Prime ideals and the ideal-radical of a distributively generated near-ring

By
R. R. LAXTON

The concepts of a prime ideal of a distributively generated (d.g.) nearring R, a prime d.g. near-ring and an irreducible R-group are introduced ${ }^{1}$). The annihilating ideal of an irreducible R-group with an R-generator is a prime ideal. Consequently we define a prime ideal to be primitively prime if it is the annihilating ideal of such an R-group, and a d.g. near-ring to be a primitively prime near-ring if it acts faithfully on such a group. The intersection of all the primitively prime ideals of a d.g. near-ring is called the ideal-radical; this ideal contains all the nilpotent ideals of the near-ring and a relationship between it and the quasi-radical of the near-ring is established.

In section 2 we consider d.g. near-rings R which satisfy the descending chain condition for left R-modules. In this case, the ideal-radical is nilpotent. Any non-zero prime d.g. near-ring is a primitively prime d.g. near-ring. All irreducible R-groups with an R-generator of a non-zero prime d.g. near-ring R are shown to be isomorphic to the finite number of direct summands of the group $R^{+}-N$, where N is the quasi-radical of R. If R has finite order, then it has, to within an isomorphism, but one faithful representation on an irreducible R-group with an R-generator and all its irreducible R-groups with R-generators are homomorphic images of R-subgroups of this group.

In section 3, a number of equivalent conditions is given for a d.g. near-ring to have a nilpotent radical. One of them is that all its proper prime ideals are maximal ideals. In section 4 , we construct an example of a finite d.g. near-ring whose radical is not nilpotent and whose quasi-radical is not an ideal.

1. Definitions and general properties

A near-ring R is a system with two binary operations, addition and multiplication, such that:
(i) The elements of R form a group R^{+}under addition.
(ii) The elements of R form a semi-group under multiplication.
(iii) $(x+y) z=x z+y z$, for all $x, y, z \in R$.

[^0]If S is a multiplicative semi-group contained in R, whose elements generate R^{+} and satisfy
(iv) $s(x+y)=s x+s y$,
we say that R is generated by the distributive semi-group S. A near-ring R which is generated by some distributive semi-group is said to be distributively generated.

Throughout this article, we shall mean by a d.g. near-ring a d. g. near-ring with an identity element which will be denoted by e and R will always denote such a near-ring. The symbol S stands for some distributive semi-group generating R. It will always be assumed that S contains e; this imposes no further structural restriction on R.

An (R, S)-group Ω is given by an additive group, the additive notation not to imply commutativity, together with a mapping $(x, w) \rightarrow x w$ of $R \times \Omega$ into Ω such that
(i) For all $x, y \in R$ and all $w \leq \Omega,(x+y) w=x w+y w$.
(ii) For all $x, y \in R$ and all $w \in \Omega,(x y) w=x(y w)$.
(iii) For all $s \in S$ and $w_{1}, w_{2} \in \Omega, s\left(w_{1}+w_{2}\right)=s w_{1}+s w_{2}$.
(iv) For all $w \in \Omega, e w=w$.

If the particular semi-group S occurring in this definition does not need to be specified, we simply speak of an R-group (see [5]).

The zero 0 of R^{+}is a two-sided annihilator of $R([2], 1.1,1.5)$. The zero of an additive group Ω will be denoted by 0_{Ω}, or, if no confusion is possible, simply by 0 . If Ω is an R-group, then $x 0_{\Omega}=0_{\Omega}$, for all $x \in R$ ([3], 1.4).

A faithful R-group Ω is an R-group such that if $x \in R$ and $x w=0$ for all $w \in \Omega$, then $x=0$. A minimal R-group is a non-zero R-group which contains no R-groups as proper, non-zero sub-groups. A primitive d.g. near-ring R is a d.g. near-ring which has a faithful representation on a minimal R-group (see [7]).

A homomorphism Φ of an R-group Ω into another R-group is called an R-homomorphism if $\Phi(x w)=x\left(\Phi_{w}\right)$, for all $x \in R$ and $w \in \Omega$.

A sub-group a of R^{+}is a left (right) R-module of R if $x y \in \mathfrak{a}(y x \in \mathfrak{a})$ for all $x \in R$ and $y \in a$. A left R-module that is also a right R-module is a two-sided R-module. A left (right, two-sided) ideal is a left (right, two-sided) R-module that is also normal in R^{+}. A two-sided ideal is simply called an ideal. Left R-modules are the R-subgroups of R^{+}. Left ideals are precisely the kernels of R-homomorphisms of R^{+}, and ideals are precisely the kernels of the nearring homomorphisms of $R([2], 1.3 .3,[3], 2.1 .4)$.

Definition 1. An ideal p in a d.g. near-ring R is called a prime ideal if and only if whenever \mathfrak{a} and \mathfrak{b} are ideals of R and $\mathfrak{a} \mathfrak{b} \leqq \mathfrak{p}$, then either \mathfrak{a} or \mathfrak{b} is contained in \mathfrak{p}^{2}). A d.g. near-ring whose zero ideal is prime is called a prime d.g. near-ring.

[^1]Lemma. If $\mathfrak{a}_{1}, \ldots, a_{r}$ are ideals and \mathfrak{p} is a prime ideal of R, then $\mathfrak{a}_{1} a_{2} \ldots a_{r} \subseteq p$ implies that $\mathfrak{a}_{i} \leqq p$ for some i.

Proof. If a set \mathfrak{a} is contained in the ideal \mathfrak{p}, then so is the least ideal of R containing \mathfrak{a}. We denote this ideal by $\overline{\mathfrak{a}}$. Hence if $\mathfrak{a}_{1} a_{2} \ldots a_{n}$ is contained in p so is the ideal $\overline{\mathfrak{a}_{1} \mathfrak{a}_{2} \ldots \mathfrak{a}_{n}}$. Now $\left(\overline{\mathfrak{a}_{1} \ldots \mathfrak{a}_{n-1}}\right) \mathfrak{a}_{n}$ is a product of two ideals and $\left(\overline{a_{1} \ldots a_{n-1}}\right) a_{n} \leqq \overline{\bar{a}_{1} \ldots \bar{a}_{n-1} \mathfrak{a}_{n}} \leqq p$. Therefore if $\mathfrak{a}_{n} \nsubseteq p, a_{1} \ldots a_{n-1} \leqq \overline{\mathfrak{a}_{1} \ldots a_{n-1}} \leqq p$. Repeating this argument gives the required result.

Definition 2. A non-zero R-group is called an irreducible R-group if it possesses no proper, non-zero, normal R-subgroups ${ }^{3}$).

In the following, we shall be concerned with irreducible R-groups Ω which possess an R-generator, that is, an element w in Ω such that $R w=\Omega$. Such groups will be called cyclic irreducible R-groups. It is clear that a minimal R-group is a cyclic irreducible R-group.

Proposition 1. If Ω is a cyclic irreducible R-group, then the annihilating ideal $(0: \Omega)$ is a prime ideal of $\left.R^{4}\right)$.

Proof. The ideal ($0: \Omega$) consists of all those $x \in R$ such that $x w=0$ for all $w \in \Omega$. Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $\mathfrak{a} \ddagger(0: \Omega)$ and $\mathfrak{b} \ddagger(0: \Omega)$, and w an R-generator of Ω. Then the R-group $\mathfrak{b} \Omega=\mathfrak{b}(R w)=(\mathfrak{b} R) w=\mathfrak{b w}$ is not the zero sub-group of Ω. If $w^{\prime} \in \Omega$, then there exists an element $z \in R$ such that $w^{\prime}=z w$ and so $w^{\prime}+b w-w^{\prime}=z w+b w-z w=(z+b-z) w \in b w$, for all $b \in \mathfrak{b}$. Thus $\mathfrak{b} w$ is a non-zero normal R-subgroup of Ω; hence $b w=\Omega$. Now the group $(\mathfrak{a} \mathfrak{b}) \Omega \geqslant(\mathfrak{a} \mathfrak{b}) w=\mathfrak{a}(\mathfrak{b} w)=\mathfrak{a} \Omega$ is a non-zero subgroup of Ω. Therefore $(\mathfrak{a} \mathfrak{b}) \nsubseteq(0: \Omega)$ and this proves that the ideal $(0: \Omega)$ is prime.

Definition 3. A d.g. near-ring R which has a faithful representation on a cyclic irreducible R-group is called a primitively prime d.g. near-ring. An ideal \mathfrak{p} of a d.g. near-ring R is called a primitively prime ideal if R / p is a primitively prime d.g. near-ring.

The above proposition shows that a primitively prime d.g. near-ring is a prime d.g. near-ring and a primitively prime ideal is a prime ideal. A primitively prime ideal is a proper ideal.

Proposition 2. An ideal \mathfrak{p} in R is primitively prime if and only if $\mathfrak{p}=(\mathrm{r}: R)$, where 1 is a maximal left ideal of R.

Proof. Let $\mathfrak{p}=(\mathfrak{t}: R)$; then R / p acts faithfully on the irreducible R / p-group $R^{-}-1$. The image of the identity element e of R under the homomorphism of R^{+}onto R^{+}- 1 is an R / p-generator of $R^{+}-1$. Conversely, if p is a primitively prime ideal, let Ω be a faithful, irreducible R / p-group with an R / p-generator w, say. Then Ω is an R-group, $R w=\Omega$ and the mapping of R^{+}onto Ω given by $x \rightarrow x w$, for all $x \in R$, is an R-homomorphism. Hence $R^{+}-(0: w) \hat{=} \Omega ;(0 ; w)$ is a maximal left ideal of R and $p=\left(\left(0 ; w^{\prime}\right): R\right)$.

[^2]The primitive ideals of R are by definition the annihilating ideals of minimal R-groups (see [8]). Hence:

Proposition 3. The primitive ideals of a d.g. near-ring are primitively prime ideals and primitive d.g. near-rings are primitively prime d.g. near-rings.

Proposition 4. A prime ideal p of a d.g. near-ring R contains all the nilpotent ideals of R. The factor near-ring R / p has no non-zero nilpotent ideals.

Proof. If \mathfrak{a} is an ideal and $\mathfrak{a} \mathfrak{a} \ldots \mathfrak{a} \leqq \mathfrak{p}$, then $\mathfrak{a} \leqq \mathfrak{p}$ by the lemma.
The intersection of all the primitive ideals of a d.g. near-ring R is called the radical (if the near-ring has no primitive ideals, then the radical is taken to be the whole near-ring) and is equal to the intersection of all the maximal left ideals which are maximal left R-modules of R. The intersection of all the maximal left ideals of a d.g. near-ring is called the quasi-radical (see [8]). Any d.g. near-ring with an identity element contains maximal left ideals (which are proper left ideals). This is proved by an application of Zorn's lemma. Therefore, by proposition 2, any d.g. near-ring with an identity element possesses primitively prime ideals.

Definition 4. The intersection of all the primitively prime ideals of a d.g. near-ring is called the ideal-radical of the near-ring.

Theorem 1. Let N denote the quasi-radical of a d.g. near-ring R. The idealradical is the ideal ($N: R$) which is contained in N. The ideal-radical contains all the nilpotent ideals of the near-ring.

Proof. Let P denote the ideal-radical of $R . P$ is contained in the ideal $(l: R)$ for each maximal left ideal \mathfrak{l} of R by proposition 2 . Since $(\mathfrak{l}: R) \subseteq \mathfrak{l}, P$ is contained in each maximal left ideal of R and so in the intersection of all the maximal left ideals of R, i.e., the quasi-radical N of R. But P is an ideal and therefore $P \leqq(N: R)$. Also N is contained in each maximal left ideal Υ of R and hence $(\bar{N}: R) \leqq(\mathcal{Y}: R)$, for each maximal left ideal \mathscr{Y} of R. Therefore $(N: R)$ is contained in the intersection of the ideals $(\mathbb{I}: R)$ where \mathfrak{I} is a maximal left ideal of R, i.e., $(N: R) \leqq P$ by proposition 2. Therefore the ideal $(N: R)$ is the ideal-radical of R.

The last part of the theorem follows immediately from proposition 4.
We have the following situation for a d.g. near-ring R : the radical contains the quasi-radical which contains the ideal-radical. The radical is an ideal (which may or may not be proper) containing all the nilpotent left R-modules of R. The quasi-radical is a proper left ideal containing all the nilpotent left ideals of R. The ideal-radical is an ideal containing all the nilpotent ideals of R. Further properties of these three "radicals" are obtained in the next section for any d.g. near-ring R which satisfies the descending chain condition for left R-modules (see [8]).

2. Further properties for d.g. near-rings which satisfy the descending chain condition

Any d.g. near-ring R which appears in this and the following section satisfies the descending chain condition (d.c.c.) for left R-modules. In this
case, the primitive ideals of R are maximal ideals and primitive d.g. near-rings are simple near-rings, that is, they possess no proper, non-zero ideals (see [7]). The restatement of proposition 3 is

Proposition 5. The maximal ideals of a d.g. near-ring R which satisfies the d.c.c. for left R-modules are primitively prime ideals. If R is a simple d.g. near-ring, then it is a primitively prime near-ring.

Theorem 2. Let R be a d.g. near-ring satisfying the d.c.c. for left R-modules. The ideal-radical is a nilpotent ideal containing all the nilpotent ideals of R.

Proof. The quasi-radical of R is nilpotent (see [8]) and so the ideal-radical must be nilpotent.

Corollary. R has a non-zero nilpotent ideal if and only if its ideal-radical P is non-zero. The near-ring R / P has no non-zero, nilpotent ideals.

We consider the R-group $R^{+}-N$, where N is the quasi-radical. The intersection of all the maximal left ideals of R is N. Since R satisfies the d.c.c. for left R-modules, there exists a finite number of distinct maximal left ideals $\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{n}$ such that $\bigcap_{i=1}^{n} \mathfrak{r}_{i}=N$ and $\mathfrak{Q}_{k}=\bigcap_{\substack{i=1 \\ i \neq k}}^{n} \mathfrak{r}_{i} \neq N$ for any $k=1, \ldots, n$. In the canonical R-homomorphism of R^{+}onto $R^{+}-N$ let \mathfrak{l}_{k} be mapped onto Ω_{k} and Ω_{k} onto Δ_{k} for all $k=1, \ldots, n$. Since $\bigcap_{i=1}^{n} Y_{i}=N$ it follows that $\bigcap_{i=1}^{n} \Omega_{i}=(0)$. Since the \mathfrak{l}_{k} are maximal left ideals $R=\mathfrak{l}_{k}+\mathfrak{Q}_{k}$ and so $R^{+}-N=\Omega_{k} \oplus \Delta_{k}$ for $k=1, \ldots, n$. Also $\mathfrak{Y}_{k} \geqq \Omega_{j}$ for all $j \neq k$ and $\Upsilon_{k} \cap \Omega_{k}=N$ for all $k=1, \ldots, n$, therefore $\Omega_{k} \geqq \Delta_{j}$ for all $j \neq k$ and $\Omega_{k} \cap \Delta_{k}=(0)$ for all $k=1, \ldots, n$.

If $m \neq k, \Omega_{m}=\Omega_{m} \cap\left(R^{+}-N\right)=\Omega_{m} \cap\left(\Delta_{k} \oplus \Omega_{k}\right)=\Delta_{k} \oplus \Omega_{k} \cap \Omega_{m}$ by the modular law which holds for the lattice of normal subgroups of $R^{+}-N$. Hence $R^{+}-N=$ $\Omega_{m} \oplus A_{m}=\left(A_{k} \oplus \Omega_{k} \cap \Omega_{m}\right) \oplus A_{m}=\Delta_{k} \oplus A_{m} \oplus \Omega_{k} \cap \Omega_{m}$.

If $n \neq m, k, \Omega_{k} \cap \Omega_{n}=\Omega_{k} \cap \Omega_{m} \cap\left(\Lambda_{n} \oplus \Omega_{n}\right)=\Delta_{n} \oplus \Omega_{k} \cap \Omega_{m} \cap \Omega_{n}$ and hence $R^{\leftarrow}-N=A_{k} \oplus \Delta_{m} \oplus \Delta_{n} \oplus \Omega_{k} \cap \Omega_{m} \cap \Omega_{n}$. Since $\bigcap_{i=1}^{n} \Omega_{i}=(0)$ it follows that we obtain finally

$$
\begin{equation*}
R^{+}-N=A_{1} \oplus \cdots \oplus \Delta_{n} \tag{1}
\end{equation*}
$$

where $\Lambda_{k} \cong\left(R^{+}-N\right)-\Omega_{k} \cong R^{+}-\mathfrak{Y}_{k}$ for $k=1, \ldots, n$. From these isomorphisms it follows that the A_{k} are irreducible R-groups. If e is mapped onto \bar{e} under the canonical homomorphism of R^{+}onto $R^{+}-N$ and $\bar{e}=\bar{e}_{1}+\bar{e}_{2}+\cdots+\bar{e}_{n}$, $\bar{e}_{k} \in \Delta_{k}$, then $R \bar{e}_{k}=\Delta_{k}$ for $\left.k=1, \ldots, n^{5}\right)$. Thus the Δ_{k} are cyclic irreducible R-groups.

Let Ω be a cyclic irreducible R-group with an R-generator w, say. $R^{+}-(0: w)=\Omega$ and $(0: w)$ is a maximal left ideal. Thus $(0: w)$ contains N

[^3]and from (1) $R^{+}-(0: w)$ must be R-isomorphic to one of the R-groups $\left.\Delta_{k}{ }^{6}\right)$. Hence

Theorem 3. Let R be a d.g. near-ring satisfying the d.c.c. for left R-modules. Any cyclic irreducible R-group is R-isomorphic to one of the finite number of irreducible R-groups which appear in the direct sum decomposition (1) of $R^{+}-N$.

Now let p be a proper prime ideal in R; put $\bar{R}=R / p$ and denote by \bar{N} the quasi-radical of $\bar{R} . \bar{R}$ is a prime d.g. near-ring satisfying the d.c.c. for left \bar{R}-modules. The zero ideal ($\overline{0}$) of \bar{R} is prime and so \bar{R} contains no non-zero nilpotent ideals, in particular, $(\bar{N}: \bar{R})=(\overline{0})$. Hence \bar{R} acts faithfully on the group $\bar{R}^{+}-\bar{N}$. By (1), $\bar{R}^{+}-\bar{N}=\bar{\Delta}_{1}+\cdots+\bar{\Delta}_{2}$, where the $\bar{\Delta}_{k}$ are cyclic irreducible \bar{R}-groups. The annihilating ideals ($\overline{0}: \overline{\Delta_{k}}$) are primitively prime ideals and $\bigcap_{i=1}^{r}\left(\overline{0}: \bar{U}_{k}\right)=(\overline{0})$. Therefore

$$
\left(\overline{0}: \bar{\Delta}_{1}\right)\left(\overline{0}: \bar{\Delta}_{2}\right) \ldots\left(\overline{0}: \bar{\Delta}_{r}\right) \leqq \bigcap_{i=1}^{r}\left(\overline{0}: \bar{\Delta}_{i}\right)=(\overline{0})
$$

and, since $(\overline{0})$ is a prime ideal, $\left(\overline{0}: \bar{\Delta}_{k}\right)=(\overline{0})$ for some k. In other words, \bar{R} acts faithfully on some \bar{A}_{k}. Hence

Theorem 4. Let R be a d.g. near-ring satisfying the d.c.c. for left R-modules. Any proper prime ideal of R is a primitively prime ideal. If R is a non-zero prime d.g. near-ring, then it is a primitively prime d.g. near-ring.

We end this section with a structure theorem for finite prime d.g. nearrings which gives a relationship between all the cyclic irreducible R-groups. To a certain extent it generalizes the theorem for simple d.g. near-rings which states that all the minimal R-groups of a simple d.g. near-ring R are R-isomorphic (see [7]).

Theorem 5. Let R be a non-zero finite, prime d.g. near-ring. All cyclic irreducible R-groups are R-homomorphic images of R-subgroups of a jaithful, cyclic irveducible R-group. To within an isomorphism, R has one, and only one, faithful, cyclic irreducible R-group.

Proof. R is not the zero near-ring. Let N be the quasi-radical of R. Then $R^{+}-N=A_{1} \oplus \cdots \oplus A_{n}$, where the Δ_{k} are irreducible R-groups with R-generators $\bar{e}_{k}, \bar{e}=\bar{e}_{1}+\cdots+\bar{e}_{n}$. From the previous theorem, R acts faithfully on some Δ_{k}, say Δ_{n}. Denote by I the set of all groups which are R-homomorphic images of R-subgroups of Δ_{n} and, by I^{\prime}, those groups of I which are cyclic

[^4]irreducible R-groups. We define a left ideal N^{\prime} as follows:
$$
N^{\prime}=\cap\left\{\mathfrak{l}: \mathfrak{l} \text { is a left ideal and } R^{+}-\mathfrak{l} \in I^{\prime}\right\} .
$$

Clearly such left ideals I are maximal left ideals and so $N^{\prime} \geqq N$. It will be shown that some power of N^{\prime} annihilates A_{n} but, since A_{n} is faithful, this means that N^{\prime} is a nilpotent left ideal. Hence $N^{\prime} \leqq N$ and consequently $N^{\prime}=N$. Thus N is the intersection $\bigcap_{i=1}^{m} \mathfrak{l}_{i}$ of maximal left ideals \mathfrak{r}_{i} of R for which $R^{+}-\mathfrak{f}_{i} \in I^{\prime}$. We may assume that $\bigcap_{\substack{i=1 \\ i \neq j}}^{m} \mathfrak{l}_{i} \neq N$ for all $j=1, \ldots, m$. As indicated for the decomposition (1) of $R^{+}-N$, this leads to the decomposition $R^{+}-N=\Delta_{1}^{\prime} \oplus \cdots \oplus \Delta_{m}^{\prime}$, where $\Delta_{k}^{\prime}=R^{+}-\mathfrak{I}_{k} \in I^{\prime}$ for $k=1, \ldots, m$. These Δ_{k}^{\prime} are cyclic irreducible R-groups. Thus both this decomposition and decomposition (1) provide us with composition series of $R^{+}-N$ and so $n=m$ and the Δ_{k} are R-isomorphic to the Λ_{j}^{\prime} in some order ${ }^{7}$). The theorem now follows from theorem 3 .

We shall prove that every group in I is annihilated by some power of N^{\prime} by induction on the order of the groups in I.

If Ω has least order among the non-zero groups in I, it is a minimal R-group and so is in I^{\prime}. Let $w \in \Omega, w \neq 0$; then $R w=\Omega$ and hence $R^{+}-(0: w) \triangleq \Omega$ so that the left ideal ($0: w$) contains N^{\prime}. This is true for every element of Ω and consequently N^{\prime} annihilates Ω itself.

Now let $\Omega \in I$ be an R-group of order $m>0$ and assume that all groups in I of order less than m are annihilated by some power of N^{\prime}. Let $\Omega=$ $\Omega_{0}>\Omega_{1}>\cdots>\Omega_{l}=(0)$ be a strictly descending chain of R-groups in Ω such that each Ω_{i} is normal in Ω_{i-1} and $\Omega_{i-1}-\Omega_{i}$ is an irreducible R-group (not necessarily cyclic). Each $\Omega_{i-1}-\Omega_{i}$ is contained in I. If $l>1$, then these factor groups have order less than m and so, by hypothesis, are annihilated by some power of N^{\prime}. Therefore Ω itself is annibilated by some power of N^{\prime}. We are left with the case $l=1$, i.e., when Ω is an irreducible R-group. If $w \in \Omega$ and $R w=\Omega$, then $\Omega \in I^{\prime}$ and $R^{+}-(0: w) \cong \Omega$. Therefore ($\left.0: w\right)$ contains N^{\prime} and hence N^{\prime} annihilates w. If $w \in \Omega$ and $R w \nsubseteq \Omega$, then $R w \in I$ has order less than m and by hypothesis $R w$, and so w, is annihilated by some power of N^{\prime}. Thus every element of Ω and therefore Ω itself is annihilated by some power of N^{\prime}. It follows, therefore, that every group in I, in particular A_{n} itself, is annihilated by some power of N^{\prime}. This proves the first part of the theorem.

Now let Ω and Ω^{\prime} be two faithful, cyclic irreducible R-groups. They are finite groups. We have shown that Ω is an R-homomorphic image of an R-subgroup of Ω^{\prime} and, conversely, Ω^{\prime} is an R-homomorphic image of an R-subgroup of Ω. Thus Ω and Ω^{\prime} are isomorphic.

Besides the properties of a d.g. near-ring described at the end of section 1 we have the following additional properties for a d.g. near-ring R which satisfies the d.c.c. for left R-modules:

[^5]The radical M of R is an ideal containing all the nilpotent left R-modules of R and the factor d.g. near-ring R / M contains no non-zero nilpotent left R / M-modules, i.e., R / M is semi-simple. The quasi-radical is a nilpotent left ideal containing all the nilpotent left ideals of R (see [8]). The ideal-radical P is a nilpotent ideal containing all the nilpotent ideals of R. Furthermore, the factor d.g. near-ring R / P contains no non-zero nilpotent ideals.

3. The nilpotency of the radical

In [8] we gave necessary and sufficient conditions for the radical of a d.g. near-ring to be nilpotent. We restate these conditions below and add new conditions in terms of prime ideals.

Theorem 6. Let R be a d.g. near-ring satisfying the d.c.c. for left R-modules. The following conditions are equivalent:
(a) The radical is nilpotent.
(b) The radical is the quasi-radical.
(c) Every maximal left ideal is a maximal left R-module.
(d) The radical is the ideal-radical.
(e) Every proper prime ideal is maximal.
(f) Every cyclic irreducible R-group is a minimal R-group.

Proof. (a) implies (b). The radical contains quasi-radical and the quasiradical contains all the nilpotent left ideals of R. Therefore the radical is the quasi-radical if it is nilpotent.
(b) implies (c). If the radical M is the quasi-radical, then every maximal left ideal of R contains M. But R / M is a semi-simple d.g. near-ring and so is a direct sum of left ideals of R / M which are minimal left R / M-modules (see [8]). It follows that every maximal left ideal is a maximal left R-module.
(c) implies (d). If every maximal left ideal is a maximal left R-module, then the radical is the quasi-radical and so is a nilpotent ideal. But the radical contains the ideal-radical and the ideal-radical contains every nilpotent ideal of R. Therefore the radical is the ideal-radical if it is nilpotent.
(d) implies (e). If the radical M is the ideal-radical, then every prime ideal of R contains M. Let \mathfrak{p} be a prime ideal of R. Then $\mathfrak{m}_{1} \mathfrak{m}_{2} \ldots \mathfrak{m}_{r} \leq \mathfrak{m}_{1} \cap \mathfrak{m}_{2} \cap \ldots$ $\cap \mathfrak{m}_{r}=M \leqq \mathfrak{p}$, where $\mathrm{m}_{1}, \ldots, \mathrm{~m}_{r}$ are maximal ideals of R (if R satisfies the d.c.c. for left R-modules, then the radical is, in fact, an intersection of a finite number of maximal ideals). Hence $m_{i} \leqq p$ for some i and therefore $m_{i}=\mathfrak{p}$.
(e) implies (f). Let Ω be a cyclic irreducible R-group. Then the annihilating ideal $\mathfrak{p}=(0: \Omega)$ is prime and is a maximal ideal if condition (e) is satisfied. In this case R / p is a simple d.g. near-ring and so is a direct sum of isomorphic minimal R / p-groups (see [$[\mathcal{T}]$). Since Ω is an R / p-group and has an R / p-generator it follows that it is a direct sum of minimal R / p-groups. But Ω is irreducible and so it must be a minimal R / p-group. Hence Ω is a minimal R-group.
(f) implies (a). Let \mathfrak{I} be a maximal left ideal of R. Then $R^{+}-\mathfrak{I}$ is a cyclic irreducible R-group and hence it is a minimal R-group if condition (f) is satisfied. Thus I is a maximal left R-module. Therefore the radical and the quasi-radical must be equal in this case and therefore the radical is nilpotent.

4. An example of a d.g. near-ring with a non-nilpotent radical

We construct an example of a finite d.g. near-ring with a non-nilpotent radical and a quasi-radical which is not an ideal.

Let Ω be a finite, non-abelian, simple group and R the near-ring generated by all the inner-automorphisms of Ω. It has been shown in [4] and [7] that R is a finite, simple d.g. near-ring with an identity element. If Δ is a subgroup of $\Omega,(\Delta: \Omega)$ is a right R-module and any right R-module $\mathfrak{r}=(\Lambda: \Omega)$ for some subgroup Δ. There is a one-to-one lattice correspondence given by $r=$ $(\Delta: \Omega) \leftrightarrow \mathfrak{r} \Omega=\Delta$ between the right R-modules of R and the subgroups of Ω. Furthermore, right ideals and normal subgroups correspond to each other. Consequently, R has proper, non-zero right R-modules but no proper, non-zero right ideals. Finally, we note that each right R-module r has an element e_{r} such that $\mathrm{r}=e_{\mathrm{r}} R$.

Now consider the near-ring T generated by all the endomorphisms Φ_{x} of R^{+}, for all $x \in R$, where $\Phi_{x}(y)=y x$ for all $\left.y \in R^{+8}\right)$. It is clear that T is a finite d.g. near-ring with an identity element; R^{+}is a faithful T-group and the identity element of R is a T-generator of R^{+}. But the T-subgroups of R^{+} are precisely the right R-modules of R and so R^{+}is an irreducible T-group with a T-generator which is not a minimal T-group. It follows from theorem 5 that T does not have a nilpotent radical.

Since R^{+}is faithful, the ideal radical of T is the zero ideal (T is a finite, prime d.g. near-ring which is not simple). If the quasi-radical were an ideal, it would be the zero ideal (since the quasi-radical is nilpotent). But then T is a direct sum of irreducible T-groups by the equality (1) after the corollary to theorem 2. Every T-subgroup \mathfrak{r} of R^{+}has a T-generator e_{r} and consequently every T-subgroup is a direct sum of irreducible T-subgroups. By the latticeisomorphism, this means that every subgroup of Ω is a direct sum of simple groups. If we take Ω to be the alternating group on nine symbols, then it has a cyclic subgroup of order nine and this subgroup is not a direct sum of simple subgroups, i.e., two subgroups of order three. It follows that the quasiradical of T corresponding to the alternating group on nine symbols is not an ideal.

It is an open question whether or not the quasi-radical of a d.g. near-ring can be an ideal and yet not be the radical also. Or, to put it another way, whether a d.g. near-ring can possess non-zero nilpotent left R-modules and yet possess no non-zero nilpotent left ideals.

[^6]
References

[1] Bersch, G.: Ein Radikal für Fastringe. Math. Z. 78, 86-90 (1962).
[2] Fröhlich, A.: Distributively generated near-rings (I. Ideal theory). Proc. London Math. Soc. 8, 76-94 (1958).
[3] - Distributively generated near-rings (II. Representation theory). Proc. London Math. Soc. 8, 95-108 (1958).
[4] - The near-ring generated by the inner-automorphisms of a finite simple group. J. London Math. Soc. 33, 95-107 (1958).
[5] - On groups over a d.g. near-ring, Quart. J. of Math. (Oxford), (second series). (I) Sum constructions and free R-groups 11, 193-210 (1960); (II) Categories and functors 11, 211-228 (1960).
[6] Johnson, R. E.: Prime rings. Duke Math. J. 18, 799-809 (1951).
[7] Laxton, R. R.: Primitive distributively generated near-rings. Mathematika 8, 142-158 (1961).
[8] - A radical and its theory for distributively generated near-rings. J. London Math. Soc. 38, 40-49 (1963).
[9] McCoy, N. H.: Prime ideals in general rings. Amer. J. Math. 71, 323-833 (1949). The University of Michigan, Mathematics Department, Ann Arbor, Mich., USA
(Received June 1, 1963)

[^0]: 1) The notation in this paper is different from that adopted in the two previous papers [7] and [8$]$. What was previously called an irreducible R-group is now called a minimal R-group. The term irreducible R-group is given another and more general meaning in this paper (see section 1).
[^1]: ${ }^{2}$) If $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r}$ are subsets of R, then $\mathfrak{a}_{1} \mathfrak{a}_{2} \ldots \mathfrak{a}_{r}$ denotes the additive group generated by all elements of the form $a_{1} a_{2} \ldots a_{r}$, where $a_{i} \in \mathfrak{a}_{i}, i=1, \ldots, \gamma$. If a is a subset of R, we put $\mathfrak{a}^{n}=\mathfrak{a} \mathfrak{a} \ldots \mathfrak{a}$ (n times). We say that the set \mathfrak{a} of R is nilpotent if $\mathfrak{a}^{n}=(0)$ for some positive integer n.

[^2]: If \mathfrak{a} is a subset of R and A is a subset of an R-group Ω, then $\mathfrak{a} \Delta$ denotes the group generated by all elements of the form $a w$, where $a \in \mathfrak{a}$ and $w \in \Delta$.
 ${ }^{3}$) See footnote ${ }^{1}$).
 ${ }^{4}$) If Δ_{1} and Δ_{2} are two subsets of an R-group, then $\left(\Delta_{1}: \Delta_{2}\right)$ denotes the set of elements of R which map Δ_{2} into Δ_{1}. We note that if \mathscr{I} is a left ideal of R, then $(\mathbb{I}: R)$ is an ideal of R contained in \mathfrak{l} which contains all ideals of R in \mathfrak{I} ([2], 3.7.1).

[^3]: ${ }^{5}$) We note that if R is a d.g. near-ring and the (R, S)-group $\Omega=\Omega_{1} \oplus \cdots \oplus \Omega_{n}$ is a direct sum of R-groups, then $x\left(w_{1}+\cdots+w_{n}\right)=x w_{1}+\cdots+x w_{n}$ for all $x \in R$, where $w_{k} \in \Omega_{k}$ for $k=1, \ldots, n$.

[^4]: ${ }^{6}$) We are using here the fact that an R-group is an (R, S)-group for some set S of distributive elements of R. Thus an R-group is an operator group with S as a set of operators. Since S generated R^{+}a subgroup of an (R, S)-group is an R-subgroup if and only if it is an admissible subgroup for the set of operators S and two (R, S)-groups are R-isomorphic if they are isomorphic as operator groups for the set of operators S. It follows that in the present case the decomposition (1) of $R^{+}-N$ provides us with the composition series $\Lambda_{1} \oplus \cdots \oplus A_{n}>\Delta_{2} \oplus \cdots \oplus A_{n}>\cdots>\Delta_{n}>(0)$ for $R^{+}-N$ as an operator group for any distributively generating set S of R. Hence we can use the Jordan-Hölder theorem for operator groups to show that any two composition series of R-subgroups of $R^{+}-N$ are of the same length and the factor groups of one of the series are R-isomorphic to the factor groups of the other series in some order.

[^5]: ${ }^{7}$) See footnote ${ }^{5}$).

[^6]: ${ }^{8}$) These mappings of R^{+}into itself are ϵ ndomor phisms because R satisfies the right distributive law.

