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The convergence field of a Toepl i tz  m a t r i x  is a monotonic  funct ion of the  
set of rows t ha t  compose the  mat r ix ,  in the  sense t ha t  the  dele t ion of some 
of the  rows of the  m a t r i x  (followed b y  app rop r i a t e  renumber ing  of the  rows 
tha t  remain) can never  decrease the  convergence field. In  the  case of cer ta in  
matr ices ,  the  dele t ion of inf in i te ly  m a n y  rows a lways  increases the  con- 
vergence field; bu t  there  exis t  mat r ices  t h a t  do no t  have  this  p roper ty .  We 
shall  consider  this  d i cho tomy  wi th  special  reference to  the  space of bounded  
sequences and  cer ta in  classical families of matr ices .  

1. The  concep t  of laconicity 

B y  a Toepl i tz  m a t r i x  we unde r s t and  any  m a t r i x  A = (a~k) (n, k = 0, t . . . .  ) 
of complex  numbers .  Fo r  each m a t r i x  A,  we define the  no rm of the  row 
wi th  index n as the  sum E la~kl, and  t i le norm IIAI{ of the  m a t r i x  as t i le  

k 
supremum of the  row-norms.  A m a t r i x  is conservat ive  (German:  konvergenz- 
treu) if convergence to a finite l imi t  of a sequence s = {sn} implies the  exis tence 
and  convergence of the  t r ans fo rm t = A s  defined formal ly  b y  the  re la t ion  

t ,  = ~ a ,k  s k . A m a t r i x  is regular prov ided  it is conserva t ive  and  l i m A  s = l ims  
k=0 

whenever  the  second l imi t  exists  and  is finite. E x c e p t  in the  present  section, 
we res t r ic t  our a t t en t ion  a lmost  exclus ively  to  conservat ive  matr ices .  

Of two matr ices  A and  B we shall  say  t ha t  B is a submatrix of A p rov ided  
each  row of B is a row of A and  inf in i te ly  m a n y  rows of A are not  rows of B, 
I f  B is a s u b m a t r i x  of A and  s = {s,} is a sequence whose t r ans fo rm A s exists ,  
then  the  t r ans fo rm u = B s  is a subsequence of the  t r ans fo rm t = A s ;  this  
implies the  mono ton ic i ty  ment ioned  in the  i n t roduc to ry  pa ragraph .  

T h e o r e m  1. I / A  is a Toeplitz matrix with the property that each sequence 
o/O's and t 's is the trans/orm A s o/ some sequence s, and i/ B is a s~bmatrix 
o / A ,  then the convergence/ield o/ A is a proper subset o/the convergence ]ield 
o~ B. 

Proo/. Let  A sa t i s fy  the  hypothes is  of the  theorem,  and  let  B be ob ta ined  
f rom A b y  the dele t ion of the  rows wi th  indices n I, % . . . . .  Le t  

I (n {n,}) 
0 
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and let s be defined by  the condition s = A L Then the sequence B s consists 
entirely of O's, while A s consists of infinitely m a n y  O's and t 's .  This proves 
the theorem. 

Most of the commonly studied classical Toeplitz matrices satisfy the 
hypothesis in Theorem t. But  it is not  generally true of a classical matr ix  
tha t  every sequence of O's and l ' s  is the t ransform A s of a bounded sequence. 
Rather,  there exist simple, regular matrices A tha t  satisfy the hypothesis 
in Theorem 1 and some of whose submatrices have the same convergence 
field as A,  in the space m o/bounded sequences. In  other words, some matrices 
have unnecessarily m a n y  rows for the maintenance of their divergence fields 
in m. 

De/initions. Corresponding to each Toeplitz matr ix A we denote by  (A) 
the set of bounded sequences s whose t ransform A s exists and converges, 
and we call (A) the bounded convergence /ield of A. We say tha t  A is re- 
dundant provided it has a submatr ix  B such tha t  ( A ) = ( B ) .  if  A is not 
redundant ,  it is laconic. 

A matr ix is redundant ,  for example, if it has infinitely m a n y  pairs of 
rows tha t  resemble each other sufficiently well. To make this Statement 
precise, we denote by Ai j  the one-rowed matr ix  (ar ai~ aj~ . . . .  ), 
and we call the matr ix with the rows Al0 , As0, A21 , Aso  , Aa l  , A s s  , Ado . . . .  

the internal-di//erence matrix of A. 

T h e o r e m  2. I /  A is a matrix o] /inite norm and its iuternai-di//erence 
matrix has a submatrix whose row-norms tend to O, then A is redundant. 

Pro@ The hypothesis  of the theorem implies that ,  for some increasing 
sequence {h i } ,  

i - -~ co k = 0  

Let B be obtained by  the deletion from A of the rows with indices n o, n 2, n~ . . . . .  
I f  s is any bounded sequence, we can obtain Bs  from t = A s  by  deleting 
the elements with indices no, n2, n a . . . . .  The deleted sequence {t%, t ,~, . . .}  
differs by  a nullsequence from the sequence {t,~, t,~, ...}, which has not been 
deleted in the passage from A s to Bs, and hence B s converges if and only 
if A s converges. Therefore A is redundant .  

2. Laconic i ty  of Hausdor f f  mat r ices  

The Hausdorff  matrices of finite norm are the tr iangular matrices of the 
form A = A ( ~ ) =  (a,7~) with 

1 

0 

where c~ (u) is a function of bounded variat ion on [0, I J, normalized by the 
rule tha t  g (0)=  0 and 

2 ~ (u) = ~ (~ + o) + ~ (~ - o) (o < u < t) 
(see E~?). 
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Theorem 3, A Hausdor/] matrix A(c~) is laconic i/ and only i~ the /unc- 
tion ~ is discontinuous at u = t .  

Pro@ Suppose first that  c~ is continuous at u = 1. The redundancy of 
A will follow from Theorem 2 when we have shown that  

n + l  

(2) lira E l a n k -  a~+l ,~ l=o .  
n ---> oo k = 0  

Let e > 0 ,  and choose a constant 6 (0< ~ < 1) such that  
1 

62 

For each n, we consider first separately the indices k less than n~. Equa-. 
tion (t) implies that  

1 

ank - -  a , , §  = f / ( U ,  *~, k ) d ~ ( u ) ,  
0 

where 

<3) ' )  
t - Dl(u + 1) 

Corresponding to each constant ~7 (O< / 7<f )  and each pair of integers n 
and /~, we denote by  E(n, h, ~7) the par t  of the interval [O, t]  tha t  lies in 
I k / n -  ~7, kin + r7], and by  F(k, n, ~7) the remainder of I0, t 1- Since 

1 1 

0 0 

and since the last factor in the right member of (3) is less than e in E(n, k, rt) 
if k < n b  and ~l<~]a, we can choose ~ so that  the inequality 

(4) 2 f II(,,,,,+,k)l-td~<(,,,bj<, 
~<nc~ E(n,  IL*I) 

holds for all n. The last factor in the right member of (3) is bounded uni- 
formly with respect to n and k (k<  n 8), and the wel!-known uniformly rapid 
convergence to 0 of 

in F(n, k, r7) implies the analogue of (4) for the range F(n, h, rT), when n is 
large enough~ 

By our choice of / 7, Y, la,,~[ < 2 e  when n is large enough. Since the last 
/ ~ & n 6  

inequality implies that  

k ~ n ~  

we now conclude that  
n + l  

k~O 

This proves Theorem 3 for the case where ~ is continuous at ~ = t. 
M a t h e m a t i s c h e  Ze i t schr i f t ,  Bd .  83 2 7  
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Suppose next tha t  ~ is discontinuous at # --  t,  and write u (1) # (1 0) --  h. 
Then A (~) --  A (fi) + A tY), where fl is continuous at ~z --  t and 7 is constant 
except for a saltus h at u - - t .  I t  follows tha t  A ( ~ ) = A ( f l  + h i ,  where I is 
the matr ix representing the identi ty transformation,  and where the elements 
of A (fl) tend to 0 uniformly as their row-indices become large. 

Let B be the matrix obtained from A bv deletion of the rows with in- 
dices Vtl, n 2 , . . . .  To construct  a sequence s={s~} that  lies in (B} but not 
in (A), we need only choose s~--1 for all n tha t  belong to a sufticientlv thin 
subsequence of {hi}, and s~--0 for all other values of n. This concludes the 
proof of Theorem 3- 

Remark. H. G. BaROl~-E 1 !  proved tha t  if a tr iangular matr ix  A of finite 
norm satisfies condition {2), then it transforms every bounded sequence into 
a sequence whose set of limit points is connected. In  particular, he showed 
tha t  the regular Hblder, Ceskro, and Euler t ransformations satisfy the con- 
ditions [1, Theorems 5.3, 6.3, and 9.21. 

If  a matr ix A of finite norm has the property tha t  its diagonai elements 
are bounded away from 0 while every sequence formed from its remaining 
elements tends to 0, and if s is a divergent sequence of 0's and 1's tthe latter 
sufficiently scarcel, then the origin is an isolated limit point of the sequence 
A s and constitutes a proper subset of the set of all limit points of A s. 

We can theretore extend BaRONE'S Theorems 5.3, 6.3, and 9.2 as follows: 
I n  order that a Hausdor//  matr ix  A(o:) trans/orm every bounded sequence into 
a sequence whose set o / l i m i t  points is connected, il is necessary and su//icien~ 

that the /unc t ion  c~ be continuous at u = 1. 

3. The little N6rlund transformations  

The N6rlund matrices are the triangular matrices of the form 

j0/Po \ 

\ . . . . . . . .  / 
where p=(p~,} is a sequence of complex numbers  and P, ,= 2 Pk4 =0 for 

0 

n ~ O ,  t . . . .  (see N6RLUND [5] and WORONOI [9]). In  contexts where the 
t ransformation N(p) is required to be regular, the sequence {P,,} must  be 
bounded away from 0. We shall focus our at tent ion on the cases where 

Under the restriction (5), regulari ty of N is equivalent to the convergence 
of {P.} to a limit other than zero. In  the s tudy  of convergence fields of 
regular N6rlund matrices subject to (5), we shall therefore incur no loss of 
generali ty if we replace the element p~/P, in the matr ix  N by  p~. Once the 
P, have disappeared, the requirement tha t  P,~@0 is superfluous, and we 
drop it. 
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With our modified matrix we shall associate ehe function / ( z )=~p,~z" .  
Indeed, we shall use the notation 

~o 

and we shall call N l the little NSrlund tra~r associated with [ (or 
generated by /). The matrix product of two little NSrlund matrices N t and 
Ng is the little N6rlund matrix N~, where h (z)=/(z) g (z). Therefore the little 
N6rlund matrices form an Abelian semigroup under matrix multiplication. 

In the theory of ordinary N6rlund transformations it is customary to 
use the multiplication 

(6) X(p) o ~r(q) = N(r), 

where r , ,=poq, ,+plq , ,_ l+ ... +P,~qo. Now, if for example {p~}={t, t, 0, 0, 
0 . . . .  } and {q,,} = {-- t ,  2, 0, 0 . . . .  }, then the matrices N(p) and N(q) are 
regular; but their formal product under (6) is not a N6rlund matrix; for 

(1 + z ) ( - -  I @ 2 z )  = - -  t + z +  2z 2, 

and therefore N(r) suffers from the defect that R l = r  o+r l=O.  We see at 
once that  the ordinary N6rlund matrices corresponding to polynomials fail 
to form a semigroup under the multiplication (6) unless we subject the ad- 
missible polynomials to severe restrictions. Hence, under the restriction (5), 
the use of little instead of ordinary N~Srlund matrices has advantages beyond 
computational and typographical convenience. 

Each of the four theorems in the present section is either already in the 
literature, or it is at least familiar to many specialists in summability theory 
(see the discussion of allgemeine Zweierver/ahre~ by K. Z~LLER [10, p. t26!). 
We include the material part ly to make the paper as nearly self-contained 
as is feasible, and partly because the inclusion permits us to state the theorems 
in forms that  will be most appropriate in the applications (Section 4). 

Theorem 4. A ~eeessary ~ d  su//ieient condition /or the eo~,vergeme field 
o/ a little Nb'rlund matrix to eo~tai'a at least one divergent sequence is that 
/ (z) = 0 /or some z in 0 < I z I < ~" 

Pro@ If /(z)=~0, then N1s converges for all s. If /(z)=zhg(z),  we can 
obtain NIs from i~s by adioining h elements 0 at the beginning of 2~s, and 
therefore the convergence fields of N.t and Ng are identical. In our proof 
we may therefore assume that Po4 =0. 

The inverse ~-1 of 2V/is the matrix whose n eh row is {q~, q,_,  . . . . .  qo, 0 . . . .  }, 
where ~ q~/~=t/ /(z)  in the neighborhood of the origin. Since 5} -1 can not 
have finite norm if l//(z) is unbounded in [z t <= 1, the sufficiency of the con- 
dition in the theorem follows immediately. 

To see the necessity, suppose that  ~. Ip, , ]< oc and / ( z )+O in Izl =<t. 
Then s [q,*I < oo (see W~XXER [8, p. 14] and ZYGMUND [11, middle of p. 246]). 

27* 
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In other words, Nf  1 is also a little N6rlund transformation, and therefore 
it preserves convergence. This completes the proof of Theorem 4. 

In view of Theorem 4, we naturally expect the convergence field of a 
little N6rlund transformation NI to depend heavily on the position of the 
zeros of /. For the case where / is a polynomial without zeros on iZI = t ,  
a complete description of the convergence field of N I has been given by 
G. M. PETERSEN [6, Theorem 2.2.? (see A. PEYERIMnOF~ [71 for a more general 
theorem, and D. BORWEI?; [2 i for related results), Our treatment avoids tile 
restriction that no zeros of ] lie on Izl =1 .  

Theorem 5. Let {ai} be a set o/ i distinct complex numbers, let/~(z) = (z -- ai) h~, 
where h i is a positive integer, and let /(z) = I - I  /i (z). Then the convergence/idd 

i 

o/ N l is the span o/the convergence /ields o/the N h. 
Pro@ Again, we may suppose that ](0)=~0. Let S denote the span of 

the convergence fields of the transformations N/, and suppose first that 

s={s~}c.S. Then we can write s,~= Y, s(/), where each sequence s(')----{S~ )} 
i = l  

belongs to the convergence field of the corresponding transformation Nt~ 
Since the matrix ~ is the commutative matrix product of the matrices N),, 
and since each of the transformations NI~ is conservative, each of the trans- 
forms Njs (i/ converges. Therefore s belongs to the convergence field of Nf, 
and it follows that this convergence field contains S. 

To prove that  S contains the convergence field of Nr we again use the 
fact that, with the notation 

t h e  n th r o w  of the matrix Nt, ~ i s {q~, q, 1 . . . . .  q0, 0 . . . .  }. Let t---J~+s, that 
is, let s=Nl- l t .  There exist polynomials gi of degree h i - - I  ( i= ' I ,  2, . . . , j )  
such that 

X ~,~ ~" = 22 q,, ~" Z t,~z ~ = W(z)7-~Z t~ ~ 
i w 

= 22 g~ (z) (z  - aD-h' Z t~ ? ,  
i = l  k=0 

in some neighborhood of the origin. Define the 7" sequences s(~)= {S~ ~!} (i = 
t,  2 . . . . .  j) by the formulas 

( i )  _n  ~,~ , = g+ (z) (z  - a D - "  )2, t~ ? .  
n=0 /~=0 

Then Nhs(il=2V~,t, and since the transform_ations Ng~ are conservative, the 
7 

convergence of t implies the convergence of Nhs (4>. Since also s ~ - - ~  s~, 
i=1 

it follows that  if N/s converges, then s is the sum of 7 sequences s (~ lying in 
the convergence fields of the corresponding transformations N),. This com- 
pletes the proof. 
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T h e o r e m  6 (G. M. PETERSEN). I /  O<la t < t  and f (z )=(z--a)  h, where h 
is a positive integer, then N:s converges if and only i] s has the/orm 

(7) s,~ =a-~(bo + bin + ... + b4_ln h-l) + c,~, 

where the b~ are constants and {c~) is a convergent sequence. 
Proo]. If  s has the form (7) and_ N/s = t, there exists a polynomial  g such tha t  

E s ~ z  ~ = g ( z ) ( z - a ) - 4 +  E e J ' ,  

in other words, such tha t  

where {y,~} converges. Therefore t converges. 

To prove  tha t  every sequence in the convergence field of ,S t has the 
form {7}, we use ma themat i ca l  induction. Suppose first t ha t  h = t and tha t  
the sequence t=Nf i  converges. Since the row with  index n in the ma t r ix  
---~}-* is {a -~-1,  a - "  . . . . .  a-*, 0 . . . .  }, we can write 

oo 

s,~ = - a . . . .  ~ (to + a t~ + a~t2  + . - .  -~- a ~ t,,) = - a - ~ - *  ~ a 4 t4 - ~ a ~ t ,<_ ,§  4. 
4 = 0  k - - 0  

With  the nota t ion  A = - -  ~. ah-lt4, this becomes 

s,, = A/a ~ + ~ a4t,~+l+4. 
4 = 0  

I f  lira t , ,=b,  the value of the infinite series on the right is e , , §  b/(t--a), 
where e,,-->O as n--> o~. This proves our assertion for the case where h = t .  

Now write t (z) = (z - -  a) 4 = (z - -  a) g (z) (h > t),  and suppose tha t  the con- 
vergence field of N, consists of the sequences 

where {c,~} represents an a rb i t ra ry  convergent  sequence. If  the sequence 
N.ts=NgN~_~s converges, then  N~_~s has the form (8); we m a y  therefore 
write s=N~-)~v, and it follows tha t  

/r n 

s,~-- - a-~-*(~:o + a** + . . .  + a*~ ~,,) = - a . . . .  * Z B~_o(r~) + Y, a 'c~, .  
m = 0  m = 0  

Since the  first sum in the last member  is a polynomial  in n of degree h - - l ,  
and since the sequence {c~} converges (so tha t  the contr ibution {-- ~ - " - *  Y, ~ e ~ }  
is covered by  the first stage of our proof), it follows t h a t  {s~} is of the  form 
(8) with Ba_ 2 replaced by  a polynomial  of degree h - - 1 .  This completes the  
proof of Theorem 6. 

In the following theorem, the  symbol  ~1 b,, denotes the difference b,, - -  b,,+~, 
and A4b~ is defined b y  the equat ion Ahb,,=A(A4-1b~). 

T h e o r e m  7. Let / ( z )=(z- -a)  4, where [a I = t  and h is a positive integer. 
I /  a ~ ~, then the sequence N/s convergenees i/ and only i/ s has the ]orm 
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w/,ere {b~} is a seqr suci'~ that A;'b~--~O, and w/zere c is a constana. / / a  ='t, 
then Nis converges i / a n d  only i/ AT*s,, tends to a constant: 

In  the special case where a = t ,  the theorem follows immediate!y from 
the fact tha t  for n > h  the element t~ of the t ransform Nls has the value 

t,~= Zll~ sn_ h . 
With  regard to the case where a ~ 1, we observe first tha t  if N,s converges 

to d and s * = G . - - ( l - - a ) - a d ,  then k~s*-->O. We ,nay therefore restrict our- 
selves to the case where Nfi-+O. Now, if t--=i.~{}s, then 

and since i al = t ,  t , - ~ 0  if and only if dz'(a"s,,)->0 as n--> ~ .  This completes 
the proof of Theorem 7. 

4. Laconicity of little NOrlund transformations 

Theorem 8. I~ / is a ~Olynomial o/ degree aL most 2 and /(0)q=O, then 
is red.nd nt i~ onZy I< = l. 

Proo/. I f / ( z )  =-e~=O, then ~ = c I ,  where I is the ident i ty  transformation,  
and _/V/is obviously laconic. 

For  the case where / ( z ) = z - - a  (a4=O), we shall suppose that  M is the 
matr ix obtained by  deleting from 2~ the rows with indices nr (i = t, 2, ...), 
and we shall construct  a bounded sequence s such that  M s - > 0  while 5)s 
diverges, I t  is sufficient to carry out the construction under the assumption 
tha t  * ~ + 1 -  hi--> 0% because the deletion of addit%nal rows would tend to 
increase the convergence field even further. 

Suppose first tha t  I a I > t. For n < n], we choose s, ,= 0 ; for i -= ~, 2, . . . ,  
we write 

__a-v s,,+~ (0 < r < ni ~ --n~).  

Inspection shows that  the sequence M s  consists exclusively of 0's. Also, 
the sequence s consists of blocks of elements, the first of which contains 
only 0's while each of the others consists of an element t fotlowed by  ele- 
ments  of smaller modulus. Clearly, s is bounded, but  Nls diverges, and there- 
fore N i is laconic. 

If  I a [ <  1, we proceed similarly, except tha t  in order to preserve bounded- 
ness of s, we choose 

,s',~ _ ,, = a '--1 (0 < r < ~ - n,:_l) 

That  is, we construct  s so tha t  it consists of blocks that  begin with a small 
element and end with a t. 

I f  l a! = i ,  there is ho danger of unboundedness of s; but  a sequence 
constructed according to the pat tern  used above might  accidentally lie in 
the convergence field of 2~). Should this happen, we mult iply all elements 
of the /th block b y  ( - - t )  i. This concludes the discussion of the case where 
/ is a first-degree polynomial. 
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If  /(z)= (z--a)(z--b) (ab 4=0), one of seven more  or less different cases 
arises, We list these cases in order of increasing difficulty: 

(i) l ~ I = l b I - ~ ,  b+~; 
(ii) f a l < l ,  I b l > t  

(iii) l a l = l ,  l b f > t  

(iv) l a l = t ,  I b I < l  

(v) t~l<~, Ibl<~; 
(vi) t~I>t,  Ibl>l; 

(vii) ] ~ I = 1 ,  b = a .  

Suppose again tha t  M is obta ined from N / b y  deletion of the rows with 
indices ~% ( i = t ,  2 . . . .  ; ~ z i + l - - n ~ - + ~  ). In  the first six cases, we shall con- 
s t ruct  a bounded  sequence s such tha t  Ms converges bu t  N/s diveiges. In  
the last case, we shall show tha t  if Ms converges but  Nts diverges, then s is 
unbounded.  

In  case (i), we set s ,~=l for n<~r and for ~ i G ~ < ~ % + l  we write 

s,,_l/a (i even),  
(9) G =  s,,_l/V (i odd). 

Since i ~1 = I b l = 1, s is b o u n d e d ;  and  since a 4: b, T h e o r e m  7 implies t ha t  
Nls diverges. On the other  hand,  if of three consecutive elements  o r s  the 
first two are related b y  one of the formulas in (9), while the second and the 
third are related b y  the other  formula,  then this tr iplet  of e lements  does 
not  enter  the format ion of any  element of Ms. Hence M s  has only finitely 
m a n y  nonzero elements,  and 37/is laconic. 

In  case (ii) we again use the formulas (9), with a slight modificat ion tha t  
is needed to ensure the boundedness of s. We note tha t  in each block ]s~] 
is an increasing or decieasing function of n, according to whether  the first 
or the second formula  is in force. Therefore we choose s,~= 1 for ~ = ~ i - - 1  
( / = t ,  3, 5 . . . .  ), and we let the  first formula define s~ for , ~ = n i - - 2 ,  ~ i - - 3 ,  
. . . .  ~,~_~, while the second determines it for ~ =  n~, ~i + t . . . . .  he+t - -  1. Again, 
IGI G I .  For  even values of i, the element t,~,_l of Nis involves unrela ted 
"loose ends" ,  and therefore it does not  necessarily vanish;  but  it is small 
when i is large, because of the condition tha t  ~r ui--> ec. 

Case (iii) calls for a fur ther  modification, since l s.l decreases under  the 
reign of the second formula  bu t  remains constant  under  the first. We over- 
come the difficulty b y  inserting a harmless  growth factor;  tha t  is, we retain 
the second formula,  but  replace the first with 

s~ = ;~iW---.i s , ,_da.  

Case (iv) is so similar to case (iii) t ha t  it needs no fur ther  discussion. 

In  case (v) we can no longer rely on the gradual  modificat ion of the ele- 
ments  G given b y  one or the other  of the formulas (9). On the other  hand,  
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i the  two formulas produce two blocks of e lements  in bo th  of which sn in- 
creases. If  a == b, we can use a l inear  combina t ion  of the  two blocks, with 
coefficients chosen so t ha t  the  two contr ibut ions  cancel  each other  at  the  
r igh t -hand  end of the  block t ha t  is thus obta ined.  We wri te  

(t0) s~:-a~'a~+i--bm~b ~+~ (ni_t < n < n d .  

Then s~ - -0  for n--n~ 1. Also, s~ is small  for n = n  i and for n = n ~ - - 1 .  
Therefore, with the  no ta t ion  t - -N / s ,  we see t ha t  t~--a b for n--n~, t~ is 
small  for n - - n , + 1 ,  and  t ~ 0  for n i + i < n < n  i. Therefore 2~ is laconic. 

If  a = b ,  we replace (t0) b y  the  formula  

( t l )  s ~ : I n  i t n)a ~*-~ ( n ~ _ l < n < n i ) .  

Again,  s is bounded  and M s , O ;  since ~ ' t~---~a :~0, N~ is laconic. 

In  case (vi), we replace formulas  (t0) and ( t t  b y  the  formulas  

s~--a  ~ - ~ - ~ -  b ~4-~-~ (n i -  I < n < n ~ : ~  21, 

s,~ (n 1 - -  hi) a ~*-" (ni I ~ ~3 ~ ni~ 1 - -  2), 

respect ively.  

I t  remains  to t r ea t  case Cvii), in other  words, to show tha t  it a 1 
and / ( z )=( z  a) ~, then N t is r edundan t  

Suppose again t ha t  hi+ i n i - ~  ~ and tha t  M is ob ta ined  from Z~} by 
delet ion of the  rows with  indices hi.  We shall prove  tha t  if M s  conw~rges, 
then  e i ther  Nts converges or else s is unbounded.  

Suppose t ha t  Ms--~c. Then, for n l~{ni} , the  condi t ion a~s,~l--2as,~ 
4-s~_~-+c is sat isf ied,  t ha t  is 

as~_ i - - s~=a- l (a s~ - - s , , _ i )  a-ic o( t ) ,  

aS~+ 2 S~=l:a-2(asn s~_a ) _a_ (a-i 4-a-2)c @o(l ) ,  

and more generally,  for n i < n  t < n + k < n ~ _ ~ ,  

aS,l,+ k S n ~ _ I = g - - I ~ ( I ~ S n  S n i )  @ ( ~ - 1  - i -  ' �9 �9 -]-  l~--]~) C @ 0 (]~) �9 

If  a - - t ,  boundedness  of s implies tha t  c - -0 .  If  a 4 = t  and  s~ 
then Ms*-+O. We m a y  therefore res t r ic t  ourselves to the  case where c - - 0 ,  
and  our hypothes is  on s t akes  the  form 

Now, if (t2) holds also wit, hout  its res t r ic t ion  on n, then 2V~s converges,  b y  
Theorem 7. If  (t2) does not  hold  wi thout  i ts restr ic t ion,  there  exists  a sub- 
sequence of {n~} for whose e lements  the  q u a n t i t y  I exceeds 
some posi t ive  number  2~. For  each of the  corresponding indices hi ,  a t  least  
one of the  two quant i t ies  IA(a~-~s~_~)[ and mus t  exceed ~. 
But  since the  first differences A(a%~) are nea r ly  cons tan t  in the  two blocks 
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that precede and follow s,,,_i, respectively, this implies that (a" s,~,} (and 
hence {s,,}) is an unbounded sequence. Therefore N/ and M have the same 
convergence field in the space of bounded sequences. Hence 1Vf is redundant 
in case (vii), and the proof of Theorem 8 is complete. 

The question of laconicity and redundancy of N6rlund matrices N l, 
where [ is a polynomial of degree higher than 2, appears to be difficult. We 
believe that  the following statement holds. 

Conjecture. If / is a polynomial and /(0)4=0, then /V i is laconic if and 
only if there exists an integer k and a polynomial g (z), of degree at. most 2, 
such that [(z)=g(z ~) and /Vg is laconic. (It is easy to prove the sufficiency 
of the condition.) 

5. Laconicity and redundancy of bounded convergence fields 
De/initions. We say that the bounded convergence field of a laconic 

Toeplitz matrix is laconic. If a Toeplitz matrix A is redundant, and if 
moreover each o/ its submatrices is either redundant or has a bounded con- 
vergence/ield greater than (A), then we say that (A) is redundant. 

Theorem 9, There exist bounded convergence fields that are both laconic 
and redundant. 

Proof. Let / ( z ) = z + l  and g ( z ) = ( z + t )  ~. By Theorem T, (Nf)=(Ng). 

By Theorem 8, (7Vl) is laconic, and it remains only to show that (/Vg) is 
redundant. 

From the last part of the proof of Theorem 8, we can easily see that  if 
a matrix M is obtained by the deletion from /V~ of all rows with indices n i 
(ni<n~+i; i----t, 2 . . . .  ), then (M)=(Ng) if and only if lim(n~§ 
and that  M is redundant whenever the latter condition is satisfied. There- 
fore (5~) is a redundant bounded convergence field, and our theorem is proved. 
It  remains an open question whether every bounded convergence field is 
both laconic and redundant. 

Theorem 10. The bounded convergence/idd o/the Cesb.rod trans/ormation 
is redundant. 

Let tile matrix M be obtained by  the deletion from C~ of all rows except 
those of indices n~ (n~<n~+l, r = l ,  2 . . . .  ). We shall show that (M)=(Ci) 
if and only if 

(t3) lira n~+~/n~ = t . 

Suppose first that (13) holds, and let s be a bounded sequence such that 
MS-->O. F o r  ~ r ~ n ~ r + l ,  

(~ + 1)-~ , s~ = (~ + t)-~ E s~ + (~ + t) ~ ~k. 
k~0 k=0 k=nr+l 

The first term on the right tends to 0 by the hypothesis on Ms. Together 
with the boundedness of s, condition (t3) implies that the second term on 
the right also tends to 0 as n-+ o% and therefore (M)=  (Ci). 
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Suppose nex t  t ha t  the deletions have  been so extens ive  tha t  ('t3) fails. 
Then there  exist  a posi t ive number  h and a sequence of indices r] such t ha t  
n~. r ! - - n , > h n ,  for r~{ri}. Corresponding to each of these indices we choose 
s ~ - - I  in the  first half  of the  block n , < n < n , + l ,  and  s,~-~ ,! in the  second 
half  of t he  block.  Alt  remaining  s ,  are def ined to be 0. Clearly, Ms->O 
and Cts -I~ O. 

This proves our assertion, and  Theorem J0 is established.  We point  out 
tha t ,  with the  no ta t ion  used in the proof, M is laconic if and only  if the  
sequence {n,.+l/ny } is bounded  away  from 1. 

T h e o r e m  11. I] B is a regular Toeplitz matrix, then ~here exist laconic 
matrices A and C s~tch that (A ) ( (B )  ((C). In  case (B) contains a divergent 
sequence, the matrix A can be chosen so that (A) also contains a divergent 
seque.nce. 

Pro@ To construct  the  required ma t r i x  C, we choose an increasing 
sequence {hi} such tha t ,  for some appropr i a t e  sequences {hi} and {hi} of 

integers (h i<  k~< hi~l), 

lira I E - 2 t '  b.,.., = 

We denote  by  C i the  row of B with index n~, and we define C to oe the  
ma t r i x  whose ith r o w  is C,:. Since C is a submat r ix  of B, the re la t ion (C))  (B) 
holds. To see tha t  C is laconic, we note  tha t  if D is a subma t r i x  of C, and 
if {s,} is a sequence consist ing of O's, except  for J 's  in the  blocks h < n < k ~  
corresponding to the  rows dele ted  in the  passage from C to D, then D s--> 0 
while C s has the two l imi t  poin ts  0 and  J. 

The other  half  of the  theorem is t r iv ia l  in case I Bt contains  no divergent  
sequences. In  the  case where (B) contains  a d ivergent  sequence x, we m a y  
suppose t ha t  B x-->O. But because we shall  app ly  the  const ruct ion in the  
proof  of Theorem 2.2 of [3 l, we need the hypothes is  tha t  our sequence has 
two l imit  points  o ther  than  0. We therefore replace J; b y  a sequence y = {e ~a- x**}; 
if #, --> oo s lowly enough, then By- ->0  and y has two l imit  points  ~r and  

(~ =J=0 ~=/~). 
13, There exists a sequence of integers/~,  such that ,  in the  te rminology  of _ 

Bz  converges whenever  z apes y over  {k,}, and such tha t  y tk2,) -->cr y (k2,+j.)-+ ft. 
W i t h  each index n we associate  an index p=p, , ,  selected from the grea tes t  
two integers k, less than  n in such a way  t ha t  the  sequence {(y , - -yp. , ) - l}  
is bounded.  Fo r  each n, the  e lements  a,~. of the  m a t r i x  A are defined b y  

the rule 
- -  . : Y ~  , - -  Y P , ,  

a,~p~ y~ _ Yp~ a .... y~ _ Y ~ ,  a,~ - -  0 (k &- n, p)~ 

The convergence field of A consists of the  sequences t ha t  ape y over (k~} 
(see [8, pp. t4J - -142~) ,  and  i t  is therefore  conta ined  in the  convergence 
field of B. To show t h a t  A is laconic, suppose t h a t  we have ob ta ined  D b y  
dele t ing from A the rows wi th  indices he. I f  n~r then  the ~ i  th column 
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of A contains only one nonzero element, namely its element on the diagonal. 
I t  follows that  if infinitely many  of the ~r162 do not belong to {p~}, then (D) is 
larger than (A); for if z , ,=0 except for n~{n~}\ {p,}, then Dz is tile sequence 
{0}. I t  remains to deal with the case where all except finitely many  of the 
(ni} belong to {p~}. Here we note that  there exists a sequence {e,,}, with 
e , = ~ t  and e , , = ( - - t )  ~, such that  for z , ,=e ,y~ the transform Dz is again 
the sequence {0}. Since z does not ape y over {k~}, A z does not converge. 
I t  folIows tha t  A is laconic, and the proof of Theorem t t is complete. 

We do not know whether Theorem t t  can be strengthened so that  it 
asserts the existence, for each divergent sequence x in (B), of a laconic 
matr ix  A such tha t  x~ (A) ( (B) .  

Theorem 12. I /  B is a regular Toeplitz matrix, there exists a regular 
matrix E such that (E) is redundant and (E) ) (B) .  

Pro@ We point out that  it is not sufficient to construct a redundant 
matrix E whose bounded convergence field is (B). The matr ix  E that  we 
seek must have the additional property that  each of its laconic submatrices 
has a targer bounded convergence field than B. 

Let the symbols C i have the same meaning as in the proof of Theorem t 1, 
and let E be the matrix whose n th row is the vector sum (C1 + C2 + . . .  + C,)fl*. 
Clearly, (E) ) (C) ) (B). If M is obtained by  the deletion of all rows of E 
except those of indices ~r (n~<~r r = t ,  2 . . . .  ), then M is again laconic 
if and only if {n~+l/n,} is bounded away from t, and M is redundant a~r 
equivale~r to E if and only if n,+tfl~,-->l. 

Remark. We defined laconicity and redundancy with reference to the 
space of bounded sequences, Naturally, we could have used a larger or 
smaller sequence space S. However, the larger the space S used in the 
definition, the more difficult becomes the construction of a nontrivial redun- 
dant matrix. Of course, we can always construct a redundant matrix by 
overloading a preassigned matr ix  with superfluous but harmless rows. For 
the case where S is the space of all sequences, we obtain a more interesting 
example if to a matr ix  A for which As-->O implies that  either s,~-->0 or 
s . -+  o0 we adjoin infinitely many  rows of the identity matrix. But we do 
not know of any matr ix  whose convergence/ield is redundant relative to the 
space of all sequences, in the sense analogous to that  of our definition at 
the beginning of this section. 

References 

[t] t3A~ON~, H. G.: Limit points of sequences and their tramsforms by meehods of 
summabili ty.  Duke Math. J. 5, 7 4 0 - 7 5 2  (1939). 

F2] BO~WEIN, D.: N0rlund methods of summabil i ty associated with polynomials. Proc. 
Edinburgh Math. Soc. 12, 7--15 (I960). 

E8] ERD6S, P., and G. PIRA?VlA,~: The topologization of a sequence space by Toeplitz 
matrices. Michigan Math. J. 5, 1 3 9 - t 4 8  (t958). 

[g] HaUSI)ORF~', F.: Summationsmethoden und Momentfoigen. I. Math. Z. 9, 74--109 
(1921). 



394 P. JF.RDOS and G. PIRAN1AN : Laconicity and redundancy of Toeplitz matrices 

~5] N(SRLUND. N. E. : Sur une application des fonctions permutables.  Lunds Universitets 
krsskr i f t  N. F. Afdelning 2, 16, Nr. 3 1920). 

E6J PEm~RS~>-, G. M.: A note on divergent series. Canad. J. Math. 4. 4-45 -434 1952). 
E7] PEYERIMI-IOFI% A.: On convergence fields of N6rlund means. Proc. Amer. Math. 

Soc. 7, 335--347 (1956}. 
~<~] V~rlENER, N.: Tauber ian theorems. Ann. of Math. r2l 33. 1 - - i00  (1932). 
'9] WORONOI, G. F. (and J. D. TA~ARKIN): Extension of the notion of the limit of 

the sum of an infinite stoles. Ann. of Math (2) 33, 422--428 (t932,. 
~70j ZELLER, K.: Theorie der Limitierungsverfahren.  Ergebnisse der Mathemat ik  und 

ihrer Grenzgebiete, N. E. 15. Berlin-G6ttingen-Heidelberg: Springer 1958. 
LII] ZYGS~U~'D, A.: Trigonometric series. Second Ed. Vol. I. C a m b r i d g e  Cambridge 

Univ. Press 1959. 

The Hungarian Academy o~ Science, Budapest 

The University o/Michigan, Ann Arbor, Mich., U.S.A. 

(Received January 3L 1964) 


