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Abstract. A Beurling generalized number system is constructed having integer counting func-
tion NB(x) = κx + O

(
xθ

)
with κ > 0 and 1/2 < θ < 1, whose prime counting function

satisfies the oscillation estimate πB(x)= li(x)+�(
x exp (−c√log x)

)
, and whose zeta function

has infinitely many zeros on the curve σ = 1 − a/ log t , t ≥ 2, and no zero to the right of
this curve, where a is chosen so that a > (4/e)(1 − θ) . The construction uses elements of
classical analytic number theory and probability.

Mathematics Subject Classification (2000): 11M41, 11N80, 11M26, 11N05

1. Introduction

The first proofs of the Prime Number Theorem (PNT) relied on the analytic con-
tinuability of the Riemann zeta function and its Hadamard product representation.
In this way C. J. de la Vallée Poussin [18] proved in 1899 that

ζ(s) �= 0 for σ > 1 − c

log t
, t ≥ 2 , (1)

where c is a suitable positive constant, which in this paper may be different
from one occurrence to another, and s = σ + it . This is the so-called ‘classical’
zero-free region of the zeta function, from which the PNT was deduced with a
quantitative error term

π(x) = li(x)+O
(
x exp

(− c
√

log x
))

(2)
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where li(x) = ∫ x
2 du/ log u . Conversely, P. Turán [17] showed in 1950 that (2)

is the best estimate that can be deduced from the zero-free region (1) (apart from
the values of the constants).

Early in the twentieth century, E. Landau made a number of discoveries that
simplified and extended the scope of prime number theory. He showed [9], [10],
[11] that the classical zero-free region (1) could be derived by means of local
analytic lemmas (e.g., Jensen’s inequality and the Borel–Carathéodory lemma),
and that essentially the same arguments used in proving the PNT could be applied
to establish the Prime Ideal Theorem. Let K be a fixed algebraic number field,
and let N(x) denote the number of integral ideals in K with norm not exceeding
x . Weber [19] had shown that

N(x) = κx +O
(
xθ

)

with κ > 0 and θ < 1 . In 1903, Landau [9] used this and the multiplicative
structure of ideals to prove the Prime Ideal Theorem, which asserts that the num-
ber of prime ideals in K with norm not exceeding x is asymptotic to x/ log x
as x tends to infinity.

Developing Landau’s ideas further, A. Beurling [3] (see also Bateman and
Diamond [2]) gave the following more abstract formulation of prime number the-
ory, in which a sequence P = {λj } of real numbers λ1 ≤ λ2 ≤ . . . , with λ1 > 1
and λj → ∞ , is taken to be a set of generalized primes and the finite prod-
ucts λk1

1 λ
k2
2 · · · λkrr are considered to be the generalized integers N arising from

these primes. Let NB(x) denote the number of such products not exceeding x

(counted with appropriate multiplicity in case some real numbers are represented
as Beurling integers in more than one way), and let πB(x) denote the num-
ber of Beurling primes λj not exceeding x. Beurling proved that if NB(x) =
κx +O

(
x/(log x)τ

)
with κ > 0 and τ > 3/2 , then πB(x) ∼ x/ log x , which

is to say the PNT holds in this setting. In his proof, Beurling established proper-
ties of an associated generalized zeta function which for σ > 1 is given by the
formulæ

ζB(s) =
∑

k

1
(
λ
k1
1 λ

k2
2 · · · )s =

∫ ∞

1−
x−s dNB(x) =

∞∏

j=1

(
1 − λ−s

j

)−1

where k = (k1, k2, . . . ) is a vector with non-negative integer components, all but
a finite number of which are zero.

Although the work of Landau antedated that of Beurling, and hence was not
cast in this language, Landau’s reasoning in fact provides a proof that if

NB(x) = κx +O
(
xθ

)
(3)

with κ > 0 and 0 ≤ θ < 1 , then ζB(s) satisfies (1) and πB(x) satisfies (2), as
in the classical situation. Landau exhibited even the dependence of the constants
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in (1) and (2) on θ. From his arguments we see that there exists a positive absolute
constant c such that if (3) holds, then

ζB(s) �= 0 for σ > 1 − c(1− θ)
log t

, t ≥ t0 , (4)

and

πB(x) = li(x)+O
(
x exp

(− c
√
(1− θ) log x

))
for x ≥ 2 . (5)

The goal of this paper is to establish the optimality of (4) and (5), apart from
the numerical value of the constant c, for a Beurling generalized number system
satisfying (3).

Our method is first to construct (in §§ 3–5) an example of a continuous gen-
eralized prime counting function ΠC(x) whose associated zeta function has the
desired properties. Then (in §§ 6–9) we use a probabilistic construction to show
that there exists a discrete measure πB(x) that is sufficiently close to ΠC(x) to
ensure that the associated Beurling primes and integers have the desired proper-
ties. An earlier attempt at such a construction along somewhat similar lines was
made by R. S. Hall [8], but it did not succeed because the associated zeta function
was excessively large near certain points. Indeed, it was subsequently shown by
W.-B. Zhang [20] that no construction of the type given by Hall could succeed in
generating a large oscillation in the prime counting function.

We recall from classical prime number theory that π(x) is the counting func-
tion of the primes, that

Π(x) =
∑

pk≤x

1

k
=

∞∑

k=1

π
(
x1/k

)

k
,

and that

ψ(x) =
∑

pk≤x
logp =

∫ x

1
log u dΠ(u) .

For σ > 1 the Riemann zeta function is defined to be

ζ(s) =
∞∑

n=1

n−s =
∫ ∞

1−
x−s d [x] .

Moreover, by taking the logarithm of the Euler product for ζ(s) we see that

log ζ(s) =
∑

p,k

1

kpks
=

∫ ∞

1
x−s dΠ(x)
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for σ > 1 , and by differentiating we see further that

− ζ ′

ζ
(s) =

∑

p,k

logp

pks
=

∫ ∞

1
x−s dψ(x)

for σ > 1 . These relations all extend to the Beurling situation, with [x] replaced
by NB(x) , and the rational primes replaced by the λj . The integer counting mea-
sure dNB is expressed in terms of the weighted prime counting measure dΠB
by the relation

dNB = exp dΠB (6)

where exp dΠB is defined as

δ + dΠB + dΠB � dΠB/2! + dΠB � dΠB � dΠB/3! + . . . .

Here � denotes the multiplicative convolution of measures supported in [1, ∞) ,
and δ denotes a unit point mass at 1.

Theorem 1. Let θ and a be fixed with 1
2 < θ < 1 and a > (4/e)(1−θ) . Then,

in the above notation, there is a system of Beurling primes P such that

(i) the resulting Beurling integers satisfy (3) with κ > 0 ;
(ii) the associated zeta function ζB(s) is analytic for σ ≥ θ , apart

from a simple pole at s = 1 with residue κ ;
(iii) the function ζB(s) has infinitely many zeros on the curve σ =

1−a/ log t , t ≥ 2 , and no zero to the right of this curve ;

(iv) ψB(x)− x = �±
(
x exp(−2

√
a log x )

) ;
(v) ψB(x) = x +O

(
x exp(−2

√
a log x )

)
.

By adjusting finitely many primes we could arrange to have κ = 1 in (3)
without affecting the other assertions.

As discussed at the end of Section 2, the factor 4/e in the constraint on a is
the best that our construction admits.

Examples have been given previously by Malliavin [13], pp. 296–297, and
Diamond [5], p. 24, of continuous non-negative ‘prime counting’ measures dΠ
for which the associated ‘integer counting’ measure dN = exp dΠ satisfies (3),
but for which the corresponding zeta function has a zero at any desired location
in the interval (0, 1) . Thus for such systems, the relation (3) does not imply RH.
However, it seems that in Theorem 1 we have for the first time a proof that (3)
does not imply RH for discrete Beurling primes. On the other hand, it may still be
the case that (3) with θ < 1/2 does imply RH for discrete Beurling generalized
numbers.
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Subsequent to the proof of the zero-free region (1), estimates of exponential
sums which depend on the additive structure of the integers were used to establish
wider zero-free regions, first by Littlewood, and later byVinogradov and Korobov.
Of course, the results obtained so far in this direction fall far short of what we
believe to be true. Informed by the above theorem, we see that a zeta function need
not have a wider zero-free region if the only assumptions made are the Beurling
conditions that the integers have a multiplicative structure and satisfy (3).

The critical insight as to how the zeros of ζB(s) should be arranged for our
construction was provided by an unpublished analysis of D. R. Heath–Brown con-
cerning the behaviour of the Dirichlet L-function L(s, ( ·

p
)) under the assumption

that the least quadratic nonresidue modulo p is as large as the bound p1/(4
√
e)+ε

of D. A. Burgess [4]. We include our reconstruction of this reasoning in an Appen-
dix at the end of this paper. For an independent study of this topic, see Granville
and Soundararajan [7].

It is a noteworthy feature of our construction that zeros of ζB(s) near the line
σ = 1 do not occur in isolation but rather in clusters. We show below that this
is not just an artifact of our construction, but must occur in any situation of this
type.

Theorem 2. Suppose that dΠB is a non-negative measure supported on (1,∞),

that dNB is determined by (6), that NB(x) satisfies (3) with κ > 0 and 0 ≤
θ < 1, and that the associated zeta function ζB(s) is given by

∫ ∞
1− x

−s dNB(x) .
Then (s−1)ζB(s) is analytic for σ > θ . Let nB(r, t) denote the number of zeros
of ζB(s) in the disk of radius r centered at 1 + it . Then

nB(r, t) 	 r log t

1 − θ
for 0 ≤ r ≤ 1

2
(1− θ), t ≥ t0 . (7)

If β0 + iγ0 is a zero of ζB(s) with

β0 > 1 − 1 − θ√
log γ0

, γ0 ≥ t0 , (8)

then

nB(r, γ0)+ nB(r, 2γ0) 
 r(1 − θ)

(1 − β0)2 log γ0
(9)

uniformly for

C(1 − β0)
2 log γ0

1 − θ
≤ r ≤ 1

2
(1 − θ) (10)

where C is a large absolute constant.
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The lower bound (9) is valid also for

1 − β0 ≤ r ≤ C(1 − β0)
2(log γ0)/(1 − θ) ,

but in this range (9) is weaker than the trivial bound nB(r, γ0) ≥ 1 .
Note that if 1 −β0 � (1 − θ)/ log γ0 , which can happen, in view of Theorem

1, then (7) and (9) imply that

nB(r, γ0)+ nB(r, 2γ0) � r log γ0

1 − θ
for 1 − β0 ≤ r ≤ 1

2
(1 − θ) .

Thus in this extreme situation, we see not only that there is a clump of zeros, but
furthermore that the density of the zeros in the cluster is approximately the same
as in our construction.

An estimate similar to (9) was established by Montgomery [14], pp. 85–94,
for the Riemann zeta function, but his analysis depended on its global analyticity.
We obtain the above by using the Landau local lemmas.

The authors are happy to thank Paul T. Bateman, Enrico Bombieri, Roger
Heath–Brown, Walter Philipp and K. Soundararajan for their helpful comments
and remarks.

2. Sketch of the proof of Theorem 1

Let

G(z) = 1 − e−z − e−2z

z
. (11)

This is an entire function with G(0) = 0 . Note that

G(z) =
∫ 2

1
(1 − e−uz) du .

We write z = x + iy . If x > 0 , then the integrand has positive real part, and
hence �G(z) > 0 . Similarly, �G(iy) > 0 if y �= 0 . Thus G(z) �= 0 for
x ≥ 0 except for the simple zero z0 = 0 . The function has infinitely many zeros
zj with �zj < 0 , which will be shown in § 3 to satisfy

z±j = − 1
2 log(πj)± (

j + 1
4

)
πi +O

(
j−1/2) (12)

for j = 1, 2, 3, . . . These zeros, suitably rescaled and translated, become the
zeros of our zeta function.

By the hypothesis that a > (4/e)(1 − θ) , we have 2/(ea) < 1/(2(1 − θ)) .
Let α be a number chosen so that max(1, 2/(ea)) < α < 1/(2(1 − θ)) . From
this it follows that

aα >
2

e
, (13)
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and that

1

2
< 1 − 1

2α
< θ . (14)

Let 1 < γ1 < γ2 < . . . be a sequence of real numbers tending to infinity
sufficiently rapidly. Later, we find that it suffices to take

γk = γ A
k−1

1 (15)

if γ1 and A are sufficiently large. For k < 0 let γk = −γ−k . For k �= 0 put
βk = 1 − a/ log |γk| , and for brevity let ρk = βk + iγk and �k = α log |γk| .
Then set

ζC(s) = s

s−1

∏

k �=0

G
(
�k(s−ρk)

)
for σ > 1 . (16)

The first factor, s/(s − 1) , will give the main contribution to the ‘integer’ and
‘prime’ counting functions, and the product of G’s will provide the desired zeta
zeros and fluctuation in the prime count. Since G(0) = 0 , it follows that ζC(s)
has zeros at the points ρk . Of course, ζC(s) also has other zeros, at points of the
form ρk + zj/�k . Since

G(z) = 1 +O
(1 + e−2x

1 + |z|
)
, (17)

the product (16) converges locally uniformly for σ ≥ 1 − 1/(2α) . Thus ζC(s)
is continuous in this closed half-plane, and (s − 1)ζC(s) is analytic for σ >

1 − 1/(2α) .
Thus far we have a zeta function but no primes. To address this, we show that

there is a positive measure ΠC(x) such that

log ζC(s) =
∫ ∞

1
v−s dΠC(v) for σ > 1 . (18)

To establish the existence of such a measure and to understand its behavior, we
first express logG(z) as a Mellin transform:

logG(z) = −
∫ ∞

1
f (u)u−z−1 du for x > 0 .

In § 4 we show that f (u) is non-negative and calculate it explicitly for 1 ≤
u ≤ e3 . For larger u the direct method becomes unwieldy, but for such u we
express f (u) in terms of zeros of G(z) :

f (u) log u =
∑

j

uzj for u > e2 . (19)
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Since z0 = 0 , from (12) and (19) it follows that f (u) is quite close to 1/ log u
when u is large.

In § 5 we show that (18) holds with

dΠC(v) =
(1 − 1/v

log v
− 2

∞∑

k=1

f (v1/�k )

�k
vβk−1 cos(γk log v)

)
dv (20)

for v ≥ 1 . From this representation we shall find that dΠC is a positive measure
if (13) holds and if A and γ1 are sufficiently large. Also, we see from (20) that
the measure dΠC is absolutely continuous (hence the subscript C in ΠC and
ζC ).

To complete our construction, we define a sequence 1 = v0 < v1 < v2 < · · ·
tending to infinity very slowly. For k ≥ 1 we take vk to be a generalized prime
with probability

pk =
∫ vk

vk−1

1 dΠC(v) .

This gives rise to a probability space of random Beurling primes. In § 6 we develop
the necessary probabilistic tools, and in § 7 we show that there is a sequence of
Beurling primes with counting function πB(x) for which

∫ ∞

1
v−s d

(
ΠC(v)− πB(v)

)
	

√
log(|t |+2) for σ ≥ 1/2 + ε .

Thus ζB(s) has the same pole (s = 1) and zeros as ζC(s) in σ > 1 − 1/(2α) .
Moreover,

ζB(s) 	 |ζC(s)| exp
(
c
√

log(|t |+2)
)

for σ > 1 − 1/(2α) . (21)

In § 8 we use (15)–(17) to show that
∫ 2T

T

|ζC(σ + it)| dt 	 T for σ ≥ 1 − 1/(2α) .

From this and (21) we thus have
∫ 2T

T

|ζB(σ + it)| dt 	 T 1+ε for σ ≥ 1 − 1/(2α) ,

and then it is a simple matter to use an inverse Mellin transform to show that
NB(x) satisfies the estimate (i) of Theorem 1.

Finally in § 9 we analyze how the zeros of ζB(s) affect the error term
ψB(x)− x .

The constant 4/e in the constraint on a is the best that our construction
allows, based on G(z) . If we were to use instead a function more closely resem-
bling the function H(z) defined in (A.2), it should be possible to reduce the 4/e
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to something closer to −x ′
1 = 0.5651 . . . . However, the use of G(z) makes

our argument simpler in several ways. First, G(σ + it) tends to 1 as t tends
to infinity with σ bounded (recall (17)), which allows the use of G(z) as a
factor in an infinite product. Second, it is rather easy to express logG(z) as a
Mellin transform, while for logH(z) this takes more work (see Granville and
Soundararajan [7]). Third, the function f is supported on [e,∞) , with the con-
sequence that it is easy to show that the various γk do not interfere with each
other. With logH(z), on the other hand, the inverse Mellin transform has support
[1,∞) , and the various γk may have a cumulative effect.

3. The zeros of G(z)

Let G(z) be the entire function defined in (11). In the preceding section we
observed that G(z) �= 0 for x ≥ 0 except when z = 0 . The following infor-
mation concerning the zeros with negative real part will be essential later. Let zj
denote the zeros of G, ordered by increasing imaginary part, with z0 = 0 . Since
G is real on the real axis, it is clear by the reflection principle that z−j = zj .
Hence it is enough to consider those zeros zj for positive integers j .

Lemma 1. Let G(z) be as in (11), and let zj = xj + iyj denote the zeros of
G(z) as described above. Then πj < yj < π(j + 1) for each positive integer
j, and

xj < − 1
2

log
(πj

2

)
. (22)

Proof. We find it convenient to work with G1(z) = zG(z) = z−e−z+e−2z . This
function has the same zeros as G, except that it has a double zero at the origin. Let
j denote a positive integer. We note that argG1(x+ iπj) tends to 0 as x tends
to +∞ and also as x tends to −∞ . Moreover, G1(x+iπj) = πj > 0 for all
real x . Hence the total change of the argument of G1 on this line is exactly 0 .
If x is large and positive, then the change of argument of G1 as one moves from
x + iy up to x + i(y + π) is approximately 0 . If x is large and negative, then
the change of argument of G1 as one moves from x + i(y +π) down to x + iy
is approximately 2π . Thus it follows that the open strip πj < y < π(j + 1)
contains exactly one zero, which of course must be simple. Moreover, the open
strip −π < y < π contains exactly two zeros of G1 . Since G1 has a double
zero at the origin, it follows that G has no zero in this strip other than its simple
zero at the origin. Thus πj < yj < π(j + 1) for each positive integer j , as
claimed.

By considering real and imaginary parts separately, we see that the equation
G1(xj + iyj ) = 0 implies that

e−xj cos yj − e−2xj cos 2yj = xj , (23)

−e−xj sin yj + e−2xj sin 2yj = yj . (24)
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Since j ≥ 1 , it follows that xj < 0 and yj > 0 . Therefore, the left hand side
of (24) is ≤ 2e−2xj . Hence 2e−2xj ≥ yj > πj , which gives (22), so the proof is
complete. ��

The remainder of this section is concerned with a more precise description of
the zeros of G(z) . This material is not required for the proof of Theorem 1, but
it enables us to appreciate better the distribution of the zeros of ζB(s) .

Lemma 2. As described above, let zj denote the j th zero of the function G(z)

defined in (11). Then

z±j = − 1
2 logπj ± iπ(j + 1/4)+O

(
j−1/2) for j = 1, 2, 3, . . . .

Proof. From (22) we see that if j is large, then xj is large and negative. This
makes e−2xj far larger than either of the other two terms in (23), and thus this
equation can hold only because cos 2yj is close to 0 . Then sin 2yj is near ±1 .
From (24) we see that the negative sign is excluded, so sin 2yj is near 1 . That
is, 2yj is near π/2 (mod 2π) , which is to say that yj is near π/4 (mod π) .
Thus yj = π(j+1/4)+o(1) . From (24) we see that e−2xj ∼ πj . It follows that
e−xj = O

(
j 1/2

)
, and hence (23) implies that j cos 2yj = O

(
j 1/2

)
. This in turn

implies that yj = π(j+1/4)+O(
j−1/2

)
. Thus sin 2yj = 1+O(1/j) , and hence

(24) gives e−2xj = πj + O
(
j 1/2

)
. Consequently −2xj = logπj + O(j−1/2) .

This completes the proof. ��
With somewhat more effort one can show that

z±j = − 1
2

logπj − (−1)j

2
√

2πj
± i

(
π(j + 1

4
)− (−1)j

2
√

2πj
− log j

4πj

)
+O

(1

j

)

for j = 1, 2, 3, . . . . Here the (−1)j produces a wobble that is already appar-
ent in the values displayed below. By the generalized Lindemann theorem we
know that α and eα are both algebraic only when α = 0 . Thus the numbers zj
are transcendental, except when j = 0 . Numerical values of the zeros may be
determined by applying Newton’s method to the function G1(z) = zG(z) .

The first twenty (rounded) zeros with positive imaginary part are given in
Table 1. In Figure 1, the curves of constant modulus and curves of steepest
ascent/descent of G(z) are depicted.

From (22) it follows that xj < −1 if j ≥ 5 . In conjunction with the data in
Table 1, we deduce that xj ≥ −1 only when j = −1, 0 or 1.

Let N(σ, T ) denote the number of zeros β+iγ of the Riemann zeta function
in the rectangle σ ≤ β ≤ 1 , 0 ≤ γ ≤ T , and define NB(σ, T ) similarly for
ζB(s) . Estimates for N(σ, T ) play an important role in prime number theory.
From Lemma 2, our definition (16) of ζC(s) , and the fact that ζB(s) and ζC(s)

have the same zeros for σ ≥ 1 − 1/(2α) , we see that there exist arbitrarily large
numbers T such that
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Table 1. Zeros of G(z)

z1 = −0.5127 + 4.0256i z11 = −1.7227 + 35.3765i
z2 = −1.1148 + 6.8662i z12 = −1.8831 + 38.4045i
z3 = −1.0510 + 10.2630i z13 = −1.8092 + 41.6579i
z4 = −1.3954 + 13.2077i z14 = −1.9544 + 44.6942i
z5 = −1.3140 + 16.5368i z15 = −1.8833 + 47.9396i
z6 = −1.5705 + 19.5184i z16 = −2.0166 + 50.9826i
z7 = −1.4883 + 22.8153i z17 = −1.9480 + 54.2216i
z8 = −1.6985 + 25.8182i z18 = −2.0718 + 57.2702i
z9 = −1.6187 + 29.0955i z19 = −2.0054 + 60.5037i
z10 = −1.7995 + 32.1129i z20 = −2.1213 + 63.5570i

0

2

4

6

8

10

12

14

–4 –3 –2 –1 1 2 3 4

Fig. 1. Contour plot of the modulus and phase of G(z)

NB(σ, T ) 
 T 2α(1−σ)

uniformly for 1 − 1/(2α) ≤ σ ≤ 1 − a/ log T .

4. The representation of log G(z) as a Mellin transform

Suppose that x > 0 . Then

∣∣e−z − e−2z
∣∣ =

∣∣∣
∫ 2z

z

e−u du
∣∣∣ < |z | ,



12 H.G. Diamond et al.

and hence we may write

logG(z) = log
(

1 − e−z − e−2z

z

)
= −

∞∑

n=1

1

n

(e−z − e−2z

z

)n
.

Clearly

e−z − e−2z

z
=

∫ ∞

1
χ(u)u−z−1 du

where χ is the characteristic function of the interval [e, e2 ] . On the other hand, if
Mf (z) = ∫ ∞

1 f (u)u−z−1 du denotes the Mellin transform of f, then Mf �g(z) =
Mf (z)Mg(z) where f �g is the multiplicative convolution of f and g, namely
(f � g)(u) = ∫ u

1 f (v)g(u/v) dv/v . Hence, from the above we see that

(e−z − e−2z

z

)n
=

∫ ∞

1
χ�n(u)u−z−1 du

where χ�n denotes the n-fold convolution of χ with itself. Therefore

logG(z) = −
∞∑

n=1

1

n

∫ ∞

1
χ�n(u)u−z−1 du = −

∫ ∞

1
f (u)u−z−1 du (25)

where

f (u) :=
∞∑

n=1

1

n
χ�n(u) . (26)

In (25), the exchange of integration and summation is justified by absolute con-
vergence: since |u−z−1| = u−x−1 , it follows that the sum there is majorized
by

∞∑

n=1

1

n

∫ ∞

1
χ�n(u)u−x−1 du = − logG(x) < ∞

for x > 0 . Thus we have proved

Lemma 3. For G(z), defined as in (11), we have

logG(z) = −
∫ ∞

e

f (u)u−z−1 du for x > 0 (27)

where f is the non-negative function defined in (26).
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The function f has support [e,∞) , and indeed for small u we can calculate
f (u) explicitly:

f (u) =






0 for 1 ≤ u < e ,

1 for e ≤ u ≤ e2 ,
1
2 log u− 1 for e2 < u ≤ e3 .

(28)

Clearly χ�n is supported on [en, e2n ] , but for n > 2 the explicit computation
of such convolution powers is complicated, so for larger u we take a different
approach.

Lemma 4. Let f (u) be defined as in (26). If u > e2, then

f (u) log u =
∞∑

j=−∞
uzj (29)

where the zj are the zeros of G(z), as discussed in the preceding section.

Proof. We differentiate (27) to see that

G′

G
(z) =

∫ ∞

e

u−z−1f (u) log u du for x > 0 . (30)

Now, f (u) log u is continuous for 1 ≤ u < ∞ except at u = e and u = e2 ,
where it has jumps, and f is locally of bounded variation because f ′ is piece-
wise continuous. Thus for u > e2 and c > 0 the Mellin inversion formula can be
applied to (30). This formula arises by means of the change of variable v = log u
from the inversion formula for the Laplace transform (see Theorem 15–34 on
p. 498 of Apostol [1]). Thus we find that

f (u) log u = lim
T→∞

1

2πi

∫ c+iT

c−iT

G′

G
(z) uz dz .

We evaluate this integral in terms of the zeros of G by integrating around a rect-
angle with vertices −K ± Jπi, c ± Jπi , for J an odd positive integer and c

and K, K ≥ J , positive numbers. Thus

1

2πi

∫ c+Jπi

c−Jπi

G′

G
(z) uz dz =

∑

|j |<J
uzj + IT + IB + IL (31)

where IT , IB, IL denote the integrals of 1/(2πi)(G′/G)(z)uz along the top,
bottom and left sides respectively (in suitable directions).

The integrand in (31) is

G′

G
(z) uz = e−z − 2e−2z + e−z/z− e−2z/z

z− e−z + e−2z
uz .



14 H.G. Diamond et al.

0

1

2

2 4 6 8 10
Fig. 2. Graph of f (ev)v for 0 ≤ v ≤ 10

The integral IL goes to zero as K → ∞ , because G′/G ∼ −2 on this line and
uz is exponentially small here. On the top line, the denominator has imaginary
part Jπ , and the numerator is 	 exp (−2x) . Thus for fixed u > e2 ,

IT 	 1

J

∫ c

−∞
exp

(
x(log u− 2)

)
dx ,

which tends to 0 for J → ∞ . Since IB = −IT , this estimate suffices for the
bottom also, so the proof is complete. ��

From the estimate (22) of Lemma 1 it follows that the sum (29) is absolutely
convergent when u > e2 . By combining Lemma 1 with the data in Table 1 we
find that xj < −1/2 for j �= 0 . Thus we see that

f (u) log u = 1 +O
(
u−1/2) for u ≥ 1 .

For our present purposes we require a much weaker estimate, but one with an
explicit numerical constant.

Lemma 5. Let f (u) be defined as in (26). Then f (u) ≤ 4/ log u for all u > 1 .

With more work it can be shown that this inequality holds with 4 replaced
by 2 . The constant 2 is best possible, since equality is attained with u = e2 .

Proof. For 1 < u ≤ e3 this inequality is clear from (28). For u > e3 we apply
(29) and (22) to see that

f (u) log u ≤ 1 + 2
∞∑

j=1

uxj ≤ 1 + 2
∞∑

j=1

exp
(− 3

2 log(πj/2)
)

= 1 + 2
(π

2

)−3/2
ζ(3/2) = 3.653907 . . . < 4 .

��
We conclude with a still weaker estimate for f that is tailored to our needs in

the next section.
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Lemma 6. Let �(b) = 2/(eb) . If b ≥ 2/e , then

f (u) ≤ �(b)
ub

2 log u
for u > 1 .

This inequality holds also for b somewhat smaller than 2/e , but this is not
relevant since the above is useful for our purposes only when �(b) < 1 . When
1/2 ≤ b≤ 1, equality holds at u = e1/b .

Proof. The function ub/ log u is strictly decreasing for 1 < u < e1/b , and is
strictly increasing for u ≥ e1/b, and thus we see that ub/ log u ≥ eb for all
u > 1 . This suffices when 1 < u ≤ e3, since f (u) ≤ 1 in this interval. For
u > e3 we appeal to the bound of the preceding lemma, and thus it suffices to
show that �(b)ub ≥ 8 when u ≥ e3 . That is, we must show that e3b ≥ 4eb .
Put g(w) = e3w − 4ew . This function is increasing for w ≥ (1 + log 4/3)/3 =
0.4292 . . . . Thus if b ≥ 2/e , then g(b) ≥ g(2/e) = 1.0909 . . . > 0 , and the
proof is complete. ��

5. The measure dΠC(x)

We now express log ζC(s) as a Mellin transform. From (16) it follows that

log ζC(s) = log
s

s − 1
+

∑

k �=0

logG
(
�k(s − ρk)

)

for σ > 1 . We first show that

log
s

s − 1
=

∫ ∞

1

1 − 1/v

log v
v−s dv for σ > 1 . (32)

To see this, let h(s) denote the right hand side. Then

h′(s) = −
∫ ∞

1

(
1 − 1

v

)
v−s dv = 1

s
− 1

s − 1
.

Hence h(s) = log(s/(s − 1)) + C for some constant C. On the other hand,
h(s) 	 ∫ ∞

1 v−σ dv = 1/(σ − 1) . Thus by comparing h(σ) with log σ/(σ − 1)
as σ → ∞ , we see that C = 0 , and hence we have (32).

By Lemma 3 we see that

logG
(
�k(s − ρk)

) = − 1

�k

∫ ∞

exp(�k)
f (v1/�k )v−s+ρk−1 dv
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for σ > 1 . Thus
∑

k �=0

logG
(
�k(s − ρk)

)

= −2
∫ ∞

1

( ∑

k≥1
exp(�k)≤v

f (v1/�k )

�k
vβk−1 cos(γk log v)

)
v−s dv . (33)

To justify the exchange of summation and integration, we show that the integral
above is absolutely convergent, which is accomplished under the assumption that

γk = γ A
k−1

1 for k = 2, 3, 4, . . . (34)

where γ1 ≥ 2 and A > 1. (Later, we will need A to be sufficiently large.) For
v ≥ γ α1 , choose K so that γ αK ≤ v < γ αK+1. Since f (u) 	 1/ log u , and
α log γK ≤ log v , the last sum above is

	 1

log v

K∑

k=1

vβk−1 ≤ 1

log v

K∑

k=1

e−aαA
K−k 	 1

log v
.

Thus the integral in (33) is absolutely convergent, since
∫ ∞

2

v−σ

log v
dv < ∞

for σ > 1 . On combining our results we find that

log ζC(s) =
∫ ∞

1
v−s dΠC(v)

for σ > 1 where

dΠC(v) =
(1 − 1/v

log v
− 2

∑

k≥1
exp(�k)≤v

f (v1/�k )

�k
vβk−1 cos(γk log v)

)
dv (35)

for v ≥ 1 . We now show that this measure is positive if the parameters are chosen
appropriately.

Lemma 7. Suppose that α is fixed, with aα > 2/e . If the γk are given by (34)
with γ1 and A sufficiently large, then not only is dΠC(v) a positive measure,
but

dv

log 2v
	 dΠC(v) ≤ 2dv

log 2v

uniformly for v ≥ 1 .
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By integrating the above bounds we see immediately that

x

log x
	 ΠC(x) ≤ 3x

log x
for x ≥ x0 . (36)

Proof. Suppose first that 1 ≤ v < γ α1 . Then

dΠC(v) = 1 − 1/v

log v
dv ,

and the stated estimates are clear in this case. Now suppose that v ≥ γ α1 . In
view of (13) we may choose b so that 2/e < b < aα . Choose K so that
γ αK ≤ v < γ αK+1 . Then by Lemma 6, we see that

2
K∑

k=1

f (v1/�k )

�k
v−aα/�k ≤ �(b)

log v

K∑

k=1

v(b−aα)/�k .

Now �K = α log γK ≤ log v and so �k = α log γk ≤ Ak−K log v for 1 ≤ k ≤
K , by (34). Hence the last expression above is at most

�(b)

log v

K∑

k=1

e(b−aα)A
K−k

.

Here �(b) < 1, and the sum tends to 1 as A tends to infinity. Thus there is a
δ > 0 such that the above is at most (1 − δ)/ log v if A is large enough. Hence
by (35) we conclude that

δ − 1/v

log v
dv ≤ dΠC(v) ≤ 2 − δ

log v
dv

uniformly for v ≥ γ α1 . This gives the stated estimates if γ1 is sufficiently
large. ��

6. A probabilistic lemma

We begin with a familiar inequality of Kolmogorov (see § 18.1A.(i) of Loève
[12]), for which we provide a simple proof.

Lemma 8. For 1 ≤ k ≤ K let Yk be independent random variables such that
E(Yk) = 0 and |Yk| ≤ 1 . Also, for 1 ≤ k ≤ K let rk be real numbers
such that |rk| ≤ 1, and let Y = ∑K

k=1 rkYk . Finally, set σ 2 = Var(Y ) =∑K
k=1 r

2
k Var(Yk) . Then

P(Y ≥ v) ≤




exp

(−v2

4σ 2

)
if 0 ≤ v ≤ 2σ 2 ,

exp(−v/2) if v ≥ 2σ 2 .

(37)
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Proof. Let λ ≥ 0 be a parameter to be determined later. Then P(Y ≥ v) ≤
E(eλ(Y−v)) . Since the Yk are independent, this is equal to

e−λvE
( K∏

k=1

eλrkYk
)

= e−λv
K∏

k=1

E
(
eλrkYk

)
.

It is not hard to show that eu ≤ 1 + u + u2 when −1 ≤ u ≤ 1 . Indeed,
this inequality holds for −∞ < u ≤ u0 where u0 = 1.79328 . . . . Thus if
0 ≤ λ ≤ 1 , then

E
(
eλrkYk

) ≤ E
(
1 + λrkYk + λ2r2

k Y
2
k

) = 1 + λ2r2
kE

(
Y 2
k

) ≤ exp
(
λ2r2

kE(Y
2
k )

)

by the inequality 1 + u ≤ eu, which holds for all real u. Thus we see that

P(Y ≥ v) ≤ exp(−λv + λ2σ 2) .

We obtain (37) by taking λ = v/(2σ 2) in the first case, and λ = 1 in the second.
Thus 0 ≤ λ ≤ 1 in either case, and the proof is complete. ��

In our contemplated application of the above, the size of the rk is unclear,
which makes it impossible to assess the size of the variance σ 2, beyond the fact
that it does not exceed the estimate σ 2

e := ∑K
k=1 Var(Yk) . We note that (37)

asserts that

P(Y ≥ v) ≤ max
(

exp
(−v2

4σ 2

)
, exp(−v/2)

)
.

Since σ 2 ≤ σ 2
e , the above is at most

max
(

exp
(−v2

4σ 2
e

)
, exp(−v/2)

)
,

which is to say that

P(Y ≥ v) ≤






exp
(−v2

4σ 2
e

)
if 0 ≤ v ≤ 2σ 2

e ,

exp(−v/2) if v ≥ 2σ 2
e .

(38)

Here the bound in the first case is weaker than in the first case of (37), but (38) has
the advantage that the first case applies over an interval of assured length, while
the first case in (37) may apply only in a much shorter range, since σ 2 may be
much smaller than σ 2

e .
Let Xk be independent Bernoulli variables with parameter pk , and set X =∑K
k=1 rkXk where |rk| ≤ 1 for all k . Then E(X) = ∑K

k=1 rk pk . Take Yk =
Xk−pk . Thus E(Yk) = 0 and Var(Yk) = pk(1−pk) , so we find from the above
that if

0 ≤ v ≤ 2
∑K

k=1 pk(1 − pk) , (39)
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then

P
(
X ≥ E(X)+ v

) ≤ exp
(

−v2

4
∑K
k=1 pk(1−pk)

)
. (40)

7. From continuous to discrete measures

In this section we use Lemma 7, (36), and Lemma 8 to show that there exists a
set of Beurling primes P whose counting function πB(x) resembles ΠC(x) in
crucial ways.

Lemma 9. There exists a sequence P = {λj } of Beurling primes such that
∫ x

1
v−it dπB(v) =

∫ x

1
v−it dΠC(v)+O

(√
x log(|t |+2)

)
(41)

uniformly for real t and x ≥ 1 .

In particular, for t = 0 this lemma asserts that

πB(x) = ΠC(x)+O
(√
x

)
(42)

uniformly for x ≥ 1 .

Proof. Let 1 = v0 < v1 < v2 < . . . be a sequence of real numbers tending very
slowly to infinity. We shall specify later how slowly this must be. For k = 1, 2, . . .
let Xk be independent Bernoulli variables with parameters

pk =
∫ vk

vk−1

1 dΠC(v) .

The vk must increase sufficiently slowly to ensure that pk ≤ 1/2 . At any given
point ω of our probability space, let P(ω) be the set of those vk for which
Xk = 1 . We show that ‘most’ of the sets P(ω) determine a measure dπB(v) for
which (41) holds.

We turn our attention first to (42). Suppose that x ≥ 2 , and let K be deter-
mined by vK ≤ x < vK+1 . Then πB(x) = ∑K

k=1Xk = X , and E(X) =∑K
k=1 pk = ΠC(vK) ≤ ΠC(x) . To verify that condition (39) is satisfied with

v = 5
√
x , note that

K∑

k=1

pk = ΠC(vK) = ΠC(vK+1)− pK+1 ≥ ΠC(x)− 1 .

Since pk ≤ 1/2 for all k, condition (39) holds if 5
√
x ≤ ΠC(x) − 1 , and this

inequality is a consequence of (36) for all sufficiently large x . Then by (40) we
see that

P
(
πB(x)≥ΠC(x)+5

√
x
) ≤ P

(
X≥ΠC(vK)+5

√
x
) ≤ exp

( −6x

ΠC(vK)

)
.
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Now

ΠC(vK) ≤ ΠC(x) ≤ 3x

log x

by (36), and hence P
(
πB(x) ≥ ΠC(x) + 5

√
x
) ≤ x−2. By a similar argument

with rk = −1 we find that P
(
πB(x) ≤ ΠC(x)−5

√
x
) ≤ x−2 for all sufficiently

large x .
For m = 1, 2, . . . let Am denote the event that |πB(m)−ΠC(m)| ≥ 5

√
m .

Thus P(Am) 	 m−2. Since
∑

m P (Am) < ∞ , it follows by the easier impli-
cation of the Borel–Cantelli lemma that P

( ⋃∞
m=M Am

)
< ε if M ≥ m0(ε) .

From now on we restrict our attention to those points ω that lie in the event⋂∞
m=m0

Acm . We know that this event has probability > 1 − ε if m0 is large.
Suppose that x ≥ m0 , and take m = [x] . Thus |πB(m)−ΠC(m)| < 5

√
m and

|πB(m+ 1)−ΠC(m+ 1)| < 5
√
m+ 1 . Hence

πB(x) ≤ πB(m+1) ≤ ΠC(m+1)+ 5
√
m+1

= ΠC(x)+ 5
√
m+1 +

∫ m+1

x

1 dΠC(v) .

Thus far we have used (36), but not Lemma 7, which is stronger, apart from the
values of constants. Now we invoke Lemma 7 to see that the above is at most

ΠC(x)+ 5
√
x + 1 + 2/log x ≤ ΠC(x)+ 6

√
x

if m0 is large. Similarly,

πB(x) ≥ πB(m) ≥ ΠC(m)− 5
√
m

≥ ΠC(x)− 5
√
x −

∫ x

m

1 dΠC(v)

≥ ΠC(x)− 5
√
x − 2/ log(x−1) ≥ ΠC(x)− 6

√
x

by Lemma 7 and m0 sufficiently large. Consequently, for the remainder of our
argument we may suppose that

|πB(x)−ΠC(x)| ≤ 6
√
x for x ≥ m0 .

Note that this inequality implies (42).
We now complete the proof of (41). Let

SB(x; t) =
∫ x

1
v−it dπB(v) , SC(x; t) =

∫ x

1
v−it dΠC(v) .

By the reflection principle it suffices to prove (41) when t ≥ 0 . By integrating
by parts and using (42) we see that

SB(x; t) = SC(x; t)+O
(
(t + 1)

√
x
)
.
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This gives (42) for 0 ≤ t ≤ t0 . We suppose henceforth that t ≥ t0 . From (36)
we have the trivial estimate |SC(x; t)| ≤ SC(x; 0) 	 x/ log x , and from (42) we
see similarly that |SB(x; t)| ≤ SB(x; 0) 	 x/ log x . These estimates suffice to
give (41) when 2 ≤ x 	 (log t)(log log t)2 . Thus we may suppose that

x ≥ C0(log t)(log log t)2 (43)

where C0 is a suitably large absolute constant. Note that

SB(x; t) =
∑

p≤x
p∈P

p−it =
K∑

k=1

v−it
k Xk

since vK ≤ x < vK+1 . By taking rk = cos(t log vk) in (40) we find that if
t ≥ 5 , then

P
(
�SB(x; t) ≥ E

(�SB(x; t)
) + 5

√
x log t

)

≤ exp
(−6x log t

ΠC(vK)

)
≤ exp

(−6x log t

ΠC(x)

)

≤ exp
(− 2(log x)(log t)

)
(44)

by (36). As before, we find that
∑K

k=1 pk(1 − pk) 
 x/ log x , and hence (43)
implies the hypothesis (39), if C0 is sufficiently large.

It remains to consider how close E
(�SB(x; t)

)
is to �SC(x; t) . In this con-

nection we show that
∣∣E

(
SB(x; t)

) − SC(x; t)
∣∣ ≤ √

x (45)

if the vk are chosen to increase sufficiently slowly. By the triangle inequality we
see that

∣∣E
(
SB(x; t)

) − SC(x; t)
∣∣ ≤

∫ x

vK

1 dΠC(v)+
K∑

k=1

∣∣∣
∣

∫ vk

vk−1

(
v−it
k −v−it)dΠC(v)

∣∣∣
∣

≤ pK+1 +
K∑

k=1

∫ vk

vk−1

∣∣v−it
k − v−it ∣∣ dΠC(v) .

Here pK+1 ≤ 1/2 . Choose L so that vL ≤ √
x < vL+1 . Since the integrand

above is uniformly bounded by 2, it follows that the contribution of the k ≤ L

is at most

2ΠC(vL) 	
√
x

log x
.

Now suppose that L < k ≤ K . From the inequality
∣∣eiα − eiβ

∣∣ ≤ |α − β| we
see that the integrand is at most
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t (log vk − log v) ≤ t (log vk − log vk−1) ≤ t (vk − vk−1)

vk−1
.

It follows from Lemma 7 that the contribution of such k is at most
K∑

k=L+1

t (vk − vk−1)pk

vk−1
	

K∑

k=L+1

t (vk − vk−1)
2

vk−1 log vk−1
.

We now set vk = √
log k for k ≥ k0 . This ensures that pk ≤ 1/2 , as was needed

in the proof of Lemma 9. From the definition of L it follows that L = [ex] , and
from (43) we see that t ≤ ex . Thus

K∑

k=L+1

t (vk − vk−1)
2

vk−1 log vk−1
	 t

K∑

k=L+1

k−2 	 t L−1 	 te−x 	 1 .

On collecting our estimates we obtain (45).
By combining (45) with (44) we conclude that

P
(�SB(x; t) ≥ �SC(x; t)+ 6

√
x log t

) ≤ exp
(− 2(log x)(log t)

)
.

By three similar applications of (40), with rk = − cos(t log vk) and with rk =
± sin(t log vk) , we deduce that

P
(|SB(x; t)− SC(x; t)| ≥ 9

√
x log t

) ≤ 4 exp
(− 2(log x)(log t)

)
.

For positive integers m, n let Amn denote the event that |SB(m; n)−SC(m; n)| ≥
9
√
m log n . Since

∞∑

m=m0

∞∑

n=n0

P(Amn) < ∞ ,

it follows that we may choose a point ω in our probability space so that not only
(42) holds but also so that |SB(m; n)−SC(m; n)| < 9

√
m log n for m ≥ m0 and

n ≥ n0. If m ≤ x < m+1 where m ≥ m0 , then SB(x; n) = SB(m; n)+O(√
x
)

by (42) combined with Lemma 7. Similarly, from Lemma 7 we see that SC(x; n) =
SC(m; n)+O(1) . Hence it follows that

SB(x; n) = SC(x; n)+O
(√
x log n

)
(46)

for all real x ≥ m0 and all integers n ≥ n0 . Suppose that t ≥ n0 , and let n
denote the integer nearest t. By integration by parts we see that

SB(x; t) = xi(n−t)SB(x; n)+ i(t − n)

∫ x

1
SB(v; n)vi(n−t)−1 dv

and similarly for SC . Thus (41) follows from (46), and the proof is complete. ��
Lemma 10. Let the Beurling primes be chosen as in Lemma 9, and for σ > 1 set

log ζB(s) = −
∫ ∞

1
log

(
1 − v−s) dπB(v) .

Then log
(
ζB(s)/ζC(s)

)
has an analytic continuation to σ > 1/2 satisfying
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log
ζB(s)

ζC(s)
= O

(√
log(|t | + 2)

)
(47)

uniformly for σ ≥ 1/2 + ε for any fixed ε > 0 .

From the above it follows that ζB(s) is analytic for σ > 1 − 1/(2α) , and
that ζB(s) has the same zeros and poles as ζC(s) in this half-plane. Hence ζB(s)
has a single pole at s = 1 and zeros at the points ρk = 1 − a/ log |γk| + iγk.

Therefore, we have the assertions (ii) and (iii) of Theorem 1.

Proof. Clearly

log
ζB(s)

ζC(s)
= −

∫ ∞

1

(
v−s + log

(
1 − v−s)

)
dπB(v)

+
∫ ∞

1
v−s d

(
πB(v)−�C(v)

)
.

Since log
(
1 − v−s) = −v−s + O

(
v−2σ

)
for v ≥ 1 + δ , and since πB(v) has

no support near v = 1 , it follows that the first integral above is analytic and uni-
formly bounded for σ ≥ 1/2 + ε . By using integration by parts and (41), we see
that the second integral above is analytic and O

(√
log(|t |+2)

)
for σ ≥ 1/2+ε .

Thus we have (47). ��
Exponential bounds of the type considered in the preceding section form one

of the primary tools used to prove the classical Law of the Iterated Logarithm
for sums of independent uniformly bounded random variables (see Petrov [15],
Theorem 7.1, p. 239). Indeed, by applying this more powerful tool we could show
that

πB(x) = ΠC(x)+O

(√
x log log x√

log x

)
almost surely,

which is somewhat stronger than (42). The Law of the Iterated Logarithm could
also be applied to bound the difference between the integrals in (41) for any fixed
t , or even for t in any fixed compact set. However, we need an estimate in which
the dependence on t is explicit, and for this purpose we make recourse to the
more basic exponential bounds.

8. Asymptotics of NB(x)

In view of (14) we may choose σ1 so that 1 − 1/(2α) < σ1 < θ . From the
definition (16) of ζC(s) and the estimate (17) of G(z) we see that if σ ≥ σ1 ,
then ζC(s) 	 1 for |t | ≥ 1 unless |t − γk| ≤ |t |/2 for some k , in which case
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ζC(s) 	 |t |2α(1−σ) + 1

1 + |t − γk| log |γk| .

From these estimates we see that in any case
∫ 2T

T

∣∣ζC(σ1 + it)
∣∣ dt 	 T .

Hence by Lemma 10 it follows that
∫ 2T

T

∣∣ζB(σ1 + it)
∣∣ dt 	 T 1+ε . (48)

Suppose that σ0 > 1 . By a familiar Mellin transform formula we know that

∑

n∈N
n≤x

(x − n) = 1

2πi

∫ σ0+i∞

σ0−i∞
ζB(s)

xs+1

s(s + 1)
ds .

Let h be a positive parameter to be chosen later in such a way that 1 ≤ h ≤ x .
By applying the above formula twice, and differencing, we see that

NB(x) ≤ 1

h

∑

n∈N
n≤x+h

(x + h− n) − 1

h

∑

n∈N
n≤x

(x − n)

= 1

2πi

∫ σ0+i∞

σ0−i∞
ζB(s)

(x + h)s+1 − xs+1

hs(s + 1)
ds .

Let κ denote the residue of ζB(s) at s = 1 . On moving the path of integration
to the line σ = σ1 , we see that the above is

= κ(x + h/2)+ 1

2πi

∫ σ1+i∞

σ1−i∞
ζB(s)

(x + h)s+1 − xs+1

hs(s + 1)
ds .

Now

(x + h)s+1 − xs+1

s + 1
	

{
hxσ for |t | ≤ x/h ,

xσ+1/|t | for |t | ≥ x/h .
(49)

Thus the last integral is

	
∫ x/h

0

∣
∣ζB(σ1 + it)

∣
∣ xσ1

t + 1
dt +

∫ ∞

x/h

∣
∣ζB(σ1 + it)

∣
∣ x

σ1+1

ht2
dt .

By (48) this is 	 xσ1+ε 	 xθ . The h/2 in the main term is negligible if we take
h = 1 , for example. We observe also that

NB(x) ≥ 1

h

∑

n∈N
n≤x

(x − n)− 1

h

∑

n∈N
n≤x−h

(x − h− n) ,



Beurling primes with large oscillation 25

so by arguing similarly we may derive the corresponding lower bound. Thus we
have (i) of Theorem 1. ��

9. Asymptotics of πB(x)

Let

ψB(x) =
∑

n∈N
n≤x

�B(n)

where �B(n) = log λj if n = λkj for some j and k, and �B(n) = 0 otherwise.
Let h be a parameter to be chosen later such that 1 ≤ h ≤ x . Then for σ0 > 1 ,

ψB(x) ≤ 1

h

∑

n∈N
n≤x+h

(x + h− n)�B(n)− 1

h

∑

n∈N
n≤x

(x − n)�B(n)

= − 1

2πi

∫ σ0+i∞

σ0−i∞

ζ ′
B

ζB
(s)

(x + h)s+1 − xs+1

hs(s + 1)
ds .

Choose φ so that 1 − θ < φ < 1/(2α) , and choose T , (1/4)xφ ≤ T ≤ xφ ,
in such a way that there is no k for which |T − γk| ≤ T/2 . Move the path of
integration so that it runs from 1− i∞ to 1− iT , to θ− iT , to θ+ iT to 1+ iT
to 1 + i∞ . In each case the path follows a line segment, except that in running
from θ − iT to θ + iT detours should be made to the left so that the path is at
all times at a distance 
 1/ log x from the nearest zero. Choose σ1 and σ2 so
that 1 − 1/(2α) < σ1 < σ2 < θ . Then by Landau’s analysis (as presented, for
example, in Lemma α of Titchmarsh [16], p. 56),

ζ ′
B

ζB
(s) =

∑

ρ

1

s − ρ
+O

(
log(|t | + 2

)

for σ ≥ σ2 where the sum is over those zeros ρ of ζB, if any, for which �ρ ≥ σ1

and |ρ − t | ≤ 1 . Since the number of summands is 	 log(|t |+2) , it follows
that

(
ζ ′
B/ζB

)
(s) 	 (

log x(|t |+2)
)2

on our contour. Thus by (49) we see that
∫ 1−iT

1−i∞
· · · 	 x2(log x)2

hT
,

∫ θ−iT

1−iT
· · · 	 x2 log x

hT 2 ,

∫ θ+iT

θ−iT
· · · 	 xθ(log x)3 ,

and similarly for the remaining portions of the contour. Hence, if we take
h = x1−φ/2 , then we find that
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ψB(x) ≤ x −
∑

ρ

(x + h)ρ+1 − xρ+1

hρ(ρ + 1)
+O

(
x(1+θ)/2)

where the sum is over all zeros ρ of ζB(s) for which �ρ ≥ θ and |ρ| ≤ T .
Choose K so that γK < T < γK+1 . Then by (49) again we see that the sum
over zeros is

	
∑

ρ

x�ρ

|ρ| .

A typical zero is of the form

1 − aα − xj

�k
± iγk ± i

yj

�k

where j ≥ 0 and k ≥ 1 . Suppose j ≥ 1 . By (22) we know that xj <
(−1/2) log j , and hence

x1−(aα−xj )/�k < x1−aα/�k j−(log x)/(2�k) .

But 1/(2α) > φ and γk < T ≤ xφ , so the exponent of j is less than
−1/(2αφ) < −1, uniformly in k. Hence the sum over j is absolutely con-
vergent, and so

∑

ρ

x�ρ

|ρ| 	 x

K∑

k=1

x−a/ log γk

γk
,

which is the same as for j = 0. The function f (u) = x−a/ log u/u is largest
when u=U=exp

(√
a log x

)
, where it takes the value exp

(− 2
√
a log x

)
. Sup-

pose that γL ≤ U < γL+1 . For γL and γL+1 we use the estimate f (γ ) ≤
exp

( − 2
√
a log x

)
. For 1 ≤ k ≤ L− 1 , we have

f (γk) < x−a/ log γk < exp
(
−√

a log x log γL
log γk

)
= exp

(
−AL−k√a log x

)

by (15). For k ≥ L+ 2 ,

f (γk) <
1

γk
= exp

(
−

√
a log x

log γk√
a log x

)
< exp

(
−

√
a log x

log γk
log γL+1

)

= exp
(− Ak−L−1

√
a log x

)
.

Thus the combined contribution of all zeros is 	 x exp
(− 2

√
a log x

)
, provided

that we take A ≥ 2 . Since lower bounds for ψB(x) may be derived similarly,
we have (v) of Theorem 1.

To study the oscillation of ψB(x)− x , note first that

(x + h)ρ+1 − xρ+1

hρ(ρ + 1)
= (

1 + o(1)
)
xρ/ρ
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for ρh = o(x) . Choose K ∈ N , and set XK = exp
(
(log γK)2/a

)
. If XK ≤x≤

2XK , then the combined contribution of the zeros near 1 − a/ log γK ± iγK to
the error term ψB(x)− x is

−2� x1−a/ log γK+iγK

1 − a/ log γK + iγK
= (− 2 sin(γK log x)+ o(1)

)
x exp

( − 2
√
a log x

)
.

As x passes from XK to 2XK , the sine above takes the values +1 and −1 ,
each one 
 γK times. On the other hand, from the preceeding estimates we see
that the combined contribution of all other zeros is 	 x exp

( − c
√

log x
)

with
c > 2

√
a for x in this range. Thus we have (iv) of Theorem 1, and the proof is

complete. ��

10. Proof of Theorem 2

The proof of the upper bound proceeds in the same way as the proof for the
Riemann zeta function: Let t ≥ t0 . Since we have a zero-free region of width
c(1−θ)/ log t , we may assume that (1−θ)/ log t ≤ r ≤ (1−θ)/2 . By Jensen’s
inequality and the Borel–Carathéodory lemma as used by Landau (see Lemma α
of Titchmarsh [16], p. 56), we know that

ζ ′
B

ζB
(s) =

∑

ρ

1

s − ρ
+O

( log t

1 − θ

)
(50)

where the sum is over those zeros ρ of ζB(s) in the disk of radius (1 − θ)/2
centered at 1 + it , and σ ≥ 1 − (1 − θ)/4 . Note that the zeta function ζB(s)

here is not necessarily the same as the one constructed in proving Theorem 1.
Take s = 1 + r + it . Then

∣
∣∣
ζ ′
B

ζB
(s)

∣
∣∣ =

∣∣∣
∫ ∞

1
x−s log x dΠB(x)

∣
∣∣

≤
∫ ∞

1
x−1−r log x dΠB(x)

= − ζ ′
B

ζB
(1 + r) 	 1

r
≤ log t

1 − θ
.

In (50) the contribution of each zero has positive real part, and if the zero lies in
the disk of radius r centered at 1 + it , then that contribution is 
 1/r . Hence
the number of such zeros is 	 r(log t)/(1 − θ) , which establishes (7).

On differencing (50) it is clear that

ζ ′
B

ζB
(s + δ)− ζ ′

B

ζB
(s) =

∑

ρ

( 1

s + δ − ρ
− 1

s − ρ

)
+O

( log t

1 − θ

)
. (51)
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We now argue that the error term can, with a little more care, be reduced by a
factor of δ/(1 − θ) . To see this, let g(s) = ζ ′

B(s)/ζB(s)− ∑
ρ 1/(s − ρ) . Thus

by (50), we know that g(s) 	 (log t)/(1 − θ) . By two applications of Cauchy’s
integral formula we see that

g(s + δ)− g(s) = 1

2πi

∮
g(z)

z− s − δ
dz− 1

2πi

∮
g(z)

z− s
dz

= δ

2πi

∮
g(z)

(z− s − δ)(z− s)
dz .

Here the path of integration may be taken to be the circle |z−s| = (1−θ)/4 , and
we assume that 0 ≤ δ ≤ (1 − θ)/5 . In the integrand on the right, the numerator
is 	 (log t)/(1 − θ) , and the denominator is 
 (1 − θ)2 . Since the path of
integration has length 	 1− θ , it follows that the above is 	 δ(log t)/(1− θ)2 .
Thus

ζ ′
B

ζB
(s + δ)− ζ ′

B

ζB
(s) =

∑

ρ

( 1

s + δ − ρ
− 1

s − ρ

)
+O

( δ log t

(1 − θ)2

)
(52)

when σ ≥ 1 and 0 ≤ δ ≤ (1 − θ)/5 . If δ > (1 − θ)/5 , then this is already
implied by (51), and hence the above holds for all δ ≥ 0 .

Let h(s) denote the left hand side of (52). Then for σ > 1 ,

h(s) =
∫ ∞

1
x−s(1 − x−δ)(log x) dΠB(x) .

Hence

�(
3h(σ)+ 4h(σ + it)+ h(σ + 2it)

)

=
∫ ∞

1
x−σ (1 − x−δ)(log x)C(t log x) dΠB(x) (53)

where C(α) = 3 + 4 cosα + cos 2α = 2(1 + cosα)2. Since C(α) ≥ 0 for all
α , we see that the expression above is non-negative. From (52) we know that

h(s) = −δ
∑

ρ

1

(s + δ − ρ)(s − ρ)
+O

( δ log t

(1 − θ)2

)
.

Suppose that β0 + iγ0 is a zero of ζB(s) with β0 near 1 . We take σ = 1+4(1−
β0) and t = γ0 . When we form the expression (53) we find that the combined
contribution of the pole at s = 1 and the zero ρ0 is

3

σ − 1
− 3

σ + δ − 1
− 4

σ − β0
+ 4

σ + δ − β0
. (54)
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This expression is monotonically decreasing in δ for δ ≥ 3(1 − β0) . Thus we
see that if

δ ≥ 32(1 − β0) , (55)

then the quantity (54) is at most −1/(40(1 − β0)). Since
∣∣∣

1

(s + δ − ρ)(s − ρ)

∣∣∣ ≤ 1

|1 + iγ0 − ρ|2 ,

it follows from the upper bound (7) already proved that

∑

ρ

|1+iγ0−ρ|>r

δ

(s + δ − ρ)(s − ρ)
	 δ log γ0

r(1 − θ)
.

On the other hand,

� −δ
(s + δ − ρ)(s − ρ)

= � 1

s + δ − ρ
− � 1

s − ρ
≤ � 1

s + δ − ρ
≤ 1

δ
,

and hence

�
∑

ρ �=ρ0

|1+iγ0−ρ|≤r

−δ
(s + δ − ρ)(s − ρ)

≤ nB(r, γ0)

δ
,

and similarly when γ0 is replaced by 2γ0.

On combining these estimates, we deduce that

0 ≤ �(
3h(σ)+ 4h(σ + iγ0)+ h(σ + 2iγ0)

)

≤ −1

40(1 − β0)
+ 4 nB(r, γ0)+ nB(r, 2γ0)

δ
+O

( δ log γ0

r(1 − θ)

)
. (56)

The other error term, of size O
(
δ(log γ0)/(1− θ)2) , is absorbed in the error term

displayed above, since by hypothesis r ≤ (1 − θ)/2 . Suppose now that

δ = cr(1 − θ)

(1 − β0) log γ0
. (57)

If the constant c is taken to be sufficiently small, then the error term in (56) is
<1/(80(1 − β0)) , and then from (56) it follows that

n(r, γ0)+ n(r, 2γ0)

δ
≥ 1

320(1 − β0)
,

which is the desired lower bound (9). Note that our choice (57) of δ is consistent
with the constraint (55) if r ≥ 32(1 − β0)

2(log γ0)/(c(1 − θ)) . Thus we take
C = 32/c in (10). ��
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11. Appendix. Large Least Quadratic Nonresidues

We present here our reconstruction of an unpublished analysis of Heath–Brown
concerning the behaviour of the Dirichlet L-function L(s, ( ·

p
)) under the assump-

tion that the least quadratic nonresidue modulo p is as large as the bound
p1/(4

√
e)+ε of D. A. Burgess [4].

Let p be an odd prime, and let r be a positive integer. The basic estimate of
Burgess [4], as refined by Friedlander and Iwaniec [6], asserts that

M+N∑

n=M+1

(n
p

)
	 N1−1/rp(r+1)/(4r2)r1/2(logp)3/(2r) . (58)

If N ≤ p1/4, then the above is trivial since the right hand side is 
 N . Suppose
that N > p1/4 , and define δ by the relation N = p1/4+δ . The parameter r
is a little troublesome, so our first task is to cast the above into a more readily
applicable form. If r could be allowed to take arbitrary real values, then we would
take r = 1/(2δ) , which would give the bound

M+N∑

n=M+1

(n
p

)
	 Np−δ2

δ−1/2(logp)3δ .

Since r is restricted to integral values, we obtain an estimate that is slightly larger
than this:

M+N∑

n=M+1

(n
p

)
	 Np−δ2/2 logp (59)

for 0 < δ ≤ 3/4 .
If δ > 3/4 , then N > p , and we would instead appeal to the Pólya–Vinog-

radov inequality, which asserts that

M+N∑

n=M+1

(n
p

)
	 p1/2 logp . (60)

To prove (59), we first consider the powers of N and of p in (58) and (59).
Let r be an integer in the interval

[ 1 − 1/
√

2

δ
,

1 + 1/
√

2

δ

]
.

The existence of such an integer is guaranteed by the fact that the length of
the above interval is

√
2/δ ≥ 4

√
2/3 > 1 . Moreover, this r is positive since

the lower endpoint is positive. Since the numbers 1 ± 1/
√

2 are the roots of
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the polynomial 2z2 − 4z + 1 , and rδ lies between these roots, it follows that
2δ2r2 − 4δr + 1 ≤ 0 . On dividing by 4r2 , it follows that

− δ

r
+ 1

4r2
≤ − δ2

2
.

Hence

N1−1/rp(r+1)/(4r2) = Np−δ/r+1/(4r2) ≤ Np−δ2/2 .

Next we consider the factor r1/2 and the power of logp . Put

δ0 =
√

2 log logp

logp
. (61)

If δ < δ0 , then the right hand side of (59) is 
 N . Thus we may suppose that
δ ≥ δ0 , and hence r 	 √

logp . Consequently if r ≥ 2 , then

r1/2(logp)3/(2r) 	 (logp)1/4(logp)3/4 = logp.

If r = 1 , then we use (60) instead of (58), so logp appears to at most the first
power in all cases. This completes our proof of (59).

Burgess [4] deduced from his character sum estimates that if p > p0(ε) , then
there is an integer n , 1 < n < p1/(4

√
e)+ε, such that

(
n
p

) = −1 . We now assume
that this estimate is, for some prime p , essentially best-possible, and explore the
consequences. Specifically, from now on we assume that

(n
p

)
= 1 for 1 ≤ n ≤ N (62)

where N = p1/(4
√
e) . Set

S(x) =
∑

n≤x

(n
p

)
, S(x, y) =

∑

n≤x
p′|n⇒p′≤y

(n
p

)
.

Put X = p1/4+2δ0 where δ0 is given by (61). Then from (59) it follows that
S(X) 	 X(logp)−3 . Since the Legendre symbol is totally multiplicative, by
classifying integers according to their greatest prime factor we find that

S(x, y) = 1 +
∑

p′≤y

(p′

p

)
S(x/p′, p′) .

Thus

S(x) = S(x,N)+
∑

N<p′≤x

(p′

p

)
S(x/p′, p′) . (63)
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Since
(
n
p

) = 1 for all integers n counted in S(x,N), it follows that S(x,N) =
ψ(x,N) where ψ(x, y) denotes the number of positive integers not exceeding
x, composed entirely of primes not exceeding y. Suppose that x ≤ N2. Then

ψ(x,N) = [x ] −
∑

N<p′≤x
[x/p′ ]

= x
(

1 − log
log x

logN

)
+O

( x

log x

)
.

In (63) we have x/p′<N<p′, so that S(x/p′, p′)= [x/p′]=x/p′ +O(1). On
combining these estimates we find that

S(x) = x
(

1 − 2 log
log x

logN

)
+ x

∑

N<p′≤x

1 + (
p′
p

)

p′ + O
( x

log x

)
(64)

for x ≤ N2 . By taking x = X we discover from the above that

∑

N<p′≤X

1 + (
p′
p

)

p′ 	 δ0 . (65)

Thus
(
p′
p

) = −1 for almost all primes p′ ∈ (N,X] in the above sense. Since
the summands are nonnegative, the above still holds when the sum is restricted to
N < p′ ≤ x for x ≤ X . Thus from (64) we find that

S(x) = x
(

1 − 2 log
log x

logN

)
+O(δ0x)

uniformly for N ≤ x ≤ X .
Although we do not use this information later, we remark that by taking x =

N2 in (64) we see that

1 − log 2 +
∑

N<p′≤N2

(
p′
p

)

p′ 	 1

logp
.

On combining this with (65) we deduce that
(
p′
p

) = 1 for almost all primes

p′ ∈ (X,N2] in the sense that

∑

X<p′≤N2

(
p′
p

) − 1

p′ 	 δ0 .

Clearly S(x) = x + O(1) for x ≤ N . The range x ≥ X is dealt with in
(59).
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We are now in a position to derive asymptotic estimates for L(s, ( ·
p
)) when

s is sufficiently near 1, under the hypothesis (62). For σ > 0 we have

L(s, ( ·
p
)) = s

∫ ∞

1
S(x)x−s−1 dx.

Since

S(x) =






x +O(1) for 1 ≤ x ≤ N ,

x
(
1−2 log log x

logN

) +O(δ0x) for N ≤ x ≤ p1/4 ,

O(δ0x) for p1/4 ≤ x ≤ X ,

O
(
xp−δ2/2 logp

)
for X ≤ x ≤ p ,

O
(
p1/2 logp

)
for x ≥ p,

it follows that

L(s, ( ·
p
)) = s

∫ N

1
x−s dx + O

(
|s|

∫ N

1
x−σ−1 dx

)

+s
∫ p1/4

N

(
1 − 2 log

log x

logN

)
x−s dx +O

(
|s|δ0

∫ X

N

x−σ dx
)

+O
(
|s| logp

∫ p

X

p−δ2/2x−σ dx
)

+O
(
|s|p1/2 logp

∫ ∞

p

x−σ−1dx
)
.

(66)

As far as the main terms are concerned, the first integral is easily computed. The
second main term integral we integrate by parts, and then we make the substitu-
tion x = pu/4 to see that the sum of the main terms is 1

4sH(
1
4 (s−1) logp) logp

where

H(z) = 2

z

∫ 1

1/
√
e

(
1 − e−zu

) du
u

= 2
∞∑

k=0

(−1)k(1 − e−(k+1)/2)

(k + 1)!(k + 1)
zk . (67)

As for the error terms, the first error term is 	 |s| uniformly for σ ≥ 1/2 . The
second error term is

	






|s|δ0/(σ − 1) for σ ≥ 1 + 1/ logp ,

|s|δ0 logp for 1 − 1/ logp ≤ σ ≤ 1 + 1/ logp ,

|s|δ0X
1−σ/(1 − σ) for 1/2 ≤ σ ≤ 1 − 1/ logp .

In the third error term we make the change of variables x = p1/4+δ , so that
dx/x = (logp) dδ . Thus the third error term is

|s|(logp)2
∫ 3/4

2δ0

p−δ2/2p(1/4+δ)(1−σ) dδ .



34 H.G. Diamond et al.

Since
∫ ∞
c
e−au

2
du � e−ac

2
/(ac) if c ≥ 1/

√
a , it follows that the third error

term is

	 |s|(logp)−5/2X1−σ for σ ≥ 1 − δ0 .

Finally, the fourth error term is 	 |s|p−1/2+ε . The second error term is largest.
On combining our estimates we find that

L
(
s, (

·
p
)
) = 1

4
sH

( 1
4
(s−1) logp

)
logp

+O
(
δ0

(
1 +X1−σ ) min

(
logp, 1

|σ − 1|
))

(68)

for 1/2 ≤ σ ≤ 2 , |t | ≤ 1 .
In order to understand how the error term above compares with the main term,

we must examine H(z) more closely. We first note that if x > 0 , then e−xu<1 ,
so that the real part of the integrand in (67) is positive, and thus H(z) has no zero
in the half-plane x > 0 . By the same reasoning, �zH(z) > 0 when z = iy ,
y �= 0 . Finally, H(0) = 2(1 − 1/

√
e) �= 0 . As for asymptotics, by integration

by parts we find that

H(z) = 1

z
+ 2e−z

z2
− 2e1/2−z/√e

z2
+ 2

z2

∫ 1

1/
√
e

e−zu

u2
du .

Thus for |z| ≥ 1 ,

H(z) = 1

z
+ 2e−z

z2
− 2e1/2−z/√e

z2
+O

( e−x

|z|3
)

+O
( e−x/

√
e

|z|3
)
.

In particular if x ≥ 0 , then |H(z)| � 1/|z| when |z| ≥ 1 . When x < 0 ,

H(z) 	 1

|z| + e−x

|z|2 .

In general, |H(z)| is comparable to the larger of these two terms, but if these
terms have the same size, then they may cancel and |H(z)| may be smaller. It is
under these circumstances that H(z) has zeros.

Let z′j = x ′
j + iy ′

j denote the zeros of H(z) with y ′
j in increasing order.

The first zeros of H(z) are given in Table 2. A contour plot of zH(z), which
resembles G(z/2) is given in Figure 3.

The main term in (68) has order of magnitude at least as great as the error term
when s lies in the rectangle

1 − 1

logp
≤ σ ≤ 1 + 1

√
(logp) log logp

, |t | ≤ 1
√
(logp) log logp

.
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Fig. 3. Contour plot of the modulus and phase of zH(z)

Table 2. Zeros of H(z)

z′1 = −0.5651 + 7.9302i z′11 = −3.2112 + 70.4879i
z′2 = −2.5773 + 14.5727 i z′12 = −3.8108 + 77.3009i
z′3 = −2.1164 + 19.7226i z′13 = −3.8001 + 82.8398i
z′4 = −2.3111 + 27.1456i z′14 = −3.8175 + 89.7209i
z′5 = −3.3218 + 32.6819i z′15 = −4.2417 + 95.7863i
z′6 = −2.5064 + 39.1175i z′16 = −3.6587 + 101.8711i
z′7 = −3.4176 + 45.9090i z′17 = −4.0638 + 108.6965i
z′8 = −3.2368 + 51.3297i z′18 = −4.1826 + 114.3271i
z′9 = −3.0899 + 58.3976i z′19 = −3.8171 + 121.0647i
z′10 = −3.8990 + 64.2680i z′20 = −4.4777 + 127.2776i

The same assertion applies also for s in the rectangle

1 − 1
√
(logp) log logp

≤ σ ≤ 1 − 1

logp
, |t | ≤ (log logp)1/4

(logp)3/4

with the exception of those s for which 1
4 (s − 1) logp is near one of the zeros

z′j of H(z) . Thus by Rouché’s theorem, if

0 < |j | ≤ c(logp)1/4(log logp)1/4
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where c is a suitably small positive absolute constant, then L(s, ( ·
p
)) has a zero

ρj such that

ρj = 1 + 4z′j
logp

+O
( j 2 (log logp)1/2

log(2|j |) (logp)3/2

)
.
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