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Prime ideals and the ideal-radical
of a distributively generated near-ring

By
‘R. R. LAXTON

The concepts of a prime ideal of a distributively generated (d.g.) near-
ring R, a prime d.g. near-ring and an irreducible R-group are introduced?). The
annihilating ideal of an irreducible R-group with an R-generator is a prime
ideal. Consequently we define a prime ideal to be primitively prime if it is the
annihilating ideal of such an R-group, and a d.g. near-ring to be a primitively
prime near-ring if it acts faithfully on such a group. The intersection of all
the primitively prime ideals of a d.g. near-ring is called the ideal-radical; this
ideal contains all the nilpotent ideals of the near-ring and a relationship
between it and the quasi-radical of the near-ring is established.

In section 2 we consider d.g. near-rings R which satisfy the descending
chain condition for left R-modules. In this case, the ideal-radical is nilpotent.
Any non-zero prime d.g. near-ring is a primitively prime d.g. near-ring. All
irreducible R-groups with an R-generator of a non-zero prime d.g. near-ring R
are shown to be isomorphic to the finite number of direct summands of the
group R* — N, where N is the quasi-radical of R. If R has finite order, then
it has, to within an isomorphism, but one faithful representation on an ir-
reducible R-group with an R-generator and all its irreducible R-groups with
R-generators are homomorphic images of R-subgroups of this group.

In section 3, a number of equivalent conditions is given for a d.g. near-ring
to have a nilpotent radical. One of them is that all its proper prime ideals
are maximal ideals. In section 4, we construct an example of a finite d.g.
near-ring whose radical is not nilpotent and whose quasi-radical is not an ideal.

1. Definitions and general properties
A near-ring R is a system with two binary operations, addition and mul-
tiplication, such that:

(i)  The elements of R form a group R* under addition.
(ii) The elements of R form a semi-group under multiplication.
(i) (x+y)z=xz-+yz forall x, vy, 2¢R.

1) The notation in this paper is different from that adopted in the two previous papers
[7] and [8]. What was previously called an irreducible R-group is now called a minimal
R-group. The term irreducible R-group is given another and more general meaning in
this paper (see section 1).
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If Sis a multiplicative semi-group contained in R, whose elements generate R+
and satisfy

iv) s{x+y)=sx+svy,

we say that R is generated by the distributive semi-group S. A near-ring R
which is generated by some distributive semi-group is said to be distributively
gemerated.

Throughout this article, we shall mean by a d.g. near-ring a d. g. near-ring
with an identity element which will be denoted by ¢ and R will always denote
such a near-ring. The symbol S stands for some distributive semi-group gener-
ating R. It will always be assumed that S contains ¢; this imposes no further
structural restriction on R.

An (R, S)-group £ is given by an additive group, the additive notation
not to imply commutativity, together with a mapping (x, w)—xw of RxQ
into £2 such that

(i) For all x, yeR and all wel, (x+9y) w=xw+yw.
(ii) For all x, yeR and all wef2, (xy) w==x(yw).

{iii) For all s€S and wy, w,e0, s(w; + w,) =sw; + sw,.
(iv) For all wef2, ew=1w.

If the particular semi-group S occurring in this definition does not need
to be specified, we simply speak of an R-group (see [5]).

The zero 0 of R* is a two-sided annihilator of R ([2], 1.1, 1.5). The zero
of an additive group £2 will be denoted by 0y, or, if no confusion is possible,
simply by 0. If 2 is an R-group, then x0,=0y, for all x¢R ([3], 1.4).

A faithful R-group £2 is an R-group such that if x¢R and xw=0 for all
weld, then x=0. A minimal R-group is a non-zero R-group which contains
no R-groups as proper, non-zero sub-groups. A primitive d.g. near-ring Risa
d.g. near-ring which has a faithful representation on a minimal R-group (see [7]).

A homomorphism @ of an R-group 2 into another R-group is called an
R-homomorphism if @(xw)=x(Pw), for all xeR and we.

A sub-group a of R* is a left (right) R-module of R if xyea(yxca) for all
xcR and yea. A left R-module that is also a right R-module is a two-sided
R-module. A left (vight, two-sided) ideal is a left (right, two-sided) R-module
that is also normal in R*. A two-sided ideal is simply called an ddeal. Left
R-modules are the R-subgroups of R*. Left ideals are precisely the kernels
of R-homomorphisms of R*, and ideals are precisely the kernels of the near-
ring homomorphisms of R ([2], 1.3.3, [8], 2.1.4).

Definition 1. An ideal p in a d.g. near-ring R is called a prime ideal if and
only if whenever a and b are ideals of R and a b<{p, then either a or b is con-
tained in p2). A d.g. near-ring whose zero ideal is prime is called a prime d.g.
REAr-¥Ing.

%) If ay, ..., a, are subsets of R, then a, 4, ... a, denotes the additive group generated
by all elements of the form a4, a, ... a,, where a;€q;, ¢=1,...,7. If ais a subset of R,

we put @"=aa ... a (» times). We say that the set q of R is nilpotent if o= (0) for some
positive integer #.
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Lemma. If ay, ..., a, aveideals and p is a prime ideal of R, then a; a5 ... 2,<p
vmplies that ;<9 for some 4.

Proof. If a set a is contained in the ideal p, then so is the least ideal of R
containing a. We denote this ideal by a. Hence if a; a, ... a, is contained in p
so is the ideal aya,.77a,. Now (a7 .- G,—7) q, is a product of two ideals and
@ Ta, ) 0,8 a3 8,Cp. Therefore if a,$p, a;... 0, ST 0, 7<h
Repeating this argument gives the required result.

Definition 2. A non-zero R-group is called an drreducible R-group if it
possesses no proper, non-zero, normal R-subgroups®).

In the following, we shall be concerned with irreducible R-groups £ which
possess an R-generator, that is, an element w in £ such that Rw=1£. Such
groups will be called cyclic trreducible R-groups. It is clear that a minimal
R-group is a cyclic irreducible R-group.

Proposition 1. If 2 is a cyclic srreducible R-group, then the anmikilaiing
ideal (0:92) is a prime ideal of RY).

Proof. The ideal (0:£2) consists of all those xeR such that xw=0 for all
we. Let a and b be two ideals of R such that a{(0:£2) and 5 (0:£2), and w
an R-generator of £. Then the R-group 0Q2="0(Rw)=(bR) w="bw is not the
zero sub-group of . If w'e(, then there exists an element z&R such that
w=z2w and so w'+bw —w =zrw+bw—zw=(2+b—z) webw, for all beb.
Thus b® is a non-zero normal R-subgroup of £; hence bw={. Now the group
(a 5)22(a b) w=a(b w)= a2 is a non-zero subgroup of . Therefore (a b) L (0:£2)
and this proves that the ideal (0:£2) is prime.

Definition 3. A d.g. near-ring R which has a faithful representation on a
cyclic irreducible R-group is called a primitively prime d.g. near-ving. Anidealp
of a d.g. near-ring R is called a primitively prime ideal if Rfp is a primitively
prime d.g. near-ring.

The above proposition shows that a primitively prime d.g. near-ring is a
prime d.g. near-ring and a primitively prime ideal is a prime ideal. A primitively
prime ideal is a proper ideal.

Proposition 2. Awu ideal p in R 1s primitively prime if and only if p=(1:R),
where 1 1s a maximal left ideal of R.

Proof. Let p=({:R); then R/p acts faithfully on the irreducible R/p-group
R=—1. The image of the identity element ¢ of R under the homomorphism
of R* onto R* —{is an R/p-generator of R* —1{. Conversely, if p is a primitively
prime ideal, let 2 be a faithful, irreducible R/p-group with an K/p-generator w,
say. Then £ is an R-group, Rw = and the mapping of R* onto 2 given by
x->zxw, for all x¢R, is an R-homomorphism. Hence R*— (0:w)=£2; (0:w) is
a maximal left ideal of R and p=((0:w):R).

If g is a subset of R and A is a subset of an R-group £2, then a4 denctes the group
generated by all elements of the form aw, where a€a and wed.

3) See footnote 1).

4 If A, and A, are two subsets of an R-group, then (d;:4,) denotes the set of elements
of R which map 4, into 4,. We note that if { is a left ideal of R, then ([:R) is an ideal
of R contained in | which contains all ideals of R in { ([2], 3.7.1).
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The primitive ideals of R are by definition the annihilating ideals of minimal
R-groups (see [8]). Hence:

Proposition 3. The primitive ideals of a d.g. near-ring ave primitively prime
ideals and primitive d.g. near-vings ave primitively prime d.g. near-vings.

Proposition 4. A prime ideal p of a d.g. near-ring R contains all the nilpotent
vdeals of R. The factor near-ring Rp has no non-zero nilpotent ideals.

Proof. 1t a is an ideal and aa ... alh, then alp by the lemma.

The intersection of all the primitive ideals of a d.g. near-ring R is called
the vadical (if the near-ring has no primitive ideals, then the radical is taken
to be the whole near-ring) and is equal to the intersection of all the maximal
left ideals which are maximal left R-modules of R. The intersection of all the
maximal left ideals of a d.g. near-ring is called the guasi-vadical (see [8]).
Any d.g. near-ring with an identity element contains maximal left ideals
(which are proper left ideals). This is proved by an application of ZoRN's
lemma. Therefore, by proposition 2, any d.g. near-ring with an identity
element possesses primitively prime ideals.

Definition 4. The intersection of all the primitively prime ideals of a d.g.
near-ring is called the ideal-radical of the near-ring.

Theorem 1. Let N denote the quasi-radical of a d.g. near-ring R. The ideal-
radical 1s the ideal (N:R) which is contained in N. The ideal-radical contains
all the nilpotent ideals of the near-ring.

Proof. Let P denote the ideal-radical of R. P is contained in the ideal
({: R) for each maximal left ideal [ of R by proposition 2. Since ((:R) <[, P is
contained in each maximal left ideal of R and so in the intersection of all the
maximal left ideals of R, i.e., the quasi-radical N of R. But P is an ideal and
therefore PC(N:R). Also N is contained in each maximal left ideal [ of R
and hence (N:R)<([:R), for each maximal left ideal { of R. Therefore (N:R)
is contained in the intersection of the ideals ({: R) where [ is a maximal left
ideal of R, i.e., (N:R)C P by proposition 2. Therefore the ideal (V:R) is the
ideal-radical of R.

The last part of the theorem follows immediately from proposition 4.

We have the following situation for a d.g. near-ring R: the radical contains
the quasi-radical which contains the ideal-radical. The radical is an ideal
(which may or may not be proper) containing all the nilpotent left R-modules
of R. The quasi-radical is a proper left ideal containing all the nilpotent left
ideals of R. The ideal-radical is an ideal containing all the nilpotent ideals
of R. Further properties of these three ‘‘radicals’’ are obtained in the next
section for any d.g. near-ring R which satisfies the descending chain condition
for left R-modules (see [8]).

2. Further properties for d.g. near-rings which satisfy
the descending chain condition
Any d.g. near-ring R which appears in this and the following section
satisfies the descending chain condition (d.c.c.) for left R-modules. In this
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case, the primitive ideals of R are maximal ideals and primitive d.g. near-rings
are simple near-rings, that is, they possess no proper, non-zero ideals {see [7])
The restatement of proposition 3 is

Proposition 5. The maximal ideals of a d.g. near-ving R which satisfies the
d.c.c. for left R-modules ave primitively prime ideals. If R is a simple d.g.
near-ving, then it is a primitively prime near-ring.

Theorem 2. Let R be a d.g. near-ving satisfying the d.c.c. for left R-modules.
The ideal-vadical is a nilpotent ideal containing all the wilpotent ideals of R.

Proof. The quasi-radical of R is nilpotent (see [8]) and so the ideal-radical
must be nilpotent.

Corollary. R has a non-zero wilpotent ideal if and only if its ideal-radical P
is non-zero. The near-ring R|P has no non-zero, nilpotent ideals.

We consider the R-group R*— N, where N is the quasiradical. The
intersection of all the maximal left ideals of R is N. Since R satisfies the d.c.c.
for left R-modules, there exists a finite number of distinct maximal left ideals

# #
{4, ..., I, such that N ;=N and &, = _ﬂlli:#:N for any A=1,...,#n. In the

1=1 f=

ik

canonical R-homomorphism of R* onto R*—N let [, be mapped onto 2,
and &, onto A, for all k=1, ..., n. Since Olli:N it follows that OIQz-: (0).
Since the [, are maximal left ideals R=I[,-- &, and so R* —N=0,® 4, for
k=1,...,n. Also [,28, for all j&=F% and [,n ;=N for all k=1, ..., #, there-
fore 2,2/, for all j<=% and Q,nA4,=(0) for all k=1, ..., %

If m*k, Q,=0,(R*—N)=Q,~(4,82,) = 4,©2,~Q,, by the modular
law which holds for the lattice of normal subgroups of R* — N. Hence R*—N =
Q.04,=(4,002,,2,)04,=4,04,02,n2,,

If ndm, k 2,00,=0,~0,~4,802)=4,002,0,0, and hence
R —N=4,04,04,00,,02,~2,. Since N £,=(0) it follows that we obtain

=1

finally
(1) Rt —N=4®..-@4,,

where A, =(R* —N) —Q,=R*—, for k=1, ..., n. From these isomorphisms
it follows that the A, are irreducible R-groups. If ¢ is mapped onto & under
the canonical homomorphism of R* onto R*—N and g=¢;+ &y + - T &,
z,c4,, then Reg,=A, for k=1, ..., n%). Thus the 4, are cyclic irreducible
R-groups.

Let £ be a cyclic irreducible R-group with an K-generator w, say.
R*—(0:@)=Q and (0:w) is a maximal left ideal. Thus (0:w) contains N

5) We note that if R is a d.g. near-ring and the (R, S)-group 2=, ---® 2,15 a
direct sum of R-groups, then x(w,+ -+ +w,)=xw, + - +xw, for all x#€R, where
wy€0, for k=1, ..., n.



Prime ideals of a distributively generated near-ring 13

and from (1) R* —(0:w) must be R-isomorphic to one of the R-groups 4,%).
Hence

Theorem 3. Let R be a d.g. near-ving satisfying the d.c.c. for left R-modules.
Any cyclic drreducible R-group is R-isomorphic to one of the finite number of
trreducible R-groups which appear in the divect sum decomposition (1) of R* —

Now let p be a proper prime ideal in R; put R=R/p and denote by N the
quasi-radical of R. R is a prime d.g. near-ring satisfying the d.c.c. for left
R-modules. The zero ideal (0) of R is prime and so R contains no non-zero
nilpotent ideals, in particular, (N R) (0). Hence R acts faithfully on the
group R*—N. By (1), R*—N=4,+ --- + 4., where the 4, are cyclic irre-
ducible R-groups. The annihllatmg ideals (0:4,) are primitively prime ideals

and él(ﬁ:jk):(ﬁ). Therefore
©:4)(0:4) ... ©0:4,< 0 (0:4) = (0)

and, since (0) is a prime ideal, (0: 4,) = (0) for some k. In other words, R acts
faithfully on some 4,. Hence

Theorem 4. Let R be a d.g. near-ring satisfying the d.c.c. for left R-modules.
Awny proper prime ideal of R is a primitively prime ideal. If R is a non-zero
prime d.g. near-ring, then it is a primitively prime d.g. neav-ring.

We end this section with a structure theorem for finite prime d.g. near-
rings which gives a relationship between all the cyclic irreducible R-groups.
To a certain extent it generalizes the theorem for simple d.g. near-rings which
states that all the minimal R-groups of a simple d.g. near-ring R are R-iso-
morphic (see [7]).

Theorem 5. Let R be a non-zero finite, prime d.g. near-ving. All cyclic irre-
ducible R-groups are R-homomorphic images of R-subgroups of a fasthful, cyclic
wrreductble R-group. To within an isomorphism, R has one, and only one,
Jaithjul, cyclic irreducible R-group.

Proof. R is not the zero near-ring. Let N be the quasi-radical of R. Then
R*—N=4,® ---®4,, where the A, are irreducible R-groups with R-gener-
ators ¢,, e=¢;+ --- +¢,. From the previous theorem, R acts faithfully on
some A, say 4,. Denote by I the set of all groups which are R-homomorphic
images of R-subgroups of 4, and, by I’, those groups of I which are cyclic

%) We are using here the fact that an R-group is an (R, S)-group for some set S of
distributive elements of R. Thus an R-group is an operator group with S as a set of
operators. Since S generated R* a subgroup of an (R, S)-group is an R-subgroup if and
only if it is an admissible subgroup for the set of operators S and two (R, S)-groups are
R-isomorphic if they are isomorphic as operator groups for the set of operators S. It
follows that in the present case the decomposition (1) of R* — N provides us with the
composition series 4, ® -+ &4, > 4, @ -~ @A4,> ---> A,> (0) for R* — N as an operator
group for any distributively generating set S of R. Hence we can use the Jordan-Holder
theorem for operator groups to show that any two composition series of R-subgroups of
R* — N are of the same length and the factor groups ot one of the series are R-isomorphic
to the factor groups of the other series in some order.
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irreducible R-groups. We define a left ideal N’ as follows:
N’=N{:1is a left ideal and R* —(I'}.

Clearly such left ideals [ are maximal left ideals and so N’2N. It will be
shown that some power of N’ annihilates 4, but, since 4, is faithful, this
means that V' is a nilpotent left ideal. Hence N’ CN and consequently N'=N.

(4

Thus N is the intersection ﬂlIi of maximal left ideals [, of R for which R* — [,¢ 1",

i=

wm
We may assume that _ﬂlIi#N forally=1, ..., m. As indicated for the decom-
i=

ikj
position (1) of R* — N, this leads to the decomposition R* ~N=/4:® -..@ 4,,,
where Ay = R* — [, eI’ for k=1, ..., m. These Aj are cyclic irreducible R-groups.
Thus both this decomposition and decomposition (1) provide us with com-
position series of R* — N and so #=m and the 4, are R-isomorphic to the 4;
in some order?). The theorem now follows from theorem 3.

We shall prove that every group in I is annihilated by some power of N’
by induction on the order of the groups in I.

If Q has least order among the non-zero groups in I, it is a minimal R-group
and so is in I'. Let wef2, w==0; then Rw=£2 and hence R*— (0:w)= Q2 so
that the left ideal {(0:w) contains N’. This is true for every element of 2 and
consequently N’ annihilates £ itself.

Now let ¢l be an R-group of order m>0 and assume that all groups
in I of order less than s are annihilated by some power of N'. Let Q=
Qy>0,>-->£0,=(0) be a strictly descending chain of R-groups in £ such
that each £; is normal in £, _, and ©;_, —£, is an irreducible R-group (not
necessarily cyclic). Each £, ;—£; is contained in I. If />1, then these
factor groups have order less than m and so, by hypothesis, are annihilated
by some power of N'. Therefore £ itself is annihilated by some power of N’
We are left with the case /=1, i.e., when £ is an irreducible R-group. If
weld and Rw=02, then QcI’ and R* — (0:w) = . Therefore (0:w) contains N’
and hence N’ annihilates w. If weQ and Rwd{2, then Rwel has order less
than s and by hypothesis Rw, and so w, is annihilated by some power of N'.
Thus every element of £ and therefore £2 itself is annihilated by some power
of N'. 1t follows, therefore, that every group in [, in particular 4, itself, is
annihilated by some power of N’. This proves the first part of the theorem.

Now let £ and £’ be two faithful, cyclic irreducible R-groups. They are
finite groups. We have shown that £ is an R-homomorphic image of an
R-subgroup of £’ and, conversely, £’ is an R-homomorphic image of an
R-subgroup of £2. Thus 2 and £’ are isomorphic.

Besides the properties of a d.g. near-ring described at the end of section 1
we have the following additional properties for a d.g. near-ring R which
satisfies the d.c.c. for left R-modules:

7) See footnote 3).
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The radical M of R is an ideal containing all the nilpotent left R-modules
of R and the factor d.g. near-ring R/M contains no non-zero nilpotent left
R/M-modules, ie., R/M is semi-simple. The quasi-radical is a nilpotent left
ideal containing all the nilpotent left ideals of R (see [8]). The ideal-radical P
is a nilpotent ideal containing all the nilpotent ideals of R. Furthermore, the
factor d.g. near-ring R/P contains no non-zero nilpotent ideals.

3. The nilpotency of the radical

In [8] we gave necessary and sufficient conditions for the radical of a d.g.
near-ring to be nilpotent. We restate these conditions below and add new
conditions in terms of prime ideals.

Theorem 6. Let R be a d.g. near-ving satisfying the d.c.c. for left R-modules.
The following conditions arve equivalent:

(a) The radical is nilpotent.

(b) The vadical is the quasi-radical.

(¢} Every maximal left ideal is a maximal left R-module.
(&) The vadical is the ideal-vadical.

(e) Every proper prime ideal is maximal.

(f) Every cyclic irreducible R-group is a minimal R-group.

Proof. (a) implies (b). The radical contains quasi-radical and the quasi-
radical contains all the nilpotent left ideals of R. Therefore the radical is the
quasi-radical if it is nilpotent.

(b) implies (c). If the radical M is the quasi-radical, then every maximal
left ideal of R contains M. But R/M is a semi-simple d.g. near-ring and so
is a direct sum of left ideals of R/M which are minimal left R/M-modules
(see [8]). It follows that every maximal left ideal is a maximal left R-module.

(c) implies (d). If every maximal left ideal is a maximal left R-module,
then the radical is the quasi-radical and so is a nilpotent ideal. But the radical
contains the ideal-radical and the ideal-radical contains every nilpotent ideal
of R. Therefore the radical is the ideal-radical if it is nilpotent.

(d) implies (e). If the radical M is the ideal-radical, then every prime ideal
of R contains M. Let p be a prime ideal of R. Then m; m, ... m,Cuynm,n -
~m, =M Cp, where my, ..., m, are maximal ideals of R (if R satisfies the d.c.c.
for left R-modules, then the radical is, in fact, an intersection of a finite
number of maximal ideals). Hence m;Chp for some ¢ and therefore m,=5.

(e) implies (f). Let &2 be a cyclic irreducible R-group. Then the annihilating
ideal p=(0:4) is prime and is a maximal ideal if condition (e} is satisfied.
In this case R/p is a simple d.g. near-ring and so is a direct sum of isomorphic
minimal R/p-groups (see [7]). Since £ is an R/p-group and has an R/p-gener-
ator it follows that it is a direct sum of minimal R/p-groups. But £ is irredu-
cible and so it must be a minimal R/p-group. Hence 2 is a minimal R-group.
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(f) implies (a). Let [ be a maximal left ideal of R. Then R*—1{1is a cyclic
irreducible R-group and hence it is a minimal R-group if condition (f) is
satisfied. Thus I is a maximal left R-module. Therefore the radical and the
quasi-radical must be equal in this case and therefore the radical is nilpotent.

4. An example of a d.g. near-ring with a non-nilpotent radical

We construct an example of a finite d.g. near-ring with a non-nilpotent
radical and a quasi-radical which is not an ideal.

Let £ be a finite, non-abelian, simple group and R the near-ring generated
by all the inner-automorphisms of . It has been shown in [4] and [7] that R
is a finite, simple d.g. near-ring with an identity element. If 4 is a subgroup
of 2, (A:9) is a right R-module and any right R-module t==(4:£2) for some
subgroup 4. There is a one-to-one lattice correspondence given by v=
(4:0Q) <> 1= between the right R-modules of R and the subgroups of L.
Furthermore, right ideals and normal subgroups correspond to each other.
Consequently, R has proper, non-zero right K-modules but no proper, non-zero
right ideals. Finally, we note that each right R-module r has an element e,
such that r=¢R.

Now consider the near-ring 7 generated by all the endomorphisms @,
of R*, for all x¢R, where @ (y)==yx for all yeR*8). It is clear that T is a
finite d.g. near-ring with an identity element; R* is a faithful 7-group and
the identity element of R is a T-generator of R*. But the T-subgroups of R”
are precisely the right R-modules of R and so R* is an irreducible T-group
with a T-generator which is not a minimal T-group. It follows from theorem 5
that T does not have a nilpotent radical.

Since R* is faithful, the ideal radical of T is the zero ideal (7 is a finite,
prime d.g. near-ring which is not simple). If the quasi-radical were an ideal,
it would be the zero ideal (since the quasi-radical is nilpotent). But then T°
is a direct sum of irreducible T-groups by the equality (1) after the corollary
to theorem 2. Every T-subgroup t of R* has a T-generator ¢, and consequently
every T-subgroup is a direct sum of irreducible T-subgroups. By the lattice-
isomorphism, this means that every subgroup of £ is a direct sum of simple
groups. If we take £ to be the alternating group on nine symbols, then it
has a cyclic subgroup of order nine and this subgroup is not a direct sum of
simple subgroups, i.e., two subgroups of order three. It follows that the quasi-
radical of T corresponding to the alternating group on nine symbols is not an
ideal.

It is an open question whether or not the quasi-radical of a d.g. near-ring
can be an ideal and yet not be the radical also. Or, to put it another way,
whether a d.g. near-ring can possess non-zero nilpotent left R-modules and
yet possess no non-zero nilpotent left ideals.

%) These mappings of R* into itself are endomoiphisms because R satisfies the right
distributive law.
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