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INTRODUCTION

The usval treatment of the vibration problems in beam theory in-
volves the consideration of the fourth-order partial differential equa-
tion in the transverse displacement. This equation is obtained from
the system of partial differential equations that expresses the basic
laws of mechanics and the basic assumptions about the type of permiss-
ible deformations. These equations may or may not include such things
as the effect of shear, rotary inertia of the beam, non-uniformity of
the beam, and so on. If all of the above effects are included, the
fourth-order partial differential equation in the displacement becomes
very involved, although these same effects can be included in the basic
governing system without too much complication. It therefore seems
natural to consider the possibility of a direct investigation of the
basic system instead of the more complicated single partial differential
equation. Moreover, if the usual assumption concerning the existence
of standing waves is made, -i.e., vibrations harmonic in time, this al-
ternative permits the above system to be reduced to a system of ordin-
ary differential equations of the first-order whose simulation is
direct by electronic means. Consequently, this memorandum originated
in an attempt to treat certain aspects of the beam problem, to wit,
the orthogonality of the eigenfunctions directly from the system ob-
tained in the above manner.

In the course of this investigation several interesting observations
were made which in modified form may be of interest in other problems
of engineering mechanics. These include the lack of equivalence of the
two methods outlined above as far as orthogonality properties are con-
cerned. More specifically, while orthogonality relations are readily
obtained from the system for certain boundary conditions, it is easy to
see that they would not be obtainable from the displacement equation,
even though the boundary conditions weré appropriately expressed in
terms of the displacement and its derivatives. Conversely, for the
beam with both ends built in one does obtain a generalized type of or-
thogonality from the displacement equation which cannot be foreseen from
the system. Some of the reasons underlying this lack of equivalence
are discussed.
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In addition to this, a critique of the stending wave agsumption
used above will be given, and this will suggest its limitations. In
addition, a method is suggested which should, in any given uniform
beam problem, permit the determination of the range of validity of the
standing wave assumpfion. Tt follows as a corollary that in certain
instanées the distinct possibility exists that the standing wave hy-
pothesis may well eliminate from the theory precisely those effects
that are experimentally observed.
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1. STATEMENT OF THE PROBLEM

The basic equations of the problem are derived in reference 1, and
in the notation of reference 3 are as follows:

9%y 9V _
(1.1) o S tSg T 0,

For the uniform beam the elimination of V, M, & and B from these
equations results in the following partial differential equation in
the displacement:

3y _ (o EIP) oty , I'p ¥y +P&=0

(1.6) EI ot (I T XAG | axiot? | KAG oth

In addition to this, the following expressions are obtained for
the moment M and the shear V.

(1) M= By T WG it

U 2 3 ] 3
T Y w-(EIP,,I oy
S A ryvrvy L L T U7 Y-Skl FWRYY.:

The introduction of the usual standing wave hypothesis to the effect
that all vibrations are harmonic in the time requires that

(1.9) ¥ (x,8) = 3 (x) &°°,
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v (x) 0,

(1.11) M (x,t) = M (x) &°“F,

(1.10) 7 (x,t)
(1.12) B (x,t) = p (x) o°%.

The elimination of & from the system (1.1), (1.2), . . . , (1.5)
and the introduction of the above standing wave hypothesis results in
the following spatial system.

av

(1.13) — = o0y,
(1.14) %- =I'é"B,
(115) 2L -% =0,
(1.16) EZ-- B+KALG= 0.

Similarly the introduction of this hypothesis into (1.6), (1.7)
and (1.8) results in the following three expressions respectively.

4 z
(1.17) de + (EI + )szj (1 I“)PNY 0,
xt

dx* KAG KAG

| 2 2
(1.18) M = EI d’y + 2e y)
' dx*® KAG °

t 2 3 : |
(1.19) V'=1-I‘*’ [Elil +(EI )Pzdy
KAG dx* KAG P dx

As an historical remark, it should be sald that equation (1.6)
appears to have been derived by Timoshenko in reference 4 and to have
been treated by means of the standing wave hypothesis by Goens in
reference 5.
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2. THE LAGRANGE IDENTITY FOR THE SPATIAL SYSTEM

The starting point for the investigation of the orthogonality re-
lations is the same here as in the more usual Sturm-Liouville theory
and consists in the derivation of an appropriate Lagrange identity or
Green's theorem. Because of the relative simplicity of the spatial
system (1.13), (1.14), (1.15) and (1.16), this will be done directly
instead of by means of the general theory developed by Bﬁcher, Bliss
and others. A general reference to this theory is to be found In Kamke
(Ref. 6). “

Let P V,, M, and B. represent a solution of the system of equa-
tions (1.13), (1.1%), (1.15) and (1.16) which correspond to w, and to
a certain set of appropriate boundary conditions, and let Ios ) M and
B2 represent another solution of the system corresponding to W, and to
the same set of boundary conditions. Multiplication of the left hand
sides of equations (1.13), (1.14), (1.15) and (1.16) by y,, -B,, M, and
-V respectively and integration of ‘the resulting expregsion from.the

end x = 0 to the end x = L of the beam yields the following identities.

- JV1 Ay XL
yga—x c]x=—ova"3x [Yg‘[]xzo )

j;p’ (86 )t e[

[ e o
- L

A (8 _p-N g, [ [y 4V
on (dx ﬁ‘l KAG Jx A Y. — dx V f’, KAG

dx -
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The addition of this last set of identities ylelds, after some re-
arrangement of terms, the following Lagrange identity.

8V| d. N - d (. +Vl -
fE B[4y )*M’((T‘:"%) vg(a% et Jax

Ld’—w—a,(sz v)m(df*z M«) V(dvz P, + "*)a ]

(2.1) Yo Hdx dx EI dx KAG

= ¥o(1) V(1) - B (1) M (1) + M (1) g (1) - v (1) w, () -
- ¥, (0) v, (0) +&, (o) M, (0)~M, (0) 8, (o) + % (0) v, (0)

This identity is obviously of the form

n 1
Zl f [Vi‘ Li (\L) - uiLi (V) ] dx = values on the boundary
i1 Yo \

in which the same differential operators L; operate on the sets I
Vl, Ml, ﬁl and y,, Vé, N%, 62 gso that the set of operators defined

by the left-hand side of equations (2.1) is obviously self-adjoint.
If the same set of boundary conditions is satisfied by the two solu-

tions corresponding to the two different eigenvalues W, and w2, and
if these boundary conditions cause the right-hand side of the above
Lagrange identity to vanish, the problem is self-adjoint.

3. CRTHOGONALITY RELATTONS FOR THE SPATTAL SYSTEM

Let it be assumed that the boundary conditions of the problem make
the right-hand side of the Lagrange identity vanish. Then if the right-
hand members of equations (1.13), (1.14), (1.15) and (1.16) are sub-
stituted into this identity with the appropriate subscripts, the La-
grange identity reduces to the relation

L
) (w}- o) [o(PLYz“"I'Png)dhO
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Thus it is apparent that unless the rotary inertia term I' is neglected
there can be no orthogonality in the usual sense. It should be
stressed that the above derivation is valid whether the beam is uni-
form or not.

It remains to verify which of the usuélly assumed boundary con-
ditlons for beams will cause the right-hand side of the Lagrange iden-
tity to vanish.

a; The Free-free Beam .

Here the boundary conditions are that the moment and shear
should vanish at both ends of the beam: M=V = 0 at x = 0 and
x = L. Thus condition (3.1) holds, and if I' = O, one has the
usuval orthogonality. This provides a more transparent proof of
this same orthogonality relation which was derived by G. Hess in
reference 2.

b. The Cantilever Beam (The End x = O Built in and the End x = L

Free)

There exists some doubt as to the correct boundary condi-
tions at x = 0. Some authors take y = y' = 0 at x = 0, while
others take y =P = 0 at x = 0. At x = L the conditions are
M=V =0. The first set of boundary conditions fails to make
(3.1) valid while the second set does render (3.1) true. This can
probably be taken as more indirect evidence of validity of the
second set of boundary conditions.

¢. The Hinged-hinged Beam

Here the boundary conditions are y = M= O at x = 0 and x = L;
so that equation (3.1) again follows and orthogonality again re-
sults if I' = O.

d. The Beam with Both Ends Built In.

If the boundary conditions are taken as y = y' = 0 at both
ends of the beam there is no orthogonality, since (3.1) does not
hold. On the other hand, if the boundary conditions are taken as
y = B= 0 at both ends, then again if I' is zero orthogonality
does result.
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€. The Built In Hinged Beam:

If the boundary conditions are teken as y =B =0at x =0
and y =M= 0 at x = L, then (3.1) holds; so that if I' = O or-
thogonality results. If the condition B = 0 at x = 0 is replaced
by the condition that y' = O at x = O, there is no orthogonality.

In resumég then, one sees that if I' = 0, weighed orthogonality
~in the gense that.

1
(3.2) f Pyl)’z dX = 0
0

results for non-uniform béams,if the condition B = 0 1s used as
one of the boundary conditions at any built in end. In short, if
this is done, the functions

{pri}, i=1,2, ... ,n

are. orthogonal in the usual sense, and all of the above problems
are self-adjoint. For more general boundary conditions the possi-
bility of blorthogonality may exist, in that one may be able to pick
two solutions of the system (1.13), (1.1L4), (1.15) and (1.16) which
satisfy adjoint boundary conditions; so that (3.1) will still hold.

L. THE UNIFORM BEAM WITH NEGLIGIBLE ROTARY MOMENT OF INERTIA: ORTHO-
GONALITY RELATION FOR THE SPATTAL DISPLACEMENT EQUATION: DIS-
CUSSION OF THE LACK OF EQUIVALENCE .OF THE SYSTEM AND THE DISPLACE-
MENT EQUATTON

If I' is taken to be zero and if the beam is assumed to be uniform,
equation (1.6) reduces to

4 4 2
(+.1) g &y . Elp %y M .o
Lid e aeee tPon

while the expressions for the moment ard shear become respectively,

ty_ P &
(4.2) M=EIP’- ﬂ
axt KAG gt?
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(.3) V=€ [y _ P 3y
dx® KAG dxot?

(The assumption of uniformity is not necessary for this discussion, but
without it the equations would be more cumbersome without essentially
modifying the results.)

For simplicity let a = -K%(-} and b = %; S0 that they become respectively

i 4 4 2
iy O gl L p g
x4 dx29tt ot?

2 ?
(5.5) M= ET [9Y . 6_v)
M- EI (w a 3y

(4.6) =g [OL - &)
V vEI (c)x3 d dxdt}

The usual separation of variables process assumes that
(B.7) 7 (x,8) =X (x) T (t);
so that (L4.4t) implies that
iv
X T - aX"T" + bXT" = O
or that
iv
X T+ T" (bX - aX") = 0;
from this it follows that

iv
X

Thus one obtains the two equations

(4.8) Xiv + @2 (aX" - bX) = 0 and

9



WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF

UMM-T9

MICHIGAN

(4.9) T" + 3T = O.
The solution of the equation for T(t) is, of course
T (t) = A sin wt + B cos wt,
in accordance with the standing wave hypothesis.

In exactly the same way the substitution of (4.7) into the expres-
gions for the moment and shear yield the following:

"

' T
M=EI(X"T—&XT") =EIT<X"-&XE) =EIT(X"+au$2X)

1"

T
V= EI( x"T - e.X‘T") =FEIT ( xm- &X'E) = EI ‘I‘( X"'+a.w2X') H

gso that, for boundary conditions requiring the moment and shear to be
zero, we have. the conditions (1) M = O implies that

(4.,10) X" + aw®X = 0,
while (ii) V = O implies that
(4.11) X" + awX' = O.

In order to investigate orthogonality relations for equation (4.8),
it is once again necessary to obtain an appropriate Lagrange identity.
For this purpose consider

(4.8) X + w2 (aX" - BX) = O,

and let Z (x) be any other function of x possessing the necessary inte-
gral and differential properties which are used in the sequel. From
(4.8) it follows that

L
2 [x"+ *(aX"6X)] dx + 0
(o)

10
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However, by integration by parts,

b X=1 X=L
f'lxwdx= [ZX"'—'Z'X"] ‘*_/‘ 'Z"X"clxl
o
and

| L
fl'zx“ dx « [zx']:—/z'x'dx;
0 o

80 that

L 1y n L
fz [x"™ &t(aX"- bX)] ds =/['z"x"+ o'z (8X"™ bX)] de+
0 o

N
>

L |
:f [2'%"- o' (aZ'x'+b2x)] dx+ [2X" z‘x"+aw"1X']:,
A |

or

L L
(h.12) w? f (az'x'* b2X) dx - f 7'x"dx + [2X"- 2% w*zx’]:
0 o

Now suppose that X (x) corresponds to a solution of (L4.8) with
w=w , and that Z (x) corresponds to a solution of (L4.8) with w=0_.
It is then possible to write down the identity (L4.12) for both w and

wz; so that by subtraction one obtains the following Lagrange identity.

L .
(w?- ) f (az'x + bZX) dx : [ZX" 2"% - BX"*2'X’ +
(.13) "

, o)
+awtzx'-aw! 2X]_

11
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Orthogonality will follow then in the self-adjoint case if the
right-hand side of the above expression vanishes. In particular, if
the boundary conditions for the beam with both ends built in are
assumed to be X = X' = O at x = 0 and x = L, one sees immediately the
generalized orthogonality relation

(bt (w? - w?) f:(az'x’»«bzx)ax :0

Since this differs quite radically from the relation obtained by
the assumption that y = B = 0at x = 0 and x = L, which was

L
52 (a}- o) fopmdxw

it should be possible to decide on the basis of experimental data which
of these two boundary conditions represents a closer approximation to
the true situation.

A little investigation also makes it ciear that orthogonality with
self-adjoint boundary conditions will not necessarily exist for the
other beam cases treated previously. For example, for the free-free
beam one must use the boundary conditions (4.10) and (4.11). Their sub-
stitution into (4.13) is readily seen to yield the following unsymmet-
rical expression; so that there is no orthogonality for self-adjoint
boundary conditions.

(wf - mﬁ) l.(a'L'x'Jf bzx) dx = Z (x"'+aw}x‘) - X (z"'+ awtz)-

0
-2 (-aw? x) +X' (-aw:Z)]m .
X=0
2 [’amfIXZ"— aw;x‘z]x‘b |
. x:0

12
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In fact, orthogonality relations of the form of (4.1L4) seem to be
possible if, and only if, the second derivative is paired with the first
derivative or the third with the second. Thus, if X = O and X" + au?X
at x = 0 and x = L, and if one supposes the same boundary conditions
for Z with u)=u)2 ingtead of w , one finds a relation of the form

(0 o) [ ]; L'(ax‘zl« bxz) dx-az (1) X'(t) +9Z @ x(0)] - 0

while a similar relation exists for the other cases indicated above.

At first glance the above lack of equivalence between the system
(1.13), (1.14), (1.15) and (1.16) with I' = O and the single equation
(4.8), as far as orthogonality relations are concerned, seems paradoxi-
cal. This situation can be at least partially resolved by the follow-
ing considerations. It is first of all obvious that the differential
equation (4.8) is not equivalent to the system (1.13), (1.1k), (1.15)
and (1.16) with I' set equal to zero, since one cannot reverse the steps
leading to the differential equation from the system without introduc-
ing constants of integration. Thus, the differential equation contains
many more solutions than those compatible with the system. Certainly
there is no a priori reason why these additional solutions should ex-
hibit the same orthogonality properties as those possessed by the more
limited class of solutions of the system.  That is, without returning
to the system, there is no immediately apparent way of choosing the con-
stants of integration of the single ecuation, so as to insure their com-
patibility with the additional constraints imposed by the system. For
this purpose ontmust again return to the considerations of the system.

On the other hand, the fact that onecan derive a generalized orthog-
onality relation from the single differential equations for the doubt-
ful boundary conditions X = X' = O at both ends of the beam is not so
surprising. Recall, for this purpose, that the relation so obtained in-
volves the derivatives X' (x), and that its counterpart does not occur
in a symmetric fashion in the Lagrange identity for the system. Thus,
the possibility of this type of relationship is merely left open.

For a more complete discussion of gelf-adjoint equations of the
fourth-order by similar means, a general reference may be made to
Boerner (Ref. 7).

15
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5. THE STANDING WAVE ASSUMPTTION

As has already been seen, the partial differential equation (1.6),
as well as the expressions for the moment and shear, admit a separation
of variables for the uniform beam with I' neglected. Moreover, it has
been shown that this separation process does in fact lead to a time
function which is harmonic. However, in spite of this, the system (1.1),
(1.2), . . . ,(1.5) with I' = O from which the partial differential
equation (4.1) is derivable by elimination does not separate into space
and time factors directly because of the single equation |

y v
P Tme TP

Of course, the system does separate under the assumptions (1.9),
(1.10), (1.11), (1.12). Thus, it is entirely possible even here that
the system (1.1), (1.2), . .-. ,(1.5) with I' = O admits a more general
class of solutions than those which are of the form assumed by (1.9),
(1.10), (1.11) and (1.12). Other plausibility considerations which will
shortly be discussed  seem to indicate, however, that the standing wave
assumption is adequate for the initial value problem here.

The situation is far less certain, however, if the term I' is not
neglected. Not only does the system still not separate in space and
time, but the partial differential equation in the displacements (1.6)
as well as the expression (1.8) in the shear fails to separate.

It is to be noted, however, that both the system and the partial
differential equation do separate under the more restrictive standing
wave hypothesis as given by (1.9). In fact, to obtain this type of
separation it is sufficient to assume that T" = uT, or even that
y" (x) =Ny. Under this latter assumption one obtains the following
differential equation in the independent variable t.

p _iv EIp " "
— T =\ T' + —| T" +pT" + EI) 2T = O.
- ( KAG) P \

This equation certainly does not admit simple harmonic functions of the
time.

1L
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Now the following plausibility arguments can be advanced for the
adequacy of the standing wave assumption for the case of equations (1.1),
(1.2), . . . ,(1.5) where I' is neglected and for its inadequacy when
I' is . different from zero.

The system (1.1), (1.2), . . . , (1.5) with I' = O and the partial
differential equation (4.1) are of the second-order in time and of the
fourth-order in the displacements. Thus, the initial-boundary value
problem will be completely determined by the specification of four
boundary conditions and two initial conditions, say y (x,0) = f (x) and
¥t (x,0) = g (x). The standing wave hypothesis, which for the differ-
ential equation (4.1) amounts to separation of variables, will result
in an expansion for the displacement y (x,t) of the form

.1 t) =2 A X t+5y B 3 x) singy, T
(5)y(XJ) Znyn()coswn Zan<) u)n;

where the y (x) and the w, have been chosen to satisfy the four boun-
dary conditions. The solution will then be completely determined if
the initial conditions can be satisfied. This requires that

f(x) =2 Ay (x);

and that

g (x) =2 Bn‘wn I (x).

One must investigate the possibility of expansions of this type as
well as the completeness of the set of eigenfunctions. However, for
this case orthogonality relations do follow from (3.1) for all of the
usual boundary conditions; so that it is possible to calculate the
coefficients formally. Moreover, the standing wave hypothesis does
furnish in this case the two denumerable sets of constants (Ah) and

Bn) 5 80 that a complete solution does seem possible.

In contrast to this case, if I' # O both the system (1.1), (1.2),
, (1.5) and the partial differential equation (1.6) are of the
fourth-order in both the time and the displacements; so that a complete

15
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specification of the initial-value boundary value problem for either of
them requires the use of four boundary conditions and four initial con-
ditions. Now the standing wave hypotheses will still only produce a
solution of the form of (5.1); so that there will still be only two
sets of denumerable quantities {Ah} and.(B - which are to be determined
by four initial conditions. Consequently, unless certain compatability
relations should happen to exist between the four initial values of,
for example, y and its first three derivatives with respect to the
time, a solution of the initial value problem would be impossible. In
short, if the system (1.1), (1.2), . . ., (1.5) and the partial differ-
ential equation (1.6) are correct, then the standing wave hypothesis
does not take full account of all possible free motions of the beam if
I' is not neglected. In all probability, the part neglected by the
standing wave assumption will not separate into space and time unless
it just happens to correspond to the other possitility outlined above,
in which it was assumed that y" =\ y.

In any case, granted the validity of the original equations, cer-
tain possible effects or states of vibration appear to be excluded by
the use of the standing wave assumption. Just what these states of
motion are, as well as a detailed check on the validity of the above
plausibility arguments, can probably be established by a rather tedious
application of the Laplace transformation, either to the system (1.1),
(1.2), . . ., (1.5) or to the differential equation (1.6) for the two
cases of I' = 0 and I' ¥ 0. TUnfortunately there appears to be no
direct way of using the Laplace transformation method to investigate
the eigenvalue problem; the eigenvalue problem in the displacements
in the transformed space that one always gets after teking the Laplace
transform on t is not the eigenvalue problem of interest here. However,
if the above initial value problem were to be solved by the transfor-
mation method, what eigenfunctions there are should be extractable from
the expression for the initial value of y and its derivatives furnished
by this method of solution. That is, since the system, even with
I % 0, does admit solution according to the standing wave assumption,
the solution should be extractable from the general solution obtained
by the transformation method. The remainder would then represent those
states which are not describable in terms of the standing wave hypothesis.
Even if this process were to be carried through, it is clear that any
eigenfunctions so obtained would not be orthogonal if I' were not zero.

16
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