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§1.
Introduetion.
The one-sided Laplace transformation of a function ¥ (¢),

(1) RO = [etF)dt = f(s),

transforms the operation of differentiation of F(f) intec an algebraic
operation on f(s) in the following way:

@) L(F ()] = s f(s)— 1 F (0) — s»—2F"(0) — ... — F&~1(Q),
where the indices in parentheses denote derivatives!). This gave rise %o
an important method (used by Doetsch?) since 1923) of solving linear
boundary-value problems in partial differential equations; for if the trans-
formation can be applied to the unknown function with respect to one
of the independent variables, the problem in the transformed function
does not involve derivatives with respect to that variable. A two-
dimensional problem is thus transformed?®) into one in ordinary diffe-

1) For conditions under which this property of the transformation is valid sec
G. Doetsch, Die Integrodifferentialgleichungen vom Faltungstypus. Math. Annalen
89 (1923), 192207, [p.198, Theorem III]. Here the Laplace transformation of

F™ (1) is assumed absolutely convergent; only simple convergence is used in Doetsch’s
more recent derivation of this property: Der Faltungssatz in der Theorie der
Laplace-Transformation. Annali della R. Scuola Norm. Sup. di Pisa (2) 4 (1935),
71—84 {Lemma 2]. N

%) See for instance the series of papers: G. Doetsch, Probleme aus der Theorie
der Wirmeleitung. Math. Zeitschr. 22 (1925), 285--292; 203—306; 25 {19286),
608—626; 26 (1927), 89-—98; 28 (1928), 567—578. In the first and fourth papers
of this series F. Bernstein is a co-author. Also see other references in G. Doetsch,
Les équations aux dérivées partielles du type parabolique. L’'Enseignement Mathé-
matique 35 (1936), 4387 [p. 84, bibliography].

3) A discussion of the hypotheses on which such transformations of boundary-
value problems depend is given in the last paper under 2); also in G. Doetsch,
Elektrische Schwingungen in einem anfinglich strom- und spannungslosen Kabel
unter dem EinfiuB einer Randerregung. — Festschrift d. Techn. Hochschule Stutt-
gart zur Vollendung ihres ersten Jahthunderts. Verlag Springer, 1929, pp. 56—78.
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rential equations involving a parameter s. The solution of the original
problem is obtained by applying the inverse of the Laplace transfor-
mation to the solution of the transformed problem. This is usually the
most difficult step in the process; it is this step which concerns us in
this paper.

The inversion process with which we are principally concerned here
is one which expresses the inverse £~ {f(s)} of the Laplace transformation
in a series®). Representations of this general character have usually
been written, especially in electrical engineering, by the formal process
of expanding f(s) in some series and applying the operator £—! term-
wise, but this method leads to incorrect results in many cases when the
series is infinite ®).

The particular series which is shown here to represent £—1{f}, for
functions f(s) of a certain class, is a somewhat generalized form of the
Heaviside expansion formula®). It is important to have usable sets of
conditions on f{s) under which this series expansion is valid, for here
too it frequently happens that a formal application of this series fails
to give the inverse transformation.

In order to establish the direct expansion of £~1{f} in series we
employ here a well-known expression for this transformation as an inte-
gral in the complex plane of the variable s. It was found possible, to
improve upon the already known conditions on f(s) which are sufficient
for this integral representation. These new conditions are established
in §2. They are used in § 3 to establish the series representation under
different sets of conditions. The two sets of conditions which are most
useful in solving boundary-value problems are given in Theorems 4 and 5.
In § 4 the inverse transformations of two particular functions are found
with the help of the expansion in series, and these are used in §5 to
find a simple solution of a problem in the forced displacements in a bar.

4) Concerning ssymptotic representations of 81 {f! for large values of ¢ see
G. Doetsch, Ein allgemeines Prinzip der asymptotischen Entwicklung, Journ. . d.
reine u. angewandte Math. 167 (1932), 274—293 [p.286 ff.]. This paper also
contains some interesting observations on the inversion of the Laplace transfor-
mation by means of the integral in the complex plane [pp. 278, 279].

5) Such a process, together with a method of verifying the results, is illustrated
by R. V. Churchill, Temperature distribution in a slab of two layers. Duke Math.
Journ. 2 (1936), 405—414.

5) Relations between the methods of operational ealeulus and functional trans-
formations are diseussed in G. Doetsch, Die Anwendung von Funktionaltransfor-
mationen in der Theerie der Differentialgleichungen und die symbolische Methode
(Operatorenkalkiil), Jahresber. D. M. V. 48 (1934). 238—251, and in other papers
cited there. ' "
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§ 2.
Sufficient conditions for representing 2—1{f} by an integral.

The inverse Laplace transformation of a function f(s),
L-r{f{s)) = F (1),

is a function F (¢)7) which satisfies the integral equation
(3) fo) = [estF(nde.
0

Conditions under which f(s) is representable in the form (3), together
with an expression for F () in terms of f(s), where published in 1920
by M. Fujiwara®). But his proof assumes that f(s) satisfies some con-
ditions not stated in his theorems. Instead of following Fujiwara’s method
of proof throughout, after stating the complete set of conditions used,
it is simpler to give the theorem and proof in the following form, pro-
posed to the author by G. Doetsch:

Theorem 1. Let f(s) satisfy the following conditions:

1° f (s) is analytic in the half-plane R (s) > «, where « is a real constant.

2° For a fixed y > «

v+ wi

lm | &7 f(x)dz

o>, oy

converges uniformly in each finite interval 0 <t < T.
Y+ wi

3° lim j ()] |d z| converges.

w—>co 142

y~—twi
4° |f(s)} is bounded in R(s) =y.
5° _lim |f(o+wi)| = O uniformly for all w.

Then for all s with R(s) > v 4t follows that

f(s) = j”e‘“”F(t)dt

where
Y+ wi

) F(f) = 5or lim j ¢ f(2)dz.

y—wtg

7) Concerning the uniqueness of F {f) see Lerch, Sur un point de la théorie des
fonctions génératrices d’Abel, Acta Math. 27 (1903), 339—351.
8y M. Fujiwara, Uber Abclsche erzeugende Funktion und Darstellbarkeita-
bedingung von Funktionen durch Dirichletsche Reihen, The Téhoku Math. Journ.
17 (1920), 363—383, [Theorems 1 and II}.
Mathematische Zeitschrift. 42. 37



570 R. V. Churchill.

As a 1esult of the uniform convergence assumed in 2° it follows
that

- T ¥+ wi

!—-"F(t)dt Je ”dt{——;wimy_&u”e”f(z)dz}

7+ wi

lim f 1= 0T i de),

w—>co §—2
y—wi

According to the hypothesis 3° this limit converges uniformly in 7' for
all T >0, for

271:0

i ¢ y+wi
o j “2_, Hdz] < Jim. § ITIPN)
.y—wi ? y—wi

and for each s a sufficiently large |w| can be found, say £, such that

for |w| = R this integrand is less than :’{ff;l. The limit as 7' - oo can

thus be taken under the integral sign:

- y+wi

femrer@ae =g lim j' 1@ 4.,
4] -] <

0 y—wi

To show that this last limit is f(s) under the hypotheses stated
apply the theorem of Cauchy, integrating Iz ()z around the- ’recté.ngle

with vertices y + w4, y —wi, @ — w1, o + wi. Let a fixed 2 be chosen
so large that |f(s)| <e to the right of the line R (z) = £; this is possible
according to 5°. Then for the integral along. the right-hand side of the
rectangle it follows that, for o > £,

o+ ol

J’ f(z)d [<8 A;;(s).

w‘——wz
Along the segment of the upper side to the right of the line R(2) = Q
f(#) — 0
J‘ s—-~dzl<€ 3(0)’

wd wi

9) The Cauchy principal value can be written as an infinite integral:

v+ wi o
lim j e"f(z)dzzi_f[e‘<7+“”')/(y+w;)+e‘<7—‘"‘>j(?—we)]dw.
; .

W= » lwi
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and along the remainihg portion of the upper side,

“;( vt 16 g, 1<M Q—y

!l+au —.3(8)

where M is an upper bound of |f(s)| in R(s) = y (condition 4°); simi~
larly for the integration over the two portions of the lower side. Hence
by first selecting £ sufficiently large and then taking o large enough
the integrals over these three sides of the rectangle can be made less
than any fixed £ > 0. Since

1 1) dz = f ( 5)

TniYz—s

when the integral is taken around any rectangle with s in its interior,
it follows that
y+wi

s limcc j g—_(flzd(z)::f(s)

and the theorem is proved.
It should be observed that a necessary condition in order that f(s)
shall have a real inverse tramsformation F (1) is that

1(8) = f(s),
where the bar denotes the conjugate complex number. This follows
immediately from the representation (3) of f(s) as an integral. Hence
if F(t) is real, as is the case in the applications to boundary-value prob-
lems, we can write
v wi

lim j estf(s)ds = 2'&'}? RlgT+edf(y 4 wi)]dw.

W= 4 lwi

The three conditions 3%, 4°, 5° in Theorem 1 can be replaced by the
single condition that for some fized k > 0, |s* f(s)| is bounded in R(s)
= 7. This is simpler to use, but more restrictive.

The following is an important special case of Theorem 1.

Theorem 2. Let f(s) be analytic in the half-plane R (s) > a, and
for a fized y > o let

(116 +wi)|do
be convergent. Also let |f ()| be bounded in R (s) = y and im |f (¢ + wi)| = 0
uniformly for all w. Then for each s such that R (s) > v,
fo) = [ et F () de
0

37*
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where y+moi
i
F() =5

2ai
y—rcod
The assumption of absolute convergence here insures the uniform

convergence of the integral in condition 2°, Theorem 1, for when
2=yt w1,

etz f(z)dz.

le2f (2)| < &7 | (y + @i)]..
The other conditions in Theorem 1 are clearly satisfied.

The conditions here are much simpler than those in Theorem 1. But
the condition of absolute convergence of the infinite integral here is much
narrower than the condition 2° of Theorem 1, that the Cauchy principal
value of the integral converge uniformly.

Sufficient conditions for the inversion in the form "of a complex
integral have also been established by Tamarkin®). His second set of
conditions form a special case of those in Theorem 2; he assumes that
o =0 and that |f(s)| approaches zero uniformly in R(s) = y as |s|
becomes infinite ).

§3.
Sufficient conditions for representing 2—1(f} by a series,

A direct expansion of the inverse Laplace transformation in series
will. now be established from the integral form (4). The series is more
appropriate in many problems than the integral.

Theorem 3. Let f(s) be analytic in the half-plane R(s) = y and
admit (on the line R(s) = ). the integral form (4) of its inverse Laplace
transformation; also let its singular poinis comsist only of poles s,, of order o,,.
If there is a fized \number k > O for which |st f(s)| is bounded at all
. points (in(, R (sh < y) on some sequence of circles |s| = o,, where o, be-
comes infinste with n, then

~

x Im .
(B) g-1{f(s))= Xent X A, tr—p—1)! fort>0.
m=1 =1

10) J. D. Tamarkin, On Laplace’s integral equations, Trans. Am. Math. Soc.
28 (1926), 417—425. Ome of the conditions in his first set is that the order of -
integration can be interchanged in the iterated infinite integral.

11) The class of analytic functions f(s) which can be represented as Laplace
transforms f(s) == £ {F| with F expressed as a complex integral can be exactly
determined by function-theoretic conditions, if one assumes F to be integrable in
the pth. power (p > 1) in the Lebesgue sense and if one replaces simple conver-
gence of the complex integral by convergence in the mean, as is shown in a
recent paper by G. Doetsch, Bedingungen fiir die Darstellbarkeit einer Funktion
als Laplace-Integral und eine Umkehrformel fiir die Laplace-Transformation, Math.
Zeitschr, 42 (1937).
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The numbers A,,, are coefficients in the Laurent eczpansion of f{s) about
the pole s,:

() 8) = 2 Ampl(s — $m)? -+ 5 Boun (s — sm)
- p=1 n=0

and the terms in the series (B) which correspond to poles lying between
two consecutive circles |s| = p,—, and |s| = g, are grouped as a single term.

When the terms of the series (6) are multiplied by e*! it is readily
seen that the residue of e*tf(s) at the pole s, is

oy ‘
e’ 3 A2 (p — DL
p=1
Put s = ge® and let C, denote that arc of the circle g = g, which lies
to the left of the line R (s) = y; also let P, denote the segment of this
line intercepted by the circle. Then according to the Cauchy theorem
of residues

M gk | eiedst gk [ eteas

*p ©p

m

2 Z mpt? " (p — 1)1

where m, is the number of poles within ¢ = g,, and the sense of the
integration is positive.

The second integral in (7) approaches zerc as n becomes infinite,
for t > 0. For if M is an upper bound of |s*/(s)| corresponding to a
fixed & > 0 for all points on the arcs C,, then

'17!+0 3_2_7“+un
ljf(s)e”ds] < 0On j. |f(onei®)|€°° d0 < o * M 5 donco® g p
) E =
2 n 2 £
where
— arc sin L —z 2
_0,.——arcsu_1v9,v‘ ( 2<9”<2).

The last member of this inequality can be written

T (2
J=20""M J’ dncrdg = 29}."‘MJ' e fentnd gg,
—

—_—— Y

9 n
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Suppose first that ¥ << 0. Since sin6 > 6/2 when 0 << 6 < #/2, then

{2 ’
- 4M
J< 29:‘—"M'J. e—!gnﬂid{) . , E (etgn 9"]2 — e—thﬂlt)'v
A "
_B”

But 0,0, >y a8 n—> o and hence J—~0 as n—> oo, (y < 0). When
9 > O the integral J can be written

) {2 8n .
J = 29:{"‘M(g e—tq“sins d6+ j'etg,,smo d0)
0. 0
and since 0/2 < sin § < 6 when 0 < 6 < n/2,
/2 8y
J <2 " M(jetdp 4 [ d0)
0 0

=M (1 —2e '™ 4 gon myjq oty
Hence J +0 as n— cc, (y > 0), se '

hm fe“f(s)ds—() for t > 0.
“(Cw

Since the first integral in (7) converges to £—*{f(s)} as n becomes
infinite according to the conditions in the theorem, the sum on the right
also converges to this value and the theorem is proved.

The sum in the right-hand member of (7) contains just those terms
which correspond to the poles of f(s) lying inside the circle ¢ = g¢,, s0
if the resulting series is infinite it.converges to 8! {f] when the terms
are grouped according to these circles.

To show then that the inverse Laplace transformation of a given
function 7 (s) is represented by the series (5) for this function, it is suffi-
cient to show that f(s) -satisfies the conditions of Theorem 1 (or Theo-
rem 2), and those in Theorem 3 which deal with the character of f(s)
in ®{s) < 7). A much simpler but more restrictive set of conditions
can be stated as follows:, ’

Theorem 4. If f(s) 4s analytic in the half-plane R (s) = y and its
singularities are ali poles, and if for some fized k > 1 3t s true that
|st f(s)| s bounded in this half-plane and at all points on some sequence
of circles |s| = p, where p, becomes infinite with n, then the series (5)
convergens to 21 {f} when the terms are qb’ouped as specified in Theorem 3.

If M is an upper bound of |s*f(s)| in R(s) = y then

1o+ 0] < M/(0* + o2 < M/|of,

v 12) Tt is of interest to note that when the conditions of Theorem 1 and those
‘of Theorem 3 with £ > 1 are satisfied, the series (5) also converges for £ = 0.
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and since k > 1 the conditions in Theorem 2 are satisfied. All condi-
tions in Theorem 3 are clearly satisfied so Theorem 4 is established.
By employing vectangles instead of circular segments the following
useful conditions can be shown to be sufficient:
Theorem 5. Let f(s) satisfy the conditions:
1° f(s) s analytic everwhere except in the strip u << R(s) < v, and
tls singular points comsist only of poles.
2° For some fized & > 1, |s* f(s)| ts bounded in R(s) = y.
3° |f(s)| is bounded in R (s) < p.
4° For some system of horizontal lines J(s) = -+ w,, where w, be-
comes infinite with n, it is true that lim |f(0 4 w,1)| = 0 uniformly for all
. g 7. n—aw )
Then the series (B) comverges for t>> 0 to {—t|f(s)} provided its
terms which correspond lo the poles in each pair of strips w, << I (s)
L Wpty O — @y << J(s) < — w, are grouped as a single term.
The integral of e*¢f (s)/2 7 ¢ in the positive direction around the contour
of the rectangle with vertices ¥ + wn%, — W+ ®,%, — @y — W, 1,y —w, ¢
is the sum of the residues represented by the right-hand member of (7),
where m, is the number of poles within the rectangle. The integral
along the upper side approaches zero as n -> oo since, according to 4°,
for any ¢ > 0 a number N can be found such that
e ) v . o7 gt
! f eif(s)ds| < j' e“tw(a—i—wni)ldcge—-——;————<ee”/t
¥+ oyt oy
for » > N. Similarly for the integral along the lower side of the
rectangle. The integral along the left -hand side also approaches zero as
n-> o0

—-mn——-wniv Wy
! ( e'”l(s)dslg\e"w"‘j]f(-—w.n-{—mi)[dwg’2Mw,,e""‘""t<e'
—wn-i:mni — oy,

for n sufficiently large, where M is an upper bound of 1/(s)| in R(s) < pu
(condition 3°). :
The contour integral therefore approaches
vy,
BT j etf(syds
Y=gt
when n is large. As n — oo this integral converges to £-1{f(s)} under
the hypotheses 1° and 2° (this can be seen from Theorem 2), so it
follows that the series (5) for t > O converges to 8~ {f} when the terms
are grouped as stated in the theorem.
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Some of the conditions given in this theorem are more restrictive
than necessary for this type of proof; they are so written to simplify
the theorem and still cover an important group of functions which appear
in boundary-value problems. The condition in 1° for instance, that all
poles of f(s) lie to the right of a line R (s) = u, can be removed
if the vertical lines which form the left-hand sides of the rectangles
are properly specified and if 3° is stated for all points on these lines.
Condition 2° can also be replaced by the less restrictive conditions for the
representation of £—1{f} in the integral form (4). On the other hand
the three conditions 2°, 3°, 4° can be replaced by this sufficient condition:
that for some k> 1, [skf(s)| s bounded ot all points in the two half-
planes R(s) = v, R(s) < p and on the lines J(s) = + w,.

When the poles s,, of f(s) are all simple with residues A, the expan-

sion formula (5) reduces to

®) 8 @) = I Apent (t > 0).

§ 4.

The inverse transformations of two special functions.

Functions involving the ratios of sinh xs and cosh fs are prominent
in the solution of the Laplace transformation of the wave equation; this
-will be illustrated in § 5. Simple formulas for the inverse transformations
of some of these can be given with the aid of the above expansicn
formula.

Consider the function

(9) 1) =iy (laj < B,

where « und § are real and § can be considered positive. The singular

_points are the simple poles s = 0 and s = s,, = 4,,%/8, where
Am=2m—1)72 m=0, +£1, +2,...

Hence ¢ (s) is analytic in the half-plane R (s) =  where y is any positive

constant, (and also in R(s) << # where £ < 0). In R(s) = v, |s°¢(s)]

is bounded since

e~ @ _ —(F+a)s 2
s2q(s) = - s
| Q()’ 1+e_—~_-{;fg <1_e._‘-[37
The sequence of circles of Theorem 4 can be taken as |s| = nn/,

(n =1,2,...). When the value of |s®¢(s)|* at points on these circles
is written by putting s = nzmei®/B, it can be shown by elementary
processes that this function is bounded for any method of variation of
the independent variables n and 6. g¢(s) therefore satisfies the conditions
in Theorem 4.
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It i3 easier in this case to show that the function satisfies the con-
ditions in Theorem 5. In R(s) < p# <0,
et Pe __ Jf-atds 3
ELIES S

()| =

go the condition 3° is satisfied. On the lines I(s) = +n#/f, s =0 L-inz/f
and when o < 9,
. {_e—au e(ﬂ+a”_+_e((j-u)~,

W

so that 4° is satisfied. It was shown above that the cother oondltlons in
Theorern 5 are fulfilled by g¢(s).
According to the expansion (8) then

smh(exs yelmt
e =« + Z Bl sinh(fs,)
=« +26 I (— 1) sin (A, a/B) cos (1 t/B) |22,

where 4, = (2\m — 1) 7/2. The terms corresponding to poles with opposite
signs have been grouped according to Theorem 3 (and also Theorem ).
This series can be written in the form

00) 2=t {g@)) = x+p ) (~1ye[sin =G0 4 i 20 fi,

which can be- recognized as the sum of two simple Fourier series. When
o = xfc and B =ljc (I > 0, ¢ > 0) formula (10) can be written

ay e Bl 2 Liga—o)+Getot)], o<l

& cosh slje)) e

wher: @ (u) is the broken line function defined by the series

(12) ¢ =5 _5? - sin %% gin 22
or by the conditions T
(19) 6t = =Gl =Glutah, G0) = { ;z-ifuo ﬁs"zz;g{}; 21,
According to the differentiation property (23, T
sq(s) —Q(0) = L{@ (1)}
where @ (?) is the right-hand member of (11). Since @ (0) = 0 it follows that
“Hsq(s) = @)

and the second special inversion of importance can be written

inh / 1 ,
(14) 2—1{21335‘1%} = 5 [H(z—ct)— H(z—ot)] (2] < 1,
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where the broken line function H (u) = G’ (u) is defined by the conditions
(15) H@ = H(—w) = H@u+4), H@= {_} j ‘;ZZE;Z
The inversion (14) can be verified by applying £ to both members and
_performing the integration.

The expansion (5) gives a similar inversion formula for the function

' cosh (s z/c)

s3ginh (sl/c)

which has a pole of the third order at s = 0. This function arises in
the problem of forced displacements in a stretched string.

§5.
A problem of displacements in a bar.

The Laplace transformation and the results of the last section can
be used to find a simple formula for the longitudinal displacements in a
prismatic bar with one end fixed and a variable force acting on the other
end. Let the origin be taken in the fixed end and let Y (z,¢) be the
displacement along the bar at time ¢ of a point originally at a distance
from this end. If ! denotes the length of the bar and ¢ the usual
elastic coefficient, then '

(16) Yo=Y, . (Y < z < l),
an lim ¥ (z,f) = lim Y,(z, ¢ = 0,
i—>o0 t—>o
(18) lm Y(z,t) = 0, lim Y, (2,8 = F(t),
% -—>0 z =1

where F (f) is proportional to the force acting on the end = = I.

Let y(z,s) be the Laplace transform, with respect to ¢, of
Y (z, t). - The application of £ to (16) and (18) gives, in view of (2) and
(17), these corresponding conditions'®) on y (z, s):

s Yy (:1:, 3) = ¢? Yoz (ws 3):

lim y(z, 8) = 0, lim y,(=,s) = f(s),
e —>1

x>0
where f(s) = £{F (t)}. This is a boundary-value problem in ordinary
differential equations with the parameter s. Its solution is

' . sinh (s z/c)
y (@, s) = cf(s) scosh (slfec)’

13) According to these steps we are seeking a solution whose second derivative
in ¢ has a Laplace transformation and for which the derivatives and limits with
respect to z involved here are commutable with respect to the transformation £.
See the papers cited under 3) for a further examination of such steps.
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so. the displacement’is

(19) Y (1) = 02 {f (o) o)
The inverse transformation of the product of two functions is given
- in the following way by the composition (Faltung) integralt): if

L9} = F () and 21 {f,(s)} = F, (t)
then '

t 1
e = [F@F¢—7dt = [F (-1 F,(@)dr

By applying this to the inversion in (19) and noting that 2~ [f(s)} = F (1)
while the inversion of the second factor is given by (14), the displace-
ment is found to be

L
(20) Yiz,t) =—-§—S‘F(r) [H(z—ct+cr)y— H(z+ct—ct)ldv

where the function H () is defined by the conditions {15). This can bhe

written
z z4+ct

@) Y(s0) =15 j FEEY=SVH ydu — 4 j F(S22E5 By du,

x—ct z
and in this form the integrals can be expanded to show that the con-
ditions (16) to (18) are satisfied'?),
It is of interest to note that if the force is constant, ¥ (f) = K, the
displacement formula becomes

Y(g,t) = Kx— %—[G(x—ct)—f—G(z—th)}.

It follows from the description (13) of G (u) that & (I — ct) = G (} + ct),
and hence at the.end z ==

‘ Y{It)=K[I~6G({+ct)
which is the simple vibration expected.

14y Conditions on F; and Iy under which the composition theorem is valid are
given in the second paper cited under ). Conditions on f, and f, for the validity
of the above form of the theorem are given by W.v. Koppenfels, Der Faltungs-
satz und seine Anwendung bei der Integration linearer Differentialgleichungen mit
konstanten Koeffizienten. Math. Annalen 105 (1931), 694—706.

.1%) The inversion process used by Doetsch in the second paper cited under 3)
can also be used here; it expresses the displacement by means of a finite series in
which the number of terms depends on the values of 2 and ¢.

(Eingegangen am 9. November 1936.)



