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Absolutely 2-Summing Operators, 
2 a Symmetric Sequence Space 

MELAPALAYAM S. RAMANUJAN * 

1. Introduction 
Pietsch [5] introduced the concept of absolutely summing operators in 

Banach spaces and later in [6] extended this concept to absolutely p-summing 
operators. At the background of these concepts are the sequence spaces I p 
and their duality theory. The object of the present paper is to extend the 
above concept to abstract sequence spaces 2. The sequence spaces 2 involved 
are described in Section 2; the absolutely 2-summing operators are studied in 
Section3 while Section4 discusses the interesting special case 2=n(~b), a 
sequence space which includes for special q5 the P and l ~ spaces and was 
introduced in the literature by Sargent [10]. 

2. Notations, Definitions and Preliminary Lemmas 

Most of the concepts defined here are well-known and are in Garling [2, 3], 
K6the [4], Ruckle [9] and Sargent [11]. For  a sequence space 2 the a-dual is 
denoted by 2L I f U ~ = 2  then 2 is said to be a perfect sequence space or a K6the 
space. The sequence space 2 is said to be symmetric if for each x e 2  the sequence 
x~ which is obtained as a rearrangement of the sequence x corresponding to 
the permutation rc of the positive integers is also in 2 for each re. Suppose, in 
addition, that the topology on 2 is generated by a norm p and that p (x )=p  (x~) 
for each x and n, then 2 is defined to be a K-symmetric sequence space. The 
symmetric dual U of 2 is defined as the set {y: ~Yl x ~ i ) < ~ ,  for each x~2 
and each n}. It is known that if 2 is symmetric then so is 2 ~ and that U = U ;  
also, if 2 is a symmetric K6the space then 2 = q5 or 2 = co or 11 ___ 2 _  l ~~ If 2 is 
a solid symmetric sequence space then either 2 ___ Co or 2 = co or 2 = l ~~ 

We now start with the sequence space co of all scalar sequences and suppose 
there is given an extended seminorm p on co. We shall then consider the sequence 
space 2 c co which consists of all x e co for which p (x) < oo. Having constructed 
this space 2 we assume that 2 is solid and that it is a K-symmetric K6the space 
whose topology is given by the seminorm p which is indeed a norm on 2 and 
that this topology is also the Mackey topology of the dual pair (2, 2 ~) so that 
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2~= (2, p)'. We assume that p is absolutely monotone. One final assumption 
on (2,p) is that is has the property AK,  viz., for each x = ( x  1, x2 . . . . .  x , ,  . . . )~) ,  
the sequences x i=  (xl, x2, ..., xi, 0, 0, ...), i=  1, 2, 3, ... converge, in norm, to x. 
For further details on this see Zeller [12]. 

We remark now that the space c of convergent sequences, being not solid, 
is not included as a special case of our sequence spaces 2; also the same is 
true of the space Co with its usual norm topology since that space does not 
comprise of all sequences x =(x,) with sup [x,[ < oo. The spaces I p, 1 =<p ~ ~ ,  
are certainly included in the type of spaces 2 we discuss as are also the spaces 
n(qS) introduced by Sargent [10], brief definitions of which are found in Sec- 
tion 4 of this paper. Also the spaces #~, p and Va, p of Garling [3] fit into the 
set up described above. 

Next we start with two normed linear spaces (E, II I!) and (F, [I II). We shall 
denote by 2(E) the vector sequences x=(x,),  x , ~ E  which are weakly in 2 in 
the sense that for each a sE',  the sequence ((x, ,  a)) of scalars is in 2 and since 2 
is solid, the sequence (](x,, a)[) is also in 2. It is easy to verify that 2(E) is a 
vector sequence space. 

Suppose x=(x , )  belongs to ;~(E). Then from a theorem of Pietsch ([8], 
Hilfssatz, S. 31) it follows that sup ~ [c~,(x,, a)] <q~ for all (e , )sB~,  the unit 

l/all _-<1 
ball in 2 ~ with its topology as the dual of 2. Denoting by e the sequence (~,)eB~ 
and by (x, a)  the sequence ((x, ,  a)) we now get 

Thus 

sup I ( (x ,a} ,@l<__p for all (~)eB~. 
Iia[I <1 

, Sa Pl II I <x, a> I < 

We shall denote by ez the functional defined on 3~(E) by e~ (x) = sup iI 1 (x, a)]il z; 
Hail=<1 

ez can easily be verified to be a seminorm, thus giving 2(E) a natural topology. 

The spaces 2(E) corresponding to 2=  l p, 1 < p <  oe have been discussed by 
Pietsch ([5, 71). 

Next we define the space 2 [F] as the space of all vector sequences y =  
(y,), yneF, such that the sequence (llynH)e2. The space 2IF]  is topologised in 
a natural way by the norm p. II It, defined by (p-II [I)(y)=p(Ny, II), denoted also 
by ll(lly lllll  or II(y~)l!~m. These spaces have been discussed in case 2 = l  p by 
Pietsch (loc. cit.) and in the general case by Gregory [1]. 

3. Absolutely )~-Summing Operators 

Suppose E and F are normed linear spaces and T is a linear map on E 
into F. The map T is said to be absolutely 2-summing if for each x = ( x i ) ~ 2 ( E  ), 
the sequence T x  = (Tx~)~o [F]. If 2 = 1 p, these are called absolutely p-summing 
operators; they are discussed extensively by Pietsch [7]. 
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In the following paragraphs we obtain a characterization of the absolutely 
2-summing maps and point out some simple properties of such maps. Most 
of these results may be looked upon as partial generalizations of Pietsch's 
work for the/P-spaces to the setup of abstract sequence spaces. 

Theorem 1. The linear map T is absolutely 2-summing if and only if there 
exists a p > 0 such that for each finite set of elements xl, x2 ... .  , xk in E the follow- 
ing inequality holds." 

]I(Txi)]IZEFI< p. sup ]](I(Xi, a)[)tl~. (1) 
Ila[I <1 

Remark. The quantity II(Txi)llxm appearing above is to be interpreted as 
the norm, in the vector sequence space 2 IF], of the element (Txl, Tx2 . . . . .  
TXk, O, 0,...) with a similar interpretation for I[(] (x~, a)I)l[ 4. 

Proof. The sufficiency part is easily proved; suppose x=(xi)~,~(E). Then 
for each fixed k, we consider xk= (X~, X2 . . . .  , Xk, O, 0,. . .)  and obtain 

H(Tx1, T x  2 . . . . .  TXk, O, O, ...)]IX~vj<p" sup II(l(x k, a)l)lf~, 
Hall</ 

and since the space 2 is solid and the norm generating it is absolutely mono- 
tone, the above expression is __< p o ez(x). Since 2 has A K, it follows that 
[[(Tx)}[Z~FINp �9 e~(X) and the sufficiency is proven. 

Conversely, assume that Tis absolutely 2-summing and if possible let for 
each p > 0  the inequality (1) be not true. Then given p >0 ,  we can obtain a 
finite system P o o such that Xl, X2~ . . .  ~ Xn(p) 

sup [[(](x~,a)])[[;<l and H(Tx~)[t~tel>p. 
Ilalf=<l 

We can do this for p=jU,  j = l ,  2, 3, ... and obtain correspondingly, finite 
systems (xl), (x 2) . . . . .  (x ~) . . . . .  F rom our assumptions it follows that the sequence 
x of vectors 

xl xl J Xn (j) 
2 ' 2 . . . .  ' 2 ' 227 22 . . . . .  22 ' " "  2 i '  2 j ' ' ' ' '  2 j . . . .  

is in 2 (E); also since the norm defining the topology of is absolutely monotone 
it follows that Txq~2[F]. This completes the proof of the theorem. 

Elementary Properties of Absolutely 2-Summing Operators 

We shall denote by rc~(E, F) the space of all absolutely 2-summing maps 
on E into F, where both the above spaces are assumed normed. We shall 
denote by 7c~(T) the smallest positive p satisfying (1) of Theorem 1. 

We now make an additional assumption on the sequence space 2. The 
space 2 is said to have the norm preservation property (=  n.p.) if x = (xi) is 
such that xi=O for all i4:n, then ][xr[~=[x,[. The property n.p. along with the 
basic union property implies that l l c  2. 



190 M.S. Ramanujan: 

Theorem 2. I f  Tc~zz(E,F ) then T is continuous and the operawr norm 
IITil =< tea(T). 

The proof is trivial and is omitted. 

Theorem 3. The space "a~(E, F) is a normed linear space with the norm 7~ 
and is a Banach space if F is a Banach space. 

Proof. We shall omit the proof of n~ being a norm and of 7c~(E, F) being 
a normed linear space. Assuming that F is a Banach space, we shall prove 
that ~ (E ,  F) is a Banach space. Let {T,} be a Cauchy sequence in rc;+(E, F). 
Then given e>0,  the inequality 1IT,-T,,II __< Tc;.(T,-T,,)<e holds for n, m>N.  
Thus {T,} is a Cauchy sequence in the space 5~(E, F) and therefore there is a 
T a ~ ( E ,  F) such that lim I1 T -  T,I [ =0. Since rc;,(T,- Tm)<e for n, m > N  we get, 
for n, m > N and for each finite system xl, x2, ..., xl, in E, 

EI(T, x l -  Tm Xi)[tZ[FI~g sup I[(](xi, a)l)lla. 
Ilall-_<1 

Letting m--, oo and using continuity of norms we get that 7zz(T+-T)<e for 
n>N. 

Theorem 4. rex(E, E) is a two sided ideal in 5f(E, E) and for S~b+(E, E) and 
T e ~ ( E ,  E) 

~z~,(ST)<zrz(S)" [ITH and zrz(TS)<i[TI[ . ~+(S). 

The above result is in fact a particular case of the following apparently 
more general result. 

Theorem4'. (a) I f  S~5~(E,F) and T~zh(F,G) then TS6nz(E,G) and 
rcz(TS)<~.(T)" HS[I; 

(b) I f  S~rb.(E,F ) and TeSY(F, G) then TS~rc~(E, G) and rcx(TS)< lIT[t" 
~(S). 

The proofs are simple. 

4. S p e c i a l  C a s e  ~, = n (40 

Pietsch ([6, 7]) has shown that there exist non-absolutely p-summing oper- 
ators whose adjoints are absolutely p-summing. In this section we shall prove 
a similar result for absolutely n(qS)-summing operators and this result, apart 
from supplementing Pietsch's, will also include his result [6] for the case of 
absolutely summing (= absolutely 1-summing) operators. 

The spaces n(qb) and m(q6) described below were introduced by Sargent [10]. 
For x = (x,), define the sequence A x = (x , -x ,_ l ) ,  Xo = 0; S(x) denotes the 

collection of all sequences which are permutations of x. cg is the set of all finite 
sequences of positive integers. For a~Cg define c(a)=(c,(a)), where c,(a)= 1 
if n~a and =0, otherwise. Let G"+= {a~Cg: ~ c,(a)<=s}. 

~b=(qS,) is a given (fixed) sequence such that for each n, 0<~b1<~b,<4,+l 
and (n+ 1) ~b,>n qS,+ 1. 



Absolutely 2-Summing Operators 191 

The BK-space 

and the BK-space 

n(q~)= {x=(x.): [[xlF = sup ~ [u.[ A q~.< m}. 
u~s(x) 

We quote the following lemmas from Sargent [10]. 

Lemma 1. The spaces n(O) and m(~b) are K6the duals of each other and are 
solid K6the spaces. For x ~ m (4)) and u ~ n (~b) the following inequality holds: 

k 

for each f ixed k, ~ [ui xi] < Iluli.~)llxllm~,). 
i=1 

Lemma 2. n(~b)=l 2 if and only if AOe l  2. 

It is easy to verify that n (q~) is a K-symmetric sequence space. From earlier 
statements it also follows that 11 c n(qS) c 1 ~. 

In our discussion we shall assume that A q~ is a decreasing sequence and 
that A q~l= 1. It then follows from a result of Sargent that ItA ~br],,(o)= 1. The 
above assumption also gives that the space n(q~) has the union property. We 
assume also that ~ A qS, = oe. 

We need also the following additional lemmas. 

Lemma 3. The space n((a) has the sequences e i, ei=(0,0 . . . .  ,0, 1, 0, ...), i=  
1, 2, 3 . . . .  for a basis and the space re(O) is its topological dual. 

The above lemma is essentially due to Sargent [-11]. 

Lemma 4. For each a~lacn(4)), [lall.(~)< Hallll. 

Since 
]lalFl,-- sup ~ lUn[>--_ sup ~ [U,I AqS,= Ilall,t~) 

ueS(a) ueS(a) 

the result follows. 

Theorem 5. The identity map I of  co into l ~ is not absolutely n(~b)-summing, 
if qb is unbounded. 

Proof If I is absolutely n(~b)-summing then, by Theorem 1, there exists a 
positive constant p such that for each finite system x I, x 2, ..., x k in co we have 

tl(llxell| sup U(l(xz, a)l)L(~)]. 
[[aHtl<l 

Choose now xi=  d, i=  1, 2 . . . . .  k. Then the above inequality gives 

II(1, 1, 1 . . . . .  1,0,0,0 . . . .  ) l l . ( , )<p sup II(al, a2 . . . . .  ak,0,0 . . . .  )iln(ep) 
[la][zl<l 

=<p sup I[all.(,) 
I lal[ :~i  

<p sup [lall.--p. 
Ilal[::<l 

13 Math. Z., Bd. 114 
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But I1(1, 1, ..., 1, 0, 0 . . . .  )lt,(~l=qSk and since q5 is unbounded the result in the 
theorem follows. 

We shall prove now that if q5 is unbounded and lZc n(~b) then the identity 
map ! of 12 into Co is not absolutely n(4~)-summing while its adjoint map, the 
identity map of l * into 12 is absolutely n (qS)-summing. 

Lemma 5. If l2cn(c~) and i fa~l  2, then ]la[],~)< tlallt2 []A q51[~2. 

Proof Ilall.<~)= sup ~ lu.I A q~.< sup [lu][1~ IIA q~[],~= Ilalll~ IIA q~lll~. 
ueS(a) ueS(a)  

Theorem 6. The identity map I of  12 into c o is not absolutely n(d?)-summing 
if (b is unbounded and 12c n(~)); under the same hypothesis on n(qS), the identity 
map I' of l a into 12 is absolutely n(4)-summing. 

Proof The proof of the first part is similar to that of Theorem 5 and is 
omitted. For proving the second part, we consider the orthonormal system 
r,(t) of Rademacher functions on the interval [0, 1] defined for n=  1, 2, 3, ... by 
r . ( t ) = ( - 1 )  k for k 2-" < t  <(k + l) 2-" and = 0  for t = k 2 - " .  

On l 1 define the linear functional a(t) by the relation 

(x, a(t) 5 = ~  x.  r~(t), x = (x.). 

Then a(t)is continuous and [[a(t)H < 1; also, 

! 

Ill I X[[/2 =~/2 [XylI2 ~ ] ~ S  [(X, a(t))[ dr. 
0 

The above details are in Pietsch ([6], Satz 2.4.2, S. 39). If now x t, X 2, . . . ,  X k is 
a finite system in l ~ then, without loss of generality, 

k k i 

!1 (ll I' x n LI ~2)H,,(~) < ~ l] i' x" l] 12 A ~b,__< ~ 1/~ A qS~ ~ I (x", a(t)) ldt  
n = l  n = l  0 

<suPV~3 2 Ag?. I(x",a)l 
a~U 0 

N sup 1/3 I1(I (x", a)I)11.~,), 
a~U o 

where U ~ denotes the unit ball in the adjoint space/~ of 11. Thus l'erc,(4,)(/~, 12), 
with 7r,(,)(I') <1/3. 

The above proof is adopted from that of Pietsch [6] who proves the above 
result for the case 4), = n. 
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