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w O. Introduction 

Here we consider complex manifolds M which are holomorphically separable, 
i.e., the global holomorphic functions (9 (M) separate the points of M. We investi- 
gate T n (n-torus) actions on M, where T"={(ei~ ei~ 0eN"}, and n is the 
complex dimension of M. We assume that the action is effective, i.e., if 0ET ~ 
is nonzero, then there exists z e M  with O.z+z.  Our final assumption on the 
action is one of smoothness; the map T n x M ~ M  given by (0, z ) - , O . z  is C 1 
in both variables and holomorphic in z. 

The most obvious examples of such actions are given by Reinhardt domains 
in ~", with the usual action O.z=(ei~ . . . .  , e i ~  The standard Reinhardt 
action may also be changed as follows: if A is an algebraic automorphism 
of T n, then O.az=(AO).z.  An obvious question that arises is whether all 
T"-actions can arise in this way. 

Our main results are contained in the following four theorems. 

Theorem 1. Let M be a connected, separable, complex manifold equipped with 
an effective, C 1, Tn-action. Then the following conditions are equivalent: 

(i) M is equivalent by an equivariant biholomorphism to a Reinhardt domain 
in (E n, after possibly adjusting the T"-action on M by an automorphism of T ~. 

(ii) M admits a smooth envelope of holomorphy. 
In particular, if M is Stein, then it is (equivariantly equivalent to) a Reinhardt 

domain. 

The proof of Theorem 1 may also be used to give a simpler proof  of the 
following result of Bialnicki-Birula [1, 2]. 

Theorem 2. Suppose that M =  C" and the Tn-action is algebraic. Then the action 
is algebraically conjugate to the usual Reinhardt action on C n. 

It follows from general constructions that our manifold has an envelope 
f2 of holomorphy of some sort. (See Hayes [7] for a discussion of this subject.) 
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In this paper we will use the term Stein envelope of holomorphy in the following 
sense. If M is a holomorphically separable manifold, then the Stein envelope 
of holomorphy ~ (if it exists) is a Stein space with M c ~ and such that every 
f e  (9 (m) extends uniquely to a function fE (9 (~) .  

A T"-action may also be given on I12 N for N > n as follows. If A is an n x N 
matrix, then we have O.aT,=eia07,. If X c ~ 2  N is a subvariety invariant under 
this action, then this T"-action also operates on X. In this case, we say that 
the T"-action on X is linear. 

Theorem 3. Let M satisfy the hypotheses of Theorem 1. Them the following are 
equivalent: 

(i) there is a finite set of holomorphic functions {f l , - . - ,  fk}c(9(M) such 
that the polynomials in f~ , . . . ,  fk are dense in (9(M) with respect to the topology 
of uniform convergence on compact sets. 

(ii) M is equivariantly biholomorphic to an open set of an algebraic variety 
of 112 N equipped with a linear T" action. 

(iii) M admits a Stein envelope of holomorphy. 

In fact the linearization f :  M ~ 112 N imbeds M as an open subset of an 
algebraic variety Vcff; N, and f ( M )  becomes essentially a piece of a toroidal 
imbedding. (See [4, 5, 8] for further information on toroidal embeddings.) It 
is shown in Section 4 that a Tn-invariant domain in such a variety V always 
has a Stein envelope of holomorphy. 

We note that there are separable manifolds for which the conditions i), ii), 
and iii) do not hold. In Section 5 we give a class of examples of 3-dimensional 
manifolds without a Stein envelope of holomorphy. These examples are possibly 
easier to understand than the original example of Grauert  [6]. 

The following result shows that TZ-actions on 2-manifolds are more re- 
stricted. 

Theorem 4. Let M satisfy the hypotheses of Theorem 1. I f  the dimension is n = 2, 
then the equivalent conditions i), ii), and iii) in Theorem 2 all hold. 

w 1. Preliminaries 

Let Tn be an n-torus. We denote by g its Lie algebra and exp: g ~ T "  the 
exponential map. We lat F c ~ be the lattice that is the kernel of the exponential 
map. For  the sake of concreteness, we may identify g with IR", F with (2 rcZ)", 
and T " =  {g =(e ~~ .... e i~ =exp  0: 0 ~ " } .  

We let g* be the dual of ~, and let ~ be the lattice dual of F: 

Thus each ~ gives the character whose value on exp 0 is (exp 0) ~ for all 
O~g. 

Let v~g be given; then IRv generates a closed 1-dimensional subgroup of 
T" if and only if lRv • F 4= {0}, i.e., if we may take w F. Thus we see that there 
is a correspondence between F and the 1-dimensional subgroups of T ~. 
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There is a further correspondence between the 1-dimensional closed sub- 
groups of T". The first is that veF (or the corresponding 1-dimensional sub- 
groups of T") corresponds to a hypersurface in A~ 

~ = b e ~ :  <~,v>=0}. 

These are the characters that are identically 1 on the torus Nv. Thus it follows 
that these give the lattice of characters on the quotient torus, i.e., 

= {X: T " / ~  v -* r  : X (tl + t2) = X ( t j  X (t2) }. 

We record here an elementary result. 

Lemma 1.1. Let L c ~ be given. The characters in L separate the points of T" 
if and only if the group generated by L equals ~q~. 

Lemma 1.2. Let zoeM be given, and suppose that (9(M) separates the points 
of the orbit T".zo. Then T".z  o is a torus of dimension 0 <=j<= n. It is a smooth, 
compact, totally real submanifold of M. 

Proof The only thing we have to show is that T".zo is totally real. Let us 
suppose not. Then there is a complex subspace C inside the tangent space 
to the orbit T".zo. We then may think of C inside the Lie algebra of T". Since 
T" acts by bihomorphisms, exponentiation produces a holomorphic map r 
C --* C. z o c T". z o. I f f e  (9 (M) then f o r  is bounded and holomorphic on C, there- 
fore a constant. Thus (9 (M) cannot separate points on C. z o, which is a contradic- 
tion. 

For  z o o m  we define the isotropy subgroup of z o 

T~"o= {0e T": O'zo=Zo}. 

Since we assume that the action is effective we obtain the following lemma 
from the Slice Theorem [3]. 

Lemma 1.3. For Zo in an open dense subset of M the map 0 ~ O. Zo is a diffeomor- 
phism between T" and T"-z o. 

For  ae(T")*, we say that f ,e(9(M) is a holomorphic character associated 
to e iff,(O.z)=ei~'~ holds for all zeM,  OCT". Let f~ and g~ be holomorphic 
characters. If Zo is as in Lemma 1.3, then f~/g~ is constant on T" .z  0 and so 
f~=cg~ on M. Thus there is (up to constant multiple) at most one character 
for each c~. Let 

(M) = {a ~ (T")*: there is a nonzero holomorphic character f,}. 

Any f e  (9 (M) has a Fourier expansion f = Eft,  where 

f~(z)=(2rc)-" I f (z 'O) e-i~'~ 
T n 

is a holomorphic character associated to ~. The Fourier series converges to 
f uniformly on compact subsets of M. 
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Lemma 1.4. ~e(M) generates f e  as a group. 

Proo f  Let z o be a point of M as in Lemma 1.3. If f e ( 9 ( M )  is written in a 
Fourier expansion f =  Zf~, then f~ restricted to T ".z o is just a character on 
T". Since the f, 's  must separate points, the result follows from Lemma 1.1. 

Lemma 1.5. For z o e M,  T"~ o ~: 0 if and only i f  there exists a nontrivial holomorphic 
character f~ with f~(zo) = O. 

Proo f  Suppose 0o~T~o, 0o:~0. By Lemma 1,1, there exists ~eSr such that 
e i''~176 + 1. Thus 

f~(Oo " Zo) = ei"~176 

so L (Zo) = 0. 
Suppose that T~o--0. Then T".z  o is totally real n-torus. If f , ( z o ) - - 0  for some 

nontrivial character, then f , (T".  Zo)=0. Thus f~ must vanish identically, which 
is a contradiction. 

Now let us define the set 
see that S is given by 

S = { z e M :  T~"4:0}. In light of Lemma 1.5, we 

s =  ~ {L=0} 

with the union taken over all holomorphic characters on M. 

Lemma 1.6. ~ ( M )  is given as an intersection o f  half-spaces, i.e., there is a subset 
{flJ} c 2 '*  such that 

~ ( M ) =  { e e l :  <e, flj) > 0  for all j}. 

Proo f  Let us write S = S I ~ S 2 u  ... as a union of irreducible components. By 
Lemma 1.4 there are e l ,  ..., ~ , e ~ ( M )  which generate ~(r as a group. For  1 ~ j  
=< n, we let #i, k be the order of vanishing of f,~ on Sk. 

Any ~ e ~  may be written as ~ = v l  ~1 + ... +v ,  ~, for v~ . . . .  , v, e7Z, and thus 
there is a meromorphic character 

L = ( L )  vl. . .  (L.;"- 

This character will be holomorphic if and only if f~ vanishes to nonnegative 
order on Sk for each k. Thus we have the condition ~eS~(M) if and only if 

~ #j, kvj_>0 
j = l  

for k = 1, 2, 3 . . . . .  Thus we have the statement of the Lemma if we take 

j = l  

where {~* . . . . .  ~*} is the dual basis to { ~ ,  ..., ~,}. 
Inspecting of proof of Lemma 1.6, we see that we also have the following. 



T"-Actions on Complex Manifolds 69 

Corollary 1.7. To each irreducible component Sj of  S there corresponds an element 
flj~ ~ *  with the following two properties: 

(i) f~ is identically zero on Sj if and only if (a, b j )  > O. 
(ii) the set {a~See(M): (a, f l j )=0}  contains ( n - l )  linearly independent ele- 

ments. 

Proof The property (i) follows from the condition that f ,  vanishes to positive 
order on Sj. Property (ii) follows because n -  1 functions are required to separate 
points on Sj. 

w 2. Local Linearization 

Here we discuss the local linearization of a T"-action: everything can be made 
locally equivalent to a domain with an A-Reinhardt action. Throughout  this 
section, we will assume that T"-orbits are totally real, but M is not required 
to be holomorphically separable (see Lemma 1.2). At the end of this Section 
we give an example of a separable manifold which is locally but not globally 
Reinhardt. 

Lemma 2.1. Let T".z  o c M" be a f ixed T n orbit. Then it has a T"-invariant Stein 
neighborhood U in M. 

Proof  By averaging we can produce real T"-invariant functions rl . . . .  , r . . . . . .  
r, + k defined near Z = T". Zo such that: 

(i) Z =  {x: rj(x)=O, all j} 
(ii) dr1A. . .  ^ d r , + O  on Z. 

Since Z is totally real, we may assume 9rl  A ... ^ Or ,+0  on Z. A standard 

computation then shows that a = ~ r~ is strongly plurisubharmonic on a suffi- 
i=1 

ciently small neighborhood of Z. We then set U = {x: a(x)< e} for e > 0 small. 

Proposition 2.2. Given any zooM, there is a T"-invariant neighborhood V of  Zo 
and a biholomorphism q~: V ~  q~(V)c C" intertwining the T"-action on V and an 
effective linear action ofT"  on ~". 

Proof Let V be a Stein T"-invariant neighborhood of Zo. Let k = d i m  T".z  o. 
Let A be the lattice generated (over K ~) by 

{a~Ae(V): f~(zo) +0}. 

Let ill, f12, ..., fll be a basis of A. By Corollary 1.7, l<=k. The corresponding 
characters fp . . . . . .  fp, are meromorphic functions on V, nonsingular on T" . z  o. 
We choose V small enough so fpfi(9(V). Since (9(V) separates points, f ~  . . . . .  
fp, must separate points on T".zo and therefore l=  k and 

dA1 ^ ... ^ dA~(Zo)+O. 
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Now let gx, g2 . . . .  , g,e(9(V) give local coordinates at z o. Expanding g~ into 
Fourier series we find characters f~,, f~ . . . . .  , f~, such that 

df~ 1 A ... Adf~,(Zo)+O. 

We now let ei=fli, l < i < k ,  and choose 0~k+ x ...C~, from {o-1, ..., or,} so 

df~ A ... A df~,(Zo)+O. 

The map  cp: V ~  112" given by 

 0=(L1 . . . . .  L.) 

is a local b iholomorphism near T".zo and is one-to-one on T".zo. Shrinking 
V if necessary, we achieve that cp is one-to-one and thus is the desired biholo- 
morphism. 

Corollary 2.3. I f  the isotropy subgroup T~" o is trivial, then the map q~ in Proposi- 
tion 2.2 may be chosen so that ~o: V~q) (V)c IE"  is equivariant with the usual 
(Reinhardt) T"-action on IE", i.e., q)(V) is a Reinhardt domain. Further, in this 
case, cp is uniquely determined by the value (p(Zo). 

Corollary 2.4. For z o e S, there exists 1 < d < n such that the local linearizing map 
cO takes a neighborhood of Zo in S to {z e 112":[ z -  cp (zo)[ < 5, z 1.-. zd = 0}. 

Now we discuss the possibility of continuing (p analytically to all of M. 
Let ~h (T") c re1 (M) denote the subgroup generated by a T"-orbit. This is a normal  
subgroup, and ~ x (M)/rCl (T") represents the fundamental  group of the orbit  space 
M/T". 

Theorem 2.5. I f  S=  (o and if 7h(M)/Th(T" ) = 0  then M is equivariantly equivalent 
to a Reinhardt Riemann domain over (<12")". 

Proof Let us start with zoeM.  By Lemma  2.2 there is a T"-invariant neighbor- 
hood V of zo and characters f~j~(9(V), 1 < j < n  such that q~--(f,1, ..-, f~,) is 
an equivariant imbedding of V into 112". Since S = q~, this imbeds V as a Reinhardt  
domain in (IE*)". If y is any path  in M starting at Zo we may  continue f , j ,  
and thus cp, along y to analytic function which we denote by ]~s, and c?. 

If y lies in T".zo,  then it is clear that  the continuation is trivial and q~ = c}. 
The hypothesis that  rcl(M)/Th(T")=0 means that any loop based at z o may 
be deformed to a closed curve lying in T"-z 0. Thus cp(Zo)= (~(Zo) for all closed 
curves ?, and thus go is globally defined on M. 

Since q0 is a local imbedding and equivariant, ~: M--* (IE*)" gives M the 
structure of a Reinhardt  Riemann domain. 

It  is possible to show, by a power series argument,  that  if M is holomorphi-  
eally separable, then cp is one to one and thus in this case M is a Reinhardt  
domain. We do not do this here, however, since we will prove this same result 
in Section 3 by other means. 

Example 2.6. Let M be as in Theorem 2.5 except that we do not assume ~I(M) 
--7 h (T". Zo). Then M is covered by a Reinhardt  Riemann domain. 
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To see this, let X be the universal cover of the manifold M/T". Let 
be the pullback to X of the principal T" bundle M over M/T": 

p 
) 

X , M/T" 

Then p: M ~ M is a T"-equivariant covering map, and we can apply Theorem 2.5 
to M. 

A concrete example of such an M may be obtained as follows: Let N ~ (•.)2 
be a Reinhardt domain for which the base N/T 2 is an annulus. We cut N 
equivariantly to annihilate n~(N/T z) and then reglue it with a fixed twist (zl, 
z2) ~-(e z~i~l z~, e 2~i~2 z2) along the T2-orbits. If tc 1 , K2 ~Z, then the resulting mani- 
fold b~ is not holomorphically separable. And if K1, ~c2q~Q, then N has no 
holomorphic characters (and thus no nonconstant holomorphic functions) at 
a11. 

Example 2.7. We will construct a holomorphically separable 2-manifold M with 
TZ-action as a union of two coordinate charts. M will not be biholomorphic 
to a Reinhardt domain. We let 

~'~1 : {(Z1, Z2) e{~2: 1 <  Izd <�88 Iz21 <�88 
a2={(Z1,52)  ~ 2 :  [ZI[ < 5  3<[52[<5}.  

We give f2~ the ordinary Reinhardt action z.O=(e~~ e~~ For  ,f2 2 we set 

A=(21 32), and we use the action 

0.A51 = A 0 . 5 =  (e i0~ zl,  ei~ 
where 0 =  A 0. 

Let us define the map 

\zl z~]' 

and U={z~QI:f(z)EQ2}. Thus f :  U~f(U)  is an equivariant map from the 
T 2 action on Q~ to the T 2 action on f22, and we may define 

M =(~2~ u f22)/~ 

where we identify z , -~  for z~12a n U, ~f22 nf(U), and f ( z )=5 .  
It follows, then, that 

S={Z~-~I: Z2=0}k..){5~r : 5=0}~-S lk . )S  2. 

Further, the isotropy subgroups are 

2 f[01\ (A0)2=0}={0,+202=0}. 
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On the basis of the isotropy subgroups we will see that the action on M 
is not equivalent to a linear action on I]2 z. For  it it were, it would have to 
have a T2-action for which the isotropy subgroups were {01 =0} and {0z=0}. 
But the only changes of T 2 action on M are given by changes of basis on 
T 2. These would be given by taking the existing action on M and pre-multiplying 
it by some matrix T e  G/_(2, Z). If the isotropy group TsZ~ = {01 = 0} is to preserved, 

then T must have the form T--  It follows, then, that T = for 
* " + 1  

some k~Z. But now the isotropy subgroup of $2 becomes 

Ts=~O2):2 ([01\  (ATO)z=O}={(+l+2k)01+202=O}._ _ 

Since __ 1 + 2 k  is always odd, this can never be changed to {02=0}, which 
would be necessary for M to be Reinhardt. 

Next we see what the characters on M are and that M is holomorphically 
separable. If fe(9(M), then it has a Laurent series on ~21 

f ( z )=~aj l i~  z~l zJ2 ~, j a = > 0 ,  

= E a j  Z J 

and it also has a Laurent series on ~~2 

f ( z ) = ~ a ~ , k 2 ~ ] l ~  2, k l > 0 .  

To see the relation between a s and 5K, we write the first series using the identifica- 
tion g = z A, so that 

f (z) = ~ as(~ a- 1)s = ~ as g(sa 1) 

SO that a s = 5r with K = J A -  1. It follows that the sum is taken over 

~f = {J e7Z:: J(z) >= O, (JA - 1)(1) __~ 0} = { (Jl, J2): J: > 0, 2jl  --J2 > 0}, 

which is easily seen to be the lattice of characters. 
At this stage we also see that M is not Reinhardt since ~gf=5~(M) is not 

equivalent as a semigroup to (Z+) 2. This is because 2 '  has minimal elements 
el =(1, 0), e2=(1, 1), and e3=(1, 2) which are needed for any set of generators 
of 5C The corresponding characters give an imbedding of M into 1123 via 

F(z) = ( fe l ,L2,L~)=(z l ,  Za z2, zl z2)=((1, ~2, ~3). 

By the relation el + e3 = 2e2, it follows that f ( M )  is an open subset of the variety 
V={~I ~3 =(2}. The T 2 action on M ~ - f ( M ) c  Vis given by 

O" ~ = (e iO'el ~1, ei~ ~2, e i~  ~s). 
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w 3. Holomorphically Separable Manifolds 

In this Section we give first the proof of Theorem 1. Then we give most of 
the proof of Theorem 3, with only the part concerning envelopes of holomorphy 
being deferred to Section 4. 

Proposition 3.1. Let M be a connected Stein manifold with S +-O. Then there are 
at most n distinct S/s, and nSs~  O. 
Proof Let S~, $2, ... denote the irreducible components of S. Since S is 

p 
T"-invariant, so is each Sj. We need to show that ~ Sj+ c~ for all p, and we 

k j = l  k + l  

proceed by induction. Let us assume that ~ Sj ~: ~ and ~ Sj--~. Then since 
j = l  j = l  k 

M is Stein, there exists an analytic function f which is -- 0 on (~ Sj and = 1 
j = l  

on Sk + 1. If we average f over T", then we obtain a function which is constant 
on orbits and thus globally constant. On the other hand, the function remains 

k 

the same on (~ Sj and Sk + 1, which is a contradiction. 
j = l  

We see that there are at most n Sis because if there are (n+ 1) of them, 
then there is a point zoeSlC~...r~S,+l. But this is a contradiction to Corol- 
lary 2.4. 

Proof of Theorem 1. We need to show that statements (i) and (ii) are equivalent. 
(i)=~(ii). This is clear, since every Reinhardt domain has an envelope of 

holomorphy (its logarithmically convex hull). 
(ii)=.,(i). Let /~ be the Stein manifold that is the envelope of holomorphy 

of M. Then every ~b t A u t  (M) extends to ~ e Aut (2~), and so the T"-action extends 
to M. To see that the action is smooth on M, we note that the Lie algebra 
of T" is given by holomorphic vector fields Z on M. Since )14 Stein, we may 

imbed it in I12", m = 2 n + l ,  and so Z may be written on M as Z = ~ a s o z j .  

Since we may extend each holomorphic function aj to /~t, we may extend the 
vector field Z, too, and so the action is smooth. 

We let S denote the subset of M where the T"-action in singular. By Proposi- 
tion 3.1, there exists a point ZoeC~S~. Let U be a T"-invariant neighborhood 
of Zo. Then ~ ( U ) =  ~ ( / ~ )  by the criterion of Section 1. That is, eeZP~(/~) if 
and only if the set or linear inequalities in Lemma 1.6 are satisfied. Since these 
involve conditions on the Sj, the inequalities will hold if and only if they hold 
in a neighborhood of Zo, and thus they are the same for U or 2~. 

Finally, by Proposition 2.2, we may linearize the T"-action in a neighborhood 
U of T".zo, and the mapping is given as f = ( f ~ ,  ..., f,,) with ej generating 
5r Since 5e~(U)= s162162 it follows that f is holomorphic on M. Also, f 
is one-one, since f~j generate (9 ()~r) and )~t is holomorphically separable. Thus 
f is a biholomorphism. 

Proof of Theorem 2. Here we use the letter M to denote our copy of IE" with 
the given T"-action. Carrying through the proof of Theorem 1 in this case, we 
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obtain a biholomorphic mapping f = ( f ,  . . . . . .  f~,): M ~I12" that linearizes the 
action. Since a character f ,  may be obtained by averaging a polynomial over 
T n , 

f~(z)= ~ p(O.z)e-i~'~ 
T n 

it follows that f ,  is itself a polynomial. Finally, it is known that if f is a polyno- 
mial mapping which is biholomorphic, then the inverse is a polynomial mapping 
([-9, 10]) which completes the proof. 

Theorem 3.2. The equivalent conditions (i) and (ii) of Theorem 1 are also equivalent 
to the condition that ~(m)  ~-7Z,k • (Z+ ) n-k. 

Proof Let us first assume that (i) and (ii) are satisfied. Without loss of generality, 
we may renumber the coordinates such that {zj = O} c~ M = 0 if and only if k + 1 
<j<n .  Thus zl ,  z~ 1, ..., Zk, Zk l, Zk+ I . . . .  , Z, generate (9 (M). 

Conversely, we suppose that ~(M)_~TZk• n-k, and we let ej=(O . . . .  , 
1, ... O) where the 1 is in thej- th slot. I f f~  denotes the corresponding holomorph- 
ic character, then (fei,..., f~,): M ~ C "  maps M to a Reinhardt domain inside 
{Zl...z~@0}. 
Corollary 3.3. I f  M is as in Theorem I, and if there is at most one nontrivial 
subgroup of T" that appears as an isotropy subgroup then the action on M is 
equivariantly equivalent to a linear action on I~". 

Proof Suppose there is only one isotropy subgroup, which must be given as 
Rf l  for some / / e ~ * .  Then, by Lemma 1.6 and Corollary 1.7, it follows that 
5r = {e~ ~r (e, f l ) >  0}, where we replace fl by - f l  if necessary. Thus ~ (M) 
is equivalent to Z+ x Z" -  ~, and the result follows from Theorem 3.2. 

Now let us discuss the condition that 5r is finitely generated as a semi- 
group. Let 

~qo = 5~r (M) c~ - ~L.e~ (M) 

denote the largest subgroup of s162 Since ~foC7Z", it follows that ~o has 
rank < n and thus is generated by < n elements. Thus ~ ( M )  is finitely generated 
if and only if ~ ( M ) / ~  o is. 

We say that an element eeZP~(M) is minimal if whenever ill, fl2eZ, e~(M), 
flz+f12=7, we h a v e / 3 1 ~ o  or flzeZP o. We see that if ~r then 5r has 
minimal elements as follows. 

Let ~ and ~o denote the convex hulls of ~ and 5-~ o. Thus ~ / ~ o  is a 
subcone of IR"/fP o which contains no linear subspaces. It follows, then, that 
~ / ~ o  is the convex hull of its extreme points. Now since ~ ( M )  is a polyhedral 
cone generated by linear inequalities over Z", it contains a point corresponding 
to every extreme ray. For each such extreme ray, ~ ( M )  contains a minimal 
element. In general, ~e~(M) also contains other minimal elements. 

Finally, we make the observation that ~ ( M )  is finitely generated if and 
only if ~ ( m ) / ~ o  has a finite number of extreme rays, generated by ~1, ..., 
aN. The only thing nontrivial about this assertion is that if there is a finite 
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set el . . . .  , eN, then 5eo(M)/Sf o is finitely generated. But it is geometrically evident 
that a set of generators is given by a fundamental polyhedron in this lattice, 
i.e., 

5r ~ convex hull {ei~ + . - .  + c%: 1 _-< i I ~ . . .  ~ ij <= N}. 

We also see that ~ is finitely generated if and only if ~/s  has a finite number 
of minimal elements. 

Let us make the definition that (9(M) is generated by k functions if there 
are ~0~ . . . . .  gOke(9(M) such that the set of polynomials in g0~ . . . . .  (Ok is dense 
in (9(M) in the sense of uniform convergence on compact subsets of M. 

Proposition 3.4. The semigroup ~s is finitely generated if and only if (9(M) 
is. In particular, if (9(M) has a finite set of generators, it is generated by a 
finite number of characters. 

Proof. If C~M) is generated by el . . . . .  teN, then f~ ,  ..., f ~  generate f~ for all 
c~e~(M).  Thus polynomials in the f~ ,  ..., f~,, are dense in (9(M). 

Conversely, let {rp~, ..., gON}C(9(M ) be a set of generators. Without loss 
of generality we may assume that q~t--1 is constant, and go2, ..., g0N contain 
no constant terms in their Fourier expansions. Let ~0 (M)/ZPo have distinct mini- 
mal elements represented by {el, e2 . . . .  }, and for j > 2  let us write 

_ _  k r +cP) 
k 

where (p) is the part of the Fourier series that does not involve any minimal 
k lie in ~o. We note that any product  elements, and Fourier coefficients of cj 

(Ph, " - ,  qhp of generators cannot involve any minimal elements. The reason 
is that q~j contains no constant term (corresponding to e =0)  and so all the 
terms f,r f~,=f,,+~s are compound. Thus all of the minimal terms f,~ that can 
be generated by polynomials in {qh . . . .  , q~u) can be generated already by linear 
combinations. Thus there can be at most N minimal elements, and thus ~ ( M )  
is finitely generated. 

Corrolary 3.5. The minimal number of generators for (9(M) is 2k +m, where k 
is the rank of ~o and m is the number of minimal elements of ~(M)/~o.  

Proof of Theorem 3. Our proof  will proceed as follows. 
(ii)=>(iii). This is a direct consequence of Theorem 4.1 which is proved in 

Section 4. 
(i)=*-(ii). By Proposition 3.4, ~ ( M )  is finitely generated with generators 

71, --., 7N- Let F = (f~l . . . .  , f ~ )  denote the mapping given by the corresponding 
characters. Thus the mapping F: M ~ C N is an holomorphic mapping which 
is equivariant to the T" action 0-(  = ((1 e ~r~'~ . . . . .  (N ei~'~ - Since the frj generate 
(9 (M), it follows that F is one-to-one. 

To show that F is biholomorphic it suffices to show that dF is injective 
at any point zoeM. By Proposition 2.2, we may choose local coordinates so 
that z o =(0  . . . .  ,0, 1, ..., 1) with d O's and n - d  l's, and the T"-action is equivalent 
to the standard Reinhardt action. Identifying 5r with 7Z," via this equivalence, 
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we conclude that ~ ( M )  is contained in 2ga+ x 2g "-~. Since (9(M) separates points 
of T".zo it follows that 5f~(M)C~({0}d X Z "-~) is not contained in any proper 
linear subspace of {0}dx Z "-a. Thus we may choose linearly independent ele- 
ments %-n+1, ..., ~, in Aa~(m)c~({0}dx2p-d). Further, we may choose 7 in 
the interior of AP~ (M) c~ ({0} d x 7z"-d), i.e., y does not lie in any of the hyperplanes 
that define the boundary. 

Now for M sufficiently large, c g = M T + e  j lies in ~ ( M )  for l < j < d ,  where 
e~ is a standard basis element. We see that the characters f ~  . . . .  , f~, give local 
coordinates at Zo ; this follows from the identity 

d f~ /x . . . / x  d s  = det A.  z ~ + "'" +~"(zl... z , ) -  1 dzl  A ... /x dz,  

where A is the matrix with column vectors ~a . . . . .  c~,. Finally, since 7a . . . .  , 
?N are generators of ~ ( M ) ,  each s  is a monomial in the functions f~l , - ' - ,  
f~,,. Thus dF is injective at Zo. 

Finally F(M) is an open subset of the variety V = n {(~1 ... (~N = C} where 
the intersection is taken over all m=(m~, ..., ms)e7/N such that m~ 7~+ .-. 
+mN ?N = 0, and C =f~v~' (Zo)---J~Tff(zo) for some zoom.  It is evident that F ( M ) c  
V; what we must show is that F(M) does not have strictly smaller dimension. 
To see that this cannot happen we consider the mapping q: 2ZN~A ~ given 
by rl(k~ . . . .  , kN)=kt h +  ... +kNVN, and we let d{=ZN/ker  q, so that ~ (  is a 
lattice isomorphic via r / toA a _-__Z n. 

Now if F(M) is not open in V, there is locally a holomorphic function h 
which is nonconstant on V, and such that {h = 0} ~ F(M). Without loss of general- 
ity, we may assume that 

h(( )= ~' %(a,  
//edr 

i.e. the only powers come from Jg. But now 

h(F(O.z))= ~ a~ ei~162 ~ 
,a e J t l  

vanishes for all 0~T' .  Since q: Jr 5e is an isomorphism, we conclude that 
a~ = 0 for all ft. Thus h = 0 on V, which completes the proof. 
: (iii)=~(i). Let us suppose that there is a Stein space M which is the envelope 
of holomorphy of M. Since (9(/~) is a Stein algebra, it is finitely generated, 
and the same set of generators also generates (9 (M). 

The Case of Dimension Two 

Proof of Theorem 4. If , , ~ ( M ) # : T Z  2 then it is the intersection of rational half- 
spaces in 2Z 2, and by Corollary 1.7, there are only two possibilities: s is 
a rational half-space, or it is the intersection of two of them. In either case, 
it is immediate that ~ ( M )  if finitely generated, which completes the proof. 

A more precise version of this result is as follows. 
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Theorem 3.5. Let M be a connected, holomorphically separable 2-manifold with 
smooth, effective T2-action. Then M = M ~ u M 2 where M j is equivariantly equiva- 
lent to a Reinhardt domain in (12 2 with an Aj-action. In particular, M can have 
at most two distinct, nonzero isotropy subgroups T 2. 

Proof. As was noted in the proof of Theorem4, 5~e(M) is either a rational half- 
space in 77,, 2 or the intersection of two of them. It suffices to consider the second 
case, in which 

~LP~ (M) = {ee L~~ (c~, flj) > 0 , j =  1, 2}. 

The set S =  S 1 u $2 where the action is singular is given by Sj= {f, j=0},  where 
we let c~j be any c~e Za~ (M) such that (%, flj) = 0. Thus the manifolds M~ = M - $ 2  
and M 2 = M - S t  have the desired properties, and the only nontrivial isotropy 
subgroups that occur are the 1-tori generated by lRflj. 

An analogous result holds for n>2 ,  but in this case we write M 
= M l t _ )  . . .  kJMj, where Mj corresponds to the j-th face in the boundary of 
5r162 orthogonal to flj. Of course if n > 2, then J can be arbitrarily large. 

w 4. Envelopes of Holomorphy 

We let X c I12 N denote a variety of the form 

j = l  

for some sequence {~j}cZ N and { c j } c ~ .  We will assume that the set {~j} 
has the property: if m~e{%} for some positive integer m, then ~{%}.  It follows 
that X is a normal variety (see [8], p. 5). Our main result is the following. 

Theorem 4.1. Let X be as above, and let ( 2 ~ X  be a connected, open set. Then 
there exists an open set ~ c X containing ~2 such that 

(i) t] is Stein. 
(ii) every f ~ (9 (t2) extends uniquely to an element f~  (9 (~). 

Let us define ~ c Z N by 

~={~EZ~': ~(9(~)}. 

Since X is a normal complex space, a function is holomorphic if it is weakly 
holomorphic (i.e., if it is holomorphic on the regular points and locally bounded 

t "  

at the singular points). Thus ~ = t ~ Z N :  ~" is locally bounded near 
k 

Next we define ~ to be the closure of Q + fie in N N. 

Lemma 4.2. I f  a s ~  then 

~((,  a)= ~ ai log I(i[ 
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is locally bounded above on 0 c~ {~s= 0 . 
J 

Proof Let {aS}=l l )+~  be a sequence converging to a~  N, and let 

~o e f2 c~ {~ = 0 . Since f2 n {~s = 0 is a subvariety, we may find a com- 
j = l  = 

pact set K inside f 2 -  {~s = 0} such that 
J 

q~ (~o) < sup q~ 
K 

holds for all q~ psh on f2. Thus we have 

U(~o, aS) < sup u(~, aS). 
~ K  

Now the right hand side is bounded above independently o f j  so we obtain 

~((o,  a~ C. 

For  points (1 near (o, we may have a similar max imum principle with K 1 
near K, and this completes the proof. 

Now we set 

471 =47c~ {XEP, N: Ix[ = 1}, 

SO that 471 is compact.  For  K c (2 a fixed compact  set, we define 

cr(a)=sup I~1 a 
[ e K  

for a~471 . We note that cr(a) is continuous on 4? 1 . 

Lemma 4.3. 

K".'={~X: [~[a<~_CK(a)+ e for all ae4?l} 

contains a neighborhood of K in X. 

Proof This follows from the compactness of 471. We must show that if xeK,  
then there exists 6x>0  such that B(x, (5x)cK ~. For  each ae4?l let ~ be the 
largest positive number  such that B(x, 6~)c{[~l"<cK(a)+e }. Now 6~>0 and 
6~ varies continuously with a, so 

6~.'=min d~ > 0. 

One final notation: 

R = {KeX: I([a < cK(a) for all ae4?l}. 

Proof of Theorem 4.1. Let us define (? = u / ( ,  where we take the union over 
all compact  K c O .  First we show that ~ is open. Let L c f2  be a compact  
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set with K c i n t  L. It is easily seen, then, that cK(a)<cL(a) for all a e ~ .  Thus 
there exists e > 0 such that cx + e < CL. We conclude, then, by Lemma 4.3, that 

/ s  L = O .  

Thus ~ is open. 
If K ~ f] is compact, then the holomorphic hull 

/ (  = {zsO: If(z)[ <sup  If[ for allfeC(O)} 
K 

satisfies / ( ~ / (  since Q+ ~ is dense in z~. Since also K c / (  1 for some K1 c f2  
it follows t h a t / ( c / ( c / s  1 is a closed subset of the compact set/s and hence 
compact. This concludes the proof that ~ is Stein. 

For  the proof of (ii) we let fe(9(f2) be given and expand f as a series of 
characters: 

f =~c~L. 

On f 2 c X  this takes the form f ( ( ) = ~ c ~  (~. Since the series converges uniformly 
and absolutely on compact subsets of f2, it follows immediately that the series 
converges on f]. This gives us our analytic continuation. 

w 5. Examples 

In this section we give the construction of a holomorphically separable 3-dimen- 
sional complex manifold with a T3-action such that the equivalent properties 
(i), (ii), and (iii) of Theorem 3 do not hold. We will construct a separable manifold 
M such that ~ ( M )  is the cone on a rational polygon with infinitely many 
sides. It will be shown that M cannot have a Stein envelope of holomorphy, 
since there would be an infinite number of irreducible components passing 
though a common point. Our construction, as summarized in Theorem 5.1, is 
a rather general procedure for making examples. 

We will define our manifold M as a union of manifolds Mo, M 1, M2, ..., 
modulo an identification, i.e. M = ( u  Mk)/~. For j > 1, Mj is given as: Mj c II;" 
is a small neighborhood of the compact disk {(1, 1, (): (erE, I ( l< l} ,  and Mj 
has the action 

0 �9 AjZ = eiA~Oz, 

for some Aje GL(3, Z). We will later specify Aj by requiring that the 3rd column 
of AJ is a given vector of integers c J= (c{, c j ,  c{) with gcd(c j) = 1. 

The set Moc(ll2*) a will be a Reinhardt domain with the usual Reinhardt 
action, given by Ao =I. We will choose M o so that its logarithmic image is 

an open set c o o n  3 containing U (tcJ: teN, t<0}.  We let coj denote the con- 
j = l  

nected component of e) c~ {x e N  a : I xl _-> 1 } which intersects {t c j: t eN ,  t < 0}, and 
we call coj the j-th leg. We will choose the c 1, c 2, c 3 . . . .  and the Mo, Mx, 
M 2, ... such that: 
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(i) the legs 091, o92 . . . .  are disjoint. 
(ii) Aj 09 ~ log Mj, where log M s denotes the logarithmic image of Mj c~ (IE*) 3 

in IRa. 
(iii) Aj 09j c~ {43 < 2} = log(M j) n {~a < -- 2}. 

We define M via the obvious identification: z(~ u) if z(~ ztJ)eM ~j), 
and (z(~ z (j). Thus the T 3 actions on each of the pieces match up under 
this identification, and it follows from (ii) that the manifold M = ( U M j ) / ~  is 
a Hausdorff, complex manifold. 

The singular set for the Ta-action consists of S = w S j, where 

S j  = {(7,1, z2,  z3)eMj: za =0}. 

The corresponding isotropy subgroup is 

/(01  (0) 
Gj= 0=  0 2 eTa: AjO= 0 f o r s o m e ~ e T  1 

t \ 0 a /  

= O=A] -1 0 ={~J: 0eT1}. 

We conclude, then, that Gi4 = Gj for i=t=j. It follows that M cannot have a Stein 
envelope of holomorphy ~i. For if ~ existed, the intersection c~ Sj would have 
to be nonempty by Proposition 3.1. But since the isotropy subgroups are all 
different, $ would have infinitely many irreducible components at this point, 
which is a contradiction. 

We conclude this section by showing: the vectors cj can be chosen so that 
M is holomorphically separable. 

Repeating the calculation given at the end of Section 2, we see that the 
holomorphic characters are given on M o as (z~~ s, where JeS .  p, and 

Gv = {je•3 : ( j t A [  1)(3)=> 0, k = 1, 2, . . .  } 

= {JeTZ3: J.ck>=o, k =  1, 2 . . . .  ). 

The set of holomorphic characters which do not vanish identically on Sk is 
given by 

~ =  {JeSe: J.ck=0}. 

Thus, for a set of vectors {c j} c7Z 3, 5e is given as the dual cone, and ~ is 
the "face" of 0 Gv which is orthogonal to c k. 

Since Sk is a small, Ta-invariant neighborhood of (1, 1, 0) in {z3 =0}, the 
characters of ~ vanish nowhere on Sk. It follows that holomorphic characters 
on M will separate points on each Sk if 

(iv) ~ contains 2 linear independent points for each k. 
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The geometric interpretation of (iv) is that ~r is a polyhedral cone whose 
boundary consists of "true" 2-dimensional faces 5r 

Finally, we observe that we may choose {d}c(Z+)  3, (or equivalently, 
{d}=(Q+) a) such that (i), (ii), (iii), and (iv) hold. Since {d}=(Z+) a, it follows 
that ~~ and so holomorphic characters separate any two points z~M o 
and w~M. I.e., the coordinate functions z 1, z2, z 3 on M 0 extend holomorphically 

to M and vanish on U Sj. By (iv), the characters in ~k separate points in 
j = l  

S k. Finally, by (iv), we may take linearly independent vectors ak, flk ~ ~ -  U ~ "  
j#:k 

It follows that the characters (ztk)) ~k and (Z(k)) ~ separate points and do not vanish 
on Sk, but they vanish on Sj for all j+k .  This completes the proof that M 
is holomorphically separable. 

We have used this Section to give a construction of 3-dimensional examples. 
The same ideas may be used to give n-dimensional examples. We note here 
a general result that may be proved along these lines. 

First if M is holomorphically separable, then ~ has the structure: 

~ = {c~e(T")*: e .yj>0,  j : l ,  2 . . . .  }, 

for some set {7j} : ~* .  The connection between the 7j and the Sj is as follows. 
By Corollary 2.4, the isotropy subgroup T~j is 1-dimensional for each j. Thus 
T}j is generated by an element 7 j ~ * .  By Corollary 1.7, the characters that 
do not vanish identically on Sj are given by s  c~-7j=0}. Replacing 
yj possibly by - ? j ,  we see that 5e has the representation obtained at the end 
of Section 1 : 

a) L~c(M)= {ees176 e .~j>0 for j =  1, 2, ...}. 
And for each j, (9(Sj) is generated by the characters {f~: eEL~j}. If M is holo- 
morphically separable, it follows that 

b) for each j, ~ contains n-1 linearly independent elements. 

Theorem 5.1. I f  s is of the form a) and satisfies b) above, then there 
is a holomorphieally separable n-manifold M with a holomorphie T"-aetion such 
that ~ (M) = ~ .  
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