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The concepts of a prime ideal of a distributively generated (d.g.) near- 
ring R, a prime d.g. near-ring and an irreducible R-group are introduced1). The 
annihilating ideal of an irreducible R-group with an R-generator is a prime 
ideal. Consequently we define a prime ideal to be primitively prime if it is the 
annihilating ideal of such an R-group, and a d.g. near-ring to be a primitively 
prime near-ring if it acts faithfully on such a group. The intersection of all 
the primitively prime ideals of a d.g. near-ring is called the ideal-radical; this 
ideal contains all the nilpotent ideals of the near-ring and a relationship 
between it and the quasi-radical of the near-ring is established. 

In section 2 we consider d.g. near-rings R which satisfy the descending 
chain condition for left R-modules. In this case, the ideal-radical is nilpotent. 
Any non-zero prime d.g. near-ring is a primitively prime d.g. near-ring. All 
irreducible R-groups with an R-generator of a non-zero prime d.g. near-ring R 
are shown to be isomorphic to the finite number of direct summands of the 
group R + -  N, where N is the quasi-radical of R. If R has finite order, then 
it has, to within an isomorphism, but one faithful representation on an ir- 
reducible R-group with an R-generator and all its irreducible R-groups with 
R-generators are homomorphic images of R-subgroups of this group. 

In section 3, a number of equivalent conditions is given for a d.g. near-ring 
to have a nilpotent radical. One of them is that all its proper prime ideals 
are maximal ideals. In section 4, we construct an example of a finite d.g. 
near-ring whose radical is not nilpotent and whose quasi-radical is not an ideal. 

1. Definitions and general properties 
A near-ring R is a system with two binary operations, addition and mul- 

tiplication, such that:  

(i) The elements of R form a group R + under addition. 

(ii) The elements of R form a semi-group under multiplication. 

(iii) ( x + y ) z = x z + y z ,  forallx, y, z6R. 

1) The  n o t a t i o n  in th is  paper  is d i f ferent  f rom t h a t  adop t ed  in t he  two prev ious  papers  
ET] and  [87. W h a t  was  p rev ious ly  called an  i r reducible  R-g roup  is now called a m i n i m a l  
R-group.  The  t e r m  irreducible R-group  is g iven  ano the r  and  more  general  m e a n i n g  in 
th i s  pape r  (see sec t ion 1). 
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If S is a multiplicative semi-group contained in R, whose elements generate R + 
and satisfy 

(iv) s ( x + y ) = s x + s y ,  

we say that  R is generated by  the distributive semi-group S. A near-ring R 
which is generated by  some distributive semi-group is said to be distributively 
generated. 

Throughout this article, we shall mean by  a d.g. near-ring a d. g. near-ring 
with an identity element which will be denoted by e and R will always denote 
such a near-ring. The symbol S stands for some distributive semi-group gener- 
ating R. I t  will always be assumed that  S contains e; this imposes no further 
structural restriction on R. 

An (R, S)-group g2 is given by  an additive group, the additive notation 
not to imply commutat ivi ty,  together with a mapping (x, w)-->xw of R• 
into ~ such that  

(i) For all x, yER and all w~,(2, ( x + y )  w = x w + y w .  
(ii) For all x, ycR and all w~f2, (xy) w=x(yw).  
(iii) For all sES and wl, w2~D, s(wl +w2)=sw~ + sw 2. 
(iv) For all w~Q, ew=w. 

If  the particular semi-group S occurring in this definition does not need 
to be specified, we simply speak of an R-group (see I51). 

The zero 0 of R + is a two-sided annihilator of R ([2~, t . t ,  1.5). The zero 
of an additive group g) will be denoted by 0n, or, if no confusion is possible, 
simply by 0. I f  D is an R-group, then x 0 e = 0 s ,  for all x~R ([3J, 1.4). 

A ]aifhJul R-group Q is an R-group such that  if xER and xw=O for all 
w cQ, then x = 0 .  A minimal R-group is a non-zero R-group which contains 
no R-groups as proper, non-zero sub-groups. A primitive d.g. near-ring R is a 
d,g. near-ring which has a faithful representation on a minimal R-group (see E7~). 

A homomorphism ~ of an R-group ~Q into another R-group is called an 
R-homomorphism if q)(xw)=x(~w), for all xER and wEsQ. 

A sub-group a of R § is a le/t (right) R-module of R if xyEa(yxca) for all 
x~R and y~a. A left R-module that  is also a right R-module is a two-sided 
R-module. A le/t (right, two-sided) ideal is a left (right, two-sided) R-module 
that  is also normal in R +. A two-sided ideal is simply called an ideal. Left 
R-modules are the R-subgroups of R § Left ideals are precisely the kernels 
of R-homomorphisms of R +, and ideals are precisely the kernels of the near- 
ring homomorphisms of R ([2J, 1.3.3, [35, 2.1.4). 

D4inition 1. An ideal ~0 in a d.g. near-ring R is called a prime ideal if and 
only if whenever a and b are ideals of R and a 5__(p, then either a or D is con- 
tained in p 2). A d.g. near-ring whose zero ideal is prime is called a prime d.g. 
near-ring. 

2) I f  a l ,  - . . ,  o r a re  s u b s e t s  of R,  t h e n  a t a 2 . . .  O r d e n o t e s  t i l e  a d d i t i v e  g r o u p  g e n e r a t e d  
b y  a l l  e l e m e n t s  of t h e  f o r m  a l a  2 . . .  a t ,  w h e r e  a i E o i ,  i = 1 ,  . . . ,  r. I f  ~ is a s u b s e t  of R,  
w e  p u t  a n =  II tI . . .  a (n t imes ) .  \ u  s a y  t h a t  t h e  s e t  ~t of R is n i lpo ten t  i f  o n =  (0) for  s o m e  
p o s i t i v e  i n t e g e r  n.  
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L e m m a .  I / a l  . . . . .  a~ are ideals and p is c~ prime ideal o~ R, then al % . . . ~y ~ ~ 
implies that ai ~ P/or some i. 

Pro@ If  a set a is contained in the ideal IJ, then so is the least ideal of R 
containing a. We denote this ideal by  ~. Hence if al ~, ... a~ is contained in p 
so is the ideal a1%.. ,  a~. Now (~ . . .  a-g2~_~) a~, is a product  of two ideals and 
( ~ )  ~,,(_ a l . . .  a,,-ia,,_(_~. Therefore if a ~ p ,  a~.. .  %_1~ a~...%-i_(_~. 
Repeat ing this a rgument  gives the required result. 

De/i~itio~, 2. A non-zero R-group is called an irreducible R-group if it 
possesses no proper, non-zero, normal  R-subgroups a). 

In  the following, we shall be concerned with irreducible R-groups ~O which 
possess an R-generator,  tha t  is, an element w in ~ such tha t  R w = D .  Such 
groups will be called cyclic irreducible R-groups. I t  is clear tha t  a minimal 
R-group is a cyclic irreducible R-group. 

Propos i t ion  1. I / f 2  is a cyclic irreducible R-group, the~ the am~ihilating 
ideal (0:Q) is a prime ideal o/ R4). 

Pro@ The ideal (0:~Q) consists of all those xcR  such that  xw=O for all 
ze~Q. Let a and 3 be two ideals of R such tha t  ~ ( 0 : Q )  and bd2(0:,O,), and w 
an R-generator  of ~Q. Then the R-group I )Q=I)(Rw) = ( 3 R )  ze= Dz~ is not  the 
zero sub-group of D. If  ~'~g), then there exists an element zER such tha t  
~ ' ~ z w  and so w ' + b w - - w ' = z w + b w - - z w = ( z + b - - z ) w 6 3 w ,  for all bEb. 
Thus b w is a non-zero normal  R-subgroup of SQ; hence 3 w = D .  Now the group 
(a 3) SQ ~ (a 3) ~v = a ( 3 w) = aQ is a non-zero subgroup of D. Therefore (a w (E (0 :Q) 
and this proves tha t  tile ideal (0 :~f2) is prime. 

Definition 3. A d.g. near-ring R which has a faithful representat ion on a 
cyclic irreducible R-group is called a primitively prime d.g. mar-ring. An ideal 
of a d.g. near-ring R is called a primitively prime ideal if R/I) is a primitively 
prime d.g. near-ring. 

The above proposit ion shows tha t  a primitively prime d.g. near-ring is a 
prime d.g. near-ring and a primitively prime ideal is a prime ideal. A primitively 
prime ideal is a proper ideal. 

Proposi t ion 2. An ideal p i~r R is primitively prime i /and only i /p  = (~:R), 
where ~ is a maximal le/t ideal o /R.  

Pro@ Let  p = (l: R);  then R/p acts faithfully on the irreducible R/p-group 
R " -  1. The image of the ident i ty  element e of R under the homornorphism 
of R + onto R § - -  i is an R/~-generator of R + --  1. Conversely, if p is a primitively 
prime ideal, let D be a taithful, irreducible R/p-group with an R/p-generator w, 
say. Then f2 is an R-group, Rw=~O and the mapping of R § onto D given by  
x-+x'~,, for all xcR,  is an R-homomorphism.  Hence R §  ( 0 : w ) ~ Q ;  (0:w) is 
a maximal  left ideal of R and p = ( ( 0 : w ) : R ) .  

If ~ is a subset of R and A is a subset of an R-group ,Q, then cIA denokes the group 
generated by all elements of the form ~w, where sea and wCZ]. 

3) See footnote t). 
4) If z/1 and z/2 are two subsets of an R-group, then (A~:A2) denotes the set of elements 

of R which map zJ~ into z] x. We note that if ][ is a left ideal of R, then ([:R) is an ideal 
of R contained in I which contains all ideals of R in ]~ ([2], 3.7A). 
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The primitive ideals of R are by definition the annihilating ideals of minimal 
R-groups (see [81). Hence: 

Proposition 3. The primitive ideals o/ a d.g. near-ring are primitively prime 
ideals and primitive d.g. near-rings are primitively prime d.g. near-rings. 

Proposition 4. A prime ideal p o~ a d.g. near-ring R contains all the nilpotent 
ideals o/ R. The /actor near-ring Rip has no non-zero nilpotent ideals. 

t~roo/. If a is an ideal and a a ... a ~ ,  then a=~p by the lemma. 
The intersection of all the primitive ideals of a d.g. near-ring R is called 

the radical (if the near-ring has no primitive ideals, then the radical is taken 
to be the whole near-ring) and is equal to the intersection of all the maximal 
left ideals which are maximal left R-modules of R. The intersection of all the 
maximal left ideals of a d.g. near-ring is called the quasi-radical (see ~8]). 
Any d.g. near-ring with an identity element contains maximal left ideals 
(which are proper left ideals). This is proved by an application of ZORN'S 
1emma. Therefore, by proposition 2, any d.g. near-ring with an identity 
element possesses primitively prime ideals. 

De/inition 4. The intersection of all the primitively prime ideals of a d.g. 
near-ring is called the ideal-radical of the near-ring. 

Theorem 1. Let N denote the quasi-radical o/ a d.g. near-ring R. The ideal- 
radical is the ideal (N: R) which is contained in N. The ideal-radical contains 
all the nilpotenl ideals o/ the near-ring. 

Pro@ Let P denote the ideal-radical of R. P is contained in the ideal 
(I:R) for each maximal left ideal [ of R by proposition 2. Since (1:R)~1, P is 
contained in each maximal left ideal of R and so in the intersection of all the 
maximal left ideals of R, i.e., the quasi-radical N of R. But P is an ideal and 
therefore P(=(N:R). Also N is contained in each maximal left ideal I of R 
and hence (N:R)~(I :R) ,  for each maximal left ideal ~ of R. Therefore (N:R) 
is contained in the intersection of the ideals (I:R) where I is a maximal left 
ideal of R, i.e., (N:R)_(P by proposition 2. Therefore the ideal (N:R) is the 
ideal-radical of R. 

The last part of the theorem follows immediately from proposition 4. 
We have the following situation for a d.g. near-ring R: the radical contains 

the quasi-radical which contains the ideal-radical. The radical is an ideal 
(which may or may not be proper) containing all the nilpotent left R-modules 
of R. The quasi-radical is a proper left ideal containing all the nilpotent left 
ideals of R. The ideal-radical is an ideal containing all the nilpotent ideals 
of R. Further properties of these three "radicals" are obtained in the next 
section for any d.g. near-ring R which satisfies the descending chain condition 
for left R-modules (see ~8~). 

2. Fur ther  properties for d.g. near-rings which satisfy 
the descending chain condition 

Any d.g. near-ring R which appears in this and the following section 
satisfies the descending chain condition (d.c.c.) for left R-modules. In this 
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case, the primitive ideals of R are maximal ideals and primitive d.g. near-rings 
are simple near-rings, that  is, they possess no proper, non-zero ideals (see ~7~). 
The restatement of proposition 3 is 

Proposition 5. The maximal ideals o~ a d.g. near-ring R which satis/ies the 
d.c.c. /or le/t R-modules are primitively prime ideals. I /  R is a simple d.g. 
near-ring, then it is a primitively prime near-ring. 

Theorem 2. Let R be a d.g. near-ring satis/ying the d.c.c. /or le/t R-modules. 
The ideal-radical is a nilpotent ideal containing all the nilpotent ideals o / R .  

Pro@ The quasi-radical of R is nilpotent (see [8]) and so the ideal-radical 
must  be nilpotent. 

Corollary. R has a non-zero nilpotent ideal i/  and only i/  its ideal-radical P 
is non-zero. The near-ring R I P  has no non-zero, nilpotent ideals. 

We consider the R-group R § - - N ,  where N is the quasi-radical, The 
intersection of all the maximal left ideals of R is N. Since R satisfies the d.c.c. 
for left R-modules, there exists a finite number of distinct maximal left ideals 

n 

[1, 1 n such that  ~ l i = N  and gk=,f311i:4:N for any k = l  . . . . .  n. In the 

canonical R-homomorphism of R + onto R + - - N  let I~ be mapped onto .(2~ 
n 

and ~k onto A~ for all k = l ,  . . . ,  n. Since Alli----N.= it follows that i=l  ~ sQi= (0). 

Since the [ k are maximal left ideals R = l k  + g~ and so R + - N = ~ Q k |  Ak for 
k = l  . . . . .  n. Also l~)_~ i for all ?=4=k and lk~ ~ k = N  for all k = t  . . . . .  n, there- 
fore ~Qk_)Aj for all ~'4:k and Dk~Ak=(0)  for all k = 1  . . . . .  n. 

If  m4: k, ~ = D , ~  (R + -  N ) = . ( 2 , ~  (Ak| Ak| Dk~f2,~ by  the modular 
law which holds for the lattice of normal subgroups of R § --  N. Hence R + - - N  = 
.@,~| A~ = (A ~| ~2k ~X2~)�9 A~ = Ake A~e  D k ~ 2  m. 

If  n:4=m, k, D~Q,,~=.(2k~D,,,~(A,~e.Q,,)=A,~| and hence 

R + --  N = A k |  A,~| d,|163 Since A D i = (0) it follows that  we obtain 
i = 1  

finally 

(1) R + - - N = A ~ |  . . . |  

where A k ~ (R + - -  N) --  ~Qk ~ R  + --  1~ for k = 1 . . . . .  n. From these isomorphisms 
it follows that  the A k are irreducible R-groups. If e is mapped onto g under 
the canonical homomorphism of R + onto R + - N  and e = g l  + g~ + "" + e'~, 
?kcAk, then Rgk=z l  ~ for k = t  . . . . .  nS). Thus the Ak are cyclic irreducible 
R-groups. 

Let ~Q be a cyclic irreducible R-group with an R-generator w, say. 
R+- - (0 :w)&f2  and (0:w) is a maximal left ideal. Thus (0:w) contains N 

5) W e  n o t e  t h a t  if  R is a d .g .  n e a r - r i n g  a n d  t h e  (R, S ) - g r o u p  Q = S Q I @  . - .  | sQ n is a 
d i r e c t  s u m  of  R - g r o u p s ,  t h e n  x(w~ q . . . .  + w n ) = x w  ~ + .. .  + xw~ f o r  a l l  x e R ,  w h e r e  

wkE~ ~ ~or k =  1 . . . .  , n .  
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and from (1) R + -  (0:w) must be R-isomorphic to one of the R-groups Ak6). 
Hence 

Theorem 3. Let R be a d.g. near-ring satis/ying the d.c.c. /or left R-modules. 
Any  cyclic irreducible R-group is R-isomorphic to one o~ the finite number o~ 
irreducible R-groups which appear in the direct sum decomposition (t) o /R  § - -N .  

Now let I) be a proper prime ideal in R; put N = R/t) and denote by _N the 
quasi-radical of K'. N is a prime d.g. near-ring satisfying the d.c.c, for left 
R-modules. The zero ideal (6) of N is prime and so N contains no non-zero 
nilpotent ideals, in particular, ( N : R ) =  (~). Hence N acts faithfully on the 
group ~'+--2V. By (I), N+--2V=A~+ ... +zl~., where the zl k are cyclic irre- 
ducible R-groups. The annihilating ideals (~: ~ )  are primitively prime ideals 

and ~ (~:z],) = (~). Therefore 
i = l  

to :&)  ... (o: J,)_< _n (o) 

and, since (~) is a prime ideal, (~: Zk) = (~) for some k. In other words, R acts 
faithfully on some z]~. Hence 

Theorem 4. Let R be a d.g. near-ring satis/ying the d.c.c. /or left R-modules. 
Any  proper prime ideal o/ R is a primitively prime ideal. I~ R is a non-zero 
prime d.g. near-ring, then it is a primitively prime d.g. near-ring. 

We end this section with a structure theorem for finite prime d.g. near- 
rings which gives a relationship between all the cyclic irreducible R-groups. 
To a certain extent it generalizes the theorem for simple d.g. near-rings which 
states that  all the minimal R-groups of a simple d.g. near-ring R are R-iso- 
morphic (see [71). 

Theorem 5. Let R be a non-zero finite, prime d.g. near-ring. All cyclic irre- 
ducible R-groups are R-homomorphie images o/R-subgroups o/a/ai th/ul ,  cyclic 
irreducible R-group. To within an isomorphism, R has one, and only one, 
/aith/ul, cyclic irreducible R-group. 

Pro@ R is not the zero near-ring. Let N be the quasi-radical of R. Then 
R § 1 7 4  ... |  where the Ak are irreducible R-groups with R-gener- 
ators G, e = el + ... + e--,,. From the previous theorem, R acts faithfully on 
some Ak, say zl n. Denote by  I the set of all groups which are R-homomorphic 
images of R-subgroups of A, and, by I',  those groups of I which are cyclic 

6) We are us ing here  the  fac t  t h a t  an R-group  is all  (R, S)-group for some set  S of 
d i s t r i b u t i v e  e l emen t s  of R. Thus  all R-group  is an ope ra to r  g roup  w i t h  S as a set  of 
operators .  Since S gene ra t ed  R + a subgroup  of an (R, S)-group is an R-subgroup  if and  
on ly  if i t  is all  admiss ib le  subgroup  for the  se t  of opera to rs  S and two  (R, S)-groups are 
R- i somorph ic  if t h e y  are i somorphic  as ope ra to r  groups  for the  set  of opera to r s  S. I t  
follows t h a t  in the  p resen t  case the  decompos i t ion  (t) of R + -  N prov ides  us w i t h  the  
compos i t ion  series Z/1 | "'" | A n >  Z/2 | "'" |  "' ">  z / n >  (0) for R + -- N as an ope ra to r  
g roup  for any  d i s t r i b u t i v e l y  gene ra t i ng  set  S of R. Hence  we can  use the  Jordan-H61der  
t heo rem for ope ra to r  groups  to  show t h a t  a l ly  two  compos i t ion  series of R-subgroups  of 
R + -- N are of t he  same l eng th  and the  fac tor  groups  oi one of the  series are R- i somorphic  
to the  factor  groups  of the  o the r  series in  some order.  
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irreducible R-groups. We define a left ideal N '  as follows: 

N ' =  N {1:1 is a left ideal and R +- .  l~J '}.  

Clearly such left ideals ~ are maximal  left ideals and so N')_N. I t  will be 
shown tha t  some power of N' annihilates A n but,  since A n is faithful, this 
means tha t  N'  is a nilpotent left ideal. Hence N '  =(N and consequently N '  = N .  

~n  

Thus N is the intersection ~AII~ of maximal  left ideals Ii of R for which R + --  t i ~ I ' .  
m 

We may  assume tha t  Nlli~-N.= for all ,1"=t, . . . ,  m. As indicated for the decom- 

+ t t position (t) of R + --  N, this leads to the decomposit ion R --  N = A1 | "'" @ A,~, 
I ~ R + , . . ~  t �9 where z/~ = - -  lk ~ I '  for k = t, m. These d k are cychc irreducible R-groups. 

Thus both  this decomposit ion and decomposit ion (1) provide us with com- 
position series of R + - - N  and so n = m  and the A k are R-isomorphic to the Af 
in some order 7). The theorem now follows from theorem 3. 

We shall prove tha t  every group in I is annihilated by  some power of N '  
by  induction on the order of the groups in I .  

If  sQ has least order among the non-zero groups in I ,  it is a minimal R-group 
and so is in I ' .  Let  w~2 ,  w4=0; then Rw=,(2 and hence R+ --  (0 : w) -~ ,Q so 
tha t  the left ideal (0: w) contains N' .  This is true for every element of ~ and 
consequently N'  annihilates ~ itself. 

Now let f2EI  be an R-group of order m > 0  and assume tha t  all groups 
in I of order less than  m are annihilated by  some power of N' .  Let  D - -  
~ 0 > 1 2 1 > ' " > - ( 2 l - - ( 0 )  be a str ict ly descending chain of R-groups in D such 
tha t  each ~(2~ is normal  in Di-1 and Di_ 1 --sQi is an irreducible R-group (not 
necessarily cyclic). Each  sc2i_~--f2i is contained in I .  I f  l >  1, then these 
factor  groups have order less than  rn and so, by  hypothesis,  are annihilated 
by  some power of N' .  Therefore f2 itself is annihilated by  some power of N'. 
We are left with the case / = 1 ,  i.e., when I2 is an irreducible R-group. If  
w ~s and R w = D ,  then sQ ~ I '  and R + --  (0 : w) ~ ,(2. Therefore (0 : w) contains N'  
and hence N '  annihilates w. If  w~s9 and R w ~ D ,  then R w ~ I  has order less 
than  m and by  hypothesis  Rw, and so w, is annihilated by  some power of N'. 
Thus every element of ~Q and therefore D itself is annihilated by  some power 
of N'. I t  follows, therefore, tha t  every group in I ,  in part icular  zl~ itself, is 
annihilated by  some power of N ' .  This proves the first par t  of the theorem. 

Now let .Q and t2' be two faithful, cyclic irreducible R-groups.  They  are 
finite groups. We have shown tha t  ,(2 is an R-homomorphic  image of an 
R-subgroup of ,(2' and, conversely, ,(2' is an R-homomorphic  image of an 
R-subgroup of Q. Thus ~2 and ,(2' are isomorphic. 

Besides the properties of a d.g. near-ring described at the end of section 1 
we have the following addit ional properties for a d.g. near-ring R which 
satisfies the d.c.c, for left R-modules:  

~) See f o o t n o t e  5). 
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The radical M of R is an ideal containing all the nilpotent left R-modules 
of R and the factor d.g. near-ring R/M contains no non-zero nilpotent left 
R/M-modules, i.e., R/M is semi-simple. The quasi-radical is a nilpotent left 
ideal containing all the nilpotent left ideals of R (see [81). The ideal-radical P 
is a nilpotent ideal containing all the nilpotent ideals of R. Furthermore, the 
factor d.g. near-ring R/P contains no non-zero nilpotent ideals. 

3. The nilpotency of the radical 

In ~81 we gave necessary and sufficient conditions for the radical of a d.g. 
near-ring to be nilpotent. We restate these conditions below and add new 
conditions in terms of prime ideals. 

Theorem 6. Let R be a d.g. near-ring satis/ying the d.c.c. /or left R-modules. 
The/ollowing conditions are equivalent: 

(a) The radical is nilpotent. 

(b) The radical is the quasi-radical. 

(c) Every maximal left ideal is a maximal left R-module. 

(d) The radical is the ideal-radical. 

(e) Every proper prime ideal is maximal. 

(/) Every cyclic irreducible R-group is a minimal R-group. 

Pro@ (a) implies (h). The radical contains quasi-radical and the quasi- 
radical contains all the nilpotent left ideals of R. Therefore the radical is the 
quasi-radical if it is nilpotent. 

(b) implies (c). If  the radical M is the quasi-radical, then every maximal 
left ideal of R contains M. But RIM is a semi-simple d.g. near-ring and so 
is a direct sum of left ideals of RIM which are minimal left R/M-modules 
(see [81). I t  follows that  every maximal  left ideal is a maximal left R-module. 

(c) implies (d). If  every maximal left ideal is a maximal left R-module, 
then the radical is the quasi-radical and so is a nilpotent ideal. But the radical 
contains the ideal-radical and the ideal-radical contains every nilpotent ideal 
of R. Therefore the radical is the ideal-radical if it is nilpotent. 

(d) implies (e). If  the radical M is the ideal-radical, then every prime ideal 
of R contains M. Let p he a prime ideal of R. Then m 1 rn2 ... rn~_(ml~m2~ ... 
~m,,=M(=o, where ml . . . . .  rag are maximal ideals of R (if R satisfies the d.e.c. 
for left R-modules, then the radical is, in fact, an intersection of a finite 
number  of maximal  ideals). Hence m ~ p  for some i and therefore mi=P.  

(e) implies (f). Let ~Q be a cyclic irreducible R-group. Then the annihilating 
ideal 0 = ( 0 : Q )  is prime and is a maximal ideal if condition (e) is satisfied. 
In this case RiP is a simple d.g. near-ring and so is a direct sum of isomorphic 
minimal R/p-groups (see ~Tj). Since ~ is an R/p-group and has an R/p-gener- 
ator it follows that  it is a direct sum of minimal R/~)-groups. But  f2 is irredu- 
cible and so it must be a minimal R/p-group. Hence ~Q is a minimal  R-group. 
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(f) implies (a). Let 1 be a maximal left ideal of R. Then R § --  I is a cyclic 
irreducible R-group and hence it is a minimal R-group if condition (f) is 
satisfied. Thus i is a maximal  left R-module. Therefore the radical and the 
quasi-radical must be equal in this case and therefore the radical is nilpotent. 

4. An example of a d.g. near-ring with a non-ni lpotent  radical 

We construct an example of a finite d.g. near-ring with a non-nilpotent 
radical and a quasi-radical which is not an ideal. 

Let ~2 be a finite, non-abelian, simple group and R the near-ring generated 
by all the inner-automorphisms of 2 .  I t  has been shown in [4j and I7] that  R 
is a finite, simple d.g. near-ring with an identity element. If  d is a subgroup 
of 2, (~ :Q) is a right R-module and any right R-module r - -  (~ :/2) for some 
subgroup A. There is a one-to-one lattice correspondence given by r =  
(~1 :/2)<-+rtg=zl between the right R-modules of R and the subgroups of/2. 
Furthermore, right ideals and normal subgroups correspond to each other. 
Consequently, R has proper, non-zero right R-modules but no proper, non-zero 
right ideals. Finally, we note that  each right R-module r has an element er 
such that  r ~-erR. 

Now consider the near-ring T generated by all the endomorphisms ~b 
of R § for all xc.R, where q),~(y)=yx for all y~R+S). I t  is clear that  T is a 
finite d.g. near-ring with an identity element; R § is a faithful T-group and 
the identity element of R is a T-generator of R § But  the T-subgroups of R § 
are precisely the right R-modules of R and so R § is an irreducible T-group 
with a T-generator which is not a minimal T-group. I t  follows from theorem 5 
that  T does not have a nilpotent radical. 

Since R* is faithful, the ideal radical of T is the zero ideal (T is a finite, 
prime d.g. near-ring which is not simple). If the quasi-radical were an ideal, 
it would be the zero ideal (since the quasi-radical is nilpotent). But  then T 
is a direct sum of irreducible T-groups by  the equality (t) after the corollary 
to theorem 2. Every T-subgroup r of R + has a T-generator er and consequently 
every T-subgroup is a direct sum of irreducible T-subgroups. By the lattice- 
isomorphism, this means that  every subgroup of /2  is a direct sum of simple 
groups. If  we t a k e / 2  to be the alternating group on nine symbols, then it 
has a cyclic subgroup of order nine and this subgroup is not a direct sum of 
simple subgroups, i.e., two subgroups of order three. I t  follows tha t  the quasi- 
radical of T corresponding to the alternating group on nine symbols is not an 
ideal. 

I t  is an open question whether or not the quasi-radical of a d.g. near-ring 
can be an ideal and yet not be the radical also. Or, to put it another way, 
whether a d.g. near-ring can possess non-zero nilpotent left R-modules and 
yet possess no non-zero nilpotent left ideals. 

s) These mappings of R § into itself are cndomolphisms because R satisfies the right 
distributive law. 
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