Absolutely λ -Summing Operators, λ a Symmetric Sequence Space

MELAPALAYAM S. RAMANUJAN*

1. Introduction

Pietsch [5] introduced the concept of absolutely summing operators in Banach spaces and later in [6] extended this concept to absolutely *p*-summing operators. At the background of these concepts are the sequence spaces l^p and their duality theory. The object of the present paper is to extend the above concept to abstract sequence spaces λ . The sequence spaces λ involved are described in Section 2; the absolutely λ -summing operators are studied in Section 3 while Section 4 discusses the interesting special case $\lambda = n(\phi)$, a sequence space which includes for special ϕ the l^1 and l^{∞} spaces and was introduced in the literature by Sargent [10].

2. Notations, Definitions and Preliminary Lemmas

Most of the concepts defined here are well-known and are in Garling [2, 3], Köthe [4], Ruckle [9] and Sargent [11]. For a sequence space λ the α -dual is denoted by λ^{α} . If $\lambda^{\alpha\alpha} = \lambda$ then λ is said to be a perfect sequence space or a Köthe space. The sequence space λ is said to be symmetric if for each $x \in \lambda$ the sequence x_{π} which is obtained as a rearrangement of the sequence x corresponding to the permutation π of the positive integers is also in λ for each π . Suppose, in addition, that the topology on λ is generated by a norm p and that $p(x) = p(x_{\pi})$ for each x and π , then λ is defined to be a K-symmetric sequence space. The symmetric dual λ^{σ} of λ is defined as the set $\{y: \sum y_i x_{\pi(i)} < \infty$, for each $x \in \lambda$ and each π }. It is known that if λ is symmetric then so is λ^{α} and that $\lambda^{\sigma} = \lambda^{\alpha}$; also, if λ is a symmetric Köthe space then $\lambda = \phi$ or $\lambda = \omega$ or $l^1 \subseteq \lambda \subseteq l^{\infty}$. If λ is a solid symmetric sequence space then either $\lambda \subseteq c_0$ or $\lambda = \omega$ or $\lambda = l^{\infty}$.

We now start with the sequence space ω of all scalar sequences and suppose there is given an extended seminorm p on ω . We shall then consider the sequence space $\lambda \subset \omega$ which consists of all $x \in \omega$ for which $p(x) < \infty$. Having constructed this space λ we assume that λ is solid and that it is a K-symmetric Köthe space whose topology is given by the seminorm p which is indeed a norm on λ and that this topology is also the Mackey topology of the dual pair $(\lambda, \lambda^{\alpha})$ so that

^{*} The author expresses his thanks to Professor G. Köthe for his encouragement and for the hospitality at the Goethe-Universität, Frankfurt; support from the Alexander von Humboldt Stiftung is gratefully acknowledged. The author thanks Professor A. Shields for several preliminary discussions.

 $\lambda^{\alpha} = (\lambda, p)'$. We assume that p is absolutely monotone. One final assumption on (λ, p) is that is has the property AK, viz., for each $x = (x_1, x_2, ..., x_n, ...) \in \lambda$, the sequences $x^i = (x_1, x_2, ..., x_i, 0, 0, ...), i = 1, 2, 3, ...$ converge, in norm, to x. For further details on this see Zeller [12].

We remark now that the space c of convergent sequences, being not solid, is not included as a special case of our sequence spaces λ ; also the same is true of the space c_o with its usual norm topology since that space does not comprise of all sequences $x=(x_n)$ with $\sup |x_n| < \infty$. The spaces $l^p, 1 \le p \le \infty$, are certainly included in the type of spaces λ we discuss as are also the spaces $n(\phi)$ introduced by Sargent [10], brief definitions of which are found in Section 4 of this paper. Also the spaces $\mu_{a,p}$ and $v_{a,p}$ of Garling [3] fit into the set up described above.

Next we start with two normed linear spaces (E, || ||) and (F, || ||). We shall denote by $\lambda(E)$ the vector sequences $x = (x_n), x_n \in E$ which are weakly in λ in the sense that for each $a \in E'$, the sequence $(\langle x_n, a \rangle)$ of scalars is in λ and since λ is solid, the sequence $(|\langle x_n, a \rangle|)$ is also in λ . It is easy to verify that $\lambda(E)$ is a vector sequence space.

Suppose $x = (x_n)$ belongs to $\lambda(E)$. Then from a theorem of Pietsch ([8], Hilfssatz, S. 31) it follows that $\sup_{\|a\| \le 1} \sum |\alpha_n \langle x_n, a \rangle| \le \varphi$ for all $(\alpha_n) \in B_{\lambda^{\alpha}}$, the unit ball in λ^{α} with its topology as the dual of λ . Denoting by α the sequence $(\alpha_n) \in B_{\lambda^{\alpha}}$ and by $\langle x, a \rangle$ the sequence $(\langle x_n, a \rangle)$ we now get

$$\sup_{\|a\| \leq 1} |\langle \langle x, a \rangle, \alpha \rangle| \leq \rho \quad \text{for all } (\alpha) \in B_{\lambda^{\alpha}}.$$

Thus

$$\sup_{\|a\|\leq 1} \|\langle x,a\rangle\|_{\lambda} < \infty.$$

We shall denote by ε_{λ} the functional defined on $\lambda(E)$ by $\varepsilon_{\lambda}(x) = \sup_{\|a\| \le 1} \|\langle x, a \rangle\|_{\lambda}$; ε_{λ} can easily be verified to be a seminorm, thus giving $\lambda(E)$ a natural topology.

The spaces $\lambda(E)$ corresponding to $\lambda = l^p$, $1 \le p < \infty$ have been discussed by Pietsch ([5, 7]).

Next we define the space $\lambda[F]$ as the space of all vector sequences $y = (y_n), y_n \in F$, such that the sequence $(||y_n||) \in \lambda$. The space $\lambda[F]$ is topologised in a natural way by the norm $p \cdot || ||$, defined by $(p \cdot || ||)(y) = p(||y_n||)$, denoted also by $||(||y_n||)||_{\lambda}$ or $||(y_n)||_{\lambda[F]}$. These spaces have been discussed in case $\lambda = l^p$ by Pietsch (loc. cit.) and in the general case by Gregory [1].

3. Absolutely λ -Summing Operators

Suppose E and F are normed linear spaces and T is a linear map on E into F. The map T is said to be absolutely λ -summing if for each $x = (x_i) \in \lambda(E)$, the sequence $Tx = (Tx_i) \in \lambda[F]$. If $\lambda = l^p$, these are called absolutely p-summing operators; they are discussed extensively by Pietsch [7]. In the following paragraphs we obtain a characterization of the absolutely λ -summing maps and point out some simple properties of such maps. Most of these results may be looked upon as partial generalizations of Pietsch's work for the *l*^p-spaces to the setup of abstract sequence spaces.

Theorem 1. The linear map T is absolutely λ -summing if and only if there exists a $\rho > 0$ such that for each finite set of elements $x_1, x_2, ..., x_k$ in E the following inequality holds:

$$\|(Tx_i)\|_{\lambda[F]} \leq \rho \cdot \sup_{\|a\| \leq 1} \|(|\langle x_i, a \rangle|)\|_{\lambda}.$$

$$\tag{1}$$

Remark. The quantity $||(Tx_i)||_{\lambda[F]}$ appearing above is to be interpreted as the norm, in the vector sequence space $\lambda[F]$, of the element $(Tx_1, Tx_2, ..., Tx_k, 0, 0, ...)$ with a similar interpretation for $||(|\langle x_i, a \rangle|)||_{\lambda}$.

Proof. The sufficiency part is easily proved; suppose $x = (x_i) \in \lambda(E)$. Then for each fixed k, we consider $x^k = (x_1, x_2, ..., x_k, 0, 0, ...)$ and obtain

$$\|(Tx_1, Tx_2, \dots, Tx_k, 0, 0, \dots)\|_{\lambda[F]} \leq \rho \cdot \sup_{\|a\| \leq 1} \|(|\langle x^k, a \rangle|)\|_{\lambda}$$

and since the space λ is solid and the norm generating it is absolutely monotone, the above expression is $\leq \rho \cdot \varepsilon_{\lambda}(x)$. Since λ has AK, it follows that $\|(Tx)\|_{\lambda[F]} \leq \rho \cdot \varepsilon_{\lambda}(x)$ and the sufficiency is proven.

Conversely, assume that T is absolutely λ -summing and if possible let for each $\rho > 0$ the inequality (1) be not true. Then given $\rho > 0$, we can obtain a finite system $x_1^{\rho}, x_2^{\rho}, \dots, x_{n(\rho)}^{\rho}$ such that

$$\sup_{|a||\leq 1} \|(|\langle x_i^{\rho},a\rangle|)\|_{\lambda} \leq 1 \quad \text{and} \quad \|(Tx_i^{\rho})\|_{\lambda[F]} > \rho.$$

We can do this for $\rho = j 2^{j}, j = 1, 2, 3, ...$ and obtain correspondingly, finite systems $(x^{1}), (x^{2}), ..., (x^{j}), ...$ From our assumptions it follows that the sequence x of vectors

$$\frac{x_1^1}{2}, \frac{x_2^1}{2}, \dots, \frac{x_{n(1)}^1}{2}, \frac{x_1^2}{2^2}, \frac{x_2^2}{2^2}, \dots, \frac{x_{n(2)}^2}{2^2}, \dots, \frac{x_1^j}{2^j}, \frac{x_2^j}{2^j}, \dots, \frac{x_{n(j)}^j}{2^j}, \dots$$

is in $\lambda(E)$; also since the norm defining the topology of is absolutely monotone it follows that $Tx \notin \lambda[F]$. This completes the proof of the theorem.

Elementary Properties of Absolutely λ -Summing Operators

We shall denote by $\pi_{\lambda}(E, F)$ the space of all absolutely λ -summing maps on E into F, where both the above spaces are assumed normed. We shall denote by $\pi_{\lambda}(T)$ the smallest positive ρ satisfying (1) of Theorem 1.

We now make an additional assumption on the sequence space λ . The space λ is said to have the norm preservation property (=n.p.) if $x=(x_i)$ is such that $x_i=0$ for all $i \neq n$, then $||x||_{\lambda} = |x_n|$. The property n.p. along with the basic union property implies that $l^1 \subset \lambda$.

M.S. Ramanujan:

Theorem 2. If $T \in \pi_{\lambda}(E, F)$ then T is continuous and the operator norm $||T|| \leq \pi_{\lambda}(T)$.

The proof is trivial and is omitted.

Theorem 3. The space $\pi_{\lambda}(E, F)$ is a normed linear space with the norm π_{λ} and is a Banach space if F is a Banach space.

Proof. We shall omit the proof of π_{λ} being a norm and of $\pi_{\lambda}(E, F)$ being a normed linear space. Assuming that F is a Banach space, we shall prove that $\pi_{\lambda}(E, F)$ is a Banach space. Let $\{T_n\}$ be a Cauchy sequence in $\pi_{\lambda}(E, F)$. Then given $\varepsilon > 0$, the inequality $||T_n - T_m|| \le \pi_{\lambda}(T_n - T_m) < \varepsilon$ holds for n, m > N. Thus $\{T_n\}$ is a Cauchy sequence in the space $\mathscr{L}(E, F)$ and therefore there is a $T \in \mathscr{L}(E, F)$ such that $\lim ||T - T_n|| = 0$. Since $\pi_{\lambda}(T_n - T_m) < \varepsilon$ for n, m > N we get, for n, m > N and for each finite system $x_1, x_2, ..., x_k$ in E,

$$\|(T_n x_i - T_m x_i)\|_{\lambda[F]} \leq \varepsilon \sup_{\|a\| \leq 1} \|(|\langle x_i, a \rangle|)\|_{\lambda}.$$

Letting $m \to \infty$ and using continuity of norms we get that $\pi_{\lambda}(T_n - T) < \varepsilon$ for n > N.

Theorem 4. $\pi_{\lambda}(E, E)$ is a two sided ideal in $\mathscr{L}(E, E)$ and for $S \in \pi_{\lambda}(E, E)$ and $T \in \mathscr{L}(E, E)$

 $\pi_{\lambda}(ST) \leq \pi_{\lambda}(S) \cdot \|T\| \quad and \quad \pi_{\lambda}(TS) \leq \|T\| \cdot \pi_{\lambda}(S).$

The above result is in fact a particular case of the following apparently more general result.

Theorem 4'. (a) If $S \in \mathscr{L}(E, F)$ and $T \in \pi_{\lambda}(F, G)$ then $TS \in \pi_{\lambda}(E, G)$ and $\pi_{\lambda}(TS) \leq \pi_{\lambda}(T) \cdot \|S\|$;

(b) If $S \in \pi_{\lambda}(E, F)$ and $T \in \mathscr{L}(F, G)$ then $TS \in \pi_{\lambda}(E, G)$ and $\pi_{\lambda}(TS) \leq ||T|| \cdot \pi_{\lambda}(S)$.

The proofs are simple.

4. Special Case $\lambda = n(\phi)$

Pietsch ([6, 7]) has shown that there exist non-absolutely *p*-summing operators whose adjoints are absolutely *p*-summing. In this section we shall prove a similar result for absolutely $n(\phi)$ -summing operators and this result, apart from supplementing Pietsch's, will also include his result [6] for the case of absolutely summing (=absolutely 1-summing) operators.

The spaces $n(\phi)$ and $m(\phi)$ described below were introduced by Sargent [10].

For $x = (x_n)$, define the sequence $\Delta x = (x_n - x_{n-1}), x_0 = 0; S(x)$ denotes the collection of all sequences which are permutations of x. \mathscr{C} is the set of all finite sequences of positive integers. For $\sigma \in \mathscr{C}$ define $c(\sigma) = (c_n(\sigma))$, where $c_n(\sigma) = 1$ if $n \in \sigma$ and = 0, otherwise. Let $\mathscr{C}_s = \{\sigma \in \mathscr{C}: \sum c_n(\sigma) \le s\}$.

 $\phi = (\phi_n)$ is a given (fixed) sequence such that for each $n, 0 < \phi_1 \leq \phi_n \leq \phi_{n+1}$ and $(n+1) \phi_n \geq n \phi_{n+1}$. The BK-space

$$m(\phi) = \left\{ x = (x_n): \|x\| = \sup_{s \ge 1} \sup_{\sigma \in \mathscr{C}_s} \left[\frac{1}{\phi_s} \sum_{n \in \sigma} |x_n| \right] < \infty \right\}$$

and the BK-space

$$n(\phi) = \{x = (x_n): ||x|| = \sup_{u \in s(x)} \sum |u_n| \Delta \phi_n < \infty \}.$$

We quote the following lemmas from Sargent [10].

Lemma 1. The spaces $n(\phi)$ and $m(\phi)$ are Köthe duals of each other and are solid Köthe spaces. For $x \in m(\phi)$ and $u \in n(\phi)$ the following inequality holds:

for each fixed k,
$$\sum_{i=1}^{n} |u_i x_i| \le ||u||_{n(\phi)} ||x||_{m(\phi)}$$
.

Lemma 2. $n(\phi) \supset l^2$ if and only if $\Delta \phi \in l^2$.

It is easy to verify that $n(\phi)$ is a K-symmetric sequence space. From earlier statements it also follows that $l^1 \subset n(\phi) \subset l^{\infty}$.

In our discussion we shall assume that $\Delta \phi$ is a decreasing sequence and that $\Delta \phi_1 = 1$. It then follows from a result of Sargent that $\|\Delta \phi\|_{m(\phi)} = 1$. The above assumption also gives that the space $n(\phi)$ has the union property. We assume also that $\sum \Delta \phi_n = \infty$.

We need also the following additional lemmas.

Lemma 3. The space $n(\phi)$ has the sequences e^i , $e^i = (0, 0, ..., 0, 1, 0, ...)$, i = 1, 2, 3, ... for a basis and the space $m(\phi)$ is its topological dual.

The above lemma is essentially due to Sargent [11].

Lemma 4. For each $a \in l^1 \subset n(\phi)$, $||a||_{n(\phi)} \leq ||a||_{l^1}$.

Since

$$|a||_{l^1} = \sup_{u \in S(a)} \sum |u_n| \ge \sup_{u \in S(a)} \sum |u_n| \, \Delta \phi_n = ||a||_{n(\phi)}$$

the result follows.

Theorem 5. The identity map I of c_0 into l^{∞} is not absolutely $n(\phi)$ -summing, if ϕ is unbounded.

Proof. If I is absolutely $n(\phi)$ -summing then, by Theorem 1, there exists a positive constant ρ such that for each finite system x^1, x^2, \ldots, x^k in c_0 we have

$$\|(\|x^{i}\|_{\infty})\|_{n(\phi)} \leq \rho \sup_{\|a\|_{l^{1}} \leq 1} [\|(|\langle x_{i}, a \rangle|)\|_{n(\phi)}].$$

Choose now $x^i = e^i$, i = 1, 2, ..., k. Then the above inequality gives

$$\begin{aligned} \|(1, 1, 1, \dots, 1, 0, 0, 0, \dots)\|_{n(\phi)} &\leq \rho \sup_{\|a\|_{l^{1}} \leq 1} \|(a_{1}, a_{2}, \dots, a_{k}, 0, 0, \dots)\|_{n(\phi)} \\ &\leq \rho \sup_{\|a\|_{l^{1}} \leq 1} \|a\|_{n(\phi)} \\ &\leq \rho \sup_{\|a\|_{l^{1}} \leq 1} \|a\|_{l^{1}} = \rho. \end{aligned}$$

But $||(1, 1, ..., 1, 0, 0, ...)||_{n(\phi)} = \phi_k$ and since ϕ is unbounded the result in the theorem follows.

We shall prove now that if ϕ is unbounded and $l^2 \subset n(\phi)$ then the identity map I of l^2 into c_0 is not absolutely $n(\phi)$ -summing while its adjoint map, the identity map of l^1 into l^2 is absolutely $n(\phi)$ -summing.

Lemma 5. If
$$l^2 \subset n(\phi)$$
 and if $a \in l^2$, then $||a||_{n(\phi)} \leq ||a||_{l^2} ||\Delta \phi||_{l^2}$.
Proof. $||a||_{n(\phi)} = \sup_{u \in S(a)} \sum |u_n| \Delta \phi_n \leq \sup_{u \in S(a)} ||u||_{l^2} ||\Delta \phi||_{l^2} = ||a||_{l^2} ||\Delta \phi||_{l^2}$.

Theorem 6. The identity map I of l^2 into c_0 is not absolutely $n(\phi)$ -summing if ϕ is unbounded and $l^2 \subset n(\phi)$; under the same hypothesis on $n(\phi)$, the identity map I' of l^1 into l^2 is absolutely $n(\phi)$ -summing.

Proof. The proof of the first part is similar to that of Theorem 5 and is omitted. For proving the second part, we consider the orthonormal system $r_n(t)$ of Rademacher functions on the interval [0, 1] defined for n=1, 2, 3, ... by $r_n(t)=(-1)^k$ for $k 2^{-n} < t < (k+1) 2^{-n}$ and =0 for $t=k 2^{-n}$.

On l^1 define the linear functional a(t) by the relation

$$\langle x, a(t) \rangle = \sum x_n r_n(t), \quad x = (x_n).$$

Then a(t) is continuous and $||a(t)|| \leq 1$; also,

$$||I'x||_{l^2} = \sqrt{\sum |x_n|^2} \leq \sqrt{3} \int_0^1 |\langle x, a(t) \rangle| dt.$$

The above details are in Pietsch ([6], Satz 2.4.2, S. 39). If now $x^1, x^2, ..., x^k$ is a finite system in l^1 then, without loss of generality,

$$\begin{aligned} \|(\|I'x^n\|_{l^2})\|_{n(\phi)} &\leq \sum_{n=1}^k \|I'x^n\|_{l^2} \,\Delta\,\phi_n \leq \sum_{n=1}^k \sqrt{3} \,\Delta\,\phi_n \int_0^1 |\langle x^n, a(t) \rangle| \,dt \\ &\leq \sup_{a \in U^0} \sqrt{3} \sum \Delta\,\phi_n \,|\langle x^n, a \rangle| \\ &\leq \sup_{a \in U^0} \sqrt{3} \,\|(|\langle x^n, a \rangle|)\|_{n(\phi)}, \end{aligned}$$

where U^0 denotes the unit ball in the adjoint space l^{∞} of l^1 . Thus $I' \in \pi_{n(\phi)}(l^1, l^2)$, with $\pi_{n(\phi)}(I') \leq \sqrt{3}$.

The above proof is adopted from that of Pietsch [6] who proves the above result for the case $\phi_n = n$.

References

- 1. Gregory, D.A.: Vector sequence spaces. Ph. D. Thesis, University of Michigan, 1967.
- 2. Garling, D. J. H.: On symmetric sequence spaces. Proc. London Math. Soc. (3) 16, 85-105 (1966).
- 3. A class of reflexive symmetric BK-spaces. Canadian J. Math. 21, 602-608 (1969).
- 4. Köthe, G.: Topologische lineare Räume I. Berlin-Göttingen-Heidelberg: Springer 1960.

192

- 5. Pietsch, A.: Absolut summierende Abbildungen in lokalkonvexen Räumen. Math. Nachr. 27, 77-103 (1963).
- 6. Nukleare lokalkonvexe Räume. Berlin 1965.
- 7. Absolut *p*-summierende Abbildungen in normierten Räumen. Studia Math. **28**, 333-353 (1967).
- 8. Verallgemeinerte vollkommene Folgenräume. Berlin 1962.
- 9. Ruckle, W.: Symmetric coordinate spaces and symmetric bases. Canadian J. Math. **19**, 828-838 (1967).
- Sargent, W. L. C.: Some sequence spaces related to the l^p-spaces. J. London Math. Soc. 35, 161-171 (1960).
- 11. On sectionally bounded BK-spaces. Math. Z. 83, 57-66 (1964).
- 12. Zeller, K.: Theorie der Limitierungsverfahren. Berlin-Göttingen-Heidelberg: Springer 1958.

Prof. Melapalayam S. Ramanujan Department of Mathematics University of Michigan Ann Arbor, Michigan 48104, USA

(Received November 4, 1969)