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ABSTRACT

Differential equations of the form @' - k‘2 P =q(y,c,k,0)p subject to the
boundary conditions (b(yl, c) = (b(yz, c) = 0 constitute a large class of ''eigen-
value problems' arising from stability investigations. New methods, a
posteriori, in character are developed in this paper which renders a large
class of such problems tractable for all values of the parameters k and 6,

In PartI, an adaption of the method due to Drukarev which systematically
converts an obviously associated Fredholm integral equation is used to obtain
a simple expression for the denominator of the associated Fredholm resolvent
via a Volterra integral equation, By use of the Weierstrass approximation
theorem and/or the Laplace transformation, an elementary solution is shown
to be always possible to an arbitrary order of accuracy (involving only
monomials of exponentials) provided only that the potential q above be
continuous, This will certainly be valid for the regime of instability, Part II
is devoted to the asymptotic case when k 1is large., In it error bounds are
given, we believe, for the first time, for the theory based on the corresponding
Ricatti equation equivalent to that given above, Part III contains an error
analysis for the secular equation and several examples illustrating the
methods of Parts I and II. PartIV is based on a modification of Numerov's
and Newton's neumerical method and applied to a problem in baroclinic
instability . It is the authors hope and belief that the tools developed herein
will make many new problems of fluid mechanics tractable since they do not
depend on the particular special functions defined by the first equation for any

given choice of the potential q ,



Introduction

The stability problems of the title were initiated by Helmholtz in (1868),
Kelvin (1871) and Rayleigh (1894) . Here a somewhat wider class, to be referred
to, somewhat loosely, as of the Rayleigh type, will be considered. This class
arises, as those actually considered by Rayleigh, from elimination after
linearization of a system of partial differential equations about a standard
known situation, often a velocity or wind profile in a given channel associated
with a steady state. In the simplest situations, a solution to the linearized

partial differential equation is sought in the form

(1) & = exp[ik(x-ct)] D (y)

with the result that the main difficulty is reduced to solving a second-order
boundary value problem in order to determine the value of the unknown

(usually complex) parameter ¢ which enters in a non-linear way in contrast

to that of the Sturm-Liouville theory. Here it will be assumed that the resulting

ordinary differential equation takes the form

(2) <-‘~Zfl5(y)/dy2 I p(y) = aly,c,k,8) D(y)

which is to be solved subject to the boundary conditions



(3) Bly) = By, = 0.

In the above differential equation, k is usually a wave number, * ® stands
for one or more other parameters, and c, the so-called ''eigenvalue'' is
to be determined. Most work has been done for the actual Rayleigh type
in which q is assumed to have the special form

dzw(y, c

(4) q = [ ) fwiy, o) - e,
dy

the dependence on k being understood.

Many examples of this type can be found in Drazin and Howard (1), o
an excellent survey article to which we shall frequently refer as DH,
while examples of q's not of this type can be found, for example in Derome
and Wiin-Nielsen (2) . The '"flow' 1is said to be unstable if Im c> 0,
neutral for Im c = 0 and stable for Im c< 0, Since c enters non-linearly
in eigenvalue problems of this type, very few can be solved exactly. In
general the ordinary differential equation (2) is not reducible to one having
a solution expressible in known or tabulated functions., It is therefore

necessary to resort to approximate methods which may be purely numerical,

literal, or a combination of both,

% See, however, the introduction to Part II.
*% All references not explicitly given can be found in (DH).



The approach here will stress analytic methods although one purely
numerical method and example will be discussed in Part IV, In all the other
cases numerical steps may be preferred for the solution of the derived secular
equations but,even if this is the case,they will occur at the last step.

In fact, this paper originated in an attempt to develop methods which
would: (1) be significant for such areas as meterology; (2) not required
detailed special function theory; and , (3) would be easily understood and easy
to apply. These apparently incompatable goals ~ similar to those of most
applied research papers - can be met surprisingly well in two ways, The
first way which constitutes Part I of this paper adapts an observation due
originally to the Russian physicist Drukarev (3), embellished somewhat more
by the physicist Brysk (4) , and then discussed rigorously by Aalto (5), (6).
We will consequently refer to it as the DBA method although our adaption
will be novel in that,we believe,it is the first time this set of ideas has been
applied to other than a standard eigenvalue problem, In our adaption, in
common with the DBA method, a natural Fredholm integral equation is
converted into a Volterra integral equation in a systematic way, The next step
consists in deducing a closely related Volterra integral equation whose
solution when evaluated at the other end-point of the channel yields the
secular equation, That is, it is in a real sense, a Volterra integral equation
for the denominator of the resolvent of the original Fredholm integral equation,

There are of course other ways of reducing boundary value problems to



Volterra integral equations., In fact Tricomi (7) for example, attributes one
such method to Fubini and illustrates another for the transverse oscillations
of a bar, Aalto (5) has subsequently treated this last example by the DBA
method although, of course, the resulting eigenvalue problem is still linear
in the eigenvalue, Common to both, as well as here, is that the zeros of a
transcendental equation have to be found for the determination of the
corresponding eigenvalue., Aalto also notes that the DBA method is some-
what related to what Henrici (8) , pp. 345-46 calls the ''shooting method'
To our way of thinking, such methods of search which, in the end, rely on
the experience and judgement of the investigator, should be grouped under
the general title of biblical methods after the sermon on the mount -

""seek and ye shall find" (9). * In contrast,our adaptions and modifications
yield a method which not only furnishes a roadmap but an actual railroad
leading to the solution to within a desired accuracy, and thus we deem it
superior to other methods using Volterra integral equations,

In Part Il our aims are achieved by asymptotic methods for large values
of !ki. Its novel feature includes the, we believe, first derivation of error
bounds resulting from methods based on the Riccati differential equation,

This part has been considerably expanded as a result of Professor K, M, Case's
observation that the Olver method as originally presented by the first author

could lead to inconsistencies for these non-standard eigenvalue problems, In

e

K

Note, however, Part IV.



Part III , which consists of a discussion on error bounds for the secular
equation and examples, we hope that we have answered Professor Case's
criticism by presenting a series of results which are sufficient to guarantee
the validity of the asymptotic methods for this class of problems, In Part IV
a numerical method is given for solving the problem (2, 3), and as an example,
the eigenvalues are obtained numerically for an equation related to a baroclinic
quasi-geostrophic model.of the atmosphere.

Admittedly it has not been possible to obtain the objectives stated
above without some penalities, To accomplish them we have had to develop

a theory which has an a posteriori character. The main assumption

involved is as follows: The potential q in equation (2) is assumed to be
continuous throughout the channel. This will certainly be true when, as
must be verified a posteriori, the eigenvalues have an imaginary part
which is non-zero, If this condition is not satisfied then it may still be
true,as it is in the Rayleigh case,if the real part of the eigenvalues lie
outside the interval defined by [w . , w ] . [ This is the counter
min’ max
positive statement to Rayleigh's result that if c, = Im ¢ #0 then c.= Re c
must lie in the interval w. ., < ¢ < w ].
min r max
In addition, to obtain uniform estimates, it will usually be necessary in
most instances to uniformly bound |c| away from zero. Since c is a

function of k,® there will be a region in the complex c-plane in which

this is true, but again this region can only be found a posteriori,




From a mathematical point of view, it is not necessary to impose the
above assumption on q since Langer-Olver theory involving turning points
and singularities could be used, We have avoided this for we felt that it
would prevent two of our three over-all objectives from being achieved,
From a practical point of view, our assumption on g on the other hand is
probably too restrictive except for the jet-flows considered in DH. All of
our examples will involve potentials q which, as long as Im c # 0, are
analytic in y, ¢ and all other parameters 6 ,

Historically, Friedrichs seems to have been the first (194l) to
successfully relate Rayleigh type problems with q given in the form (4)
to Sturm-Liouville problems. Subsequent work by Tollmien (1935) and Lin
(1945) has led to a method,which we shall call the FTL method,which is
capable of giving much information about the neutral curve and the unstable
solutions in its neighborhood. We will use some of the results of this theorem
in Part III and refer to DH for a full discussion., It may prove useful to
others to note that recently Derome and Dolph (10)* have found another way
to relate eigenvalue problems of the type of this paper and to non-self-
adjoint classical eigenvalue problems having a ''zero' eigenvalue in the
classical sense. This has permitted the development of a perturbation theory
which has succeeded in clarifying certain aspects of the Eady model of the

atmosphere, since it takes into account North-South effects in the wave-

structure and has produced predictions more in agreement with observation,

*M. E. Mclntyre in a preprint entitled '""On the non-separable baroclinic par-

allel flow instability problem" apparently, made the same observation
for a similar purpose,



In contrast, the DBA method when applied to standard eigenvalue
problems seems to offer mainly pedagogical advantages in contrast to its
application here where it yields a secular equation,to an arbitrary order of
accuracy,which involves nothing except exponentials and monomials. However,
it should not be forgottén that it is, in reality, at the very least, a '"pedagogical
gem'' and the authors are most happy to join Anselone and his student Aalto
in their effort to get it more widely known, [ The authors find it hard to
believe that this observation dates merely from 1957 and not from the time
of Euler or Gauss and find it very surprising, indeed, that it is so little
known five years after the appearance of Brysk's article in the Journal of
Mathematical Physics. Could it be that there is also a communication gap? ]
With the aid of the DBA method there would seem to be no reason wWhy
the Fredholm theory, in adequate generality for most engineering applications,
should not be taught at the Junior level, More specifically, in addition to the
second order case considered here Aalto has shown what modifications are
necessary for an n-th order differential equation possessing a Green's
function or for a system of linear matrix differential equations which are,
at least,as general as that system described by problem 16, page 204 of
Coddington and Levinson (11), There is even the possibility of extending the
method to the semi-infinite interval if due care is taken with the singular
problem which would then arise and perhaps even to the doubly infinite
interval for potentials of compact support. Certainly its implication and

usefulness for higher-order instability problems such as that of the Orr-



Sommerfeld equation are worthy of investigation .

The rigorous mathematical theory provided by Aalto in the Banach space
of continuous functions is just one of many possible frames of reference to
which the DBA method could be used. As an alternate and one possibly more
familiar, to the undergraduate, it would be possible to work in Lz[yl, yz] and use
Tricomi's almost uniformly convergent series in order to discuss the
convergence of the successive approximations necessary to the solution of
the Volterra integral equation. In fact,since the Neumann series always
converges in any structure reasonable for applications,one might as well
assume that W 1is a world of Leibnitz in which a Voltaire space V exists
and then proceed with the method. Such a procedure seems preferable to us
since we feel that any mature mathematician will easily be able to furnish an
appropriate framework for his needs and by avoiding the detailed considerations
of any one of the methods, the procedure will be more accessible to others.

Before beginning, what might whimsically be called, a little backward
excursion into the 19th Century, it should be noted that care must be exercised
if spurious roots are to be avoided, In common with the series method of
Arnason (12) or the digital method of Haltiner (13)care must be used that one,
after an initial approximation, follows only the roots of interest. In general
since non-linear effects will take over and destroy the validity of any linear
theory shortly after instability has set in, it will usually be the case that
one is only interested in the first complex root that occurs, usually as a result of a

quadratic approximation,
/\ However, when in the frequent occuring case when q(.....c) is analytic
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in c, the Rouché—Horwitz theorem as discussed in Part III can often be useful,
while for the Rayleigh form (4), one can use the Howard (1961) circle theorem

and the FTL method as also stated in these references.
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Part I

An Adaption of the DBA Method .

I.1. The integral Equation for the '"Denominator' of the
Fredholm Resolvent,

As indicated in the introduction, the boundary value problem (2),
(3) is readily converted to an integral equation via the Green's function
for the operator of the left-hand side of (2) . By standard methods this

is readily found to be

G(y, s;k) = [ sinh k(y, -y>) sinh k(y_ -yl)] /k sinh k(y, -y,

The corresponding Fredholm integral equation can be written successively

as
Y2
(6) O(y,c,8k) = [  Gly,s;k)q(s;c, k, 8) f(s;c..) ds
"1
2
+ [ " Gly,s;.)als;c,..) B(s;c,.) ds
Yy

y [ sinh k(y -yz)sinh k(s -yl) - sinh k(y —yl) sinh k(s - yz)] q(s, c,.)pds

) k sinh k(y2 - yl)

y
2

+ sinh K(y-y,) [ [sinh 'k(s-yz)]/ [k sinh k(yz—yl)]q(s, c,.)f(s)ds
1



-12-

= 7 [sinh k(y - s)/ k] q(s;...)B(s...)ds + sinh k(y -y,) F(P)
]

where

Y2
(7) F(P) = [ "[sinh k(s —yz) q(s;...)) #(s)ds]/ [k sinh k(y, —yl)] .
"
In (6) the transition from the first equal sign to the second is
valid whenever the appropriate integrals exist and have the property that
2 4 Y2

JoC)ds = ( )ds - [ ( )ds.
v A Y]

It is the invalidity of this relation which seems to prevent an easy extension
to the doubly infinite interval since at least one of the integrals would fail
to exist in general, If q , were, however, of compact support this would
not interfere formally but a singular problem might result,

The transition from the second to the third equal sign in (6) involves
the computation of the difference of two Green's functions and is obtained
by two applications of the standard addition or subtraction formulas for
hyperbolic functions, The end result is hardly surprising since its kernel
would be the natural one to obtain if (2) had had an inhomogeneous term
and were to be converted to a Volterra integral equation directly,

Assuming as mentioned, in the introduction, that one works in a

mathematical structure in which the inverse to (6) exists, we proceed to
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formally derived the equation for the 'denominator:

of the first line of (6).

Setting

vV = fy [ sinh k(y - s)/k] q(s;... )
"1

equation (6) can be written as

(8) (I-V)9 = sinhKk(y -y,) F()

of the Fredholm resolvent

) ds

. . -1 . . .
In any structure in which (I - V) exists this can be written as

-1
p = (I-V) [sinh k(y-yl)] F(9)
Application of F to this yields

[1-F(I-V)" sinh k(y - yl)] F(p) = 0

As first asserted by Brysk (4) and first rigorously established by

Aalto ( ) the quantity

dleik, 8) = {1-F[(L- V)7 sinhK(y - y)] }
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is the denominator of the resolvent of the Fredholm integral equation (6).

We proceed to examine its structure, Let

p(y) = (I-V)  sinh k(Y'Yl)

then p(y) will satisfy the Volterra integral equation

wly) - 7 [sinh k(y-s)]/k] a(s;... ) u(x)ds = sinhk(y-x)

Y1

1
and from (7)

F[(1- V)™ sinh k(y-y)] = F[u]

Yy
= [ 2 [ sinh k(s -yz) a(s;.. ) p(s)ds]/[k sinh k(y, -yl)] .
y

1

Setting
(9) aoly) = J“Y sinh1-<—(}—’k;s-l q(s;.. ) p(s) ds

it follows that

(10) d(esk, 8) = [1-F(w] = 1 + oly,)/[sinh kly, - y)] .
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However, since m(y) satisfies (8), it follows by multiplying (8)
by [sinh k(y-y')/k] q(y';,. ), integrating on y' from v, to y and

using the definition (9) that o(y) satisfies

(1)  oly) = 7 [sinhk(y-s)/k] qs,...)o(s)ds* [’ [ sinh k(y -s)/k].
"] 1

*» q(s,...) sinh k(s -yl)ds .

In summary then, to obtain a Volterra integral equation for the
""denominator'' of the resolvent of (6) it is merely necessary to solve
equation (11) for o(y) and then set y = v, in (10). Alternately stated

if one wishes to define

D(y;c,k,8) = I+ oly)/[sinh k(y, -y,)]

so that

D(y,;c,k, 8%) = d(c,k, 8)

then the quantity

sinh k(Yz -Y].) [D(Y’C) kr 9) = I]

would satisfy (11) - the integral equation for the ''denominator'',
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While any of the above can be used better error bounds result when (11)
is replaced by an equivalent equation having a kernel bounded by 1/ Ikl Setting
ky .
o(y) = e ~ W(y), equation (11) can be replaced by

o ~2kly -s)

12) w(y) = 7 [(- )/2K] a(s) [W(s) + (L-e °%%)/ 2k] ds .

From this it follows that in place of (10), ¢ can be determined as a root

of the following:

(13) oly,nc) = 2Wiy,) + 1-e"20277) = o

[.2. The effective determinations of the 'denominator'' of the
Fredholm resolvent,

For any given value of ¢, the Volterra integral equations (11) or (12)
can be, in principle, solved to any order of accuracy by the Neumann series,
To obtain these solutions, even in principle, one must have a bound on the
potential q independent of the yet unknown eigenvalue '"c'" , This can
be achieved by restricting attention to a region of the complex c-plane.

In typical cases such as those treated by Rayleigh this will involve limiting

"¢ to a region in which its absolute value is uniformly bounded away from
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zero, That is since

lal = w7 Jwiy)-c]
M
<
.|
where |w"(y)| < M ,

to obtain a uniform bound it is necessary to select an n  such that

el > le | > n >0,

The explicit region ¢ = c(k) [c(k, 8) in general] in which this

assumption will be valid can only be verified a prosteriori just as the

assumption that q is continuous must also be verified. Assuming

that q is continuous and has been uniformly bounded as a result of some
such restriction as that given above for 'c' in the Rayleigh case, itis
possible to replace the difficult task of computing the terms

in the Neumann series for (l11) or (12) by replacing these equations, to

an arbitrary high order of accuracy,by equations for which the corresponding
series involves nothing more complicated than successive integration by
parts of exponentials and monomials, This is accomplished by use of the
Weierstrass theorem,since under the above assumptions q(y,c,..) can be
uniformly approximated in both y and c¢ by polynomials, In the sequel

we shall assume that an N(n) has been determined so that for
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PN(y;c, 8) =

one has

lalysc, 8) - PN(y;C,9)| < €(8) .

The assumptions on q will imply the existence of a bound for P
independent of !''c' but the actual nature of this bound will depend on what
method is used to determine PN . For example one may use the proof
of Lebesgue in which polygonal approximations are used (cf, 14 , p.219),
the method given in Courant-Hilbert (15 ) after a linear transformation of
the interval, the method of trigometric polynomials as it is described in
Widder (16 ), the method of approximation based on the fundamental
solution of the heat equation as it is described in Epstein (17 ), or a method
of interpolation. If q(y,c) is analytic in y then Taylor's series about

(yZ - yl) /2 may be the most convenient,

In any event the continuity of q enables us to uniformly approximate

the integral equation (12) by the equation

Uy) = [ Kly-s) P(s) [ Uls) + K(s)] ds
71

where for simplicity we have denoted the kernel of (12) by K(y).

This follows from the difference
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[W(y) - U] 17 Ky -s) {[q(s) W(s) - P (s) U(s)] + K(S)[q(S)-PN(S)]} ds

"1

1]

I’ Kly-s)a(s) [W(s) - U(s)]ds + 7 K(y-s)la(s) - P(s)]
4! "1

.[U(s) + K(s)] ds .

This is a Volterra integral equation for e(y) = W(y) - U(y) to which the
generalization of the Bellman-Gronwall inequality can be applied. Since we
will use this inequality many times we will sketch a new proof (due to
Stenger (18)). For notational simplicity we designate the last

term on the right of (16) by fy f(s)ds . It follows from (15) that

6!

lety)| < [T La/x) la(s)] le(s)] + |£(s)] ]ds
"1

since |K(y - s)| < 1/k ., If p(y) denotes a suitable non-negative function:

this may be written as an equality in the form

le(v)] = Y [@/k) |as)| le(s)| + [|£(s)| - p(s)] ds .
b4

Since this equality is equivalent toa first-order linear differential equation,

it follows by differentiation and use of an integrating factor that
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ley)| = ¥ exp [ ¥ |a(s)/(k)ds'|] [£(s) - p(s)] ds
Yl S

< exp[ 7 la(s)/(x)as'|] 7 |i(s)]| ds .

Yl Y1

Since |f(s)[ can be estimated with the help of (14) itis clear that |e(y)|
can be made uniformly small in y and c¢ by taking N sufficieutly large,
if the well-known apriori bound for U(y) is used. [For the sequel it should

be noted that the same argument will apply equally well if |K(y - s) I < F(y) G(s). ]

It is therefore clear thatif q is continuous it is sufficient to consider

(15) . Starting with the usual iteration scheme

(17) Upply) = S Kly =5) P(s) [U (s) + K(s)] ds
"
(18) U (y) = Ky) Ply)
also

it isA.clear that the Neumann series can be explicitly calculated by integration
by parts of terms consisting of monomials and exponentials in y , Thus not
only the usual Volterra estimate holds but the Neumann series can be explicitly

computed. For example,if one chooses Leibnitz W to be terra firma and

the Voltaire V to be either LZ(YI’ yZ) or the Banach space C on the

interval [yl,yz] reference to either Aalto (5) or Tricomi (7) will

e
xR

We are in the space age , da ?
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provide the necessary estimates. Since we are primarily interested in the
eigenvalue equation for c, we will restrict ourselves to the latter. Suppose
then that a number M has been determined such that after M iterations of

(17) one has that

[Uly) - U (D] < e (0).

We are now in a position to make an estimate on the secular equation for

¢ which, as will be seen in Part III usually implies a corresponding estimate
on the eigenvalues themselves., Since S(yZ,C,Q) is defined by (13) itis
convenient to denote the corresponding expression by SN(yZ, c, 8) when

W(YZ) is replaced by U(YZ-) and by S ) the same expression

MNY2e <

when W is replaced by UM(YZ) . Since

S(y,ic, @) - S, \(vyic,0)] < [Sly,ic,0) - Sy, ¢, 0)]

;c,0) - S (y.5¢c,0)]

+
1S, MN'’2

the use of the Weierstrass theorem and the usual Volterra estimates make
it clear that the left-hand side of the above can be made uniformly small if

q is continuous , Using the same subscript notation as above for S, SN

and SM to the corresponding d's , we note for example that in the

N

uniform operator norm the estimates of Aalto apply equally well to the
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interval I = [yl, yZ] . Thus if q is assumed continuous for complex c

in this interval, "] [ denotes the uniform norm, and if one defines:
M = max |[sinh k(y-s)/k] q(y, ¢, k, 8)] ;

the function f by f = sinh k(y-yl); the operator K by the relation

Kp = J‘y[sinh k(y—s)/k— q(s;...) P(s) ds ,
y
1

and the approximate Fredholm denominator by the relation

n

d (¢,...) = 1-F[0] [2 KPf], then
1

one can easily derive the following estimate:

(17) | d(c, ) -d (e, )< IFD 0£] [e - (= MP/p1)]

Here the norms are to be understood as above,

The requisite estimate now follows at once from the definition (13)

I.3. An alternate effective method for arbitrary k bascd on a
Sinh calculus.

While the method of the last section involves nothing more difficult

than successive integration by parts of products of monomials and exponentials,
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it appears simpler to us to replace this process by purely algebraic
operations via the use of the Laplace transform, followed by the inversion
process this may take one or several forms depending upon the algebraic
scheme preferred by the user. In one form the operational calculus becomes
automatic quickly while in others it is easier to establish bookkeeping rules.
Consequently we will present several closely related versions which can be
stated in terms of operations which apply equally well to (11) or (12)

when q(y.,..) is replaced by its polynomial approximation. No loss of
generality is involved if the interval [yl, yz] is replaced by the interval
[0,1] . Having accomplished this by a suitable linear transformation, let the

Laplace transform of an arbitrary function f(y) be as defined by the relation
[e @] -
() = 17 e 1(y) ay
o

Then equations (11) and (15) take the respective forms

2 2
18) b @) = (V") P @/dp) [p_(p) +1/(p° - k)]

(19) (p) = (1/2k) [1/p-1/(p+2k)] P (d/dp)[U_ (p) + 1/p(p +2k)],

Um+1
while p = P_(d/dp) [1/(p2 - kZ)
o N

and Up) = P (d/dp) [ 1/p(p +2K)]
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respectively. In the above p(p) has been used to denote the unknown in (11)

when q has been replaced by PN .

In view of the simple identities
(20) 1/p%-1%) = = 0/(p-) - 1/(pH]
(21) 1/p(p+2k) = (1/2k)[1/p-1/(p +k)]

it is clear that a simultaneous operational calculus for both (18) and (19)

can be developed by defining X\ = (1/2k) and interpreting (20} and (21) as
(22) ab = \a - \b

where a =1/(p-k) , b=1/(p+k) if (18) is to be solved and

a = 1/p, b=1/(p+2k) is (19) is to be solved. As written equations (22)
clearly indicates thatanoperational calculus may be based either on the left-
hand side of (22), the right-hand side or both. If the left-hand side is to
be used, it should be noticed that it will involve evaluation of terms of the
form piL(f) this would seem to indicate that delta functions and their
derivatives would occur. The use of an operational calculus based on the
right-hand side of (22) however makes it clear that in fact this does

not happen and so the usual operational rule of the Laplace transform reduces
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to the simple expression

(23) PL(f) = L[ (y)] . Thatis, the identity (22) implies

that all functions which occur in either (18) or (17) and all their derivates

up to the indicated order must have zero initial values,

The operator PN(d/dp) which occurs in both (18) and (19)

is given explicitly by

™ Z

_ BTy Jyqi
P (d/dp) = (-1y q, @'/dp

j=0

since each term in either (18) or (19) is a convolution of the kernel with
the product of a monomial with a function.

Before systematically developing these operational calculi,two
remarks are in order,

The first results from the fact that the transform of e.g. (31)

leads to a differential equation of the form
2 2 . d 1
P, )p-(@ -k)p = PN(E (—2——2)

N

in which all coefficients except that of the derivative free term of the left-
hand side are constant, This apparent simplicity is, however, deceptive,

since one wants solutions for p corresponding to small y and thus one is,
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in reality,faced with an irregular singular point at infinity, For N greater
than one this appears to cause precisely the complications the method here
hopes to avoid; namely reliance on special transcendental functions., The

second follows from the fact that equation (18) is clearly equivalent to the

differential equation

" 2 N sinh ky o B
po-k p-Plylp = PL) —% p(0) =p (0)=0.

This suggests the use of the transformation

which will be sufficient to lead to a solution if u,v satisfy respectively

the equations

"

u + 2ku' - PN(y)u =1/2 PN(u)

"

v' - 2kv' - PN(Y)V = 1/2 PN(V)

subject to the initial conditions wu(0) = v(0) = u'(0) = v'(0) = 0, ‘Power
series solutionstoeachof these linear equations will clearly exist and
converge everywhere but the relation to the solution known to be correct

and unique as obtained by the successive approximation process (22) is
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far from clear. Thus, for example, if PN =9, + quy a series solution

to the fifth power is:

2 3 2 2 4
u = q,y /4 -(q1/2+kq0)y + (<:10/4+3kq1 tepkiqg)y

2 2 3, 5
+ [-q0 ql/4 + k(q1 -6q1 -4q0) + k (12q1) - 48 qok ly

It appears that the convergence would be very slow at best, except for

small k

To resume the development of the operational calculi, note that the
one appropriate for (19) follows from that for (18) if p is replaced by
(p-k). Since there is more symmetry in the method when applied to (18) as
well as the fact that it involves hyperbolic functions thereby justifying the
name of this section, (18) will be used as a basis. Moreover, since

-(n+l)

dl (p°-%k%)] ™ /dp = -n(p® -x%) (2p)

it follows that the left-hand side of (18) can be written in any approximation
in terms of products of positive powers of p and 1/(p -kz). Thus once
the number M has been reached it is merely necessary to have a way of
finding the inverse transform of these.

Following up a suggestion of our colleague, Professor J. Ullman, it

is convenient to introduce a generating function a la Rainville ;
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® 2 - 2 2
> " (pz-k ) = NI - T+ .
1

Since this is always meaningful if the real part of p is sufficiently large,
it follows that
-1 ®

L [ = Yn (p‘2 -kz)'“] = [ysinh (k2 + Y)I/Z]/ [k2 +v]
1

1/2

2 2. -
Thus to find the inverse transform of (p -k ) I itis merely necessary
to find the coefficient of the j-th power of the right-hand side. This may be

computed easily by setting

2 2
w =k +vy

2
and noting that since d(w )/dy =1, the Taylor series for the right-hand

side of the above identity becomes

j 21/2 21/2
o; 1 d‘][sinh (w )/ x [ (w )/ ] Yj+1
— .
j=0 3¢ d(w’)?
y=0
2 2.-14j

Thus the inverse transform of [(s -k ) ]J corresponds to the coefficient

j+1
of y‘]+ in this series .

Once this has been found and denoted by, say, h(x) the inverse
transform of pJL(h) is readily found by simplification of the standard

rule given by (23).
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These operations, while tedious, are all elementary, and the work
can be arranged systematically once one notes that the equation for

M . .
PP = [2TT @’ + TTM )l +... v s

-
j=1

- [MEQ) + (M=) (@)% +... 2 M+ 2™
M-1

= [(:fQ)M + T (M-k+1) (fQ)k]f
k=1

It is also convenient to introduce the product functions

so that

and

n
-1, n m, n+l

This implies that
k k k
(fQ)" f = (fQ) llo’l = Q [T] ,k+1]

and hence some simplification above.
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As noted earlier the procedure for solving (18) is based on
successive use of the identity (22) .

For this purpose it is convenient to let a =1/(p-k), b= 1/(p +k),

n-1 n-1

N =1/(2 k) and to introduce two new combinations r = bN ab and
n
t =)\m-lam-lb where r., =a, r, =a-b, t =b and t. =a-b,
m 1 2 1 2
j j+1
Since dal/dp = -ja’
. -
dbl/dp = -jalt

the successive approximation process based on l l = ab will involve
o

. m._n . . .
the eventual inversion of a b until the number M is reached..This is to be

by
accomplished Ause of the identity ab = Xa -\b in order to keep the

successive derivative of a and b separated can be simplified by noting

that
n-2 n-l1
r = r -
n n-1
(24)
m-2 m-l
t = a -t
m m-1
+m - - -1 -2 n-l
, ot - nmzambnz)\mzam . +)\n bn ¢
n m n-1 m-1
_Zrn-l tm-l
so that
2 2
rntm = (a +b) rn_2 tm-Z - 2rn_1 trn-l .
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The authors are indebted to their colleague,Professor T, Storer,
for derivation of the last recurrence relationship. Successive use of the
above will result eventually in the necessity of inverting a sum containing
coefficients of (pi—k)_j for different powers of j ., After the number M
has been reached, the inversion of

n+m-2

-m -n
(25) r t, = (1/2k) [(p-k)  (ptk) ]

can also be accomplished by noting that

n+m-=2
(k) r t = [residueof (r t eP’) at p=k] +
n m n m
: PY
f t = -k
[residue o (rn m e ") at p ]
The first of these is given by
-1 t - -1
(26) 1/(m-1)! d7 7 [Pt (p+k) " )dp
p=k
and the second by
-1 t - -1
(27) 1/(n-1): a [P (p-K)"]dp"
p=-k

The amount of work necessary for this procedure will be illustrated

in PartIllfor M=1, N=2,
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Experience suggests that a mixture of these two approaches may
be the most efficient., That is, one basically uses the combination
2 2 . iy . .
1/(p -k ) and its powers except when it is necessary to differentiate.
It is differentiated as 1/[(p -k)(p+k)] . The identity (25) need be applied
only at the very end or the inverse can be found by the standard method just

given above,
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Part II

Asymptotic Methods

Although the methods of the last section are easy to use, they
do involve a great deal of tedious computation if either M, N or both
are large, Under certain circumstances the use of asymptotic methods
will yield simple estimates for the eigenvalue although as pointed out
to us dramatically by Professor K. M. Case care must be used if
inconsistency are to be avoided - see part III for details. In this part
we shall describe two methods yielding asymptotic results for large k.
This is not as restrictive as it might appear at first glance since many
parameters are frequently lumped into a parameter which we have denoted
by k2 . For example for the linear quasi-geostrophic problem of baroclinic
instability, the quantity which would correspond to our k2 after the
application of the Liouville-Green Transformation is actually
k2 o poz / fo where o is a measure of static stability, P, 2 standard
value of surface pressure, fo a standard value of the Coriolis parameter,
and k the wave number, [For further details see Derome-Wiin-Nielsen (2)].
Thus there are many different regimes which would correspond to large Ikl
in equation (l2), For an excellent account of the relationship between the

methods of Picard of Part I and the asymptotic methods associated with

equations (11) or (12) the interested is referred to Erdelyei (19) .
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II.1. The Method of Olver,

There appears to be little advantage in dealing with (11) or (12) in
contrast with dealing with (2) directly. For the latter, one seeks a solution

of the form

Kk m-1 . m-1 .

(28) By) = e (= a/K+ e) + e (2 b/K +e,)
. J 1 . 2
j=0 j=0

in which the a's are defined recursively by

aO = 1/2k
a. = 1—[::1! + fy q(s, c,8)a, ds|]
jt+l 2 j 0 j
j+1
b, = (-1 a,
J J
Now Olver has established the following:
Theorem(IL, 1): There exists a solution of the form (28) where

le.l < exp [ 7 la(s,c,0)/ (2K as|] 7 |a_/ (k") ds]

Q. a
i i

provided Re k>0, Here k' =k if k>0, and k* = lzk if Imk#0,

The following form of Olver's theorem is more convenient for our

purposes, We omit the proof which is similar to that of the above theorem,
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Theorem (II. 1'): There exists a solution of (2) of the form
K m-1 Kk m-1
! -
(28) By) = e’ [ = (@ /kKP)+el+e™ = b /KP
p=0 P p=0 P
where

le] < 2 exp 17 lals, c, 8)/ (2k¥)ds | 7 |am/(km)dsl
0 0

where k™ =k if k>0, and k' = %—k if Imk#0.

To use this method one chooses an m in the above form (28') and
then sets (bm(l) =0 , where @ (y) denotes that part of (28) which
m

remains when one sets ¢ = 0,

II.2, An asymptotic method based on the Riccati equation.

In this section we consider the equivalent equation

(29) W'+ 2K (y,c, k) w + K gly,c, k) w =0

since the method is unaffected by the presence of a first derivative term,

and thus is sometimes more convenient,
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The substitution [cf. e.g., Cesari (20)]
(30) w = exp [k [ udy]
reduces (29) to the first order Riccati differential equation

(31) u'+2kfu+ku2+kg=0.

It is now assumed that for each integer n in the range 0 <n<m+2

the functions f and g admit the representations

n-1 .
(32) f = 2 f(y,e)k? + £ (y,c,k) k °
. j n
j=0
n-1 . _
(33) g = Z glv,a k) + g (y,c,k)k "
j=0 7 §

In the asymptotic developments of this type it is usual to assume
that fn(y, c,k) and gn( y, ¢, k) are uniformly bounded functions of k
for all y on I, where I denotes the interval 0 <v< 1. With such
assumptions the solutions we shall obtain below will have the usual
asymptotic properties. However, since we also develop error bounds
on approximations to solutions of (31), we do not require that fn(y, c, k)
and gn( ¥y, €, k) be uniformly bounded functions of ko . In fact we may
allow fj(y, c) and gj(y, c) to depend on k. This arbitraryness in f.

J

and gj introduces an additional degree of freedom for the user who
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may want to concentrate: (i) on choosing expansions of f and g which
minimize the error bounds in a certain sense, or (ii) for purposes of
solving the eigenvalue problem (2, 3) to choose an expansion of f and g
which, while not necessarily yielding the sharpest bounds, makes tract-
able the integration of the first few coefficients in the resulting approximation.

The equation (3l) may be solved formally by a (not necessarily convergent)
series of the form

o)

(34) u = =

u.(Y)/kj }
j J

0
From (32), (33) and (34) we have

(o 0]

W = = oul/K
j=0
(0 0] . (0 o]
kg =k = g /K = 2 g+1/kJ
J:O J_-l
2 o j+l j
ka = X Z u u_+1_i/k
j=-1 i=0 ' J
oo j+l1
kfu = = = f u._l_l_./kJ
j=-1 i=o ' JT°7

(*) At this stage it is perfectly all right to ignore the fact that (32) and (33)
may not have convergent expansions.
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When these are inserted into (3l) it becomes

oo jtl
[u' + { = (2f. +u.)u.
1 1)

)} o+, ]/kj=0
j=-1 i=0 it

+1-i

Defining v by the relation

2 1/2

v - i- (fo = go)
one obtains the relations
35 = -f
(35) uO 0 + v

| i
= (-1/2 2 + .
w7 CH2vlu e 26 ug kg v @R tu) e ]

t=1

provided v #0 in I.

As stated in the introduction,the error bounds we are about to derive
are not only new but appear to be the first that have been derived for the

differential equation given in (3l)

Letting Um stand for the sum of the first m-1 terms in (34)

(where m >2), we can define ¢ by the relation

(36) u=U +¢

which, when inserted into (31) yields the following equation for ¢ :
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(37) e +2k(f+U e + kel = 1
m m
where
r = -[U +k(2+U +Us 4 )]
m - m m m g
2v um 1 m -1
3 = —_— —_
(38) =1 — [ gnTH(Y.C,k)+ ‘Z Zlﬁfnrﬂ-i(y’c’k)
k k i=0
2m-3 m - m-1
+ = Ko > uou ]
j=m i=j+2-m b !

The transition from the first equality to the second follows from
the expansion of (38) in connection with (35) and (32, 33). It may be carried
out in a fashion similar to that leading to (35). We omit the details. In short,

1

we have that rm =2v um/km- + terms from which l/km can be factored.

Notice now that
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f+U

1]

2
f f/k+f1 k
0+ 1/ 2(y, c, k)/ k +u0+u1/k

+ (Um - u, -ul/k)

(fg +ug) + (£ +u)/k+ £y, c, k) + kZ(Um - ug - u/k)] /-

!
v +[2vf1 - u -Zfl(v-fo) -gl]/ka

+ [fz(y, c, k) + kZ(Um -ug - ul/k)] /kZ

1
v - (uo - ZflfO +g1)/2vk

2
+ [fz(y, c,k) +k (Um -u_ - ul/k)]kz

0

where (32) and (35) have been used to obtain the last equality, Thus if

one defines

! 1 2
= 2 - -
p(y, c, k) vk([1 (£, +g +v -2ff kv

]

and

T(Y’C;k) = Zk(f+Um) - I‘L(Y:C,k)

equation (17) can be written as
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' 2
e + H(Y’C,k)g = r - ke = T(Y,C,k)ﬁ ’
m
from which it follows that
t 2
(39)  ely) = T exp[ [ w(s,c,k)ds] [x_(t) - ke (1) - p(t, ¢, k) e (t)]dt

Yo y
where Yo is an end-point of I.

We will now assume that the following is valid.

Assumption (II.1) : For all points §,m in the order Yo E,my

the relation Re p(§, c,k) < Re p(n, ¢, k) holds,

Consider that portion of (39) given by

(40) o (oK) = [ exp [ uls, k) ds] r_(vdt.

Now if £(y) is a point on I in the order Yo * E(y), v such that

1-exp [ f5) pat' )| > |1-explffpat']]
y y

nv

for all t on I in the order Yor t0 Vs and provided that rm(t)/p(t, c, k)

is absolutely continuous on I, integration by parts of (40) yields
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y
b (yick) = [1-exp J"yo patl r_(yo)/uly,, c k)

t d
+ j‘y[l -exp [ pdt'] I (rm/pL) dt
YO Yy

so that if one notes by assumption (II.1) that

€

|1-exp[ f° pat']| < 2
y
one obtains the estimate
E(y)
@) e, ekl < X (voe k)= [L-exp [ pat] r_(y )/kly,, ¢, k)
y

+oy li r (t)/p(t, c, k) dt |

e
b

It should be noted that P (yO, c,k) = 0 and that pm (y, c, k) increases
as y traverses I from Yo to y; on I. If rm/p is absolutely
continuous there exists a non-negative Lebesque integrable function

)

sksk h th
P (y, c, k) suc at

sk _ y ki
pm (Yo C’ k) - f Pm (t9 C: k) |dtl °
70

Under these circumstances let us make the further assumption that for

all y in I,
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2
(42) 7ok (mde| < ey

Yo Yo

uA

P (t, e, k) |dt|

where o is a constant which will be specified below., Under Assumption (II.1)
t
it follows that | exp [ J e dt'] l < 1 so that the estimate (41) implies the

y
following :

43 el < P llrtten] @l +Q+ra)o (g e,0)] |dt]
Y0

The Bellman-Gronwall lemma implies that

(49 el < Grarexp [ [V [r(t ek at' (] 7 o " (1 ¢,k |dt]
Yo Yo

Inserting (44) into (42) yields

fy |k ez(t) dt| < (1+0{)2 fy exp [ ft |27 (s, c, k) |ds]| . [p:;(t,_c,k)]2|dt|
Yo ) Yo Yo

b3 2
< x| y-y,l 1+e)® exp[ ¥ |2(t, c, k) at] - [o_ (v, 1]
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so that (42) will be satisfied if

k 2 k
45)  a/(+a)” > k| ly-ygl exp [ [ |27(t, ¢, 0)dt] ] p* (v, ¢, k)
m
Yo
for all y on I.

Now if B denvtes the maximum with respect to y of the right-hand

side of (45) , it follows that @< i— and so
2
a> (l+a) B .
That is

2 1
@ —Zoz(zg-l)+1§ 0, 0

A
@™

nA

S

This last inequality will be satisfied for all « such that

1 1 2 1/2 1 1 2 1/2
— -1 -[(=— -1 - —_ . _ . -
25 [(ap )" - 1] <@g 1+[(2ﬁ 1)° - 1]
We summarize the error bounds in the following theorems:
Theorem (IL.2) : Let rm/p be absolutely continuous on I, where r

is defined by (38). Let pm (y, c, k) be defined by (41), and let

Al
b

1
B =|klexp fI | 27 (t, c, k) dt | fI P (t) lat] < 7
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If the Assumption (II.1) is satisfied then the differential equation (31)

has a solution given by (36) where

e < Wroyexp [ [ [7(tc, k) dt]] p*(y)
Yo
with
1 1 2 1/2
@ = 551 -[(ZB -1)° -1
If we denote by U(t) the expression
(46) Uly) = k7 [U_+e] at

y sk

= k fy* U_dt + n(y)
Yy

where y* is on I, then the substitution (30) and Theorem (II.1) imply

the following:

Theorem (II.2) : Let the conditions of Theorem (II.1) be satisfied., Then

the differential equation (29) has a solution

(47) w(y) = exp U(y)

where U(y) is given by (46) and where



-46 -

In) | < Jk| +e) exp [ [rite k) dt] [ o~ (t,c,k) [dt] .
= "
L y
Let us now describe the application of the above for solving the problem
(29) together with w(0) = w(l) = 0. To this end we construct two approximate
solutions U(l) and U(Z) corresponding to y. =0 and y,_ =1 respectively
m m 0 0

so that two solutions of (29) are given by

wl(y) = exp [ k f;’ (US)) + e(l)) dt ] , WZ(Y) =exp [ k j‘g’(Ul(j) + 5(2)) dt ] .

Then clearly W(y) = WI(Y) - WZ(Y) is also a solution of (29) which satisfies

W(0) = 0. Upon setting W(l) = 0 we obtain the equation

1 2 1 2 2 i
j‘y[(U()-U( by p W @y, o EZnml g Fr, g,
0 m m k
1
In order to solve the eigenvalue problem we would replace a( ) and
2
s( ) by zero in this equation and thus find ¢ = ¢c(k). We would then check

to see that the conditions of Theorems (II.1l) and (II.2) are satisfied,
and if so, obtain a bound on the error of the approximate eigenvalue. The
procedure for obtaining such a bound by use of the above theorems is

described in Section III.
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III. Error Analysis and Examples

We shall now study the relationship between the error in an approximate
solution and the error in an approximate eigenvalue and we shall illustrate the
preceeding theory with a number of examples.

III.1 Error Estimates for the Secular Equation

Our method involves the application of either Theorem (III.1) or Theorem (III.1').
e
Theorem (III.1) is Roche's theorem, which we state in the following form.

Theorem (III.1): Let F(c) and &(c) be analytic functions of ¢ in

= . - < R s = 0. = 1 s
D ={c Ic cal T r0>0} and let <I)(ca) 0. Let m(ro) inf |<I>(c)| >0
c-c l=r
a 0
and let & = sup IF(C) - @(c)l <_rn(r0). Then F(Ct) =0 for some c, ¢ D, and so
ceD -
- < .
,Ct Cal =r0

Theorem (III.1'): Let F(c) and &(c) be differentiable and real on an

interval I. Let F(Ct) =0, <I>(ca) =0 where c, and c areon I. If
m = inf |<I>'(c)| # 0 then lct - cal < 6§/m , where & = sup |F(c) - &(c)]| .
cel cel

Theorem (III.1') was discovered independently by Mr. H. W. Hethcote.
Its proof follows by an application of the Mean Value Theorem.

Let us return to the equations (2, 3) and let us assume that V] =0, Y, =1
and that q(y,c,.) is an analytic function of c . It then follows that a solution
of (2) is also an analytic function of ¢ . The theorems which follow are thus
tailored to Theorem (III.1). Similar statements of theorems tailored to

Theorem (III.1') can obviously also be made, but these are omitted.

Theorem (III. 2): Let (y,c,k) be an approximate solution of (2) such
¢a

that cpa(O, c,k) =0, cpa(l, ca, k) =0 and such that cpa(l, c,k) is an analytic

function of c¢ for Ic -cC l§_ T

N o Let a(y, c, k) be analytic in |c - Cal <7t
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and let there exist a solution ¢(y,c,k) of (2) such that |¢ (y,c,k) - ¢a(y,c,k)| <6

where 0<:y<=l, ]c-cal<:r If inf{|¢a(l,c,k)|: lc-ca =r0}>=6

0
then there exists a function ¢(y, c, k) which satisfies (2) and (3), and for
which |[c =-c |<r .
a t' = 0
This theorem applies directly to the Sinh calculus method and also to
Olver's method.

The DBA method also provides a simple <criterion on the error of an

eigenvalue. In the notation of Theorem 3.1 we can take F(0) given by the

right of (13) and &(c) = dn(c ,...) . Abound & on F(c) - &(c) is given
by (17). If ¢ =c_ exists such that d (¢ ,...) =0, suchthat d (c,...)
a n n' n n
is an analytic function of c¢ in lc -c ‘ < r_ andif m(r ) = inf d (c,...
n = 0 0 IC-C '_rn

then the conditions of Theorem (III.1) are satisfied. Hence we have

Theorem (III. 3): For the DBA method, let dn(c ,...) be an analytic function

of ¢ and for some r_> 0 and let rn(ro) =inf{dn(c R I lc -cnl =r }

0 0

If the bound on the right of (17) does not exceed m(ro) then there exists a

solution ¢(y, Cy k) of (2) which satisfies (3) and for which lcn -c < r

el < 7o
Theorem (III. 3) can be applied in the Sinh calculus method and also

to Olver's procedure.
We emphasize that the existence of an approximate eigenvalue which

satisfies the conditions of Theorem (III. 2) or (III. 3) simultaneously illustrates

the existence of a solution to (2) as well as yields a bound on the error of
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the approximate eigenvalue. Thus, once we have a crude approximate
solution which satisfies the conditions of either of the above corollaries we
can proceed with assurance to determine a more accurate solution and
a fortiori to determine c, as accurately as we please.

Let us next illustrate the application of the Riccati differential equation
method to the equation (2). To this end, we list the first few approximations

applicable to this equation in Table I.

u r

m m m
1 =
4 +1 q/k
2 = +1 k
u0 + q/
3 uo(l + q/ZkZ) —q'uO/Zkz - q2/4k3
! 3
4 u. (1 + q/2k2) . -(-q'"" + q2)/4k +u qq'/4k4 - q'2/16k5
0 3 0
4k
Table I

It would have been simpler to carry out the analysis of Section II. 2
without the presence of a first derivative term in (29). We shall now take
advantage of our allowance of the presence of this term. We observe

that the transformation

(48) ¥exp [ F(y) dy
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does not alter the solution of the eigenvalue problem (2), (3) provided that
F is continuous on the interval [yl , YZ] = [0,1] This fact will now be
used to considerably sharpen the error bounds for the approximate solution
of the Riccati equation corresponding to the secular equation.

The procedure is to choose an F 1in (48) which elimates a suitable
term of a particular T in Table I, or replaces that term by a term of
higher order. Consider for example the case m =4 . The transformation
(48) with F = f3/k2 transforms (2) into the differential equation

f

1
+ = 4
k

IH,
oNw v

T+ 2k(f3/k3)¢' K51+ %
K

oo

Upon transforming to the Riccati equation we obtain the approximation

2 1 2
(49) U, = 9, +q/2k") - —@+[4q)
8k
! 1 2
r, s g - 3 9 Ja
4k 16k

1 2
where f3 was chosen such that u4 =0, i.e., f3 = g[—q' +fq ].
2)

Starting with (47) with s(l) = s( = 0 we obtain an approximate

solution ¢ . Hence we set
a

1
. 2nmi
o(c) = [W) (y,0) -ulP (y,c)]ay - 2T
0
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and define F(c) by

(1) (2)

F(c) = @(c) + n (1) - n (1)

where n(l)(y) is defined by (44), y* =0 ; n(l)

(2) (1) (2)

corresponding to Yo = 0

(1)

and n to vy, =1 . Hence if § and 6 denote the bounds of mn' (1)
2

and n( )(l) as given in Theorem (II. 2) and if these bounds are uniformly

valid in the region D ={c : |c - cal < ro} then we have

Theorem (IIL. 4): Let <I>(ca) =0, where &(c) is defined above. If for

some r_ >0 we have m(r)) =inf {Ifb(c)l : lc -cC l =r } >6(1)+6
0 0 a 0" =
then there exists a function ¢(y, C k) which satisfies (3) and for which

lc - C < r

a t 0"’

III. 2 Examples

1. Examples of the '""Sinh'' calculus

Let P3(d/ds) =qq *

2
—qo - ql d/dp +q2d /dp

and M =1. Then it follows from (34) that

(50) b, = (/19 a1/ (p-1)% + 1/(p41) % - (1/2K) L/(p-K) - (1/21) (1/p+k)]

'3 - (/2% (U (k2 + (1/2K) [/ (p-k) -1/(p+k)]

1/(p-K) (p+k) = (1/2K) (1/(p-K) (1/p-K)

1/(p-K) (p+K)2 = (1/2K) 2[1/(p-K) - 1/(ptk)] - (1/2K) (1/p+k)°

(k) (p) > = (172197 [/ (p-K) - L/(p+R)] - (1/2k) 2 [1/(pHk) = (1/2K) (1/(p+k) ]



-52-

Using these in (50), taking the inverse transform, setting y =1 it follows

that upon collection of terms that (50), with vy, = 0, v, = I becomes

y; =0
kp(1 ) + sinh =0
y, =1
2q q q
. 0 1 1 1 2 1
sinh k ( - m - k_2k3q_E_l;+1)+COShk[2qO+2ql+E+P]—O

Following the suggestion of the last sentence of section I one could

more easily obtain the equivalent of (50) by writing

2/(p%-k%) [ay/(p%-K%) + a1/ (p-K) (p+K)]/ds

©
—
i

+ d°[1/(p-k) (p+k))/dp°]

3 3
4o/ (o8 o+ © + q [1/(p-10)” (1) + 1/(p-K)  (p#) ]

4 4 3 3 2
+ 2, [1/(p-10* (p+10)* (p+0° + 1/(p-1)” (pH)° + 1/(p-1) *(p-19 "]

The inversion could then be accomplished either by (40), (4l) or by
successive uses of (39).

2. An example in baroclinic instability

Consider a case of baroclinic instability in a quasi-geostraphic model
studied by Derome and Wiin-Nielsen (2 ). The differential equation for this

model can be written as
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2
w' - [2/(x +c-1)]w' -k w =0

which is to be solved subject to w(0) =w(l) =0 .

The transformation
w =(x + c-1)¢
reduces the above equation to
(51) o' - k2¢> =2/(x+c-l)2¢

without affecting of the boundary conditions.
Upon combining Olver's method with the DBA method, or directly

using the procedure of Section (II.1), (28) with m =2 yields the approximation

1/2
(52) c = 1/2 + 1/2[1 - 4(coth k)/k] /
a —
1,2
This turns out to be surprisingly accurate; the error in the approximation
-2
being O(k ) as k—=> oo . A closer examination of the method of
Section II.1 yields an explanation for this.
If in Olver's method described in Section II.1l we choose the indefinite

integral form for the coefficients rather than the definite integral form we get
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. 1 2 _ -A
aO—A(arb1trary) al_ZAf_,___—f Sl
(x+c -1)
1 2 1
b =1, b =35 [———s dx = ———
2 -
0 1 2 (x +c - 1) x+c-1
with this choice of a, and bl we get
X
A
a, = - 7% [q' - q [ qadt]
a A [ 4 2 (-2) ] 0
T T g v 3 -1)  (x+c -1
4 (x +c-1) (x +c ) (x +c )
and similarly for b'2 . In view of Theorem II.1' Olver's method thus yields

the exact solution to (51) above:

1

ky
= A 1 -
¢ el X +c -

1] + e
A and ¢ can be determined so that & satisfies the condition

The above result brings up the following question: When can we
directly apply Olver's method to the boundary value problem (2, 3) so
that in computing only a, and a,, ¢ =o(1) as(q‘ k = o? Olver's

procedure (Theorem II.1) provides as answer in the case when

1
fo |a(t, c)dt]| = o(k) , namely that

¥ Here c, is the approximate value of ¢ obtained in using only a; and a
in equation (28).
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1 x 2
(53) la(x, k) - 5 (f a(t,c)at”] = 2F(x, k) ;
Upon setting
x
(54) J alt,c)dt = -2u'/u
the equation (53) becomes

(55) u' + F(x,k)lu = 0.

From this, we obtain

Theorem (III. 5): Let F(x,k) be any absolutely continuous increasing or

decreasing function of x defined on [0, 1] , such that lF(l, k) - F(O0, k)l = o(kz)
as k—=> o . Let u be any solution of (55) which does not vanish on
[0,1] . Then the function q defined by (54) satisfies (53).

For example, if we take F =0, (55) yields u =c.x + c_. , where

1 2

where c

c. and <, are arbitrary constants, so that q = 2/(x + c3)2 3

1

is an arbitrary constant.

3. The elementary linear eigenvalue problem

We consider here finding approximations to the eigenvalues of the

linear problem
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(56) ¥+ KT = f(x)U Y0) =Yl) =0

where for sake of simplicity we shall assume that f(x) is independent

of k. We shall use the method of Section (II. 2) based on the Riccati
equation. Our bounds on the error of the approximation are the sharpest
known to us.

It should be noted that the Liouville-Green transfromation

y
= ! \/

x = K INZ Ly e Y
41

o = [ +aly e ] V4

may be used to transform (2) into an equation of the form (56) above, where

2
if k +9(y,c,k) is a twice differentiable function of y that does not vanish

374 a2 / 4

-1
in [Yl , Yz] then F(x) = - (k2 + q) — (k +q) is often a

dyz

bounded, slowly varying function of x and k. Thus our assumption that
f(x) be independent of k is not unduly unrealistic.
Solution: By use of Table I we obtain

ik[U(ll) - U(lz)] = 2ik , r, = f

Hence we obtain the approximation k =nmw . Let us check the error.
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By equation (41) ,

* _ l sin kél X '
(57) P = == [I£0)| + 1 [£'(t)] dt] 0<£<1
’ k 0
: ) 1
pr; (%) = lﬂli—li(%ﬁl[lf(l)l + [ |f(t)]dat] o< n<1
, K .
Since |T(x,c, k)| = luo - Ul] =0, we have by Theorem II. 2
5% 1 l
By = kfp, (®dx < < [lgo)| + [ [£'(t)[at] = p
I k 0
. 1
B, = kfp_ Hxdx < = I[l0)] +J [f(v]at] = g
S k 0

Let us set
B:k = man (ﬁi , 6'2)

and assume () that [3* < 1/4. We then compute

Q:—T—l-\/(_l__l)z_l

25' ZB*

i This can always be achieved for lkl sufficiently large
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Since moreover

1
sk & 1
P, 10+ Py ¥ S 5 [l&0) ]| + £ | e [£1(t) | at]

b

we have the following result:

There exist a solution

Ul(x) UZ(X)
y = e -e

of (56) where, for all k satisfying [3¥ < 1/4

1

IUl(l) -U,(1) - 2ik| < (L +)[|£0)] + [£1)] + S ]f'(t)ldt]/kz
0

Clearly, U (1) and U,(l) are analytic functions of k in [k - nm| < &

for all §> 0 .

Let 6> 0 be given, and let k_ be sufficiently large so that

0

1
(58) 5 2 W+ ll€0)] + [an ]+ |20 | acl/(sy - 8% = plo,k,) .
0

Then it follows by Theorem (III. 4) that if nm > kO + 6 , there exists

and eigenvalue k of (56) such that

[k - nw| < p(6, k)
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-2
Note that p(6,nm) =O((nm) ) . The best bounds obtainable by Olver's
-1
method satisfy p(6,nmw) = O((nm) ), and our result is the sharpest known to us.

We next illustrate the use of the equations for obtaining approximation

4
on eigenvalues of (56) that are accurate to O(1/(nm)’) . Upon substituting
1

the first of (49) into (47) and setting e( ) = 5(2) = 0 we obtain the approximate
equation

2 - 2F/2k” = ZBT

k

or

2

k™ -(nmk - F/2 = 0.
where

1
F = [ f(t)dt
0

Solving the above, we get the approxiamtion

_om g s
ko= S N oriam?]

for large n .

Now by Section (II. 2) we have p(vy,c, k) =2ik,

ZuOf

2
- _ £t . - .
0] = = f'/k” . Hence,if T, r4(t) is

3
(y,c, k) = Zk[f3/k +U, -u

given by the second of (49), we may take
J
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% X
py (0 = [r (0] i |z (1) dt]]/k
1

py %) = [, r1 ey e

and

B, = k epr; |2+(t, ¢, k)dt | jl'p:;,l(t) dt

< k eepftEr(t, e, Wdt] p, (1) = B
I ’

B, = kexp[ |27(t, c, k)dt| [ pz NOLE
I 1
< kexp [ [27(t, ¢, k)dt| p::, ,(0) = B

I

Hence with B =man (B, , B}y) < 1/4, we have

a = (7-1)- «/(—_1;':_1)2_1
ﬁ ZB.
Moreover, if k>=k0,
(59) & > (1+a) [p: LD+ pz, 5(1)] expfI [T(t, c, k)dt| = p(8, k)

and if n% [1+ N > k_ + 6, there is an eigenvalue k of

1- ZF/(nTr)Z J 0

(56) such that
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nm

-4 -4
Note here, that p(6,k) = O(k ') = Ofnm) ].
Summing up we have

Theorem (III. 6): The boundary value problem (56) has solutions

¥ =k, x) where
(a) |k - nr| < P8, k)

with p(6,k0) given by (58) , or

nw Na
- - 2 <
(b) lkl 2 LN ok am2 T < ple k)
where F = [ {(t)dt and p(6,ko) is given by (59).
0
4. Exact solution of the Riccati approximation

It is possible to deduce results for the Riccati equation which are
analogous to the results of Theorem (III. 5). For example, in solving

(31) with g0=l+q/k2, f =0, f =g, =0 if s>0 we obtain

0

Vo= AN Kl
vl
U2 —kv[l- —2;—12]
_ 1 d v'! v' 2
T, = - plgl- 2y T (F) ]

In view of Theorem (III.5) we now ask '""under what conditions is
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1
[lrz(O)/Zv(O)l + lrz(l)/Zv(l)l +f |d(r2(t)/2v(t)/dtldt =o(k2)
0

2
as k—> o ?'" The simplest case occurs when rz(t) =o(k ) , that is,

1 2 2
0 + uo = o(k’) . Proceeding as in the proof of Theorem (III. 5) we easily

establish the following

Theorem (III. 7): Let F(x,k) be any increasing or decreasing function of

x defined on [0,1] such that |F(0,Kk)] =0(k2) , | F(L k)| =0(k2) , and let

w be any solution of
w' + F(x,k)w =0

which does not vanish on [0,1]. If v = CZWZ where c, is an arbitrary

constant, then the equation above is satisfied.
For example, if we set F(x,k) =0 we find that U2 given above is
2 -
the exact solution of (3l) whenever q(y,c,.) =k [(clx + c2)4 - 1] where S

and c, are arbitrary constants.

5. Connection with oscillation theory

A problem related to the one of our present paper is whether
the equation

w' +p(t)yw =0,

where p(t) is real,is oscillatory or disconjugate on [T, ®) . The equation

is oscillatory if all of its non-trivial solutions vanish infinitely often on
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[T, ®) , and it is disconjugate if each of its non-trivial solutions has at
most one zero on [T, ) . An excellent treatment of this problem and
a good summary of current known pertaining results is given by Willett
in (22). Willett appears to be the first to give workable criteria that
are simpler than solving the above equation and then testing whether the
above equation is or is not disconjugate on [T, o) .

We relate some of Willett's criteria to our equation (2) with (3)
replaced by ¢(0) =¢(l) =0 . Upon making the transformation y =1/t ,
¢ =y/t, using Willett's results and setting t =1/y we obtain the following

Theorem (III. 8): Let S be the set of all numbers c¢ such that

2
k= +q(y,c, ) is real; let P(y) be defined by

Y2 2
P(y) = -f (k +gq(t,c, "))t dt,
0
and let S' < S be such that any one of the following conditions holds for
¢ in §' and 0<y<1:

y
(i) p?‘(s)s'2 ds < P(s)/4, or

0
y s _ Yy _

(i) [ (S Pz(t)t2 dt)zs st < (l-¢)f Pz(s) s 2ds/‘]: for some ¢ > 0
0 0 B 0

then S' contains no eigenvalues of (2, 3).
The proof of this theorem is,in part,based on the following con-

nection between the above equation in w and the equivalent Riccati equation
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W‘+p(t)+w2=0.

This Riccati equation has a continuous solution on [T, o) if and only if
the above second order equation in w has a disconjugate solution.

There exists a wide range of possibilities between an equation that
is disconjugate and one that is oscillatory on an interval. From a practical
point of view it would be desirable to know workable conditions which
guarantee the existence of solutions of (2, 3) that have a finite number of
oscillations on [yl , yz] .

Let us illustrate the application of the above theorem with an example.

It is possible to show via the FTL theory(22)that the equation

o' = K% +2/(y° - )], 8(0) =o(l) =0

does not have any eigenvalues if Im ¢ #0, k>0 . We now show that this

equation has no eigenvalues also when c is real and k> 0.

Let us first consider the case k =0 . In this instance we need
clearly only consider the case ¢ >1. Substituting into the above definitions
we have

Yy oo
P(y) =2[ u-—f/th=2 Z}Fnﬂ/kWZnHH

0 n=1
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so that after squaring we obtain

y o, - ') 2n+2 n-1
[ PY%s)s “ds=4 = —L—— = 1/[2m+1)(2n - 2m+1)]
0 n=2 c(2n+l) m=1

Upon examining the last two identities we find that from the point of
view of comparing coefficients of equal powers of y , the condition (i)
of Theorem (III. 8) is not strong enough to yield disconjugacy of our
equation in ¢ .

Upon squaring the last of the above identities, multiplying through

-2
by y dy integrating from 0 to y and simplifying we obtain

y t o} 2n+l n=2
2 -2 .2 -2 . y 1 .
(60) fo ({) Pis)s "ds) t "dt =z —— (2m+]) (2n - 2m+l)

n=4 c(2n+l) m=2

( 2 1’;- : _1..) ( 4 ;_m+l_.l._
+1 2i+l" " n-m+l 2j+l
i=1 j=1

We are now in position to apply the condition (2) above. This will

be satisfied if it can be shown that

n-1
0 < (l-¢) = 1/[(2m+l)(2n - 2m+1)]
- m=1
n-2 4 m-1 1 4 n-m+l 1
- 2 Wlemmen -y 2 oamicm 2w
m=2 i=1 j=1
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for n =4,5,6,..., for some ¢ > 0. This last inequality is certainly

satisfied if

m-1
4 1
_ < -
mil ~ i Sl
i=1
for m =2,3,4,... . Now
m-1
4 1 2
— < — - < -
m+1 21 2idl S mam(Emel) g l-e

where ¢ =1 -1n9/3 .
Hence the above equation in ¢ is disconjugate on [0,1] for k =0 .
Examination of the Neumann series for a solution of this equation shows

that it is disconjugate also for k> 0 .
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IV. Numerical Methods

A host of numerical methods exists for obtaining discrete solutions
of differential equations. Among these, a particularly powerful 3-step
method suitable for solving the equation (2) is the Numerov method (see

e.g. (24)). Applied to the equation

y'"' = g(x)y + {(x)

the Numerov method is

2 1.2 2 1 2
(61) 6[(1-13}1 g)y]n —h[gnyn+fn+ﬁé fn]j
h = g( = + nh 6()—(+—1-h-(-lh
where g, =&(x) =g(x,+nh), dg(x) =g(x+7h) -glx-7h)

and where h > 0 is the step size. Expanding (61) we compute Y41
n=12,3... from
1

5.2 1. 2 2 2
(2+ —h gn)yn -(1 - Eh gn—l)yn-l +h (fn+ =& fn).

12
(l-1zhe 6 12

12 ntl Va4l T

The error in using this equation is approximately equal to -1/240 66yn = O(h6)

at the n'th step.
Let us assume that g(x) = g(x,c), £f =0, and that we want to

determine an ''eigenvalue'' ¢ such that y(0) =y(l) =0 .
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Differentiating the equations

(62) y' = glx, o)y, Yo =¥(0) =0, y; =v(h) = Ah

with respect to ¢, we get the derived variational equation

3 "= , , , = h) =0 .
(63) ve glx,c)y, +g (x¢)y, y,(0) v (h) =0
An algorithm is to set Nh =1, start with an approximate value of
¢ and compute Yn for this value Ca of ¢c, n=2,3,..., N by use of
the Numerov method on (62). We next also compute Vo, B = 2,3,...,

using the Numerov method on (63), with the Y, given by the numerical

solution of (62). We then set

to get an improved value of c_ - In the case of convergence, €= 'c -cC l
a
. . . 2
bounds the error in ¢, since ¢ is replaced roughly by ¢ after each
new iteration.
In the above we have combined two methods, Numerov's and

Newton's method. With fixed h, Newton's method will converge to

an exact eigenvalue of the discrete solution. We can test the accuracy
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of the numerical method by repeating the computations with a finer mesh
size h , Thus in the case whern this method produces an approximate
eigenvalue we can get at the error by a posteriori means.

Unfortunately Newton's method converges only if c is sufficiently
close to a true eigenvalue of the discrete solution. Thus instead of ''seeking
in an attempt to find', it may often be simpler to obtain an approximate
eigenvalue by use of one of the above analytic methods.

In the case when the first derivative is not absent in a second order
equation we could of course always remove it by a transformation of the
form (49). However thi§ sometimes complicates the resulting equation
to the extent that it is much more efficient to apply a less accurate method
directly and to combine it with Newton's method. We illustrate with the

following example taken from [25].

d .

(64) L - [ + Jun =2 - A%(—
y(0) =y(1) =0

where y is related to the vertical wind velocity, A is related to the

static stability and U = U(x) is the zonal wind. The problem is to

determine c given U and c_ . The derived variational equation is
r
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2
U-c -
4y, RS 1 ]U,dyc _ A% c-c )
2 U-c U-c¢c-c dx U-c Ye
dx T
12 1 2, . dy 2
- S =L _
_[(U-c) +(U—c—c)]u dx A 2 7
r (U - c)
a 3a d2
Taking U =Px (1 - x) we approximate g by (yn+l - ZYn + Yn-l)
dx

d - - = 5h . . .
y/dx by (yn+l yn_l)/Zh , y(h) =0, wh) h . This results is an

4
error of order h at each step. We combine this approximate method
with Newton's method to simultaneously solve both of the above equations.

With P =10, o =1, c. =2.14, h =1/36 we obtain

.43030, -1.56988 with A =0

c =
c =.36213, -1.57459 with A =1
c =.37474, - 1.61654 with A =2

The number c¢ can be obtained another way when A =0 since the above
differential equations can be explicitly solved then. The exact values of
¢ when A =0 are givenby c =.42904, c =- 1. 56904 which indicates

that the above results are correct to 3 significant figures.
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