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1. Introduction 

As POMPEIU'S p r o b l e m - n a m e d  after the late Rumanian mathematician 
DIMITRIE POMPEIU -- we shall denote the following question. Let B be a bounded 
region of the xy-plane and let T be the set of the Euclidean transformations of 
the plane. Suppose that f(x,  y) is a function of the real variables x and y, 
continuous in the whole xy-plane and satisfying 

(1) I~ f ( x , y )dxdy=O,  z e T  1 
(u) 

for some subset T~ c T. Does this imply tha t f (x ,  y ) -  0 ? POMPEIU thought that 
if B is a disc and if T1 = T, thenf (x ,  y) - 0 [6]. I t  was noted later that the result 
is not correct in this form. The funct ionf(x,  y) =sin  ax, for a suitable choice of 
a, provides a counter example. This example shows that even if one assumes 
t h a t f  is bounded, the conclusion f = 0  need not hold. 

POMI'EIU proved in [7] the following result: if B denotes a square and if 
f(x,  y) is a function of the real variables x and y, continuous in the whole 
xy-plane and having a limit as x 2 +y2 ~ o% then (1) holds for all z e T  if, and 
only i f , f  (x, y ) -  0. The Bulgarian mathematician CHRISTO CHRISTOV established 
in [1] and [2] POMPEIU'S result (and similar results if B is a triangle or a paral- 
lelogram) without the condition of the existence of l imf (x ,  y). See [3] for 
further references. 

I t  is the purpose of this note to present a result which can be considered as 
a contribution to the study of POMPEIU'S problem. Our result is more special 
than CHPdSTOV'S in that we assume that f (x ,  y) has a limit as x 2 + y 2 - ~  oo. 
On the other hand our result is more general in that  we use only the translations 
rather than all Euclidean transformations. Also, we replace the Lebesque area 
measure dx dy on a square by any product measure dl~(x) dr(y) where/~, v 
are arbitrary complex-valued measures of compact  support. The method applied 
uses a few facts from the theory of mean periodic functions in one variable as, 
for example, presented in the lecture notes by J. P. KAHANE [4]. 

2. Background Material 

A complex-valued continuous function f defined on the real line is said to 
be mean periodic ff there is a complex-valued measure #, not identically zero, of 
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compact support, such that 

S f (x+y)d#(y)=O ( - ~ < x < ~ ) .  

Next, we shall define almost periodic functions (in the sense of BOHR). We 
say, given any e > 0, that the number z > 0 is an almost period corresponding to 

for the complex-valued continuous function f (x)  if ]f~(x)-f(x)[<~ for all 
x, wheref~ is the translate of f :  f~(x)=f(x + z). A set M of reals will be called 
relatively dense if there exists an L >  0 such that in any interval of length L 
there lies at least one point of M. HARALD Bong then defined [5]: A function 
f (x)  complex-valued and continuous, is almost periodic if, for every e>0,  the 
almost periods o f f  form a relatively dense set. 

For the proof of our theorem we need the following facts about mean 
periodic and almost periodic functions. 

Theorem A (KAHANE [4]). A uniformly continuous, bounded mean periodic 
function is almost periodic (in the sense of BOHR). 

Lemma A. An almost periodic function f(x)  for which lim f (x)  exists is 
necessarily a constant, x -~ co 

Theorem A lies quite deep and is difficult to prove; on the other hand, 
Lemma A is trivial. 

3. Main Result 

Theorem. Let # and v be arbitrary complex-valued measures of compact 
support on the real line (with neither of them being the zero measure). Let 
f (x ,  y) be continuous in the plane and satisfy 

(1) lim f (x ,y)  exists (x2+y2--)~)), 
(2) S~ f ( x+s ,y+t )d#(x )dv (y )=O,  - m < s , t < ~ .  

Then f =constant. i f  further 

(3) ~ d#=~O and ~ dv:~O 

then f =O. 
Proof. Let c = l imf (x ,  y) (X 2 +y2 __)o0). First note that if (3) does not hold 

t h e n f - c  satisfies (1) and (2). On the other hand, if (3) does hold then c=0,  
since ~Sc d# dv =0 by (2). 

Thus in any case we may assume without loss of generality that c =0. 

For fixed s consider the function q~(y)= ~f(s+x,  y) d#(x). We have: 

~ ( y + t ) d v ( y ) = O  ( - ~ < t < ~ )  

and so ~ (y) is mean periodic. Furthermore, ff is continuous and 

lim q~(y) =0  (lY[ ~ ) ,  

and so ~b is bounded and uniformly continuous. By Theorem A and Lemma A, 
4 = 0 .  
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Thus  we have shown tha t  for  each fixed s and  for  all y we have 

S f(s + x, y) d l~(x)=O. 

F o r  f ixed y, let  g(x)=f(x,  y). The above  equa t ion  tells us tha t  g is mean  
per iodic .  Also,  l i m g ( x )  = 0  (1 x l ~ oo)and  so, jus t  as in the  previous  pa rag raph ,  
g = 0 .  But this says tha t  for  each y the f u n c t i o n f ( x ,  y ) = 0  for  all x, i . e . , f = 0 ,  
which comple tes  the proof .  

The  fact  tha t  we had  a p roduc t  measure  enabled us to make  use of the theory  
of mean  per iod ic  funct ion in one var iable  for  solving our  var iant  of POMPEIU'S 
problem.  The  p rob l em of a general  measure  with compac t  suppor t  in the plane 
remains  open.  
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