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1 Introduction

Bounding the expected value of a convex function of a multivariate random variable is a problem which has
many applications in mathematical programming. in particular stochastic programming. Unfortunately.
the effort for finding upper and lower bounds generally favors the 10\;ver bound, both in computational
difficulty and effectiveness. Jensen's inequality gives the classic lower bound which only requires one
function evaluation. This lower bound is generally effective, and as was shown in Huang., Ziemba and
Ben-Tal [7]. this bound can be replicated over finer and finer partitions of the probability space until the
bound converges to the expected value. Edmundson and Madansky [8] developed the classic upper bound
which requires 2" function evaluations, where n is the number of random variables. This bound requires
the random components to be independent and to have bounded support. Since the number of function
evaluations grows exponentially with the number of random components, other methods for finding an
upper bound have been developed.

Gassmann and Ziemba [6] developed an upper bound which requires solving a linear program. This
bound applies to random variables with arbitrary convex domains which may be bounded or unbounded.
Frauendorfer [5] obtained an extension of the Edmundson-Madansky bound for the case of dependent
random components. Further. upper bounds have been developed for specific convex functions with
special attributes. Birge and Wets [3] considered the recourse function of a two-stage stochastic linear
program and showed that an upper bound could be obtained using separable sublinear functions. Wallace
[10] showed that the network recourse function could be bounded above by solving three network flow
problems. Birge and Wallace [2] extended this result for general linear recourse function.

In this paper, we consider a special structure that obtains an upper bound with only two function
evaluations. We first observed this structure in minimum cost network flow problems with stochastic
link capacities. We refer to the general property as convex marginal return functions. This property
can be proven to exist for various aspects of minimum cost network flow problems with stochastic link

capacities (see Donohue and Birge [4] for details). Applications include vehicle allocation problems and



other logistical models.

2 Development of the Upper Bound

Let X' = (X}, X%,..., X;;) be a multivariate random variable on the probability space (Q.X, P) hav-
ing distribution function F and finite mean . Assume that the components of X are independently

distributed, each with bounded support. For i = 1,...,n, let

b = supf{zi: F(z) <0}, (1)
= inf{z;: F(z) < 1) (2)
Let o(.\") be a bounded convex function of X € [J.le,H] t=1,...,n. Then the Edmundson-Madansky

inequality Mg gives the classic upper bound on E [¢(X)] = ¢, as follows:

Mo= 3. - ) (x-epi)voaloan) 20, )
i1€{L.H}  i.€{L.H)
where
H - ot L
L Iy =1 H_ Ti—Z
L = and pi’ = —/——. 4
P ok P zf — 2} Y

This corresponds. to considering only the corner points of the n-dimensional rectangle defined by the
values of ¥ and ! for all i,

For a random vector .\ of high dimensions. this bound still requires the function values for 2" re-
alizations of X'. For functions which are not directly calculable (such as the objective function of a
mathematical program). this may be computationally prohibitive. The ability to reduce the number of
realizations of X' that need to be calculated would therefore be useful. The following paper shows that
if o(.\') 1s a non-increasing, convex function of .\ with convex marginal return functions with respect to

any pair (.\,..\j).7 = 1,....n, then an upper bound on ¢ can be established using only two realizations

of \'.



First the property of convex marginal return functions with respect to any pair of .\ components

must be defined.

Definition: A function f(X;,X2,....X,) has convezr marginal return functions with respect to any

par (N;. X)) i=1,...,n, j=1... nifforall 1<i<n,1<;3<n,A>0,6>0,

flevozp 46, en) = flzy,.. 25, .. zp) (3)
SHar i+ Az b k)~ flr, i+ ATy, Ta). (6)

Note that if f(.\') is a differentiable function over all possible values of X, this property is equivalent

to requiring that

Of(X1,....Xn)
ox;

be a non-decreasing function of ;.

Let X' be an n-dimensional random vector, where each X; is independently distributed with a bounded
support and finite mean. Further. let xf. 2/ be the realizations of .X; as defined in equations (1) and

(2). 50 that 2F < rH for all i. Let pt = prob{X, = L} and p! = prob{X; = 2#} for all i be such that
pral +pfal = B[N pf+pf =10 pEpf >0

Let f(.\') be a non-increasing convex function of .\ with convex marginal return functions with respect to
any pair (X,..\)).i=1.....n. 7 =1....n. Then the following shows that an upper bound on E[f(.\)]
can be established with only two function evaluations. While this bound may not be as effective as
the Edmundson-Madansky bound. the loss in tightness may be more than outweighed by the savings in

computation time.

Theorem 2.1 Let X and f(X) be as dcfined abore. Let pt = max{pf,pg. : ‘.,plj} and pt =1 - pl.

Then

E[f(XN)) < prflat.ah. . xly+pH f2 28 2l = HL,. (

n

-~1
~—



Proof: By induction. Let n = 1. The result holds by Edmundson-Madansky.

Suppose the result is true for n =¢ > 1, and consider the case where n = t+1. Then, by Edmundson-
Madansky,

E[f(X) < pEE[f(zF, Xoy .., Xa) + PP E[f(2H Xo, ... X}))

For a particular value of Xy = z;, f(z,,X,,...,X,) is a function of ¢ variables. By the induction

hypothesis,

E(f(z1. Xoy. . Xo) < pEflerzh, o 2ly 4+ pH f(zy, 28 . 2H),
where pt' = max{pt,p%, ..., pLk} and p¥ =1 — pL. Thus,

EUANY < phpbfiab ek aby 4 pbpf f(ab 2l oB) 4 plpbf(al ok, 2k +
pip" f(afl 2l 2.
Note that now the set of random variables (X1, \3,...,.\},) are perfectly correlated and therefore can be

replaced by a single random variable.

Now. without loss of generality. assume that pf > pL. To simplify notation. let

FIL.L)= fleb ek o 2ky. f(L.H) = f(zk 25 2H),

fUHL)= flaf 2 oxb), f(H H) = f(ef of 2.

Then. by construction,



piptf(L, LYy +pip” f(L,H) +pfp" f(H L)
+pip" f(H, H),
pEpEF(L. L)+ pEp® (L. H) + pFp*(f(L.L)

+f(H.H) - f(L.H))+pf p" f(H H).

E[f(X)]

IN

IN

= (pip* +pfpY)f(L, L)
+(prp™ = P VF(L H) +pP f(H. H),

(prp" +py p* — pf YV F(L, L) + pf f(H, H),

IN

= prf(L.Ly+pff(H.H). O

In [7]. it was

from (8),

since f has convex marginal return func-
tions, f(H, L) < f(L,L)+ f(H.H) —

f(L, H),

since f is non-increasing, f(L,H) <
f(L,L), and by assumption, pfp# -

pi'pt >0,

shown that upper and lower bounds on the expected value of a convex function of a

multivariate random variable (with independent components) could be refined to arbitrary accuracy by

repeating the bound over sharper and sharper partitions of the probability space of the random variable.

For example. for a one-dimensional random variable X', a sharper bound M; on the expectation of o(.Y)

can be found by applying the Edmundson-Madansky bound on each of the subintervals [z, r¥], [+ 2]

as follows:
M L L L
=y L Y =
My = of " lo(eh)y+ [ L—L
1 ! <<J'i” _ 11L> (z7) J.i\! _ J.{.

where

dF(xy) > 0. and
.TA! B
fflL] rdF(ry)

L
€y

and

l=1-ck>0.
H
f:{\’: r1dF(xy)
Hy = I E—

€1

(10)

Clearly. this method can be used to refine the hound shown in Theorem 2.1, as long as each partition

Is rectangular. By applying this method to increasing partitions, we again may have many function



evaluations. The bound in Theorem 2.1 forces the individual random variables to become perfectly
correlated. Simply reapplying this bound over various rectangular partitions of the probability space
changes that correlation. However, the following shows that we may refine the HL(y bound and keep the
perfect correlation. This helps primarily with keeping the number of function evaluations small.

First we state without proof a rather obvious extension of the bound My given above.

Lemma 2.1 If plzt + pMaeM 4 pHoH = Elz], pt +p™ + p¥ =1, and pE, pM ,pH > 0, then

-
IN

Mj < pro(zh) + pMa(z™) + pH () < My

L_ L H_ M . .
or 0 < pM < (b (L= ) + ¥ (B=25)), where cE oyl and pfl are as defined in equations (9
>4 1 \7A-7 1,1, By ana q ,

TM_L

and (10).

Using this lemma. the bound for non-increasing convex functions with convex marginal return func-
tions can be refined. Let .X' be an n-dimensional random vector, where each X; is independently dis-

tributed with bounded support and finite mean. Further, let zX 2 be the realizations of .X; as defined

L M

in equations (1) and (2). so that r; L

< zf for all i. Further. let zF < zM < 2/ for all i. Let

pE=prob{ N, = 2L} pM = prob{ X, = 2} and pf = prob{X; = #} for all i be such that
pref el e = BN pF M+l =10 pEpMopf >0

Let f(.X') be a non-increasing convex function of .\' with convex marginal return functions with respect
toany pair (\;..X;)i=1....0n, j=1....n

Theorem 2.2 Let X and f(X) be as defined abore  Let pt = ma\{—,_—:;,, ci=1,....n} and pf =

"

) ’ ) gl M )
L= pbo Further, let p*' = min{ck <ﬁ—(ﬁ‘;—) +cl (iﬁ—“h—) ci=1.200.n}, where eF e opl and pf

I ' =r
' '

arc as dcfined mn equations (9) and (10). Then
Elft\)] <p f(le ..... .1‘,’,‘)-+—p”f(.1",” ..... w2y +p (2 b r,’,{)EHLl.

where

6



Praof: By induction. Let n = 1. The result holds by the Huang, Ziemba, and Ben-Tal extension of
the Edmundson-Madansky bound.
Assume the result is true for n = ¢ > 1, and consider the case where n = t+1. Then, by the extension

of the Edmundson-Madansky bound,
E[f(X) < pEE[f(zE Xoy . X) + pM E[f(e™, Xo, . X)) + PP E[f(ef Xo, .. o)l

However, for a particular value of X = z;, f(z;. Xo...... X,) 1s a function of t variables, and so. by the

mduction hypothesis,

IAVICTP CH Xo)) < poflxyaf, . zb) + M flar 2 ey + pu flar 2 2,
L L H H L
where p* = min{cf (5;,:§1>+CI-H (;;,::;4) 11=23,....n},pt = max{pT‘ip—H 1=2,.. ., n}x(1-pM)

L
and pf = (1 - max{ﬁ;g 1i=2,....n}* (1 =pM). Thus, from above,

E[f(N)] < prptflat e, aby+pipM flat a2l 4 phpf flat e
gt xS S g )
+pi ph el ek R (PSS ey 4l flaft f ]

Note that now the set of random variables (\Xo...... . ) are perfectly correlated and, therefore, can again

be replaced by a single random variable. To simplify the notation, let y* = (24,... . 2%) fork = L. M. H.
Now. the main idea behind this part of the proofis to break the domain of X into various rectangular
regions. eliminate points within each of those regions and continue this process until the only points

remaining are the desired points. Assume without loss of generality that

L L Hy _ L L Hy. - _

pr/(py +p1') = mar{p /(py +p)ii=1,....n}.
Further, let

L.ty and pr=pF«(1-pM)/1-pM) (k=L H).

py = (1= pMy«pf/(pF + 01 (&



Note that by construction, gt = maz{pt/(pf +pH):i=2...., n}* (1 —pM). Then by Lemma 2.1,

E[f(X)] < pfp f(rl» By +pip™ f(2f,y )+P1PHf(~73 7y +
p{”po(xiwvyL)'*Pl[ Mf(‘rl Y )+P1 f(l'{wvyH)‘f'

Pt f(f yF) + pI M f(2 M) + pHpH f( )

IN

.1311) f(fm )+I51P f(l'lv )+P1P f(xl» )
Mt f(aM yE) + pM M f( M M) + oM Fe M M) + (11)

pipt f(xf yb) + pTpM (2 M) + pHpH f( B M.

Now. consider the region of the domain of .X in which zf < z; < z} and y* < y < y™. By Theorem
2.1, since pk > pt. we obtain:
pEpt flet oyt + oM f(et y™) 4 pM B fa yb) + pMpM f(aM M)
y 12)
<pr(t +pM)f et B + M (M 4 55 f2 yM). {
Next consider the region of the domain of X in which 2} < z; < 2 and y™ <y < y¥ . Again by

Theorem 2.1, since p¥ > p# | we obtain:

P ) + ) 4 Y S ) + R Sy
o 1
MpM +pH) f(z "..“)+Pf"(P”+p’”)f(ﬂff’,y”)~ (13)

Finally. looking over the entire domain of .\" and only considering the corner points, since p- > pt. we

can use Theorem 2.1 to obtain:

prit et oyt + ptpt fal g™y + plpt £l gty + P f(e
<prt+ f»”)fu{:.u’-> + m”(ﬁ” + ﬁL)f(x{’, u').

Combining equations (11)-(14) gives the desired result. O

Note that the only restrictions on the choice of £} are that zF < +M™ < 2 and that zM be such that



0< .ciL < 1. Therefore, the middle points can be chosen so that the pM values are all relatively close. -

This aids the effectiveness of the refined bound.

3 Example Functions

In this section, we consider two examples to illustrate the advantage of this new bound. The first
example represents a common logarithmic utility function with two commodities. The second is taken

from a vehicle allocation problem.
Example #1: o(z;,22) = —In(z] + 8z1), 1<z <25 0< 22 <20.

Since all second derivatives of ¢(X;, X'») are nonnegative over the range of all possible values of X}
and X2, o(.X..X2) is a convex function of X and .X'» over that range (See, e. g. , Rockafellar [9]). Since
the argument of In(-) always increases as .\'; and/or .\’ increases, and since — In(z) is a strictly decreasing

function of x > 0. 6(.X}, X2) 1s also a non-increasing function of X; and .X,. Finally, since

do(zy.22) _ —&

Ora T+ 4

15 a non-decreasing function of .\';. o(.\';. X2) has convex marginal return functions with respect to .\
and X'y, Thus. the results from Section 2 can be used to generate upper bounds on E[¢(X}. \4)] = o.

Let the random variables .\'; and .\'s have the following probability density functions.

Ny filzy) = 0567 = 0011574, 1<, <25

=  E[X)] = 9.4967 =  E-M weights: (.6460,.3540);
No: fo(ze) = 11565 exp T 7+ 0< 10 <20

= E[Xa] = 6.870 = E-M weights: (.6565,.3435).

9



Theorem 2.1 can be applied to give the following upper bound on o,
HLy = .6565%¢(1,0)+ .3435 « ¢(25, 20)
= (.6565) (—In(1)) + (.3435) * (— In(785))
= -2.28966 > ¢.

compared to the Edmundson-Madansky bound, which is

Mg 6460 x .6565 * o(1,0) + .6460 * .3435 * ¢(1, 20)

+.3540 * .6565 * ¢(25,0) + .3540 * .3435 * ¢(25, 20)

Il

~3.43439 > 4.

Then by Jensen's inequality, a lower bound can be established.
0> 6(9.4967,6.870) = — In(145.1467) = —4.977439

Finally. the upper bound can be tightened using Theorem 2.2. Let ¥ = E[\}], and z}' = E[X5]. Then

pM = 51365. The improved upper bound is:
HL; = 6565% (1 - .51365) % o(1.0) + .51365 % 0(9.4967.6.870) + .3435 x (1 — .51365) * 0(25. 20)
= -3.67024 > o.

Note that this bound improves on the Edmundson-Madansky bound and requires fewer function evalua-

tions
Example #2: Consider the network flow problem shown in figure 1.

To the left of Nodes 1 and 2 is the available supply for those nodes, and to the right of Nodes 3 through
15 the demand requirements for each of those nodes. The link number, the link’s upper capacity. and
the cost per unit flow is listed along each link. Each link is assumed to have lower capacity of zero. Note
that Links 1.2.3. and 4 have random variables £,.&,. 3. and &4 respectively for their upper capacity. For
a particular realization of € = (€1, €9, £3.&4). let f(€) denote the value of minimizing costs in this network.

Letting r, denote the flow along Link 7. then f(€) can be written as follows:

10



(10,45.3)

Figure 1: (Link number, upper capacity, cost per unit flow)
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Suppose &; and &3 have the following distributions:

X 11 12 13 14 15 16 17 18 19 20
Pr(z) | .02 04 .05 .05 .06 .06 .06 .07 .07 .08

X 21 22 23 24 25 26 27 28 29 30

Pr(z) | .07 .07 .06 .06 .05 .04 .04 .03 .02 .01

And &> and &4 have the following distributions:

X 21 22 23 24 25 26 27 28 29 30

Pr(z) | .01 03 .05 .06 .07 .08 .09 .09 .10 .10

X 31 32 33 34 35 36 37 38 39 40
Pr(z) | .11 08 .05 .02 .01 .01 .01 .01 .01 .01

This gives the following:

= El&)= E[&5) =198 =  E-M weights: (.5368..4632);

= E[6]=E[&%]=28.69 = E-M weights: (.5953,.4147).

Solving each of the 20 possible versions of this linear program could be very difficult, making the
value of effective bounds quite useful. This mathematical program, viewed as a function of the random
upper capacities €182, &3, and & is a convex function (see e.g.. Birge and Louveaux [1]), a non-increasing

. o .

&1y is also feasible for any Ez = (67.63.65.¢

function since any solution feasible for ¢! = (&) .EL.

)

such that € > ¢! (7 = 1.....4), and has convex marginal return functions with respect to each of these

(1)

e

components by [4].

Briefly. the explanation for convex marginal return functions in this case is as follows. Suppose that
the network flow problem is solved for particular values of £;,€4.£3. and 4. Suppose then that the value
of & is increased by one, while all other capacities remain unchanged. Suppose that the new problem

18 solved by a network algorithm which recursively deletes negative cost cycles, such as the out-of-kilter

12



method, and the solution to the previous problem is used as the starting solution. The only possible
negative cost cycle would have to include an increase of flow on Link 1, since the previous solution was
optimal and the only changed aspect of the problem is the upper capacity of Link 1. But that implies
that the solution to the updated problem either decreases or leaves the flow along Link 2 unchanged. In
either event, if £» 1s now increased by one, the effect of that increase is less than if £> had been increased
before ¢;.

Again. the results from Section 2 can be applied to bound the expected value of f(£). The bound
from Theorem 2.1 gives an upper bound on the expected value of f(£) by solving two versions of this

program. instead of the sixteen needed to obtain the E-M bound. Here,

HL 0953 * f(11.21.11,21)+ .4147 * £(30, 40, 30, 40)

= (.5953) * (—270.00) + (.4147) * (—365.00)

-312.0965 > E[f(€)].

The Edmundson-Madansky bound for this function is:
Mg = =319.4815 > E[f(&)].

Jensen's Inequality gives an lower bound of -343.09.
Finally, Theorem 2.2 can be used to refine the upper bound. Let &} = €3/ = 19.8 and let &} = ¢M =

32.5. Then pM = 59049. The improved upper bound is:

HL; = 2470 f(11.21.11.21)+ 5851+ f(19.8.32.5.19.8,32.5) + .1679 = £(30.40.30.40)

—329.4819 > E[f(£)).

In this case. the result is again better than the Edmundson-Madansky bound Mg with only three

instead of sixteen function evaluations.

13



4 Conclusion

The difficulty of finding an upper bound for a convex function of a mulitivariate random variable, where
the number of random components is greater than three, makes any special properties of certain classes
of convex functions useful in analysis. In this paper, a bound is established for non-increasing convex
functions which only requires two function evaluations whenever marginal return functions are convex
with respect to any pair of the random components. Further, this bound can be refined in such a way
that allows the number of function evaluations needed to grow linearly with the number of refinements
performed. The bound has already been effective in establishing upper bounds for certain stochastic
network flow problems. In practice. this bound has been found to be consistently as good or better than
the Edmundson-Madansky bound after only one refinement of the bound, regardless of the number of

random components.

14



References
(1] J. R. Birge and F. Louveaux, (1995) Stochastic Programming, unpublished manuscript.

[2] J. R. Birge and S. W. Wallace, “A Separable Piecewise Linear Upper Bound for Stochastic Linear

Programs™, SIAM Journal on Control and Optimization 26 725 - 739 (1988).

[3] J. R. Birge and R. J-B. Wets, “Sublinear Upper Bounds for Stochastic Programs with Recourse™,

Mathematical Programming 43 131 - 149 (1989).

[4] C. J. Donohue and J. R. Birge, “An Upper Bound on the Network Recourse Function,” Working
Paper. Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor,

Michigan (1993).

[5] K. Frauendorfer. “Solving Stochastic Linear Program Recourse Problems with Arbitrary Mulitvariate

Distributions - The Dependent Case™, Mathematics of Operations Research 13 377 - 394 (1988).

[6] H. Gassmann and W. T. Ziemba. “A Tight Upper Bound for the Expectation of a Convex Function

of Multivariate Random Variable™, Mathematical Programming Study 27 39 - 53 (1986).

r

[7] €. C. Huang. W. T. Ziemba and A. Ben-Tal. "Bounds on the Expectation of a Convex Function of
a Random Variable: With Applications to Stochastic Programming”, Operations Research 25 315 -

325 (1977).

(3] A. Madansky. "Bounds on the Expectation of a Multivariate Random Variable™, Annals of Mathe-

matical Statistics 30 743 - 746 (1959).
[9] R.'T. Rockafellar. Conver Analysis. Princeton University Press. Princeton, N.J, 1970.

[10] S. Wallace. A Piecewise Linear Upper Bound on the Network Recourse Function™, Mathematical

Programming 38 133 - 146 (1987).



Lemma 2.1 Ifplal 4+ pMgM 4 pHzH = Elz], pL + pM + p¥ = 1. and pt, pM ,p¥ > 0, then

o < Mj < plo(eh) + pMo(e™) + pH o(a¥) < M

IN

: L_,L H__M
for0 < pM < (clL (rﬁ,{;:%) + (%)) where clL,c{"plL and pf are as defined above.

Proof: The first inequality comes from Huang, Ziemba, and Ben-Tal [7]. The second and third come from

L

L
noting that at pM = (clL (;’%:II—L) +cf (i:—:;%)),pL¢(rL)+pM¢(1'M)+pH¢(xH) =M;j, andatpys =
0, pto(zb)+pMo(zM)+pH 6(zH) = M. Between those two values of pM, pL¢(zL)+p™ o(a™)+pH o(2H)

is increasing hnearly. O
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