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Absolutely A-Summing Operators,
A a Symmetric Sequence Space

MELAPALAYAM S. RAMANUJAN*

1. Introduction

Pietsch [5] introduced the concept of absolutely summing operators in
Banach spaces and later in [6] extended this concept to absolutely p-summing
operators. At the background of these concepts are the sequence spaces [
and their duality theory. The object of the present paper is to extend the
above concept to abstract sequence spaces 4. The sequence spaces A involved
are described in Section 2; the absolutely A-summing operators are studied in
Section 3 while Section4 discusses the interesting special case A=n(¢), a
sequence space which includes for special ¢ the I' and I® spaces and was
introduced in the literature by Sargent [10].

2. Notations, Definitions and Preliminary Lemmas

Most of the concepts defined here are well-known and are in Garling [2, 3],
Kothe [4], Ruckle [9] and Sargent [11]. For a sequence space A the a-dual is
denoted by A% If 1**=/ then 1 is said to be a perfect sequence space or a Kéthe
space. The sequence space 4 is said to be symmetric if for each xe 1 the sequence
x, which is obtained as a rearrangement of the sequence x corresponding to
the permutation 7 of the positive integers is also in 1 for each . Suppose, in
addition, that the topology on 4 is generated by a norm p and that p(x)=p(x,)
for each x and 7, then 1 is defined to be a K-symmetric sequence space. The
symmetric dual 4% of 1 is defined as the set {y: )y, X, <00, for each xei
and each n}. It is known that if 1 is symmetric then so is A* and that %= 1%
also, if 1 is a symmetric K&the space then A=¢ or A=w or Pgici® If 1 is
a solid symmetric sequence space then either ASc¢, or A=w or A=1[%.

We now start with the sequence space w of all scalar sequences and suppose
thereis given an extended seminorm p on . We shall then consider the sequence
space A= which consists of all xew for which p(x) < 0o. Having constructed
this space A we assume that 4 is solid and that it is a K-symmetric K6the space
whose topology is given by the seminorm p which is indeed a norm on 2 and
that this topology is also the Mackey topology of the dual pair (4, 1% so that
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A*=(4, p). We assume that p is absolutely monotone. One final assumption
on {4, p) is that is has the property AK, viz., for each x=(x;, X3, ..., Xy, ... JE4,
the sequences x'=(x;, X,, ..., x;,0,0,...),i=1,2,3, ... converge, in norm, to x.
For further details on this see Zeller [12].

We remark now that the space ¢ of convergent sequences, being not solid,
is not included as a special case of our sequence spaces 1; also the same is
true of the space ¢, with its usual norm topology since that space does not
comprise of all sequences x=(x,) with sup |x,|<oo. The spaces I, 1Sp=< o,
are certainly included in the type of spaces A we discuss as are also the spaces
n(¢) introduced by Sargent [10], brief definitions of which are found in Sec-
tion 4 of this paper. Also the spaces y, , and v, , of Garling [3] fit into the
set up described above.

Next we start with two normed linear spaces (E, | [|) and (F, | ||). We shall
denote by A(E) the vector sequences x=(x,), x,€ E which are weakly in 1 in
the sense that for each aeE’, the sequence ({x,, @)) of scalars is in 4 and since 4
is solid, the sequence (|{x,, a)|) is also in 4. It is easy to verify that A(E) is a
vector sequence space.

Suppose x=(x,) belongs to A(E). Then from a theorem of Pietsch ([&],
Hilfssatz, S. 31) it follows that sup  |a,{x,, a)| S ¢ for all (a,)€ B;., the unit

a| =1

ball in A* with its topology as the dual of A. Denoting by o the sequence {(«,)€ B;.
and by {x, a)> the sequence ({x,, a)) we now get

sup |({x,a),a)|<p for all ()€ B;..
liall =1

Thus
sup [[[<x, a)||,< 0.

llall £1

We shall denote by ¢, the functional defined on A(E) by ¢, (x)= sup |||{x,a>]|;;
|

| A
laljs1
g, can easily be verified to be a seminorm, thus giving A(E) a naQural topology.

The spaces A(E) corresponding to i=1[7, 1<p< oo have been discussed by
Pietsch ([5, 7]).

Next we define the space A[F] as the space of all vector sequences y=
(v,), v,€F, such that the sequence (||y,|)eA. The space A[F] is topologised in
a natural way by the norm p - || |, defined by (p- || |)()=p(|y.l), denoted also
by [(Iya)]lz or (¥Magey- These spaces have been discussed in case A=1” by
Pietsch (loc. cit.) and in the general case by Gregory [1].

3. Absolutely Ai-Summing Operators

Suppose E and F are normed linear spaces and T'is a linear map on E
into F. The map T is said to be absolutely A-summing if for each x=(x;)e 1(E),
the sequence Tx=(Tx;)eA[F]. If =17, these are called absolutely p-summing
operators; they are discussed extensively by Pietsch [7].
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In the following paragraphs we obtain a characterization of the absolutely
A-summing maps and point out some simple properties of such maps. Most
of these results may be looked upcn as partial generalizations of Pietsch’s
work for the [P-spaces to the setup of abstract sequence spaces.

Theorem 1. The linear map T is absolutely A-summing if and only if there
exists a p>0 such that for each finite set of elements x;, x,, ..., x; in E the follow-
ing inequality holds:

”(Txi)HA[F]é P 'PS‘HJEI N01<x;, ap il ;. 6y

Remark. The quantity [[(Tx,)| ;7 appearing above is to be interpreted as

the norm, in the vector sequence space A[F], of the element (T'x;, Tx,, ...,
Tx,,0,0,...) with a similar interpretation for ||(]{x;, a>|)|l;.

Proof. The sufficiency part is easily proved; suppose x=(x;)ei(E). Then
for each fixed k, we consider x*=(x, x,, ..., %;,0,0, ...) and obtain

(7%, Txa, o, T, 0,0, g S0+ sup 115 ),

and since the space 1 is solid and the norm generating it is absolutely mono-
tone, the above expression is < p-¢;(x). Since A has AK, it follows that
I(Tx) 1r1=p - €,(x) and the sufficiency is proven.

Conversely, assume that T'is absolutely A-summing and if possible let for
each p>0 the inequality (1) be not true. Then given p>0, we can obtain a
finite system x{, x5, ..., xf,, such that

1|Sl!’ll<ﬁlli(l<X£’,a>l)lla§1 and  [(Tx))m>p-
ajl =
We can do this for p=j2/,j=1,2,3,... and obtain correspondingly, finite
systems (x'), (x?), ..., (x), .... From our assumptions it follows that the sequence
x of vectors

xi xé xiu) xf x% xﬁ(z) x{ xji Xf;(j)

) . 3 s aees 2 ,—*2*2—,7,..., 22 ,...,7,7,..., 2]- yoes

is in A(E); also since the norm defining the topology of is absolutely monotone
it follows that Tx¢A[F]. This completes the proof of the theorem.

Elementary Properties of Absolutely A-Summing Operators

We shall denote by ,(E, F) the space of all absolutely A-summing maps
on E into F, where both the above spaces are assumed normed. We shall
denote by 7,(T) the smallest positive p satisfying (1) of Theorem 1.

We now make an additional assumption on the sequence space 1. The
space A is said to have the norm preservation property (=n.p.) if x=(x,) is
such that x;=0 for all i#n, then |x|,=|x,|. The property n.p. along with the
basic union property implies that I* < 1.
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Theorem 2. [f Ten,(E, F) then T is continuous and the operator norm
1Tl =m(T).

The proof is trivial and is omitted.

Theorem 3. The space n;(E, F) is a normed linear space with the norm 7,
and is a Banach space if F is a Banach space.

Proof. We shall omit the proof of %, being a norm and of n,{E, F) being
a normed linear space. Assuming that F is a Banach space, we shall prove
that x,(E, F) is a Banach space. Let {T,} be a Cauchy sequence in 7, (E, F).
Then given £>0, the inequality |T,— T, £x,(T,— T,,) <¢ holds for n,m>N.
Thus {T,} is a Cauchy sequence in the space Z(E, F) and therefore there is a
Te % (E, F) such that lim | T— T,||=0. Since 7,(T,— T,,) <& for n,m> N we get,
for n,m> N and for each finite system x;, x,, ..., x; in E,

I(T xi= T xllam =2 sup [(1Kxi, @Dl

llall <

Letting m — co and using continuity of norms we get that =, (T,— T)<e¢ for
n>N.

Theorem 4. 7, (E, E) is a two sided ideal in £ (E, E} and for Sen,(E, E) and
Te #(E,E)
1, ST)Smu(S)- T and 7 (TS (T - 7,(S).

The above result is in fact a particular case of the following apparently
more general result.

Theorem 4'. (a) If Se#(E,F) and Temn,(F,G) then TSen,(E,G) and
m(TS)=m,(T) - IS]:

(b) If Sen,(E, F) and Te Z(F,G) then TSen,(E,G) and n,(TS)Z|T| -
7, (S).

The proofs are simple.

4. Special Case i=n(¢)

Pietsch ([6, 7]) has shown that there exist non-absolutely p-summing oper-
ators whose adjoints are absolutely p-summing. In this section we shall prove
a similar result for absolutely n(¢)-summing operators and this result, apart
from supplementing Pietsch’s, will also include his result [6] for the case of
absolutely summing (=absolutely 1-summing) operators.

The spaces n(¢) and m(¢) described below were introduced by Sargent [10].

For x=(x,), define the sequence 4x=(x,—x,_y), Xo=0; S(x) denotes the
collection of all sequences which are permutations of x. € is the set of all finite
sequences of positive integers. For e define c(o)=(c,(0)), where c,(o)=1
if neo and =0, otherwise. Let €,={ce%: ) c,(0)<s}.

¢=(¢,) is a given (fixed) sequence such that for each n,0<¢;£¢,=< ¢,
and (n+1) ¢, zn ¢, ;.
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The BK-space

m<¢)={x=(x,,>: Il =supsup [ le,,f]<oo}
s21 e, L O ncy

and the BK-space
n(@)={x=(x,) [x]= SUP)ZWA A, <o}

ues(x
We quote the following lemmas from Sargent [10].

Lemma 1. The spaces n(¢) and m(¢) are Kothe duals of each other and are
solid Kothe spaces. For xem(¢) and uen(¢) the following inequality holds:
k
for each fixed k, Z [ %, S (] gy | X imiay -
i=1

Lemma 2. n(¢)> 1% if and only if Apel

It is easy to verify that n(¢) is a K-symmetric sequence space. From earlier
statements it also follows that I'! = n(¢)=I®.

In our discussion we shall assume that 4¢ is a decreasing sequence and
that 4¢,=1. It then follows from a result of Sargent that [|4¢], 4 =1. The
above assumption also gives that the space n(¢) has the union property. We
assume also that )" 4¢,= 0.

We need also the following additional lemmas.

Lemma 3. The space n(¢) has the sequences é', ¢=(0,0,...,0,1,0,...), i=
1,2,3,... for a basis and the space m(¢) is its topological dual.

The above lemma is essentially due to Sargent [11].
Lemma 4. For each acl' <n(@), ||all g = llall.

Since
lall;i= SU?)Z lu,| = sup 3. fu,| 4, =llall

ueS(a ueS(a)

the result follows.

Theorem 5. The identity map I of ¢, into I® is not absolutely n(¢)-summing,
if ¢ is unbounded.

Proof. If I is absolutely n(¢)-summing then, by Theorem 1, there exists a
positive constant p such that for each finite system x%, x%, ..., x* in ¢, we have

H(“xi“co)'ln(d:)ép“ SHUPQ[”(Kxi’ a>|)”n(¢)]-
Choose now x'=¢’,i=1,2, ...,k Then the above inequality gives
”(I’ 1: 19 rees 1: 05 Oa O’ )“n(d))ép | ?up H(al’ Ay, .vns ak9 07 09 )”n(d})
‘ <

all,1 =

=p sup ”a||n(¢)

Nalj, 51
=p sup lallp=p.
llall, =<1
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But [[(1,1,...,1,0,0,...)] . =@ and since ¢ is unbounded the result in the
theorem follows.

We shall prove now that if ¢ is unbounded and /> =n(¢) then the ideniity
map I of [? into ¢, is not absolutely n(¢)-summing while its adjoint map, the
identity map of I into [ is absolutely n(¢)-summing.

Lemma 5. If I* = n(¢) and if acl?, then a4, < lalp |4 dlle-
Proof. |la| yg= Sl;I(’)ZIM,J 4¢,= Su}(J)H”sz [A¢lle=lalzll4]p.

ueS(a

Theorem 6. The identity map I of I? into ¢y is not absolutely n(¢)-summing
if ¢ is unbounded and 1> < n(p); under the same hypothesis on n(¢), the identity
map I' of I' into I? is absolutely n(¢p)-summing.

Proof. The proof of the first part is similar to that of Theorem 5 and is
omitted. For proving the second part, we consider the orthonormal system
r,(t) of Rademacher functions on the interval [0, 1] defined for n=1, 2,3, ... by
r()=(—1Ffor k2 "<t<(k+1)27" and =0 for =k 2"

On ! define the linear functional a(t) by the relation
<x: a(t)>=z Xp rn(t)) X=(X").

Then a(t) is continuous and ||a(t){ £1; also,

I xle=1S P <y/3 j I<x, a(O] dt.

The above details are in Pietsch ([6], Satz 2.4.2, S.39). If now x', x?, ..., xF is
a finite system in [I* then, without loss of generality,

k k 1
I X"} 2| gy = ;nr X" p A, < ‘;ﬁA o, OJ I<x", a(t)y] dt
gsuﬁﬂzm [Kx", a)]

<sup V310" @)D iy

where U° denotes the unit ball in the adjoint space [® of I'. Thus I'em, 4, (", 1),
with 7, (I <7/3.

The above proof is adopted from that of Pietsch [6] who proves the above
result for the case ¢,=n.

References

1. Gregory, D. A.: Vector sequence spaces. Ph. D. Thesis, University of Michigan, 1967.

2. Garling, D. J. H.: On symmetric sequence spaces. Proc. London Math. Soc. (3) 16, 85105
(1966).

3. — A class of reflexive symmetric B K-spaces. Canadian J. Math. 21, 602— 608 (1969).

4, Kothe, G.: Topologische lineare Riume L. Berlin-Gottingen-Heidelberg: Springer 1960.



10.

11
12.

13*

Absolutely A-Summing Operators 193

. Pietsch, A.: Absolut summierende Abbildungen in Jokalkonvexen Rdumen. Math. Nachr. 27,

77103 (1963).

. — Nukleare lokalkonvexe Rdume. Berlin 1965.
. — Absolut p-summierende Abbildungen in normierten Raumen. Studia Math. 28, 333 — 353

(1967).

. — Verallgemeinerte vollkommene Folgenrdume. Berlin 1962.
. Ruckle, W.: Symmetric coordinate spaces and symmetric bases. Canadian J. Math. 19, 828 — 838

(1967).

Sargent, W. L. C.: Some sequence spaces related to the [P-spaces. J. London Math. Soc. 35,
161 —171 (1960).

— On sectionally bounded B K-spaces. Math. Z. 83, 57— 66 (1964).

Zeller, K.: Theorie der Limitierungsverfahren. Berlin-Gottingen-Heidelberg: Springer 1958.

Prof. Melapalayam S. Ramanujan
Department of Mathematics
University of Michigan

Ann Arbor, Michigan 48104, USA

( Received November 4, 1969)



