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w 

Int roduct ion ,  

The one-sided Laplace t ransformat ion of a function F (t), 
o~ 

(1) ~ {~(t)} --- ~ e - * t F ( t ) d t  = t(s) ,  
0 

t ransforms the operation of differentiation of F ( t )  into an algebraic 
operation on l (s) in the following way:  

(2) ~ {F<-> (t)} = s- / Ca) - s - -~  E (0) - s - - ~ v '  (0) - . . .  - E<,-~ (0), 
where the indices in parentheses denote derivatives ~). This gave rise to 

an impor tan t  metho d (used by Doetsch 2) since 1923) of solving linear 
boundary-value problems in part ial  differential equations; for if the t r a n s -  
formation can be applied to the unknown function with respect to one 
of the  independent variables, the problem in the t ransformed functlon 
does not involve derivatives with respect to tha t  variable. A two- 

dimensional problem is thus t ransformed s) into one in ordinary diffe- 

i) For conditions under which this property of the transformation is valid see 
G. Doetsch, Die Integrodifferentialgleichungen veto Faltungstypus. Math. Annalen 
89 (1923), 192--207 [p. 198, Theorem III] .  Here the Laplace transformation of 
F ~n) (t) is assumed absolutely convergent; only simple convergence is used in Doetscb's 
more recent derivation of this property: Der Faltungssatz in der Theorie der 
LapJaee-Transformation. Annali della R. Scuola Norm. Sup. di Pisa (2) 4 (1935), 
71--84 [Lemma 2]. 

'~) See for  instance the series of papers: G. Doetsch, Probleme ans der Theorie 
der W~rmeieitung. Math. Zeitschr. 22 (1925), 285--292; 293--306; 26 (1926), 
608--626; 26 (1927), 89--98; 28 (1928), 567--578. In the first and fourth papers 
of this series F. Bernstein is a co-author. Also see other references i~ G. Doetsch, 
Les 6quations aux d~riv~es partielles du type parabolique. L'Enseignement Math~- 
matique 35 (1936), 43--87 [p. 8(i, bibliography]. 

s) A discussion of the hypotheses on which such transformations of boundary- 
value problems depend is given in the last paper under ~); also in G. Doetseh, 
Elektrische Schwingungen in einem anf~nglich strom- und spannungslosen Kabet 
unter dem Einflul~ einer Randerregung. - -  Festschrift d. Teehn. H0ehschule Stutt- 
gart zur Vol|endung ihres ersten Jah~hunderts. Verlag Springer, 1929, pp. 56--78. 
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rential equations involving a parameter s. The solution of the original 
problem is obtained by applying the inverse of the Laplace transfor- 
mation to the solution of the transformed problem. This is usually the 
most difficult step in the process; it  is this step which concerns us in 
this paper. 

The inversion process with which we are principally concerned here 
is one which expresses the inverse ~ -1  {f (s)} of the Laplace transformation 
in a series4). Repre~sentations of this general character have usually 
been written, especially in electrical engineering, by the formal process 
of expanding f(s) in some series and applying the operator s term- 
wise, but this method leads to incorrect results in many cases when the 
series is infinite S). 

The particular series ~'hich is shown here to represent s {/}, for 
functions [(s) of a certain class, is a somewhat generalized form of the 
Heaviside expansion formula 8). I t  is important to have usable sets of 
conditions on f(s) under which this series expansion is valid, for here 
too it frequently happens tha t  a formal app!ication of this series fails 
to give the inverse transformation: 

In order to establish the direct expansion of ~ -~  If} in series we 
employ here a well-known expression for this transformation as an inte- 
gral in the complex plane of the variable s. I t  was found possible, to 
improve upon the already known conditions on ](s) which are sufficient 
for this integral representation. These new conditions are established 
in w 2. They are used in w 3 to establish the series representation under 
different sets of conditions. The two sets of conditions which are most 
useful in solving boundary-value problems are given in Theorems 4 and 5. 
In w 4 the inverse transformations of two particular [unctions a r e  found 
with the help of ~ e  expansion in series, and these are used i n w  5 to 
fred a simple Solution of a problem in the forced displacements in a bar. 

4) C~ncerning asymptotic representations of ~-~ I]} for large v~lues of t see 
G. Doetsvh, Ein allgemeines Prinzip der asympto~isvhen Entwicklung, Journ. f. d. 
reine u. ~ngewandte Math. 167 (1932), 274--293 [p. 286ff.]. ~his paper also 
contains some interesting observations on the inversion of t~he Laplace transfer- 
marion by means of the integral in the complex plane [pt ~ 278, 279]. 

~) Such a process, together with a method of verifying the results, is illustrated 
by R. V. Churchill, Temperature distribution in a slab of two layers. Duke Math. 
Journ. o~ (1936), 405--414. 

8) Relations between the methods of operational calculus a~d functional trans- 
formations are disenssed :in G. Doetsoh, Die Anwendung yon Funktionaltransfor- 
mationea in der Theorie ~der D~fferentla~gleioh ~tmgen und die symbolische Methode 
(Operatorenka~k~l~ Jahreaher. D. Me V. 48 (1954), 238--25], and in other papers 
cited there. 
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w 

Sufficient conditions for representing ~-1 {/~ by an integral. 
The inverse Laplace transformation of a function f (s), 

e - 1  {/(s)}  = F ( t ) ,  

is a function F (t)7) which satisfies the integral equation 

(3) / (s) = E (t) d t. 
0 

Condititms under which f (s) is representable in the form (3), together 
with an expression for F (t) in terms of f (s), where published in !920 
by M. Fujiwara 8). But his proof assumes that f (s) satisfies some con- 
ditions not stated in his theorems. Instead of following Fujiwara's me~hod 
of proof throughout, after stating the complete set of conditions used~ 
it is simpler to give the theorem and proof in the following form, pro- 
posed to the author by G. Doetsch: 

T h e o r e m  1. Let f(s) satisfy the following conditions: 
10 f (s) is analytic in the half-plane 9t (s) ~ cr where ~ is a real constant. 
20 For a fixed p ~ 

7 § a~i 

t im ~ d ~ f ( z ) d z  
w---~ co ~, -- col 

converges uniformly in each finite interval 0 <~ t ~ T. 

f i t (~) I d 30 lira 1 § Izl I z I converges. 
~ t a  i 

40 t] (s) t is bounded in ~ (s) ~ p. 

50 lim I / (a -~- oJ i) 1 = 0 uniformly /or all oJ. 

Then for all s with ~ (s) ~ p it [oUows that 
c~o 

f (s) = ~ e - ~  F (t) d t 
0 

w h e r e  

(4) 

~.§ mi 

7) Concerning the uniqueness of F(t} see Lereh, Sur uu point  de la thdorie des 
fonct ions gdndratrices d 'Abel ,  Acta Math. 27 (1903), 339--351. 

8) M. Fuj iwara,  ~lber Ab~lsche erzeugende Funkt ion  und Darstellbarkeits-  
bedingung yon Funkt ionen  dureh Diriehletsche Reihen,  The TShoku Math. Journ .  
17 (1920), 363--383, [Theorems I and II] .  

M~thematisehe Zeitsehrift. 42. 37 
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that 
As a Iesult of the uniform convergence assumed in 2 0 it follows 

T �9 T 7 + e/~: 

j'e-'eF(t)dt= I e-'tdt['l'izn,~olim 1" et*/(z)dz] 
0 0 7--rot 

7+tot  

__ 1 .  lira ~ l - - e -  ~ -  ~) ~ 
- ~ , ~ , . . =  . ~ - *  t ( z ) ~ z ~ )  �9 

7--vJi 

Acco~ing t~ the hypothesis 3 ~ this limit converges uniformly in T for 
all 2' ~ 0, for 

7q-~t  7+~oi 

lim I I ;-~-~ I/{z)dzl < lim Id, z i, 

},-- tol 7 - -mi  

and for each s a sufficiently large I oJI can be found, say ~2, such that 

for I~ I ~ / 2  this integrand is less than 41/(z)-----J[ The limit as T-+ co can 
Izl + !" 

thus be taken under the integral sign: 

e-~F (t)dt =-~-~ i lira d z. 
~ .-->. oo 8 - -  r 

0 y- -mi  

To show that this last limit is [ (s) unde r the hypotheses stated 

apply the theorem of Cauehy, integrating :(Z~ around the, rectangle 

with vertices 7 q- eo i, 7 -- co i, m -- eo i, eo + eo i. Let a fixed ~2 be chosen 
so large that It (s) l ~  e to the  right of the line ~t (e) = ~ ;  this is possible 
according to 5 ~ Then for tim integral along the right-hand side of the 
rectangle it follows that, for m :> D, 

Along the segment of the upper side to the .right of the line ~lt(z)= $2, 

9) The  C a u c h y  pr inc ipa l  va lne  can  be w r i t t e n  a s  a n  infini te  i n t eg r s l :  

7+ea t  
lira ~ etZi(z)dz=i [ee(r+~176176 

7 ~ w f  0 
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and along the remaining portion of the upper side, 

I ~+f ~ f(z) d z t <  M ~-~, ,~_,,,~ 8 -  z ~ ~o-~(s)  

where M is an upper bound of ]j(s) l in R ( s ) ~  ~, (condition 4~ simi- 
larly for the integration over the two portions of the lower side. Hence 
by first selecting ~ sufficiently large and then taking to large enough 
the integrals over these three sides of the rectangle can be made less 
than any fixed e" > 0. Since 

1 ~ l(z) d z = /  (s) 

when the integral is taken a round  any rectangle with s in its interior, 
it follows that  

7 + w i  

1 ~ I (z) lira j d (z) = J  (s) 

and the theorem is proved. 
I t  should be observed that  a necessary condition in order that ] (s) 

shall have a r e a l  inverse trans/ormation F (t) is that 

/ (~) = / (s), 

where the bar deno%es the conjugate complex number. This follows 
immediately from the representation (3) of j (s) as an integral. Hence 
if F (t) is real, as is the case in the applications to boundary-value prob- 

/ 

lems, we can write 
~ ' + m i  zr 

lira ~ e'V(s)ds=ei~. ~[r 

The ~hree conditions 3 ~ 4 ~ 50 in Theorem 1 can be replaced by t h e  
single condition that  /or some [ i z d  lr > 0, Is k f (s)[ is bounded in ~ (s) 
>~ ~'. This is simpler t o  use, but more restrictive. 

The following is an important special case of Theorem 1. 
T h e o r e m 2. Let / (s) be analytic in the hal/-Tlane ~ (s) > % and 

~or a /ixed y :> :r let 

It (~' + toi) I dto 
- - oo  

be convergent. Also Zet I /(s)l be bon.ded in ~ (s) ~ ~, and Jim I /(~ + ~i)I  = 0 
a . - . . ~  o o  

uni/ormly ]or all to. Then far each s such that ~ (s) > y, 

/ (s) = ~ e-" iv (t) dt 
0 

37* 
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where 

The assumption 
convergence of the 
z ---- 7 ~ e o i ,  

r ___ I.f (:, + 
The other conditions in Theorem 1 are clearly satisfied. 

The conditions here are much simpler than those in Theorem 1. 

B(t) = -~..i I e~"t (z) d z. 

of absolute convergence here insures the uniform 
integral in condition 2 ~ T h e o r e m  1, for when 

But  
the condition of absolute convergence of the infinite integral here is much 
narrower than the condition 2 0 of Theorem 1, tha t  the Cauchy principal 
value of the integral converge uniformly. 

Sufficient conditions for the inversion in the form o f  a complex 
integral have also been established by Tamarkinl~ His second set of 
conditions form a special case of those in Theorem 2; he assumes tha t  
~___~0 and tha t  tf(s)I approaches zero uniformly in ~(s )~- - -7  as ]s t 
becomes infinite n). 

w 

Sufficient conditions for representing 2 - 1  {f} by a series. 

A direct expansion of the inverse Laplace transformation in series 
will now be established from the integral form (4). The series is more 
appropriate in many problems than the integral~ 

T h e o r e m  3. Let ](s) be analytic in the hall-plane ~(s) ~ y and 
admit (on the line ~ ( s ) =  7). the integral form (4) o/ its inverse Laplace 
trans/ormation ; also let its singular points consist only of ~aoles s,~ o/or~r am. 
I] there is a fixed,number k ~ 0 for which Is~ f (s)[ is bounded at all 
points (in.,~ (s~ ~__ 7) on some sequence o/ circles I sl ~-- q,,, where ~,~ be- 
comes infinite with n, then 

N 

am 
(5) ~--1 {/(s)} ---- Z e *=~ Z A,~tP-1/(p  -~  1)[ for t ~ 0. 

10) J. D. Tamarkin, On Laplace's integral equations, Trans. Am. Math. Soc. 
28 (1926), 417--425. One of the conditions in his first set is that the order of 
integration can be. interchanged in the iterated infinite integral. 

~1) The class of analytic functions t {s) which can be represented as Laplace 
transforms ~ (s) ~ ~ {F} with F expressed as a complex integral can be exactly 
determined by functlon-theoretic conditions, ff one assumes F to be integrable in 
the pth power (p ~ 1) in the Lebesgue sense and ff one replaces simple conver- 
gence of the Complex integral by convergence in the mean, as is shown in a 
recent paper by G. Doetech, Bedingungen fiir die Darstellbarkeit einer Funktion 
als Laplace-Integral nnd eine Umkehrformel fiir die Laplace-Transformation, Math. 
Zeitsehr. 42 (1937). 
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The numbers Am~ are eoe]]icients in the Laurent expansion o] [ (s) about 
the pole s,~: 

am 
(6) 1 (s) = X A...~/(s --  s...)~' + Z B..... (s -- s...)". 

and the terms in the series {5) which e~rrespond to poles lying between 
two consecutive circles I s I = 0~-  ~ and t s l --'- ~n are grouped as a Single term. 

When the terms of the series (6) are multiplied by e ~t it is readily 
seen that  the residue of e ' t [ ( s ) a t  the pole s~ is 

am 
e " ~  X A , ~ , t p - ~ / ( p  - -  1)!. 

p---~l 

Put  s = p e t~ and let Cn denote tha~ arc of the circle ~ = ~n which lies 
to the left of the line 9{ (s) ---- F; also let [a n denote the segment of this 
line intercepted by  the circle. Then according to the Cauchy theorem 
of residues 

(7) 1 Ie*Z/(s)ds-- ]- 1 Iest[(s)d.~ 
(Pn) (On) 

~an ~m 

= Z e-' Z 
r a = l  p = l  

where mn is the number of poles within ~ = Q,,, and the sense of the 
integration is positive. 

The second integral in (7) approaches zero as n becomes infinite, 
for t ~ 0. For if M is an upper bound of ]s k ] (s)t corresponding to a 
fixed k ~ 0 for all points on the arcs G,,  then 

3~ 3~ - ~ + %  -/-+on 
[j'f(s)e"~sl < e.. j" l]((,..e'~ ' ~ 1 7 6 1 7 6  ~ e~-k~ l  ~ je.oo.odO 
(C n) = a 

"~ - % T - % 

W]le~6 

O, = arc sin ~" - -  ~ < 0,~ % . 

The last �9 of this inequality can b e  written 

J = .=20~-kM j" e ' e n ~ ~ 1 7 6  
- -  0 n 

. ~  - -  O n 
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Suppose first that  7 ~ 0. Since sin 0 > 0/2 when 0 < 0 < ~/2, then 

I 4M ( j~.  o~ _ e-t~.,,j,). j <  2 ~ - ~ M ,  d--te,,e!SdO --_ 
�9 t O n  

But 0 , 0 ~ - ~ 7  as n - ~  co and hence J - ~ 0  as n -~  co, ( 7 ~ 0 ) -  When 
r > 0 the integral J can be written 

~/~ en 

O. 0 

and since 0/2 < sin 0 < 0 when 0 < 0 < ~/2, 

~19 ~ 

0 0 

= 2 M  (z- 2e + 

Hence J -~0 as n-+  zc, (7 > 0), so 

lira ~e st/(s) d s = 0  for t > 0. 

Since the first integral in (7) converges to ~ - i  [f (s)} as n becomes 
infinite according to the conditions in the theorem, t h e  sum on the right 
also converges to this value and the theorem is proved. 

The sum in the right~hand member of (7) contains jus t  those terms 
which correspond t o  the poles of f (s) lying inside the circle Q----~,, so 
if the resulting series is infinite it-converges to 9 " !  {j} when the terms 
are grouped according to these circles. 

To show then t h a t  the inverse Laplace transformation of a give n 
function f (s) is represented by the series (5)for  this function, it is suffi- 
cient to show that f (s) -satisfies the conditions of Theorem I (or Theo- 
rem 2), and those in Theorem 3 which deal with the character of /(s) 
i~ ~ (s) < 7 ~). A much simpler but  more restrictive set of conditions 
can be stated as follows-/ 

T h e o r e m  4 .  I f  f(s) is analytic in the half-plane !R (s) >~ ? and its 
singularities are all poles, and if for some fixed k > 1 it is true that 
s ~ ~ (s) t is bounded in this half-plane: and at all ~oints on some sequence 
o/ circles ]s] ---- e ,  where e,, becomes infinite with n, then the series (5) 
vonveryens ,to ~ -1  {j} when the terms are .qi'ouped as specified in Theorem 3. 

I f  M is an upper bound of [s ~ f(s)] in !R(s) ~ 7 then 

[ / ( .  + 4)[ < M/(o + M/! I 

1r It is of interest to note that when the conditions of Theorem 1 and those 
of Theorem 3 with k ~ 1 are satisfied, the series (5) also converges for t-----0. 
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and since /r ~ 1 the conditions in Theorem 2 are satisfied. All condi- 
tions in Theorem 3 are clearly satisfied so Theorem 4 is established. 

By  employing rectangles instead of circular segments the following 
useful conditions can be shown to be sufficient: 

T h e o r e m  5. Let f (s) satis]y the conditi~s: 
i ~ f (s) is analytic, everwhere e~ept in the strip # < 9{ ( s ) ~  7, and 

its sin~dar points consist only ot poles. 
2 0 For some fixed k > 1, {Skf (S) I iS bounded in ~ (s) ~ 7. 

30 if (s) ! is bounded in 9l (s) ~ t~. 
40 For some system of horizontal lines 3 ( s )=  :~ eJ~, where a~,, be- 

comes in]inite with n, it is true that lira I[ (a ~= on i) ] ~- 0 uni]ormly for all 

Then the serb,~ (5) converges for t ."> 0 to ~-1 {f(s)} ~ o v / d d  its 
terms which correspond to the poles in each pair of strips o~ < ~ (s) 
< o9~ +1 and --o)~+1 < ~ (s) < --~,~ are grouped as a single term. 

The integral of e st f (s)/2 ~ i in the positive direction around the contour 
of the rectangle with vertices 7 + ~ -  i, - -  conq-r . i, --  eo~ -- r i, y --  cow i 
is the sum of the residues represented by the right~hand member of (7), 
where m~ is the number of poles within the rectangle. The integral 
along the upper side approaches zero as n ~ r162 since, according r 4 ~ 
for any e ~ 0 a number h r can be found such that  

- - t o n + t o n i  I 8Y t - -  ~-- ~n t 
[ ~ e ' t j (s)dsi '~_ e'tlf(aq-~o,~i)lda<__e , <ee~ ' / t  

y + to n t  - -  ~n 

for n :> N. Similarly for the integral along the lower side of the 
rectangle. The integral along the left hand  side also approaches zero as 

ton  - -  toTt i ~ t  

--  ~n + %~ i -- ton 

for n sufficiently large, where M is an upper bound of ] f (s) ] in ~ (s) ~_~/u 
(condition 3~ 

The contour integral therefore app roaches  
7 + t o n i  

1 I e8 

when n is large. As n ~ ~ this integral converges to ~-~  {f(s)} under 
the hypotheses 1 ~ and 20 (this can be seen from Theorem 2), so i t  
follows that  the series (5) for t ~ 0 converges to ~-~  {[} when the terms 
are grouped as stated in the theorem. 
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Some of the conditions given in this theorem are more restrictive 
than necessary for this type of proof; they are so written to simplify 
the theorem and still cover an important group of functions which appea r 
in boundary-value problems. The condition in 1 ~ for instance, that all 
poles of ](s) lie io the right of a l ine ,~(s  ) = /~, can be removed 
if the vertical lines which form the left-hand sides of the  rectangles 
are properly specified and if 3 o is stated for  all points on these lines. 
Condition 2 o can also be replaced by the less restrictive conditions for the 
representation of ~-~ {]} in the integral .form (4). On the other hand 
the three conditions 2 ~ 3 ~ 4 0 can be .replaced by this su/ficlent condition: 
that ]or some k ~ 1, Isk](s)l is bounded at all points in $he two hall= 
planes ~ (s) .~- ~,, 9~ (s) ~ # and on the lines ~ (s) = • eo~. 

W h e n  the Toles s,n o[ [ (s) are all simple with residues A~ the expan- 
sion ]ormula (5)reduces to 

(8) e -~ {/(S)} ---- ~ A, ,e  'm' (t > 0). 
~ q ~ l  

4 . .  

The inverse transformations of two special functions. 

Functions involving the ratios of sinh ~ s and cosh fl s are prominent 
in the solution of the Laplace transformation of the wave equation; this 
will be illustrated in w 5. Simple formulas for the inverse transformations 
of some of these can be given with the aid of the above expansion 
formula. 

Consider the function 
sinh ~ a 

(9) q(s) ----~ cosh ~a ([~i < ~)' 

where ~ und fl are real and fl can be considered positive. The singular 
points are the simple poles s ~ 0 and s = Sr~ ~ ~,~ i/d, where 

~ n ~ ( 2 m - - 1 ) ' ~ / 2 ,  m ~ 0 ,  i l ,  ~ 2  . . . . .  

Hence q (s) is analytic in the half-plane 9~ (s) ~ ~ where r is any positive 
constant, (and also in 9~ (s) ~ / ~  where # ~-~ 0). In ~ (s) ~ ~,, I s~q (s)! 
is bounded since 

[ e - ~ - ~ ) '  e-(~+~'~ 1 2 

The sequence of circles Of Theorem 4 can be taken as [s ~- n~/~,  
(n = 1, 2 . . . .  ). When the value of Is2q(s) E~ at points on these circles 
is written by putting s = nr~de/ f l ,  it can be shown by elementa~ 
processes that this function is bounded for any method of variation of 
the independent variables n and 0. q (s) therefore satisfies the conditions 
in Theorem 4. 
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I t  is easier in this case to show that  the function satisfies the con- 
ditions in Theorem 5. In 9~ (s) ~< ff < 0, 

so the condition 3 o is satisfied. On the lines ~ (s) : • n z/fl, s : ~ ~= in,~/fl 
and when a <~ 7, 

Iq(s)t <----- 1,~1' (*~" + *-~'~ < ~' 
so tha t  4 o is satisfied. I t  was shown above that  the other conditions in 
Theorem 5 are fulfilled by q is). 

According to the expansion (8) then 

~-~ sinh (~x sin) e%n t ~,~ {q(s)} = o~ + = _  
fls~ s nh(fls,n) 

! 
= ~ + 2~  ,~ (-  1)~ ~in (~ ~/~) cos (M t / ~ ) / ~ ,  

where ~,~ = (2m -- 1) rr/2. The terms corresponding to poles with opposite 
signs have been grouped according .to Theorem 3 (and also Theorem 5). 
This series can be Writte~ in the form 

oo 

(10) s  = ~ + f l  ( - - 1 )  ~ sin /~ + s i n  t~ ,  

which can be,~recognized as the sum of two simple Fourier series. When 
= x/c and fl = I/c (l > O, c > O) formula (10) can be written 

(11) ~=,is inh(sx/c)~ = x 1 [G(x--ct)-4-G(xg-ct)],  .Ixl<~l 
~ ' - ~ o ~  ~ ~'~ 

whe~ G(u) is the broken line function defined by the series 

81  .~-~ 1 . n ~  �9 n ~ u  
(12) G (u) = ~ z . ~  ~-~ sm -~- sm 2--7- 

? | ~  1~ 3~ 5 ~ . . .  

or by  the conditions 
u) { u  if 0 ~ u _ _ _ < ? , ,  

(13) G(u) = - :G(--u)~-G(u-4-4~) ,  G( = 21- -u  if l _ < u ~ 2 1 .  

According to the differentiation property (2); 

s q ( s ) -  Q(0) = e {Q'(t)} 
where Q(t) is the right-hand member of (11). Since Q (0) --  0 it follows that  

~2 -~ {sq(s)} -= Q' (t) 
and the second special inversion of importance can be written 

(14) o -  ~ { sinh (s  x~c )  
s ~ s o s , ~ }  ---- 2 [H(z  c t ) - -H(x - - c t ) ]  Izi ~< 

_1_ 
l ,  
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where the broken line function H (u) = G' (u) is defined b y  the conditions 

1 if O ~ u ~ l ,  
(15) H(u) H(--u)-- .H(u+4l) ,  H(u)= --1 if l ~ u ~ 2 l .  

The inversion (14) can be verified by applying s to both members and 
performing the integration. 

The expansion (5) giyes a similar inversion formula for the function 
cosh (a x/c) 
sSsinh (s~/e) 

which has a pole of the third order at s -----0. This function arises in 
the problem of forced displacements in a stretched string. 

w 

A problem of displacements in a bar. 

The Laplace transformation and the results of the last section can 
be used to find a simple formula for the longitudinal displacements in a 
prismatic bar with one end f~ed and a variable foreeracting on the other 

e n d .  Let the origin be taken in the fixed end and let Y (x, t) be the 
displacement along the bar a t  time t of a point originally at a distance x 
from this end. If 1 denotes the length of the bar and c g the usual 
elastic coefficient, then 

(16) Y~  ~ e 2 Y ~  (0 ~ x ~ / ) ,  

(17) lira Y(x, t) ---- lim Yt (x, t) = 0, 
t - -~O t--~O 

(18) lira Y(x, t) ---- 0, lim Y~(.~, t) -~ F(t), 
�9 --~0 z ----> I 

where F ff) is proportional to the force acting on the end x ~ l. 
Let y(~, s) be the Laplace transform, with respect to t, of 

Y(x, t). The application of 2 to (16) and (18) gives, in view of (2) and 
(17), these corresponding conditions ~) on y (x, s): 

s~ y (x ,  s) ----- c~y~(x ,  s), 

lira y ( x , s ) = 0 ,  l imy~(x ,s )  = / ( s ) ,  
z - - > o  ~r ---> I 

where / ( s ) ~  2 {F(t)}. This is a boundary-value problem in ordinary 
differential equations with the parameter s. Its solution is 

sinh (a ~/~) 
y (x, s) = c / (s) ~-~Tg (7~ ) '  

13) Acco rd i ng  t o  t h e s e  s t e p s  we a r e  see-king a s o l u t i o n  w h o s e  s e c o n d  d e r i v a t i v e  
i n  t h a s  a L a p l a c e  t r a n s f o r m a t i o n  a n d  fo r  w h i c h  t h e  d e r i v a t i v e s  a n d  l i m i t s  w i th  
r e s i d e r  t o  x i n v o l v e d  ~ he re  a re  c o m m u t z b l e  w i t h  r e s p e c t  t o  t h e  t r a n s f o r m a t i o n  ~ .  
See t h e  p a p e r s  c i t ed  u n d e r  a) for  a f u r t h e r  e x a m i n a t i o n  of s u c h  s t ep s .  
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s o  the displacement ~ is 

(19) y (x, t) - -  c ~ - 1  ( / - ~ s ~ ~ l  " "  ~i~h (~ ~t~ i 

The inverse t ransformat ion of the product  of two functions is given 
in the  following way by  the composition (Faltung) integra114): if 

~-~I/,(s)} ----- F l ( t  ) and ~ - '  {f~(s)} = F2(t ) 

then 
t t 

0 o 

B y  applying this to the inversion in (19) and noting tha t  ~-~  {l (s)} ---- F (t) 
while the inversion of the second factor  is given by (14), the displace- 
ment  is found to be  

~ (20) Y (~, t) = T ~' (~) [H (x - -  c t + c ~) - -  H (x + c t - -  c ~)] d 

0 

where the function H(u) is defined by  the conditions (15). This. can be 
writ ten 

x ~ + c t  'I (21) Y(x ,  t) = - ~  ) H ( u ) d u - -  ~ F -~ H(u)du~ 
~ - - c t  x 

and in this form the integrals can be expanded  to show tha t  the con- 
ditions (16) to- (18) are satisfiedl~). 

I t  is of interest to note tha t  if the force is constant,  F (t) ~- K, the 
displac~(nent formula becomes 

[G(x  - ct) -vG(z + c t ) ] .  Y (x , t )  ~- K x - -  -2- 

i t  follows from the description (13) of G (u) tha t  G (l -- ct) .= G (l -Vct), 
and hence a t  the end x == 1 

Y(/, t) -~ K [ l - -  G(~ + ct)] 

which is the simple vibration expected. 

1,) Conditions on E1 and I,'.~ under which the composition theorem is valid ure 
given in the second paper cited under 1). Conditions on .t 1 and/~ for the validity 
of the above form of the theoiem are given by W. v. Koppcnfels, Der Faltungs- 
satz und seine Anwendung bei der Integration linearer Diff'erentialgleichungen mit 
konstanten Koeffizienten. Math. Annalen 105 (1931). 694--706. 

�9 15) The inversion process used by Doetsch in the second paper cited under ~) 
can also be used here; it expresses the displacement by means of a finite series in 
which the number of terms depends on the values of x and t. 

(Eingegangcn am 9. November 1936.) 


