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Let H denote a separable, infinite-dimensional Hilbert space. We shall consider 
operators (that is, bounded linear transformations) on/-/.  An operator T is said 
to be in the Schatten class Cp if T is compact and if the eigenvalues of 
(T 'T)  t/2 are in 1 p ( 0<p<oo) ;  the norm in Cp is the I p norm of these eigen- 
values. The class C 2 is called the Hilbert-Schmidt class, and C 1 is called the 
trace class. By C~o we denote the class of all compact operators. For  infor- 
mation on these classes see, for example, [23], [4, Chap. XI], [8, Chap. III], 
[19], [13. 

Although there is an obvious analogy with the sequence spaces I p, there is a 
deeper analogy with the function spaces L p on the unit circle (however, the 
containment relations are reversed from the L p case, namely, Cp c Cr for p < r). 
This analogy serves as a source for new conjectures in operator theory. Moti- 
vated by this we establish an operator analgue of a coefficient inequality for 
the function space H 1. First we survey some known results in order to 
emphasize the nature and depth of the analogy. 

Fix an orthonormal basis {en} (n= l, 2, ...) in H, and let En 
=span{e I . . . .  , en}. Each operator T o n / - / h a s  a matrix representation: 

T ~  {T0', k)} ( j ,k=  1,2, ...) 

where T(j,k)=(Tek, ej). We shall say that T has the upper triangular form if 
T(j', k )=0  for j > k. This is equivalent to saying that each of the subspaces E n is 
invariant for T: TEncE ~ (n>l) .  It can be shown that if T has the upper 
triangular form and is compact, then the spectrum of T is just the set of matrix 
entries on the main diagonal, together with 0. If T is not compact this need 
not be true as shown, for example, by the backward shift operator. 

We define the upper triangular projection, P~, on the vector space of all 
infinite matrices A(j,k) (j, k> 1) as follows: 

(p~A)(j,k)={A~k) if j<=k 
otherwise. 

* This research was supported in part by the National Science Foundation 
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We shall use the same symbol P, to denote the restriction of this operator to 
various subspaces of matrices, for example to C v (strictly speaking we should 
write ~p). 

We view the projection P~ as the analogue of the "analytic projection" P~, 
defined on formal trigonometric series as follows: 

oo 

P~ an eint ~-- Z a .  e int. 
--OO 0 

Along with the analytic projection one has the conjugate function operator in 
harmonic analysis, defined on formal series by the formula 

~ =  ~. a, eint~-+ ~ =  ~ ( - i ) ( sgnn)ane  int. 
- -013 - - 0 0  

where sgn n is equal to 0 for n = 0, + 1 for n > 0, and - l  for n < 0. Then ~ + i ~  

is a formal power series. There is a simple relationship between this operator 
and the analytic projection operator: 

Z+iZ+a0=2e (Z). 
In particular, one is bounded (say on L p) if and only if the other is bounded. 
For matrices one can define an analogous operation, A~-+A, by multiplying the 
entries above the main diagonal by - i ,  those below by i, and those on the 
diagonal by 0. Again there is a simple relationship between this operator and 
the upper triangular projection (this relationship involves also the projection 
onto the main diagonal). And this operator is bounded (say on Cp) if and only 
if P, is bounded. 

One can form the complex conjugate of a function or of a formal tri- 
gonometric series. The matrix analogue is to take the conjugate transpose: 

A*(j,k)=A(k,j). The matrix A is called Hermitian (or "'real") if A=A*;  every 
matrix has a unique decomposition, A = R e A  +i(ImA), where Re A and ImA 
are Hermitian. If A is an upper triangular matrix with real diagonal entries, 
then (Re A) N = ImA. 

We now list three further constructs used in harmonic analysis, together 
with their matrix analogues. Here f, g are trigonometric polynomials, and A, B 
are matrices with only finitely many non-zero entries. Then 

fg~--~AB, 
~f~,~--~tr(B*A) = tr(AB*), 

convolution: f*g+-+Schur product: A*B. 

Here tr denotes the trace: trA=~A(i ,  i). And the Schur product of A, B is the 
matrix with entries A(i,j)B(i,j). This product has also been called the "Ha- 
damard product" - see, for example, [10], p. 144 in the first edition, and w 85, 
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p. 174 in the second edition of the book. Prof. Halmos informs me that this 
name was suggested in an off-hand comment by von Neumann. (Perhaps he 
used this name because of the analogy with the Hadamard product of power 
series.) For more on this product see [3], and for a hostorical survey see [25]. 

These concepts are developed in greater generality in [9]. The Banach 
space aspects of the analogy with L p are investigated in [1]. The following 
results are (more or less) analogous to well-known results in harmonic analysis. 

1. If l < p < c o ,  if AECp and B~Cq where p - a + q - l = l ,  then ABffC 1 and 
jrABPIa<I[Allp rIBrIq. Also, the trace functional extends to C 1 with 
Itr(T)l < H TPla. Finally, Cq may be isometrically identified with the dual space 
of C v by means of the trace functional: tr(AB). (See [8, Chap. III, w and 
also Theorem 12.3].) 

2. I f  A is an n x n matrix, then 

c l o g n <  I[P~AI[ <logz(2n)]lAir. 

(See [16], Propositions 1.1 and 1.2, where the results are also shown to hold 
for other norms, in particular for the C a norm.) 

3. The upper triangular projection P~ is a bounded operator on C v (1 < p <  co), 
but is not bounded on C 1 or on Coo (see [16], Corollaries 1.2 and 1.3 and the 
related discussion). 

4. I f  T is compact and quasi-nilpotent (that is, T is a Voltera operator in the 
terminology of Gohberg and Krein [8, 9]), and if Im T~Cp for some p, 1 < p <  co, 
then Re T~Cp. This is a result of Macaev [18] (see also [-9, Theorem III.6.2]). I f  
I m T e C 1 ,  then ReTECp for all p > l  (see I-9, Theorem III.2.1] where a more 
precise result is obtained). In a similar vein we have the following result of W. 
Kahan [15] : I f  T is an n x n matrix with real spectrum then 

Him TIP =<(log2 n +0.038) I] Re TI[. 

5. As an analogue of the Hausdorff-Young inequality we have the following 
(when p = co the norm on the left side is the t ~176 norm): 

{~[]re,  JIP}Z/P<=llrllp (2=<p< co), 

llTll,< (~ llTe.llP} ~/" (i <p<2). 

The first of these is a consequence of the interpolation theorem for linear 
operators on C v spaces. (See [9, Chap, III, Theorem 5.2.]) The second follows 
by duality. (See [9, Chap. III, Theorem 3.3]. See also [4, Chap. XI, Lemma 
9.32], where the result is incorrectly stated to hold in the range 2=<p < oo; their 
proof works for 0 < p < 2 ,  with an additional constant factor on the right side. 
Thus the result is valid also for p < 1.) 

The Hardy-Littlewood-Fej6r inequality referred to in our title says that 

If(n)l < 
o n + l  = ~  [If[ll (f~H1)' 
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with equality only for the zero function. Here H 1 denotes the subspace of L 1 
consisting of those functions f for which the Fourier coefficients of negative 
index vanish: f(n)=0 (n<0). This inequality is sometimes called "Hardy's 
inequality" (see, for example, 1-14, Chap. 5, p. 70], or [7, Chap. II, Prob. 8, p. 
93], or [5, w 3.6, p. 48 - but see the notes at the end of the chapter on p. 52]). 
This is not correct. The inequality seems to have appeared for the first time in 
1927 in separate papers in the Mathematische Annalen, by Fej6r [6, Satz VI, p. 
122-123, and equations (48), (49), p. 117], and by Hardy and Littlewood [12, p. 
163, also Theorem 15, p. 206, and Theorem 16, p. 208]. Fej6r obtains the 
precise constant ~ (he states the result in an equivalent form involving de- 
rivatives); Hardy and Littlewood prove a more general coefficient inequality 
for functions of class H p, 0 < p < 2 ,  but when p = l  they do not obtain the 
constant ~. Zygmund [27, Notes to Chap. VII, Theorem 8.6, 8.7, p. 382], and 
Hardy, Littlewood and Polya [13, w pp. 236-237-1 refer to both papers 
when discussing this inequality. 

Several different proofs may be found in the references above (and also in 
[7, Chap. VI, Prob. 8, p. 273]). One proof uses the fact that each H ~ function 
of norm one is the product of two H z functions of norm one to deduce the 
inequality from the bound for the (first) Hilbert matrix. This is the matrix with 
entries (1 +n+m)-1 (n, m=0, 1,..,). This matrix represents a bounded operator 
on 12 with bound re, and this bound is not attained. (See, for example, [5, the 
Corollary to Theorem 3.14, p. 48], or [13, w Theorem 294, p. 212, and 
Chap. IX where an extensive survey of the older literature is given, and 
Appendix III]; a very simple proof of a generalization due to Schur is given in 
[21], and further generalizations are in [22]. A different proof, based on the 
so-called Schur test, is given in [11, Problems 37 and 38, pp. 22, 23].) 

Our proof for the matrix analogue of this inequality follows the lines of the 
proof referred to above. However, we need the second Hilbert matrix rather 
than the first. This is the matrix with entries ( n -  m)-1 when n =~ m, and 0 when 
n=m (n, m=  1, 2, ...). This matrix is also a bounded operator on 12 with bound 
re, which is not attained (see [21] for a very simple proof; further references are 
given below). We outline a simple proof that both Hilbert matrices are boun- 
ded by ~. This proof has been known for some time; Sheldon Axler pointed 
out to us that one can use it to obtain a stronger result, due to Schur. 

The proof begins by considering the L ~ function q~ with Fourier coef- 
ficients: ~b(0)=0, ~b(n)=-n -1 (n~0). (This function has been used before: see 
[6, the footnote on p. 117], or [27, the proof of Theorem 8.7 in Chap. VII, pp. 
286-287].) This is the function q0 = iO, where 

O(t)={tt+~c, - r e < x < 0 ,  
re, 0 < x < ~ .  

Then qlq~lLoo=Tc, but Jq)[<~ almost everywhere. Next one introduces the opera- 
tor Mo of multiplication by (p on L 2. The norm of this operator is ~ but it is 
not attained: IbM~ofll < ILNII, for f . 0 .  
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If we write L2=H2@(H2) • then Mo can be written as a 2 x 2  operator 
matrix 

Here A maps H 2 into itself and B maps H 2 into (H2) • Since M~o is bounded 
by ~ which is not attained, the same must be true for both A and B (and for X 
and Y). If we use the basis {(2rE)-l/e exp(int)} ( - o o < n < o o )  in L 2, then A is 
represented by the second Hilbert matrix and B by the first. 

Schur proved the stronger result that A*A+B*B<= 2 (see E24, w pp. 16, 
17], or [13, w Theorem 294, pp. 212, 2131). This follows from the above 
considerations as observed by Axler. Namely, * MoMo is bounded by ~2, and 
from (1) we see that the upper left entry in the 2 • 2 matrix for this operator is 
A*A+B*B. 

We now state our analogue of the inequality of Hardy, Littlewood and 
Fej6r. 

Theorem 1. Let TeC 1 have the upper triangular form with respect to the 
orthonormal basis {e,} (n = 1, 2,...). Then 

k=l j=l l + k - j  

with equality only when T= O. 
This result was obtained in 1972. We wish to thank D. Hadwin, P.R. 

Halmos, and E. Nordgren for helpful discussions of this material. And we 
would especially like to thank W. Arveson who pointed out the crucial 
importance of a result like Lemma 2. 

We require three lemmas. Peter Weinberger pointed out that the second 
lemma, in the special case when the operator P is an invertible n x n matrix, is 
really a standard fact from numerical analysis (it is called the Cholesky 
decomposition, see the comments following the proof). Throughout our dis- 
cussion the orthonormal basis {e,,}, n =  1,2 . . . .  will be fixed; upper triangularity 
will always be with respect to this basis. 

In general, operator multiplication is not weakly continuous; for example, 
if U is the unilateral shift then U"--*0 weakly and U * " ~ 0  strongly, but U*" U" 
= I  for aIl n. The product is weakly continuous, however, if the operators on 
the right have the upper triangular form. We only require the case p =2  of the 
following result. 

Lemma 1. Let R denote either the space of all operators on H, with the weak 
operator topology, or any of the Banach spaces Cp ( l < p < o o )  with its weak 
topology. I f  {A,}, {B,} mR, with A , - ,A  and B , ~ B  weakly, and if each B, has 
the upper triangular form, then A,B,-~AB weakly. 

Proof We write our operators as matrices. One verifies that if {A,} c R then 
A , ~ A  weakly if and only if {IrA, tie} is a bounded sequence, and .4,(i,j)--*A(i,j) 
for all i, j. Thus to complete the proof we must show that a) JrA,B, JrR are 
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bounded, and b) d,(i,j)~d(i,j) for all i, j. Here (for typographical reasons) we 
let d, and d denote the matrix entries of A,B ,  and of AB. 

As to the first point we recall that in Cp we have 

IIA,B, IIp<= IlA, B, IIp/2 <= llA,[lp llB, llp 

(see [-8, Chap. iII, (7.4) and (7.5)]). Thus {[IA,B, IIR} is a bounded sequence. 
For the second point we note that 

J 
d.(i,j) = ~ A~(i, k) l~.(k,j) 

k = l  

since B n is upper-triangular. A similar equation holds for d(i,j), and thus, for 
each fixed choice of i, j, dn(i,j)~d(i,j). 

Lemma 2. Let P be a positive semi-definite operator in C1, with ILPIL ~ = 1. Then 
there exists B e C  2 with HBH 2 = 1 such that B has the upper triangular form and P 
=B*B. 

Proof. We first prove the lemma under the additional assumption that P is 
one-to-one on each of the subspaces E, (n> 1). Then p1/2 is also one-to-one on 
each of these spaces. Let F,=P1/ZE,. Then F I ~ F 2 c . . . ,  and d i m F , ~ n  for all n. 
Hence there is an orthonormal set {f~} such that F ,=span{f l , . . . , f ,} .  Define 
an operator V by: Vf ,=e,  (n> 1), and V=0 on the orthogonal complement of 
the span of {f.}. Then V is a partial isometry. Let B = V P  1/2. Then B E . c E ,  
and so B has the upper triangular form. Also, B * B = P  1/2 V*Vp1/2=P,  since 
V* V is the projection onto the span of {f,}, which contains the range of p1/2. 
Finally, [IBII2< HVII 1[P~/2112= 1, and therefore 1 = [IPH1 -<_ ]lB*][2 ]IBII z < 1, which 
completes the proof in this case. 

Now suppose that P is not one-to-one. Let S be a fixed positive trace-class 
operator with trivial kernel (for example, a diagonal matrix with strictly 
positive diagonal entries in I1). Let P,=(P +n -1 S)d,, where d , =  I]P+n -~ Sll 7 2. 
Then P, has norm one, and P,~P,  in C 1. By the result proved above, there is a 
sequence {B,} of operators in C 2, having the upper triangular form, with P, 
- B ,  B,, 118,/12--1, for all n. By passing to a subsequence we may assume that 
{B,} is weakly convergent in C~ : B,--,B for some B in the unit ball of C 2. The 
limit operator B must have the upper triangular form and, by Lemma 1, we 
have B * B = P .  From this we have IIBI12>1 and hence the norm must equal 
unity. This completes the proof. 

Remark. The representation P=B*B,  with B upper triangular, is known in 
numerical analysis as the Cholesky decomposition of P (here P is a strictly 
positive n x n matrix). See, for example, [18, Chap. 9, Exercise 1.6, p. 174], or 
[26, Chap. 4, w p. 229]. One can arrange, in addition, that B has non- 
negative diagonal entries (this is done by multiplying the matrix B found in 
Lemma 2 on the left by a suitable diagonal unitary matrix); B is then uniquely 
determined by P. 
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Lemma 3. Let T6C 1 have the upper triangular form, with HTIII=I .  Then there 
exist upper triangular operators A , B ~ C  2 with T = A B  and ]JAIP2 = PlBII2 = 1. 

Proof We first prove the lemma with the additional assumption that T is one- 
to-one on each of the spaces E, ;  this is equivalent to requiring that all 
diagonal matrix entries are different from 0: (Tej, e)4:0 for all j. 

Let T = U P  be the polar decomposit ion of T; then P = ( T * T )  l/2 is a 
positive operator of norm one in C~, and U maps the range of P isometrically 
onto the range of T. Since IlPfll=[lzfll for all f we see that P has the same 
kernel as T, therefore P is one-to-one on each of the spaces E,. By Lemma 2, P 
=B*B where B is an upper triangular operator of norm one in C 2. We see 
that B must be one-to-one on each of the spaces E,. Now let A = UB*. Then A 
is in the unit ball of C2, and AB=T.  From this we see that ]pAIl2=l. To show 
that A has the upper triangular form we must show that it maps each space E,  
into itself. Since B is one-to-one on E n and E,  is finite dimensional we have E.  
=BE n . Hence 

AE~ = A B E  n = TE, =E,.  

Now suppose that T is not one-to-one on each of the spaces En, that is, 
some diagonal matrix entries are 0. Let S be a diagonal matrix C~ operator, 
with non-zero diagonal entries precisely in those places where T has a zero. 
Let Tn=(T+n-lS)d~,  where d , = l [ T + n - l S l l [  ~. Then T n satisfies all the con- 
ditions of the lemma, and in addition is one-to-one on each of the spaces E,. 
By what was proved above there are upper triangular operators An, B, in the 
unit ball of C 2 with T,=AnB ~. By passing to a subsequence we may assume 
that the sequences {A,} and {Bn} are weakly convergent in C2: A n n A  , Bn~B, 
where A,B~BalI(C2). By Lemma 1 we have AnB,--+AB, and so T=AB.  This 
completes the proof  since weak convergence preserves the upper triangular 
form. 

Remarks. 1. Is it really necessary to break the proof  into two parts? The 
construction given in the first part  should work in general, even when T is not 
one-to-one; the difficulty is to prove that A has the upper triangular form. 

2. If the upper triangular form were not involved the lemma would follow 
immediately from the polar decomposition. Indeed, if I lT j l t= l  then T 
=(UP)I/ZP 1/2 factors T into the product of two C 2 operators of norm one. 
This is analogous to the situation for functions: it is easy to write an L 1 
function of norm one as the product of two L 2 functions of norm one, but 
more difficult t o  do this for power series, that is, for H 1 and H 2. 

Proof of Theorem. Without loss of generality we may assume that /ITfll =1. 
Then by Lemma 3 there are upper triangular operators A, B of norm one in 
C 2 such that T=AB.  Let tlj , aij, bli denote the matrix entries of T, A, B 
respectively. The following summations are written with each variable going 
from 1 to ~ .  Because of the upper triangularity, however, the terms are equal 
to zero i f j > k ,  or i f j > r ,  or if r>k. Thus we really have l<=j<r<_k<oo. We 
use the boundedness of the second Hilbert matrix (which was discussed ear- 
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lier); then we use the Cauchy(-Buniakovsky-Schwarz) inequality. We have: 

[ajrbrk[ lajrbrk[ 
j,k l + k - j  i,k �9 

--<~ ~ (2 la~rl2) 1/2 (~ Ib~kl2) 1/2 
r j k 

<=re ( 2  2 ]ajrl2) 1/2 ( 2  2 Ib~kl2) 1/2=rc" 
r j r k 

We have strict inequality because the bound ~z for the second Hilbert matrix is 
not attained. 

We would like to indicate a somewhat different proof of Theorem 1 (and of 
the Hardy-Littlewood-Fej6r inequality) which establishes a more general result. 
This result could also be obtained by our previous method if we replace the 
second Hilbert matrix by an appropriate matrix. (This proof is well known in 
the function-theoretic case.) We require the following lemma whose proof uses 
Lemma 3. We state both the function theory and the operator theory versions. 

Lemma 4. a) I f  f ~ H  1 then there exists f ~ H  1 with non-negative Taylor 
coefficients, such that ]LNIII1 < IIfll 1, and 

If(n)[<f~(n) (n=O, 1,...). 

b) I f  T is an upper triangular trace-class operator then there is an upper 
triangular trace class operator T t with non-negative matrix entries, such that 
lIZllll < Hrlll, and 

lT"(i,j)l<~l(i,j) (1 < i , j <  oo). 

Proof. We prove a) since the proof of b) is entirely analogous. We may assume 
that 1If Ill = 1. Then we have f = g h ,  where g, hzBall(H2). Let g l ( z ) = 2  I~(n)l z n, 
and define h~ similarly. Then g~,h~eBall(H2), and the function f~ =g~h 1 has 
the desired properties. 

The following result generalizes Theorem 1 (take A to be the second 
Hilbert matrix) and the function theoretic inequality (take q5 = - i 6  where 6 is 
the function defined earlier). 

Theorem 2. a) Let 6 e L  ~ have q~(n)>O for n>O. Then 

~ If(n)[ q~(n)< llqS[Ioo/Ifll~ ( f e l l1 )  �9 
0 

b) Let A be a bounded operator on H, with A(i,j)>O for i<j.  Then for all 
upper triangular trace class operators T we have 

2 [ T(i,j)I A(i,j) <= II A II 1[ T I[1. 
i , j  

Pro@ We prove b); the proof of a) is similar, with the trace functional 
replaced by integration. By Lemma 4b) we may assume that T has non- 
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negative matrix entries. Then 

T(i,j) A(i,j) = tr(TA*) < IIA [I I[ T 111. 

This completes the proof. 
Note that the proofs of both theorems required Lemma 3, which is really 

the key result. 
Next we mention some problems suggested by Theorem 1. Our definition 

of upper triangularity is equivalent to the requirement that the operator in 
question should map each of the spaces E n into itself, that is, the family {E,} is 
a chain of invariant subspaces for the operator. (By a "chain" of subspaces we 
mean a family of subspaces that is linearly ordered by inclusion.) Further, the 
family {E,} forms a maximal chain. Suppose now that we replaced this chain 
by another maximal chain. This leads to a corresponding concept of upper 
triangularity; in fact most of the discussion in [8] and [9] takes place in this 
more general context. Is there an analogue of the Hardy-Littlewood-Fej6r 
inequality for such chains? We discuss this problem for two special chains. 

First, suppose we have an orthonormal basis {en} ( - o o < n < o o ) ;  let E, 
=span{ek} (-oo<k___<n). Unlike our previous situation, these spaces are not 
finite-dimensional. If TeC~, IITlll=l,  and if TE~cE, for all n, then do we 
have T=AB where A, BeC2, ]IA]F2=]IBIIz=I, and both A and B leave each 
subspace E, invariant? If this were true, then just as before we would have 

x~ ~ I~(j, h)l 
l + k _ j  = < ~  II TII~. 

k = - - c o  j = - - c o  

Arveson [2, Cor. 2, p. 221] has established an analogue of the Cholesky 
decomposition for this chain: if P is a positive, invertible operator, then P 
=B*B where B (and also B -1) leaves each of the subspaces E, invariant. Of 
course an invertible operator cannot be in C1, so this result is not really the 
analogue of Lemma 2 for this chain. For our purposes, however, we only need 
a weaker result. Indeed, Lemma 2 was only used to prove Lemma 3, and here 
the positive operator P is the positive part of an upper triangular trace-class 
operator. Thus we need the analogue of Lemma 2 only for such P. 

As our second example we take the Hilbert space L2( - ~ ,  ~ )  with the 
chain of subspaces 

E,={feL2:f=O a.e. on (a,~)}, - o o < a < o o .  (2) 

If A is a Hilbert-Schmidt operator on L 2 then it has a representation 

(Af)(x)= ~ K(x,y) f(y)dy (feL2), (3) 
--oo 

where KeL2(IR2; dxdy) (see, for example, [8; Chap. III, 9.3, Theorem 1, p. 
141], or [4; Chap. XI, w p. 1009]). The following result shows that "upper 
triangularity" of the kernel K is equivalent to the invariance of the subspaces 
E a. This result is surely known, but we were unable to find a specific reference. 
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Proposition 1. Let KeL2(IR 2) and let the operator A and the chain of subspaces 
{Ea} be defined by (3) and (2) above. Then the following are equivalent. 

1. AEa~Eafor all ae]R. 

2. K(x,y)=O a.e. in {(x,y): x>y}. 

Proof. It is trivial that Z implies 1. For the converse we assume, to obtain a 
contradiction, that the set of (x,y) with x > y  and K(x,y)+O has positive two- 
dimensional measure. Hence there is an ~ > 0  and a set S~IR 2 of positive 
measure suc~ that for all (x, y)ES we have 

(i) x > y + ~ ,  

(ii) K(x, y) * O. 

It follows from Lebesgue's theorem on differentiating an integral that there is a 
square Q with sides parallel to the coordinate axes and side length <e,  
contained in {(x, y): x > y + e}, such that 55 K ~ 0. Then Q has the form 

Q 

Q=[Xo,Xo +6 ] x [ Y o , Y 0 + 6 ] = I x J  

for some 6<c~ and some (xo,Yo) with xo>Yo+C~. 
Let f ( y ) = l  for yeJ, and f = 0  otherwise. In particular, f ( y )=O  for Y>Yo 

+6. To obtain a contradiction we now show that (Af)(x) does not vanish 
almost everywhere in Yo + ~ < x  < oe. It will be sufficient to show that 5Af+O. 
We have i 

~(Af)(x)dx=~(~K(x,y)f(y)dy)dx=~Kdxdy~=O, 
I I Q 

which completes the proof. 
Suppose one could prove that every trace class operator of trace norm one 

that leaves all the subspaces Ea invariant is the product of two Hilbert-Schmidt 
operators, each of Hilbert-Schmidt norm one, and each leaving the spaces E~ 
invariant. Then, just as in the proof of Theorem 1 we would have 

i IK(x, ylldxdy<cl(Alll" 
_~ _~ y - x  

The proof uses the boundedness of the Hilbert transform operator on L2(R 2) 
(in place of the boundedness of the Hilbert matrix). 

David Larson [17] has shown recently that for the chain of subspaces {E~} 
(or more generally, for any complete chain) if P is any positive invertible 
operator then we can find an operator B that leaves invariant all the subspaces 
in the chain, such that P=B*B. The hypothesis that P is invertible cannot be 
completely omitted. For example, Larson shows that in L2(0, 1) if P is the 
projection onto the constant functions, then P cannot be factored in the form 
B'B, where B leaves invariant the subspaces of functions vanishing almost 
everywhere in (a, 1), for 0 < a  < 1. Of course as remarked earlier we really only 
need to factor positive operators of the form P =(T* T) 1/2, where T is a trace- 
class operator that leaves invariant the subspaces in the chain. The rank-one 
projection referred to above does not have this form (see the appendix). 
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These examples suggest the following problems. Here JCL denotes a chain 
(not necessarily maximal) of subspaces of Hilbert space; P, 7;, A, B denote 
bounded linear transformations. We say that an operator  S leaves Jg  invariant 
i f S M c M  for all M e J g .  

Question 1. If  P=(T*T)  1/2 where T leaves J g  invariant, then does there exist B 
leaving dg invariant such that P=B*B? 

Question 2. If  T leaves Jg  invariant and T is in the unit ball of the trace class, 
then do we have T=AB,  where A and B are in the unit ball of the Hilbert- 
Schmidt class, and each of them leaves J / / invar iant?  

These questions seem to be open even when ~ '  contains just one subspace 
M, different from {0} and H. 

Appendix. In the space L 2 :L2(0, 1) let 

Ea={feL2(O, 1): f = 0  a.e. in (a, 1)}. 

I f f ,  g~L 2, then by f |  we denote the rank-one operator defined by 

( f |  (h) = (h, g) f 

Thus P = I |  is the (orthogonal) projection operator  onto the constant func- 
tions. 

Proposition 2. Let S = f |  ( f + 0 ,  g~:0). Then SEacE  a ( 0 < a < l )  /f and only if 
there exists ~, 0<c~< 1, such that f6E~ and g6E~. 

Proof Let h a denote the characteristic function of [0, a]. Then Sh a =(ha, g) f~E  a 
for 0 < a  < 1. Let ~= in fa ,  where fsE~. Then ~ > 0  and f~E~. Hence for a < ~ we 

a 

must have ~g=(g, ha)=0; it follows from Lebesgue's theorem on differentiating 
o 

an integral that g = 0  almost everywhere in [0, ~], i.e., gEE:~. 

Corollary. I f  P = I |  if B and T are operators with BE~cE~ and TEASE a 
(0 < a < 1), then 

i) P~:B*B, 
ii) P+(T*T)  ~/2. 

Proof Of course ii) is a consequence of i) since p2 = p .  To prove i), assume that 
P=B*B. Since B must have rank one we have B = f |  for some f g s L  2 with 
f~:O, g#:0; we may assume that I lf lF=l.  By Proposition 2 we have f~E~, 
geE~ for some ~ ( 0 ,  1). A calculation shows that B*B=g| Thus g|  1@1 
and so g-= const. Hence c<=0, which is a contradiction. 
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