9 > 1 and that X has one parabolic point, these 
assumptions are not essential. In the last section, we show how the results in 
the previous sections extend to these other cases. However, special care must 
be used for genus 9 < 1, in particular we must assume that the top stratum 
(of  stable bundles) is nonempty, which is not always the case. 

For example, from Grothendieck's classification of  holomorphic bundles 
over p i  [13], it follows that for certain (unfortunate) weights, the moduh 
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space is empty. In fact, it is not hard to see that for g = 0 and any num- 
ber of  parabolic points, there exist generic weights whose moduli space is 
empty. Of  course, there also exist generic weights with nonempty moduli. This 
change in moduli must occur when the weights are moved across some hyper- 
plane which we call a "vanishing wall." Choosing weights on either side o f  
a vanishing wall and analyzing the statement of  the variation theorem in this 
context, we get an inductive proof o f  the rationality of  the moduli in genus 
zero, confirming a conjecture in [5]. The key observation is that the moduli cor- 
responding to a generic weight on the vanishing wall can contain only strictly 
semistable bundles and hence is a product of  moduli of  lower rank. This gives 
the induction. 

It might be interesting to compare this work with that o f  some other people. 
Bradlow and Daskalopoulos have defined moduli of  stable pairs [6], which are 
moduli parametrized by a number t C R. In the case o f  rank two, Thaddeus 
obtained results similar to Theorem 3.1 by varying t [26]. His picture is like 
that of  Guillemin-Sternberg for symplectic reductions of  toms actions where 
crossing a wall results in a blowup followed by blowdown [15]. Our picture 
is more in the spirit o f  [11] and [17], where crossing a wall results in a 
"blowdown" followed by a "blowup." The first picture can be recovered from 
ours by considering the fibred product of  the two canonical morphisms of  
Theorem 3.1. From this point of  view, the two maps from the fibred product 
to ,#~ and o:#1/ are blowdowns along q~;-L(X;') and ~b~-I(s respectively, and 
thus we see that the fibred product is the common blowup with exceptional 
divisor a (pe, X pe/~)_bundle over Z:. Recently, these results have been partially 
extended to GIT quotients o f  reductive algebraic group actions [8] 

The paper is organized as follows. In all sections except Sect. 5, we assume 
that the genus o f  X is larger than 1 to ensure that there are stable bundles for 
arbitrary weights. In Sect. 2, we give the definitions used throughout the paper. 
In Sect. 3, we state and prove the main results (Theorem 3.1 and Proposition 
3.4). In Sect. 4, we extend the theory o f  the previous sections to very singular 
moduli. In Sect. 5, we consider the case o f  multiple parabolic points and prove 
that the moduli space o f  parabolic bundles is rational if g = 0. 

2 Definitions 

2.1 Parabolic bundles 

Suppose X is a compact smooth complex curve with one marked point p C X. 
Then a topological parabolic bundle over X is a C n bundle E ~ X with a 
weighted flag in the fiber over p, i.e. 

Ep=Ft DF2 D . . .  DF,. D 0 ,  

0 < ~l < c~2 < ... < C~r < 1. 

The flag is maximal in case r = n. Otherwise, we set m, = dimFi/F,+l, 
the multiplicity of  c~/. Define the parabolic degree of  E by 
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r 

pardeg~E = degE + ~ - ] ~ m i ~  , , 
i = t  

and the a-slope of E by 

pardeg~E 
p ~ ( E ) -  rankE 

Remark 2.1. I f  U C E is a subbundle with quotient E ' ,  then both E'  and E" 
inherit the structure of  a topological parabolic bundle from E in a canonical 
way (for an explicit description, see the remark after Definition 1.8 of [19]). 

By a slight abuse of notation, we will refer to the parabolic slope of a subbundle 
or quotient with the induced parabolic structure by /z~(U) and p~(E') .  

The space of holomorphic structures on E, denoted ~,  is an infinite dimen- 
sional affine space modeled on I2~ The topological parabolic bundle 
E together with a holomorphic structure d E ~ is called a parabolic bundle 
and denoted g = (E, d). 

Definition 2.2, An element d E ~ or bundle ~ = (E,d)  is a-stable (~- 
semistable) i f  for  any proper holomorphic subbundle C C ~, we have 
I~(o~') < l~ (~ )  ( respec t ive ly /~(C)  < p~(o~)). We denote by 5(~ and ~ s  the 

9t ~ ~ 9~ spaces o f  c~-stable and c~-semistable bundles. Elements o f  the set ~sss -- Cgss\ ~ 
are called c~-strictly semistable bundles. 

Now suppose that g,, is a parabolic bundle of  rank n,, for v = 1,2, with 
parabolic structure over p given by 

(E,.)p = F~' D F~' D ...  D F;' D O, 

0 <= o? 1' < c~ < ...  < o~, < 1, 

and multiplicities m}' = dim F [ - d i m  F)+ 1. Suppose in what follows that 
{ v , , }  = {1,2} .  

Definition 2.3. A map ~k : ~,, --~ g ,  o f  parabolic bundles is called a parabolic 
morphism i f  t~p satisfies ~p(F[) C_ Fy+, whenever ~' > c~!. 

Denote by ~ar~om(g, , ,  g,1) the sheaf of  germs of parabolic morphisms from g,, 
to g , .  This is clearly a subsheaf of .~om(o~,,, g,1). There are natural skyscraper 
sheaves ~ . ,  supported on the point p E X such that 

0 ~ ~ar.~om(g,,,  ~,1) .~om(g,,, ,~,1) ~ o,~,, 7 ~ 0 (1) 

is a short exact sequence of sheaves. For any sheaf W, we use z(W) to denote 
its Poincar~-Euler characteristic. 

" " Then Lemma 2.4. Let Se be the set o f  pairs ( i , j )  with ~, = ~j. 

Z(o,~,,,) + Z(3ff~,) = n,.n, - ~ m~'m 7 . 
Od)6S~ 
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Proo f .  Let T,,, 1 be the index set consisting of  pairs ( i , j )  with l < i < r,. and 
1 < j < r, 1. We will show directly that 

Z(~',j)-- ~ m~'m~!, (2) 
(t,j)ES,,~ 

where S~,,~ = {( i , j )  C T~,, [~'  > c~7}. Using transposition to identify T,., 7 
and T,I~. (denoted T), we see that Sv, and S,7,. are disjoint subsets o f  T 
with complement S~ and the lemma now follows from equation (2). Since 
Z ( ~ . , )  = dim H ~  dim (~{~,.,)p, to show equation (2), we just need to 
identify the cokernel of  i,., I on the stalks of  (1) at p. 

For this we introduce the following notation: t is a local holomorphic co- 
ordinate on X so that the parabolic point p corresponds to t = 0; {e)'} and 
{e~ ~} are bases for Ep and E~ so that F~' is spanned by {e~' ira' l' + . . . + m ~ _ ,  < 
i < n,,} and F~. 1 is spanned by {e]jm'~ + . . .  + " = m~_ 1 < j <=_ n,t } for all h and 

r q ~l ~ . . .  o~v k; (a ] ' , . . . , a~ , )  and ta  I . . . . .  an,,) are the weights (~'1', , , .)  and (c~'[ . . . . .  ~;.7) 
F W~ l repeated according to their multiplicities; and ~Xtj ~ is the set o f  coordinate 

functions on n,. x n,~ matrices. 
w] Using this notation, it follows that .~om(g,,,g,1)p = C[[t]][xu ]- Define 

,,I " < a~ ,',7 = x,j if  a, = , 
V at~ ~ij tx)j I if  a t > .1 " 

Then, with respect to the chosen bases, it follows from Definition 2.3 that 

~ar-bo,n(~,,, ~ , )p  = C[[t] ] [r, ' j l ] .  

The map i,,,~ on the stalks of  (1) is just the natural inclusion with cokernel a 
vector space of dimension ~-]~(,,/)~s,,, mi'mY, proving equation (2) and completing 
the proof  of  the lemma. 

R e m a r k  2.5. It follows from this proof  that as a function of  the weights, 
Z(~I.,I) is a step function constant along those components with ai '+a~ l for 
all i,j. 

2.2 The space o f  weights  

We are interested in how the moduli o f  stable bundles depends on the choice 
of  weights ~ = (~l . . . . .  ~,.). For this, suppose E is a topological parabolic 
bundle with p~(E)  = 0. Let - k  = degE,  and n = rankE.  To define the set 
of  admissible weights (i.e. the ~ with p~(E)  = 0), it is convenient to write 

= (cq, . . . ,~n) ,  where each weight is repeated according to its multiplicity. 
We denote this set of  admissible weights by Wk, of  simply W if the index is 
clear from context. 

W • 0~10 < ~1 < < ~n < 1 w i t h  ~ ,  = k 
t= |  

We denote by /~ and OW the interior and boundary of  W, the latter of  which 
we split into the two subsets: 
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OeW = {C~C W]~,=~i+l  for some 1 < i < n } ,  

00W = { c ~ C W I c q = 0  a n d ~ , + ~ i + l  fo ra l l  1 < i < n } ,  

because their moduli behave quite differently. 

For generic weights, we have ~s~s = ~ .  In fact, suppose ~ C W has 
~gs~s + ~ .  Then there is a parabolic bundle .~ with proper subbundle g '  and 
p~(g ' )  = p~(g)  = 0. I f  - k '  and n' are the degree and rank of  g ' ,  and 0 < 
c~o(1) < ...  < 7~(n') < 1 are the weights of  the natural parabolic structure 
induced on g ' ,  then it follows that 

tl  t 

~ a ( i )  = kt . 
i=l 

Let ~ = (a,k ' ,n ' )  and define He C W by 

H~ = ~ ~ W L ~ ( ~ )  = k' 
1 = 1  

Then we have proved one direction of  the following lemma. 

L e m m a  2.6. ~ ,  4: ~ ~=~ ~ E H~ for some 3. 

Proof. ( ~ )  Use the construction for the direct sum of  parabolic bundles ([24], 
p. 68). 

Notice that H~ is a real hyperplane in W. We call the connected components 
(which are convex) of  W \ (.J~H~ top chambers. We also refer to the weights 
in top chambers as 9eneric weights. Notice that for ct E W \ [,.J~H~ and for any 
proper subbundle g '  of  g,  / ~ ( ~ ' ) ~ 0 .  Thus, if  ~ and/~ are weights belonging 
to the same top chamber, then it is not hard to see that c~ = Z~. One can 
actually say more. We refer to connected components of  

~ ' .  ~,...,~,, 

as chambers. These are the open convex faces of  the top chambers. 

L e m m a  2.7. I f  ~, fl are in the same chamber, then cg~ ~s and ~s~ = ~ .  

Proof. To prove this, we show set inclusions one way, and the reverse inclu- 
sions then follow from an identical argument. To start, let at = (1 - t)c~ + t/~ 
be the straight line from ~ to /~, which is contained within the chamber by 

convexity. To see that ~s~ C ~1~, suppose to the contrary some d ~ ~ is 

not an element of  Cgs~,. Then there is a holomorphic subbundle g '  of  ~ with 
/~/~(.~') > 0. But certainly l t~(g ')  _-< 0 by ~-semistability of  8. It then follows 
from the Intermediate Value Theorem that there is some ~ ' ( =  % for to E [0, 1 )) 
with #~, (8 ' )  = 0. But this implies that c~' E H~, for some hyperplane H~, not 
containing /~, a contradiction. 

To see that Z~ C_ cg~, suppose d E cd~ is not an element of  ~ .  Then 

d ~ ~ ,  and arguing as above, this implies that/3 E H~, for some hyperplane 
H~, not containing ~, again a contradiction. 



Variations of  moduli of parabolic bundles 545 

2.3 The moduli spaces 

We are ultimately interested in comparing different moduli of parabolic bundles. 
Suppose E E C~s~. Then the Jordan-H61der filtration of g is 

0 C ~ l  C ~2 C . . .  C ~R = ~ (3) 

where each quotient D, = gi /g i - t  is a-stable. (This terminology is justified by 
Remark 2.1.) This filtration is not canonical, but the associated graded bundle 

grJ = O D i  
i-1 

is canonical. The moduli space ,#~, as a normal projective variety, is con- 
structed by identifying g with ~ '  if g r ~  ~ grog'  as holomorphic parabolic 
bundles (see the definition preceding Theorem 4.1 of [19] and p. 178 of [20]). 
We call two holomorphic bundles g and 6 '  s-equivalent if grog ~ gr~ d ' .  
When it is clear from context, we drop the subscript and write gr 6. 

O 

Theorem 2.8. (Theorem 4.1, [19]) I f  ~ = ~ and ~ E W, then ~ is a 
smooth projective variety of  dimension (g - 1 )n 2 + 1 + n(n -- 1 )/2. 

Although it is not necessary for the purpose of this paper, as an alternative point 
of view, we can describe the moduli spaces in terms of the gauge group N~. 
Suppose that E is a topological parabolic bundle with weights e, let ~q~ denote 
the group of bundle automorphism of E preserving the parabolic structure: 

~ =  {g : E --+ Eln o g = n and gx E GL(n, C) for all x E X and gp(F,) C F,} 

Notice aj~ depends only on the quasi-parabolic structure, i.e. on the unweighted 
flag structure. The gauge group acts on the space ~ of holomorphic bundles; 
i f g  E aj~ and d E c~, then g"  d = g ~ 1 7 6  __ d + g ( d  9-I ) .  The gauge 
orbit ~ �9 g is just the collection of parabolic bundles isomorphic to 6 ~. Thus, 
two a-stable bundles are s-equivalent if and only if they lie in the same gauge 
orbit. Although not entirely obvious, it is a consequence of [4] that two ~- 
semistable bundles are s-equivalent if and only if the closures of their gauge 
orbits have nontrivial intersection. Thus, we see ~,[1~ = ~/ / : .~  where two orbits 
are identified if their closures in cg~ have nonempty intersection. Although we 
adopt a notation reminiscent of quotients in geometric invariant theory, it should 
be pointed out that (~  is not a reductive group. 

Remark 2.9. Lemma 2.7 shows that if c~ and fl lie in the same chamber (top or 
otherwise), then the moduli ,g~ and ,/{/3 are not only isomorphic, but actually 
identical. 
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3 Variation of moduli spaces 

3.1 Statement o f  theorems 

We are now in a position to state the main result. Take E a topological 
parabolic bundle and suppose ~,/~ are weights in adjacent top chambers. Let 
H~ be the hyperplane separating 7 and /~ and choose 7 E H~ so that 7 is not 
on any other hyperplane. Set 22;' to be cg~' modulo s-equivalence. Notice that 
since 7 lies on only one hyperplane in W, 2;;' is nonsingular. In fact, S;' is 
isomorphic to a product of  lower dimensional moduli (see equation (5)). 

Theorem 3.1. ~../I ~ and J[P are related by a special birational transformation, 
that is, there are canonical projective maps 

U//E 

so that 
(a) alon 9 ~/;' \ 2;;, dp~ and 4@ are isomorphisms, 
(b) alon9 2;", (a~ and dpp are pe, and Pel~ fibrations, and 
(c) e~ + el~ + 1 = codim 2;;'. 

Assume, without loss of  generality, that e~ < e/~. Then from part (c) of  Theo- 
rem 3.1, we obtain that qS~ is a small resolution [12]. Note that if  f : X --, Y 
is small, then it induces an isomorphism between intersection homology groups 
of  X and Y (loc. cit.). 

Using the theorem, we can compare the cohomologies of  J[//~ and ~#~ to 
the intersection cohomology of  J//;'. I f  X is a smooth variety, we use P ( X )  
to denote its Poincar6 polynomial, taken with rational coefficients. In case X 
is singular, we use I P ( X )  to denote the intersection Poincar6 polynomial and, 
for x c X, IPx(X)  for the local intersection Poincar6 polynomial, using middle 
perversity (see [12] for precise definitions). 

Now we state a corollary of  Theorem 3.1, whose proof  follows from the 
general arguments given in Theorem 2.8 and Corollary 2.9 of  [17]. 

Corollary 3.2. Let ~, [9, and y be as in Theorem 3.1 and suppose x C X;. 
Then 
(a) P(JW')  = IP(o# 7) + (P (Pe ' )  - IPx(,Zg;'))P(2;;'), 
(b) P(Jg/~) = I e ( J r  + (p(pe[,) _ IPx(J[;'))P(E;'), 

{ p ( p e , )  i fe~  < ep, 
(c) IPx(M//; ')= P(PeI') i f  el~ < e~. 

Remark 3.3. I fe~: t :0#:ep ,  then by the above corollary, I P x ( . g ; ) +  1 for every 
x E Z "7. That is, 2;; consists o f  singular points. Since the complement of  2;;' is 
smooth, we found that 2;;' is precisely the singular locus of  .g; ' .  I f  one of  e~ and 
e/~ is zero, which occurs only when 9 < 1, then the corresponding morphism 
is an isomorphism because the moduli spaces are all normal varieties. 
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It is observed in Proposition 5.1 o f  [5] that if 7s = ~ ,  then ~ is torsion 
free. Combined with the above corollary, this implies that 

p(,//[=) -_ p (d[~ )  + (p(pe~) _ p(pei~))p(x;.) , 

on the level o f  integral cohomology. 
The next proposition describes the map between moduli induced by a de- 

generation of  flag structure. Suppose that 8 E 8e W and cz E I~ are in the closure 
of  the same chamber and do not lie on any hyperplanes. 

Proposition 3.4. There is natural projection ~#~--~ J[~ that is a fibration with 
.fiber a product o f  flag varieties. 

If  instead 6 were chosen in the other component of  the boundary, 80W, then 
because the quasi-parabolic structures o f  c~ and 6 in this case are identical, the 
map between the moduli spaces would not be a fibration. This map should re- 
ally be thought of  in the context of  the variation theorem (for one-sided hyper- 
planes). Just as in Theorem 3.1, there is a special birational transformation qS~ : 
.//r -~ J,r which is an isomorphism along ~.#','\ X"' and which is a P~ bundle 
along Z;. 

3.2 ProoJg' 

Proof  o f  theorem 3.1. We first show how to construct the map ~b~ and then 
prove it has the correct properties. The same results for ~bf~ follow by an 
identical argument. 

Lemma 3.5. There are natural inclusions: (a) ~ss C c~', and (b) ~ c cg~. 

Proofi. (a) Let at be the straight line at = (1 - t )~+ tT .  It follows that ~s~s = ~25 
for 0 < t < 1. Suppose ~ E ~ = c8'~ and g ~ cg~'s. Then we have a proper 
subbundle 8 '  o f  ~ with ~; . (~)  > 0. Since g is a-stable, #~(8 ' )  < 0. But 
kt~,(8 ~) varies continuously with t E [0, 1]. The Intermediate Value Theorem 
implies that there is a to E (0, 1) so that ~ , ( ~ ' )  = 0 where cd = c%. But this 
implies that cd E H~ for some ~, a contradiction. 

(b) Now suppose ~ E ~ '  and that there is a subbundle 6 ~' of  g so that 
p~(g~) > 0. By ),-stability of  g ,p; . (g t )  < 0. Thus, by the IVT, there is a 
to E (0, 1) so that setting ~.' = = cq0, we have #~,(~')  0, again a contradiction. 

Lemma 3.6. The map dp~ �9 ~/r ~ J~Z, induced by inclusion (~  c c6~is is a 
projective birational map which is an isomorphism alon9 J / ;  \ X;'. 

Proof.. We claim that the inclusion ~r C ~;]'~ descends to a map ~b~ after 
taking s-equivalence. To see this we can appeal to the proof of  Theorem 4.1 
of  [19] (pp. 225-235) to translate the problem to geometric invariant theory 
where the property readily follows. To avoid a preponderance of  notation we 
adopt that of  [19] and supply brief explanations where necessary. Using the 
Hilbert Scheme of  coherent sheaves over X, Mehta and Seshadri construct a 

~7 ~7 
smooth variety R and a flag bundle /~ over R. Let R,~(R~) denote the set of  
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points representing y-semistable (stable) parabolic bundles. There is a smooth 
projective variety Z which is a product of Grassmannians of certain dimensional 
quotients of the trivial bundle Cx eN of rank N over X for some integer N 
(loc. cit, pp. 226). The weight y induces a polarization on Z which gives rise 
to a linear action of the group G = SL(C@x N) on Z. Let Z)'s(Z~') be the set 
of semistable (stable) points with respect to the linear action of G induced 
by y in the sense of geometric invariant theory. There is a map T �9 k --, 
Z such that T respects stability (cf. Proposition 4.2 of  [19].). In particular, 
T(k~s) c Z~'s and T(k~) c Z~'. Let M"' be the image of R'ss in Z~'s//G and 

M;' be its normalization. Then ./#;' as a normal variety is constructed as 37/;' 
(this follows from Proposition 4.4 of [19]). Similarly let k,~,(k~,) denote the set 

of points representing cr (stable) parabolic bundles. Then k~  C k~s 
~~ ~y ,.g//~ and R, D R s. The moduli is constructed similarly by using the linear 

action of G on Z induced by the weight cr However we have T(Rs~) C T(R~s) 
and T(R, ~) D T(k~). Hence it readily follows from geometric invariant theory 

that the above inclusions induce an algebraic map from M ~ = T(ks~)//G(C 
Z~.//G) to M; = T(k~)//G(C Z~'s//G). Since M ~ --~ M;' is obviously a birational 
morphism, it follows that it can be uniquely lifted to their normalizations qS~ : 
M~ --, 3)", and this is the morphism we desire. Clearly T(k2) D T(k~) implies 
that q~ is an isomorphism on ~#;' \ Z;' which is the normalization of T(k~)/G. 
The projectivity of the morphism qS~ follows from the fact that any algebraic 
map between projective varieties is projective. 

With the next lemma, we show how to identify q~-l([gl] ) for dl E ~V~'ss 
with certain nontrivial extensions, where [,81] denotes the set of y-semistable 
bundles s-equivalent to ~l.  Since 7 E He lies on a unique hyperplane, dl E ~'~s 
implies gr:.gl = S | Q for some y-stable bundles S and Q. By the definition 
of s-equivalence, it follows that a y-semistable bundle ~ is s-equivalent to ,81 
if and only if gr..8 = S | Q, i.e. if E is a parabolic extension of S by Q or of  
Q by S. Note that we are using the parabolic structure on gl to give parabolic 
structures to S and Q as subbundle and quotient, and then assembling these to 
give a parabolic structure to ,~. 

Now consider what happens when the weights are varied. Then 81 can be 
considered as a parabolic bundle with weight e, and while it may not be c~- 
stable, we can identify which extensions in [~t] will be co-stable. Of  course, we 
need to know which of the bundles S and Q has positive ~-slope. (Note that S 
and Q are now thought of  as bundles whose parabolic structure is determined 
from the c~-parabolic structure on ~l . )  Recall that ~l,3ar.~om~(Q,S) denotes the 
sheaf of germs of parabolic morphisms from Q to S. 

Lemma 3.7. Suppose ~l E c~i's, with gr;.o~l = S | Q with #~(S) < 0 and 
II~(Q) > O. Then 

~b;-I([gl ]) = Proj(Hl(~]3ar.~mn~(Q, S ) ) ) .  

Proof. Suppose g E ~b;-l([~j]). Then gr;.8 = S@Q which, since ~ is c~-stable, 
gives the short exact sequence of parabolic bundles 
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O --+ S -~ g --~ Q--,  O. (4) 

Again by 7-stability, ,~ must be a nontrivial extension of  Q by S. Notice that 
because #~(Q) > 0 > /~(S),  H~  = 0 (see Proposition 9 
of  [24]). Thus by standard homological algebra the nontrivial extension (4) 
is classified by a 1-dimensional linear subspace of  ParExtl~(Q,S). However  
~ctr .~om~(Q,S) is a subsheaf  of  ~om~(Q,S) and thus is locally free, and it 
follows that ParExtl~(Q,S) = Hl(q-,3ar.~om~(Q,S)). This shows inclusion one 
way, and the other inclusion follows from the claim that any bundle g which 
is given by a nontrivial extension of Q by S (as ~-parabolic bundles) is in 
fact c~-stable and thus is in 4,~-I([gl]). For suppose to the contrary that 
is not c~-stable. Then there is a proper subbundle g '  of  g with Iz~(g') > 0. 
But & ( g ' )  = 0 by 7-semistability of  g. Thus there is a short exact sequence 
~ '  --~ ~ ~ ~"  so that gr r~  = ~ '  E) ~" .  By its construction, gr S = S | Q. So 
g '  is isomorphic to either S or Q. Since the original extension was nontrivial, 
it follows that .-~' = S. But then /~(S)  > 0, a contradiction. 

This lemma also proves that q~/71([g~]) = Proj(H~(~arEooml~(S,Q))). 
Thus, e~ = h~(9~ar~om~(Q,S))- 1 and e/~ = hl(~arYomnl~(S,Q) ) - 1. We 
now compute e~ and el~ and show that e~ + e/~ + 1 = codim X;. 

Suppose that 7 lies on the hyperplane Hg determined by { = (a.k~,n~). 
Let k2, n2 be the complementary degree and rank, so that any g E Z~'s~ has 
gr g = S |  where r a n k s  = n~, rankQ = n 2 and degS = - k : ,  degQ = -k2.  
By identifying Z;' with the product of  the moduli of  stable parabolic bundles 
on S and Q with weights 2 ' ,7" where 

, /  I~  ( Y a ( I )  . . . . .  Ya(n,)), ~1' = ( )~ r ( I )  . . . . .  ) ' r ( n 2 ) )  , 

and a, z are complementary choice functions, it follows that 

Z ; ' =  ..t{;" x ./IF" 

In particular, applying the dimension formula of  Theorem 2.8 shows 

(5) 

codim22 r =  nln2(29- 1 ) -  1. 

Now, we compute hl(~ar~om~(Q,S)) and hl(~l,3ar~onD(S,Q)). As in 

the proof  of  the previous lemma, we have h~ = 0 and 
h~ = 0. Thus h l ( ~ a r ~ o m ~ ( Q , S ) )  = -z(~13ar~onl~(Q,S)) 
and h l (~a r~om/~(S ,Q) )  = -z(~],3ar~om/~(S,Q)). Using the short exact se- 
quences of  sheaves 

~]3or~om~(Q,S) --~ ~om(Q,S)  --+ .Yf , 

~]3ar~oml~(S, Q) --+ S3om(& Q) --+ a g ,  

where . ~  and ~ are skyscraper sheaves, it follows that 

z(~ar~6om~(Q,S)) = z (~om(Q,S ) ) -  z ( ~ ) ,  

z(~ar~om/3(S, Q)) = z(~otn(s, Q)) - z ( x ) .  
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The Weil formula ([16], p. 156) gives 

x ( 0 o m ( Q , S ) )  = n l k 2 -  n2kl + n i n e ( 1  - 0 ) ,  

g ( ~ o m ( S , Q ) )  : n2kl  - n l k2  + n l n 2 ( 1  - 9 )  �9 

Thus, 

and 

Thus 

e~ : h ' ( ~ a r . ~ o m ~ ( Q , S ) ) -  1 

= - z ( ~ a r - ~ o m ~ ( Q , S ) )  - 1 

= - z ( ~ o m ( Q , S )  + z ( ~ ) -  1 

: n2kl - nlk2 - nln2(1 - g) + Z( .~)  - 1 

e ~ = n t k 2  - n2kt - nln2(1 - g ) + z ( , 2  ~ ) -  1.  (6) 

e~ + e~ + t = -2ntn2(1 - g ) + n ~ n 2  - 1 = n l n 2 ( 2 9 -  1 ) -  t 

since Z( .Z( )+  Z ( ~ )  = nln2 by Lemma 2.4 (the weights of  S and Q are 
necessarily distinct). This completes the proof of  Theorem 3.1. 

R e m a r k  3.8. The projective fibrations identified in Theorem 3.1 are actually 
projectivizations o f  vector bundles over Z;' which are locally trivial in the 
Zariski topology. Construct the family qg of  parabolic vector bundles parame- 
terized by Z;' as follows. Consider the two universal families parameterized by 
o~:" and ./4,./, (Theorem 32 of  [24]), pull them back to S" • X, and take the 
tensor product o f  the first with with the dual o f  the second and this defines the 
family o//. We have shown above that H~ = 0, and now it follows from 
Proposition 7.8.4 o f  [14] that the first direct image of  ~ under the projection 
Z:' x X --~ Z"' is locally free. 

p r o q f  o f  Proposi t ion 3.4. Given 6 G 0r choose ~ as in the proposition. 
Lemma 2.7 shows that :r = :~ '  = :(~ = ~'~s. Thus the projection ,////~ -~ J [~  
is simply the forgetful map which forgets that part of  the flag that appears in 
the quasi-parabolic structure that defines ~ but does not occur in in the quasi- 
parabolic structure that defines ~. The proposition follows immediately. In fact, 
via the gauge group construction, the fiber is a5~/(r which is a product o f  flag 
varieties. 

4 Singular Moduli Spaces 

So far we have considered only moduli ~/; '  where Y is a general point in a 
hyperplane of  the weight space. In this case, the set Z;' is a nonsingular variety 
and so ~/;" has two strata 

s//~" -- (J//;' - U )  U S" .  
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One should expect more complicated singularities for ~/; '  when 7 lies on an 
intersection of  hyperplanes. Fortunately, the Jordan-H61der filtration gives a 
natural stratification of  .//7 which one can use to prove stratified versions of  
Theorem 3.1 and Proposition 3.4. We begin with a description of  this stratifi- 
cation and its companion index set. 

To start, we define a partial ordering on the set of  weights by the face 
relations determined by the hyperplanes H~. Specifically, suppose that fl and 7' 
are weights contained in the chambers F and G respectively, then /3 > 7' in 
case G is a proper face of  F.  

Proposit ion 4.1. I f  /3,7 E~V and fl > 7, then the inclusion Z~/3s c ~s~ induces a 
birational projective algebraic map (9[~ :~//gl~ ~ ~/r which is an isomorphism 
alon9 J[/;' \ Z z'. 

Proof .  An argument like that used to prove Lemma 3.5 shows that %.'~ C c~'  
and ~ '  C ~ .  The rest follows as in the proof  of  Theorem 3.1. 

Remark 4.2. When ~/~ is nonsingular, qS~ is a resolution of  singularities. 

We now describe the stratification on Jg;' obtained from the Jordan-H61der 
filtration (3). The index set for this stratification is the finite set o f  all partitions 
of  ~/= ()'l . . . .  ,),,) into sets 

(7o', (1) . . . . .  7a,  (n,)  ) . . . .  , (])a~( l ) . . . . .  ~aR(nR ) ) 

such that 

lit 

~-~s = k, C Z .  
7 - 1  

We call this a ),-partition and denote it with the letter ~. Notice that ~ is 
determined by three related partitions, (~ ,k ,n )  where 

-- (gl . . . . .  ~rR) is a partition of  the set {1 . . . . .  n} ,  

k -- (kl . . . .  ,kR) is a partition of  the integer k, 

n -- (n t , . . . , nR)  is the partition of  the integer n determined by ~ .  

I f  7 is an interior weight, then in fact ~ is uniquely determined by (~r,k,n). 
But when 7 E 0eW, the representation of  ~ as (cr, k ,n )  may not be unique. This 
is clear by considering the effect of  interchanging two equal weights (now 
repeated according to their multiplicity); although it will not change the ),- 
partition ~, it may change a. We will come back to this point when we discuss 
the stratified degeneration theorem. For now, we assume that 7 is an interior 
weight, so we can unambiguously write ~ = ( a ,k ,n ) .  

We set [~[ = R, the length of  the partition. Notice that 7 admits a length 2 
partition ~ if and only if 7 lies on the hyperplane H~. 

Definition 4.3. For ~, E W, let rff~') = {~[~. is a 7 - partition}. 
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If  4 = ( a , k , n )  is a v-partition, then both k and n are determined from a. 
Consider a strictly semistable bundle ~ E ~.'s, with gr g = Dt | . . .  | DR, 

where each D i is a stable parabolic bundle of  rank ni, degree -ki  and with 
weights 7 ~' = (7,,(l),. . . ,7,,(n,)). With the obvious definitions for cr, k and n, 
this determines a v-partition 4 = ( a , k , n ) .  Furthermore, each of  Dl . . . . .  DR 
is completely determined by 4 as a topological parabolic bundle. For any 
4 ~ n(7), we define the stratum s by 

Z~ = { [ ~ ] t g r 8  determines the v-partition 4}.  

It is clear that [~] and [8 ' ]  are in the same stratum if and only if each of  
the components Di and D I of  gr ~ and gr ~ are isomorphic as topological 
parabolic bundles (up to reordering). Including the trivial partition in ~(7), 
whose stratum is v#"' \ ~,', we have 

~162 U Z~.  
~E~(.') 

It is not difficult to identify X~i with the smooth part of  a product of  mod- e 
uli of  lower rank bundles. Since each [,~] E Z} has g r g  ~ Dl | . . .  | D~ 
topologically, the holomorphic structure of  g r d  determines a point in the 
product o f  moduli of  lower rank bundles. More precisely, the assignment 
[g] ~ ([DI], .  . . ,  [DR]) defines an injective map Z~ --~ ~#/7~ x ... x jolteR, 
where V ~' denotes the weights inherited by D,. Further, since each D, is 
stable, the image of  this map is equal to the product of  the smooth part o f  
each moduli, and we have 

R 

= I I ( . t r  '~ \ z ' ~  
i=1 

where X ;'~ refers to the subset of  M/;'~ that comes from strictly semistable 
bundles. (Incidentally, if  V C 8eW, and Di and D,, are isomorphic as topological 
parabolic bundles, then one needs to replace the direct product above with an 
obviously defined symmetric product.) The closure of  a stratum is given by 

R = ,'~ 
g 

i=1 

We can describe this more effectively by defining a partial ordering on the 
set n(7) of  partitions by refinement, i.e. if 4, ~' E g(7) then we write 4' < ~ if 
~ is a proper refinement of  ~. It should now be clear that 

- -  .j, 

We say that 4 C rc(V ) is minimal if  there is no 4' E g(?)  with ~' --< ~. 
So, whenever ~ is minimal the stratum Z~ is closed. Finally, notice that the 
closure of  two strata have nonempty intersection if and only if their defining 
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partitions have a common refinement in rc(?). This is a consequence of  the 
general intersection formula 

= U . (7) 
U<_~. I 
~t -~2 

Definition 4.4. An algebraic map  f " X -+ Y is called w eak l y  s trat! f ied with 
respect  to the strat i f icat ions X = U~ X~ and  Y = Ul  ~ YIS i f  f - l ( Yfs ) c X~ and  

i f  f res tr ic ted  to f - l ( Y l ~  ) is a f ibration.  

Theorem 4.5. I f  fl,? E ~V and  fl > 7, then the m a p  c~l~ �9 J/I 1~ ~ Jr  is 
weak ly  s trat i f ied  with respect  to the natural  s trat i f icat ions on ,ells and  , # ; .  
Moreover ,  (PlJ restr ic ted to the preimacje o f  any  s t ra tum is a f ibrat ion  tower  
whose f ibers  are all projec t ive  spaces. 

Proofi.  For two elements a ,b in a poset P, we say that a covers b i f a  > b 
and there is no e with a > c > b. We will use this terminology for both the 
poset of  weights and the poset ~(?) of  ),-partitions. 

Choosing a maximal chain of  weights 

~ = / 3 o  >/3~ > .. .  >/3,,, = ? ,  

we see that the map 4~/~ is the composite of  the following sequence o f  maps 

J l  Is = j l l l  3o -4  ~ll I~ --~ . . .  -~ J l l  ~'' = o/l/? ' 

where each fli c o v e r s  fli+l. Thus, it suffices to prove the following claim. 

Claim.. I f  fl covers ),, then for any stratum XI'1, there is a stratum Z~ with 

dp~l(X;"1) C X~ so that the restriction of  the map q~/3 " ~.///~ ---+ -#;'  to (~fl(Xi'i)  
is a projective bundle. 

The theorem follows from this by induction on the length of  the chain. 
Before embarking on the proof of  the claim, we make some general remarks 

about the geometric significance of  the posets involved. First, notice that [J > 7 
implies that rr(/3) C ~(7)- Geometrically this means that any hyperplane con- 
taining/3 also contains ?. Let {Hi . . . . .  Hm } be the set of  hyperplanes containing 
/3 and {HI . . . .  ,HM} be those containing y. Clearly /3 > y =~ M > m. Suppose 
). is a weight with fl > ). > 7, then by reordering, we see that 2 ~ Hk for 
some m < k < M. Conversely, i f /3 covers ? then each of  the hyperplanes 
H,,+l . . . .  ,H~t is essential in the sense that for any m < k __< M, we have 

H, rnHk = H , .  (8) 
\ i = l  ~=1 

Thus, if M > m + 1, we see that the hyperplanes {H1 . . . . .  HM} cannot be in 
general position. 
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Assume that fl covers 7. Because the map $/3 :.1/1~ ~ J / ;  is surjective, 
for any [ g ]  E .//t ~', we have some [~] C J//~ with ~b/3([g]) = [ ~ ] .  But the 

inclusion (g~s C qf~'s o f  Proposition 4.1 shows that ~ C C(~s, and so gr S ~ g r ; .~  
as holomorphic parabolic bundles. Moreover, letting r/ C zt(7) and 4 E n(fl) 
denote the partitions induced by g r ; .~  and gr/~d, respectively, we see that r/ 
is a (not necessarily proper) refinement of  4, i.e. r / 5  4 in the set rt(7 ) (recall 
that r~(fl) C rt(7)). Since fl covers 7, it follows that the lengths of  r/ and 4 are 
related by [~[ _-< [t/[ __< I41 + 1 (otherwise, if  [t/[ > [4t + 1, then this would 
contradict the condition (8)). Thus we have two cases: either [t/] = 14[, which 
implies t/ = 4, or [t/] = I4] + 1 and it follows that 4 covers t/. (Note that 
covers I/ i f  and only if t/-< 4 and [t/l = [~[ + 1. ) Summarizing, we have 

Lemma  4.6. Suppose that fl covers 7 and q c re(V). Then either tl C ~z(fl), or 
there is a unique 4 E n(fl) so that 4 covers tl in the set rift ). 

Proof .  The only thing left to show is uniqueness, so suppose t/ r rc(fl) and 
suppose that ~t,42 E n(fl) both cover t/. Writing 4i = (ai ,ki ,  n ' )  and t/ = 
(z ,h ,m) ,  since r / ~  n(fl), we have exactly two elements of  z = (zl . . . .  ,zR+l), 
say rR and ZR+I, which are distinguished by the fact that Y'~j~l fl~,(J) r Z 

and ~ j ~ l  I fl,~,~(j) ~ Z. But then a straightforward argument shows that up to 

reordering, a) = zi = a2 for 1 _< i < R and a~ = zn U ZR+I = a 2. Now it 
follows that ~1 = ~2. 

We can now conclude the proof  Theorem 4.5. 

proo f  o f  claim. First, we use the above lemma to identify the appropriate 
stratum Z~ which contains ~b~l(zil). On the one hand, if  t /E r~(fl), then using 

S,~, we see that the map qS//restricted to the preimage of  Z~ is an isomorphism. 
Otherwise if  t/ ~ n(fl), pick the unique ~ ~ zfffl) which covers 1/. As in the 
proof  of  Lemma 4.6, let ~ = ( a , k , n )  and t/ = ( z , h , m )  where a~ = z~ for 
1 < i <  R and a n = z R U r n + l .  Thus 

R 

i=1 

R + I  

zl, = 11 \ 
i = l  

Choose a path fit connecting fl to 7 so that for all t ~ [0, 1), the weight fit 
lies in the same chamber as /L It is helpful to use the partition a to think of  
the weights as points on the product of  weight spaces for lower rank bundles, 
i.e. writing fl~' = (fl~,~I) . . . .  ,fl~,(,,)), for 1 < i < R, then fit can be viewed 
as a path on W~ • ...  • Wn, where W~ is the weight space for the moduli 
Jr176 Viewing each fit' as a path on W,., we see that because ~ covers q, 
for t G [0,1] and 1 __< i < R, fit' lies in the same chamber as fl~'. Now 
Lemma 2.7 'shows that ~glr, and J/{/ '  define identical moduli for 1 _< i < R. 
So we just need to analyze the map jg/r~ ~ ~/;'"~. For i = R, we see that f l~ 
lies in the same chamber as fl"~ for t G [0, 1), but that fll ~ -- 7 ~s encounters 
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some new hyperplanes in WR, i.e. as weights, fioR covers ?~R. The fact that 
(vk, rR+I ) is a length 2 partition of  aR shows that 

(a'~ ~'~R \ s '''R ) x ( ~ / ~ "  \ z /~"  ) 

is the smooth part o f  the singular locus in dd ;~~ and thus we can apply the 
proof  of  Theorem 3.1 to see that the restriction of  the map .~#fl-R ~ .Z/,;,oR to 
the preimage of  (~r \Sy~  ) x (~4//R'~ \2;/R~ ) is a projective bundle contained 
in o//{/~"~ \ Z fl"k . In fact, the procedure given in the proof  of  Theorem 3.1 shows 
how to determine the projective space fiber. This completes the proof  of  the 
claim and also finishes the theorem. 

Theorem 4.5 is the extension of  the variation theorem to very singular 
moduli spaces. There is also an extension of  the degeneration theorem in this 

case which we now describe. Suppose 7 E I~ and 6 c ~?~W are in the same 
chamber. Then, up to the choices given by the fact that the weights of  6 are 
not distinct, it follows that a and 6 have identical partition sets, i.e. rift ) = 
rr(6) = rc and we see that 

.#'"----Uz'~ and ~#~ = U S~ . 
~E~ ~E~ 

Notice that the canonical map ~b~, : .,/_/;' ~ Jr is a weakly stratified map, 
i.e. ~b;.(Z:~) = X~. Identifying the strata with products of  moduli o f  parabolic 
bundles of  lower rank (here, by product we mean symmetric product when ap- 
propriate), Proposition 3.4 applies one stratum at a time to prove the following. 

Proposit ion 4.7. The natural projection ;/1';' -+ j//a is a weakly stratified map 
whose fiber over any stratum can be determined from Proposition 3.4. 

Before closing this section, we illustrate one interesting phenomenon. Suppose 
? is a weight admitting a length R partition ~. Then an elementary counting 
argument shows that y admits at least 

1 

2 k=l 

distinct length 2 partitions. Thus, if  {HI , . . . ,Hm} denotes the set of  all hy- 
perplanes containing ?, then we must have m > 2 R-I - 1. Furthermore, if  
R > 2, then these hyperplanes are not in general position. This follows sim- 
ply by considering the special case where 7 admits a length 3 partition. Then 
there are 3 hyperplanes {H1,H2,H3 } containing 7 with the property that the 
intersection of  any two is equal to the intersection of  all three. Consequently, 
these hyperplanes are not in general position. 

1 2 3 4  A simple example of  such a weight is given by 7 = ( ~ ,  3, 5, 5, 5, 9 ) .  
Notice that the set of  ,/-partitions is given by 

g(7)  = {~1,~2 ,~3 ,~} ,  
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H x 

H 2 H 3 M r 

Fig. 1. The singular locus of ,//;' when the hyperplanes containing ?, are not in general 
position. 

H 2 

H 3 

M r 

Fig. 2. The singular locus of .//; when the hyperplanes containing ?' are in general position. 

where each ~i has length two and corresponds to a hyperplane /4",., and r/ is 
a length three partition which is a refinement of  each ~.i. Thus we see by the 
intersection formula (7) that the closures of  the strata corresponding to the ~, 

intersect nontrivially, i . e .  N ~ = I  ~ = '~i (see Fig.l) .  
On the other hand, suppose that the set { H i , . . . , H m }  of  hyperplanes con- 

taining ? are in general position. Then the above considerations show that ? 
does not admit any partitions of  length > 2. Consequently, the intersection 
formula (7) shows that each stratum is closed. For a concrete example, con- 
s ider ) '  = ( I  i I 1 3 2 N, To,3,~, ] 0 , 5 , 7 )  �9 Then re( ) , )=  { ~ 1 , ~ 2 , ~ 3 }  consists entirely of  
length two partitions, and the resulting moduli is pictured in Fig. 2. 

We close this section with the following conjecture. 

o 
Conjecture 4.8. For any 7 E W, there exis ts  9eneric ~ > 7 so that the canon- 
ical map dp~ : J//~ --~ JI;' is a small  resolution. 

The proof  given in [17] applies in the case when the hyperplanes {HI . . . . .  Hm} 
containing 7 are in general position, but this is rare by the preceding discussion. 

5 Multiple parabolic points 

We now consider the case of  smooth curves of  arbitrary genus g and with m 
distinct marked points {Pl . . . . .  p,,}. Then a topological parabolic bundle over 
X is by definition a C" bundle E with weighted flags over each p/ .  The other 
definitions, namely the parabolic slope, stability, the weight space, etc., all 
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extend to this situation in a more-or-less obvious way. For a detailed account 
o f  this and the construction o f  the moduli in this case the reader is referred to 
[24]. The moduli is a normal projective variety and is smooth for a choice of  
generic weights. Its dimension is given by 

m 
d i m J g  ~ = ( g -  1)n 2 + 1 + ~ -~d im~j  , 

j= 1 

where ,Yp~ is the flag variety describing the quasi-parabolic structure at pj. 
In Sect. 2.2, we defined the weight space as consisting o f  those weights 
with #~(E) = 0. However, this was purely a matter o f  convenience and in this 
section, we allow for general weights. Notice that the collection of  weights 
so that ~s~s :~ ~ still consists of  a union of  hyperplanes determined by the 
equation p~(U)  = /~(E)  for a subbundle U .  To deal with the anomalies in 
low genus, we shall call a weight ~ sufficiently generic if Cs ~ 4: ~ .  The proofs 
of  Theorem 3.1 and Proposition 3.4 transfer to this situation to give identical 
results, provided the weights involved are sufficiently generic. 

Furthermore, these results also extend to the fixed determinant moduli as 
we now explain. Let J(k)  denote the Jacobian o f  line bundles over X of  degree 
k and for A C J(k), consider ~s~0 = {~ C c~s[detE = A} with moduli ~l' ~ 
defined to be ~ ; o  modulo s-equivalence. We call ~,~P~ the moduli of  bundles 
with fixed determinant. The fibration 

j l / ,  ~ --~ ~ det 
---+ J(k  ) 

shows that for sufficiently generic weights 

dim~4 r ~ = ( g - 1 ) ( n  2 -  1 ) + ~ d i m  ~ p , .  
j = l  

By applying identical arguments as in the proof of  Theorem 3.1 to bundles 
with fixed determinant, one can prove that J~"~ and ,+</~ are related by a special 
birational transformation whenever ~z and fl are generic, sufficiently generic 
weights on either side of  a hyperplane. However, it should be mentioned that 
the moduli of  strictly semistable bundles, which we continue to denote by Z;', 
is no longer a product of  moduli of  lower dimension (except when g = 0). 

We now proceed with a discussion of  rationality o f  the moduli spaces of  
parabolic bundles in genus zero. One of  the special features in this case is 
that for certain weights, the moduli space is empty. One way to see this for 
"traceless" weights e satisfying pardeg~E --= 0 is to relate the moduli to certain 
representation spaces, which can be shown to be empty for some choice of  
weights. However, we give a direct argument utilizing Grothedieck's theorem 
[13] that any bundle E of  rank n and degree k over p l  is the direct sum of  
line bundles. We remind the reader that we no longer make the assumption 
that pardeg~E = 0. 

Consider pi  with marked points { p l , . . . ,  p,,} and suppose that E is a quasi- 
parabolic bundle of  rank n > 1 and degree k and with full flags over each 
of  the parabolic points. We can assume, by tensoring with a line bundle if 
necessary, that 0 < k < n. Consider the two cases: 0 < k < n and k = 0. 
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If  0 < k < n, then choose generic small weights, specifically, 0 < ~ < 

... < ~ < 1 over pj. Then pardeg~E < k +  1/n < n so ~ ( E )  < 1. I f  
n - m  

E = LI | . . .  | Ln is ~-semistable, writing ki = degLi, then ki + ~ j  ~ < 

~t~(Li) < g~(E) < 1, which implies that k, < 0 and so k = f'~k, < 0, a 
contradiction. 

1 for all i , j  except for If  k = 0 then choose generic weights so that ~ < 
I (1 - 1/n 2) (recall n > 1). Then ~ ( E )  < ~ ,  which satisfies (1 - 1/n) < ~tn < 

1/n and by the same argument as in the previous case, if E = Lt |  | L, is 
~-semistable, then degL, - -0 .  By choosing nowhere zero sections s, C H~ 
we see easily that E is holomorphically trivial. It follows that there is a trivial 
line subbundle L so that Lpt coincides with F~ and therefore inherits the large 

1 (1 1/n) > 1In > l~(E) ,  so again we see I Thus /~(L) > ~, > = weight ~ .  
that E is unstable. 

Now let e and /3 be generic weights with ~.V~+ ~3 and ,f/~ = ~ .  Obvi- 
ously, we can choose ct and fl on either side of  a hyperplane. Let 6 be a point 
on this hyperplane but not on any other hyperplane. 

We claim that Jff6 is a product o f  two moduli of  lower rank. To see this, 
notice that 6 lies in exactly  one hyperplane and the moduli has only strictly 
semistable bundles. This follows from Lemma 3.5 applied to this special case. 

Indeed, ~ + ~s~ c ~ and ~s 6 C ~ = ~5. Thus each ~ E ~6 s is s-equivalent 
to a bundle o f  the form ~ ' |  g" ,  where g~ and g "  are stable parabolic bundles 
of  ranks n' and n" and with weights 6 ~ and 6", respectively. This implies that 
j V  ~ = Z ~ = ~I r'~' x .A r'~'' for the partition (6~,6 ' ' )  o f  6. 

By induction, each At6' and ~4/'~'' is rational, (the case o f  rank 1 being 
trivial, while rank 2 is covered in [2]). 

Indeed, we know more than this from the fact that j ' /~  = ~ .  Assume 
(wlog) that / ~ ( g ' )  < ~6(.~') < /~/~(g'). Then since ~4 rli = ~ ,  by the re- 
sults in Sect. 3.2, there are no nontrivial extensions of  g "  by g~, when re- 
garded with weight /3, i.e. P a r E x t ~ ( g ' , g  t) = 0. In particular, our algorithm 

for computing et~ gives e/~ = - 1 ,  so that e~ = dim ~ / { ~ - d i m  Z 6. (The pre- 
vious formulation o f  this in terms of  codimensions no longer makes sense.) 
It now follows easily that ~V "~ --~ Jff6 is a fiber bundle whose typical fiber 
is pe~ = Pro j (Hl (~arOom~(~, , ,d , ) ) ) .  Hence the rationality o f  ~l r~ for any 
with nontrivial moduli now follows. 

Proposition 5.1. I f  the genus o f  X is 0, then for  every ~ ~_ W, ,JI~ is rational 
provided it is nonempty. As  a consequence, such moduli are s imply connected. 

To close this paper, we would like to emphasize the possibility o f  comparing, 
in the spirit of  Theorem 3.1, the moduli spaces o f  parabolic bundles whose 
underlying vector bundles have different degrees. (One might think of  this as 
a generalization of  Hecke correspondence in the parabolic setting.) 
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