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Laconicity and redundancy of Toeplitz matrices*

By
P. ERDOS and G. PIRANIAN

The convergence field of a Toeplitz matrix is a monotonic function of the
set of rows that compose the matrix, in the sense that the deletion of some
of the rows of the matrix (followed by appropriate renumbering of the rows
that remain) can never decrease the convergence field. In the case of certain
matrices, the deletion of infinitely many rows always increases the con-
vergence field; but there exist matrices that do not have this property. We
shall consider this dichotomy with special reference to the space of bounded
sequences and certain classical families of matrices.

1. The concept of laconicity
By a Toeplitz matrix we understand any matrix 4 =(a,;) (#», 2 =0, 1, ...)
of complex numbers. TFor each matrix 4, we define the norm of the row
with index 7 as the sum 2} |a,,|, and the norm |A| of the matrix as the
[

supremum of the row-norms. A matrix is conservative (German: konvergenz-
trew) if convergence to a finite limit of a sequence s={s,} implies the existence
and convergence of the transform #=As defined formally by the relation

[o2]
t, = 2.4, ;- A matrix is regular provided it is conservative and lim 4 s=lims
=0
whenever the second limit exists and is finite. Except in the present section,
we restrict our attention almost exclusively to conservative matrices,

Of two matrices 4 and B we shall say that B is a submatrix of A provided
each row of B is a row of A and infinitely many rows of 4 are not rows of B,
If B is a submatrix of 4 and s={s,} is a sequence whose transform 4 s exists,
then the transform #=DBs is a subsequence of the transform ¢{=As; this
implies the monotonicity mentioned in the introductory paragraph.

Theorem 1. If A is a Toeplilz matviz with the property that each sequence
of O’s and 1’s is the transform As of some sequence s, and if B is a submatrix
of A, then the cowvergence field of A is a proper subset of the convergence field
of B.

Proof. Let A satisfy the hypothesis of the theorem, and let B be obtained
from A by the deletion of the rows with indices #,, #,, ... . Let

, { 1 (nefn)),
n
0 (ne{ngd),
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and let s be defined by the condition s=A¢. Then the sequence Bs consists
entirely of 0's, while A s consists of infinitely many 0’s and 1’s. This proves
the theorem.

Most of the commonly studied classical Toeplitz matrices satisfy the
hypothesis in Theorem 1. But it is not generally true of a classical matrix
that every sequence of 0’'s and 1’s is the transform A's of a bounded sequence,
Rather, there exist simple, regular matrices 4 that satisfy the hypothesis
in Theorem 1 and some of whose submatrices have the same convergence
field as A, in the space m of bounded sequences. In other words, some matrices
have unnecessarily many rows for the maintenance of their divergence fields
in m.

Definitions. Corresponding to each Toeplitz matrix A we denote by (4)
the set of bounded sequences s whose transform As exists and converges,
and we call {4) the bounded comvergence field of A, We say that A4 1s re-
dundant provided it has a submatrix B such that (4)=(B). If 4 is not
redundant, it is lacownic.

A matrix is redundant, for example, if it has infinitely many pairs of
rows that resemble each other sufficiently well. To make this statement
precise, we denote by A,; the one-rowed matrix (a;—a;9, ;1 —%;1,--.),
and we call the matrix with the rows 4,,, 454, 4s1, 430, 431, 432, Aug, - -
the internal-difference matrix of A.

Theorem 2. If A is a mairix of finite norm and iis wnternal-difference
matrix has a submatrix whose vow-norms tend to 0, then A 1s redundant.

Proof. The hypothesis of the theorem implies that, for some increasing
sequence {n},

i—> o0

o0
lim kzoi ﬂnzi, r anzi—u, k‘ =0.

Let B be obtained by the deletion from A of the rows with indices #,, 15, 74, ... .
If s is any bounded sequence, we can obtain Bs from /=4s by deleting
the elements with indices #,, 7, ny, ... . The deleted sequence {#,,%,, ...}
differs by a nullsequence from the sequence {4, , %, , ...}, which has not been
deleted in the passage from As to Bs, and hence Bs converges if and only
if As converges. Therefore 4 is redundant.

2. Laconicity of Hausdorff matrices

The Hausdorff matrices of finite norm are the triangular matrices of the
form A=A4(«)={a,,;) with

1
(1) ank:(::)fukm—u)"‘kdoc(w),
0
where « (i) is a function of bounded variation on [0, 1], normalized by the
rule that «(0)=0 and

(see [4]). 200(u) =o(u+0) +olu—0}  (0<u<t)
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Theorem 3. A4 Hausdorff malrix A(e) 1s laconic if and only if the func-
tion o ts discontinuous at uw=1.

Proof. Suppose first that « is continuous at % =1. The redundancy of
A will follow from Theorem 2 when we have shown that

. #n+1
(2) Hm 2[4, —~ @y, =0.

n—>00 p_g

Let £>0, and choose a constant § (0<Cd<C1) such that
1 .
[do{u) <e.
62

For each #, we consider first separately the indices & less than »d. Equa-
tion {1) implies that

1
Ayp — a;z+1,k :6[ f(%9 7, k) da(”) ’

where

= [P\ p (g ggyn—t A1) <<
I R T e S CET )
Corresponding to each constant # (0<% <1) and each pair of integers »
and k2, we denote by E{n, k, %) the part of the interval [0, 1] that lies in
[k[n—mn, kln-+n], and by F(k, n, %) the remainder of [0,1]. Since

1

kZ:]OOf(Z)uk(1~u)mk]da(%)| §0f1|dm(u)],

and since the last factor in the right member of (3} is less than ¢ in E(n, &, )
it 2<<nd and n< s, we can choose 7 so that the inequality
) 2 [ wn B dam)] <e

h<nd E(mkn)
holds for all #. The last factor in the right member of (3) is bounded uni-
formly with respect to # and % (k<<% d), and the well-known uniformly rapid
convergence to O of

()t —

in F(n, k, n) implies the analogue of (4) for the range F(n, k, ), when # is
large enough.
By our choice of %, 2, |4,;| < 2¢ when # is large enough. Since the last
kZnd

inequality implies that

Z ‘ank_an%—l,k‘ < 48’
kzné

we now conclude that

n+1

kZQ(“nk““w%—],klt <6e (%>7’&€)

This proves Theorem 3 for the case where « is continuous at u =1.
Mathematische Zeitschrift. Bd. 83 27
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Suppose next that « is discontinuous at # =1, and write 2 (1) — u (1.— 0) =/A.
Then A(x)=A(8) -+ A(y), where f§ is continuous at #==1 and » is constant
except for a saltus » at w=1. It follows that A(«)=A(f) -4, where [ is
the matrix representing the identity transformation, and where the elements
of A(B) tend to 0 uniformly as their row-indices become large.

Let B be the matrix obtained from A4 by deletion of the rows with in-
dices #y, %5, ... . To construct a sequence s=={s,} that lies in (B) but not
in (4), we need only choose s,==1 for all # that belong to a sufficiently thin
subsequence of {n;}, and s,=0 for all other values of #. This concludes the
proof of Theorem 3.

Remark. H. G. BARONE [1] proved that if a triangular matrix 4 of finite
norm satisfies condition (2), then it transforms every bounded sequence into
a sequence whose set of limit points is connected. In particular, he showed
that the regular Hélder, Cesaro, and Euler transformations satisfy the con-
ditions [, Theorems 5.3, 6.3, and 9.2].

If a matrix 4 of finite norm has the property that its diagonal elements
are bounded away from 0 while every sequence formed from its remaining
elements tends to 0, and if s is a divergent sequence of 0’s and 1’s (the latter
sufficiently scarce), then the origin is an isolated limit point of the sequence
As and constitutes a proper subset of the set of all limit points of 4s.

We can therefore extend BaroNE’s Theorems 5.3, 6.3, and 9.2 as follows:
In order that a Hausdorff mairix Ao} transform every bounded sequence into
a sequence whose set of limit points is comnected, it is necessary and sufficient
that the function o be contimuons at uw=1.

3. The little Nérlund transformations
The Nérlund matrices are the triangular matrices of the form

P of Po \
2B polR

N(p) =
polFs BB polB

where p={p,} is a sequence of complex numbers and F,= > $,=40 for
; 0

n=0,1, ... (see NORLUND [5] and Woronor [9]). In contexts where the
transformation N(p) is required to be regular, the sequence {£,} must be
bounded away from 0. We shall focus our attention on the cases where

(5) 2l pnl < oo

Under the restriction (5), regularity of N is equivalent to the convergence
of {B} to a limit other than zero. In the study of convergence fields of
regular Nérlund matrices subject to (5), we shall therefore incur no loss of
generality if we replace the element $,/F, in the matrix N by p,. Once the
P, have disappeared, the requirement that B,=#=0 is superfluous, and we
drop it.
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With our modified matrix we shall associate the function f(z)=),p,2"
Indeed, we shall use the notation

b0
N=1py o)

and we shall call N; the ltile Norlund tvansformation associated with | (or
generated by /). The matrix product of two little Nérlund matrices N; and
N, is the little Norlund matrix N,, where % (2)=f(2) g(2). Therefore the little
Nérlund matrices form an Abelian semigroup under matrix multiplication.

In the theory of ordinary Norlund transformations it is customary to
use the multiplication

(0) N{p)oNl{g) =N(r),

where 7,=p4q, + p14,-1-+ -+ + Pngo. Now, if for example {p,}={1,1,0,0,
0,...} and {g,}={—-1,2,0,0,..}, then the matrices N(p) and N{(g) are
regular; but their formal product under (6) is not a Norlund matrix; for

M+2)(—1+22)=—142+222

and therefore N(7) suffers from the defect that Ry=7,+7»n=0. We see at
once that the ordinary Nérlund matrices corresponding to polynomials fail
to form a semigroup under the multiplication (6) unless we subject the ad-
missible polynomials to severe restrictions. Hence, under the restriction (5),
the use of little instead of ordinary Nérlund matrices has advantages beyond
computational and typographical convenience.

Each of the four theorems in the present section is either already in the
literature, or it is at least familiar to many specialists in summability theory
(see the discussion of allgemeine Zweierverfahren by K. ZELLER [10, p. 126]).
We include the material partly to make the paper as nearly self-contained
as is feasible, and partly because the inclusion permits us to state the theorems
in forms that will be most appropriate in the applications {Section 4).

Theorem 4. A necessary and sufficient condition for the comvergence field
of a little Novlund matrix to contain at least one divergent sequence is that
f(z)=0 for some z in 0<|z| =1.

Proof. If f(z)=0, then Ns converges for all s. If /(z)=2"g (), we can
obtain N;s from N;s by adjoining % elements 0 at the beginning of N,s, and
therefore the convergence fields of N, and N, are identical. In our proof
we may therefore assume that p,==0.

The inverse N;™* of I, is the matrix whose ' row is {g,,, ¢,_1, ..., 4q, O, .
where 2 g,7"=1/f(2) in the neighborhood of the origin. Since Nfl can not
have finite norm if 1/f(z) is unbounded in |z| <1, the sufficiency of the con-
dition in the theorem follows immediately.

To see the necessity, suppose that X |p,| << oo and f(z)3=0 in |z| 1.
Then 2, | g,| << oo (see WIENER [§, p. 14] and Zyemuxp [17, middle of p. 246]).

27*
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In other words, Nf‘l is also a little Norlund transformation, and therefore
it preserves convergence. This completes the proof of Theorem 4.

In view of Theorem 4, we naturally expect the convergence field of a
little Nérlund transformation N; to depend heavily onm the position of the
zeros of f. For the case where f is a polynomial without zeros on |z| =1,
a complete description of the convergence field of IV, has been given by
G. M. PETERSEN [6, Theorem 2.2] (see A. PEVERIMHOFF [7] for a more general
theorem, and D. BorwEIN [2] for related results). Our treatment avoids the
restriction that no zeros of f lie on |z| =1.

Theorem 5. Let {a;} be a set of | distinct complex numbers, let f,(z) = (z — a,),
where h; is a positive inleger, and let f(z) = H 1:(2). Then the convergence field

of N; is the span of the convergence fields of the N,

Proof. Again, we may suppose that f/(0)==0. Let S denote the span of
the convergence fields of the transformations N, and suppose first that

s={s,t€S. Then we can write s,= 27 si¥), where each sequence s®={s{}
i=1

belongs to the convergence field of the corresponding transformation Nj,.
Since the matrix N is the commutative matrix product of the matrices Ny,
and since each of the transformations N, is conservative, each of the trans-
forms N,s¥) converges. Therefore s belongs to the convergence field of N,
and it follows that this convergence field contains S,

To prove that S contains the convergence field of N,, we again use the

fact that, with the notation
1} 2) = 2 q,7" ([z§<n§in‘oz¢}),

the n® row of the matrix N' is {g,, ¢,—y1. ---, 4o, 0, ..-}. Let t=Ns, that
is, let s=N;'t. There exist polynomials g, of degree ,—1 (i=1,2,...,7)
such that

2 =N D=1 2

g oo
=287 (z—a) M Y b 2,
j=1 k=0

in some neighborhood of the origin. Define the § sequences s ={s{l} (i =
1,2,...,7) by the formulas

sWa =g (z) (z—a)™"

i k
0 k

£ 2"

b8
L8

Then N,s=N,¢ and since the transformations N,, are conservative, the

o i

convergence of { implies the convergence of N,s. Since also s, = 2 sy,
i=1

it follows that if N;s converges, then s is the sum of j sequences s lying in

the convergence fields of the corresponding transformations Nj,. This com-

pletes the proof.
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h

Theorem 6 (G. M. PTERSEN). If 0<|a|<1 and (2)={(:—a)", where

is a positive inieger, then N;s converges if and only if s has the form
(7) s,=a "(by+bn-+ - +b_n" Y+,
where the b, are comstanis and {c,} is a convergent sequence.
Proof. 1f s has the form (7) and N;s=¢, there exists a polynomial g such that
38,5 =g(0) = @) S,
in other words, such that
L' =(—a) L5 =gz) + Xy. "

where {y,} converges. Therefore ¢ converges.

‘To prove that every sequence in the convergence field of N; has the
form {7}, we use mathematical induction. Suppose first that 2 =1 and that
the sequence {=N;s converges. Since the row with index # in the matrix

—NYis {fa Y a7, ., a0, ...}, we can write
o0 o0
5 R | 1 —n—1 ] %
Sp=—a " 1(t0+“t1*“252+ cedtt) = —a™" Z“ktk“ Z“ bytitre
E=0 r—0
With the notation A=— > a*~1¢,, this becomes

[o0)

. ) k

s, =4Ala +Z“ Luviin
k=0

If lim¢,=06, the value of the infinite series on the right is &, +8/(1—a),
where g,-+0 as n—>cc. This proves our assertion for the case where /s =1.

Now write f(z)=(z—a)*=(2—a)g(z) (h>1), and suppose that the con-
vergence field of N, consists of the sequences

8) {r={a""byFbnt L D)Lt ={a""B,_y(n) +c,},

where {c,} represents an arbitrary convergent sequence. If the sequence

Nis=N,N,_,s converges, then N, ,s has the form (8); we may therefore
write sﬁ-N[_lar, and it follows that
" n
S,=—a "y tary 4+ - Fatr)=—a " Y B,y m) 2 a"c,,.
m=0 m=0

Since the first sum in the last member is a polynomial in » of degree 1 —1,
and since the sequence {¢,} converges (so that the contribution {—a~""1} a”c,}
is covered by the first stage of our proof), it follows that {s,} is of the form
(8) with B,,_, replaced by a polynomial of degree #—1. This completes the
proof of Theorem 6.

In the following theorem, the symbol 45, denotes the difference b, —b, 1,
and 4*b, is defined by the equation A*b,=A(A"15).

Theorem 7. Let f(2)=(2— a)", where |a| =1 and h is a positive integer.
If a==1, then the sequence N;s convergences if and only if s has the form

o —¥"
s,=a""b,+c,
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where {b,} is a sequence such that A*b,—0, and where ¢ is a constant. 1f a =1,
then Nis converges if and only if A's, tends to a constant.

In the special case where a =1, the theorem follows immediately from
the fact that for n=/% the element #, of the transform N;s has the value
tn:AhSn_ he

With regard to the case where a==1, we observe first that if N;s converges
to d and sf=s,— (1—a)~*d, then N;s*—>0. We may therefore restrict our-
selves to the case where Nfs->0. Now, if t:—-.Nfs, then

jn—f—h = a«hdlz(un Sn) »

and since |a| =1, #,—0 if and only if 4*(4"s,)—0 as n—> co. This completes
the proof of Theorem 7.

4. Laconicity of little Norlund transformations

Theorem 8. I} / is a polynomial of degree at most 2 and [{(0) =50, then
N, is redundant if and only if f(2)=(2— )%, with |a] =1.

Proof. If {(2) =c =0, then N;==cI, where [ is the identity transtormation,
and N, is obviously Iaconic.

For the case where f(2)=z—a (a==0), we shall suppose that 3/ is the
matrix obtained by deleting from N, the rows with indices #; (+ =1, 2, ...),
and we shall construct a bounded sequence s such that Ms—0 while N
diverges. It is sufficient to carry out the construction under the assumption
that 7, —n;— oo, because the deletion of additional rows wouid tend to
increase the convergence field even further.

Suppose first that |a|>1. For n<u,, we choose s5,=0; for i =1,2,...,
we write

Srr =0 (0=r<mi,—mn).

i ¥

Inspection shows that the sequence M's consists exclusively of 0’s, Also,
the sequence s consists of blocks of elements, the first of which contains
only ¢’s while each of the others consists of an element 1 {followed by ele-
ments of smaller modulus. Clearly, s is bounded, but N,s diverges, and there-
fore N, is laconic.

If [a| <1, we proceed similarly, except that in order to preserve bounded-
ness of s, we choose

s, ,=a’t O<r=mn,—n,4)-

Yui—71

That is, we construct s so that it consists of blocks that begin with a small
element and end with a 1.

If |a] =1, there is no danger of unboundedness of s; but a sequence
constructed ‘according to the pattern used above might accidentally lie in
the convergence field of N;. Should this happen, we multiply all elements
of the ¢* block by (—1). This concludes the discussion of the case where
7 is a first-degree polynomial.



Laconicity and redundancy of Toeplitz matrices 389

If f(z)=(s—a)(z—0b) (ab==0}, one of seven more or less different cases
arises. We list these cases in order of increasing difficalty:

G) la]=|8] =1, bad=a;
lal <1, |b]>1;

)
(i) |a|=1, |bo]>1;
(iv) |al=1, |bl<1;
v) lal<1, lbl<t;
i) lal>1, [b]l>1;

(vii) |al=1, b=a.

Suppose again that M is obtained from N; by deletion of the rows with
indices n; (¢==1, 2, ...; #;.,—n;—>o0). In the first six cases, we shall con-
struct a bounded sequence s such that Ms converges but N;s diverges. In
the last case, we shall show that if Ms converges but N,s diverges, then s is
unbounded.

In case (i), we set s,=1 for n<<n,;, and for #,<n<n; , we write

S,—1/d (¢ even),

o =
©) T s,fb (@ odd).

Since {a|=|b| =1, s is bounded; and since a==b, Theorem 7 implies that
N;s diverges. On the other hand, if of three consecutive elements of s the
first two are related by one of the formulas in (9), while the second and the
third are related by the other formula, then this triplet of elements does
not enter the formation of any element of Ms. Hence M s has only finitely
many nonzero elements, and N, is laconic.

In case (ii) we again use the formulas (9), with a slight modification that
is needed to ensure the boundedness of s. We note that in each block |s,]
is an increasing or decteasing function of %, according to whether the first
or the second formula is in force. Therefore we choose s,=1 for n=n,—1
(#=1,3,5,...), and we let the first formula define s, for n=n,—2,5;,—3,
.., #;_y, while the second determines it for n=n;, n,-+1, ..., n, . — 1. Again,
|s.|=1. For even values of 4, the element #, ; of N;s involves unrelated
“loose ends”, and therefore it does not necessarily vanish; but it is small
when ¢ is large, because of the condition that #;,, —#n,~ cc.

Case (iii) calls for a further modification, since |s,| decreases under the
reign of the second formula but remains constant under the first. We over-
come the difficulty by inserting a harmless growth factor; that is, we retain
the second formula, but replace the first with

n— n;

§, = — B S 7 2
7 Rir1 — #g # 1/

Case (iv) is so similar to case (iil} that it needs no further discussion.

In case (v) we can no longer rely on the gradual modification of the ele-
ments s, given by one or the other of the formulas (9). On the other hand,
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the two formulas produce two blocks of elements in both of which |s,| in-
creases. If a==b, we can use a linear combination of the two blocks, with
coefficients chosen so that the two contributions cancel each other at the
right-hand end of the block that is thus obtained. We write

(10) S, = @ a P (g Sn<ng).

Then s,=0 for n=mn,—1. Also, s, is small for n=wu, and for n=wn,1.
Therefore, with the notation {=N,s, we see that /,=a—b for n=wn,, £, is
small for n=n,41, and #,=0 for n, <n<n;. Therefore N, is laconic.

If a=5, we replace (10) by the formula

(11) S, ={(n;—1—n)a" " (g Sn<<ng).

Again, s is bounded and Ms—0; since #,,—a?==0, N, is laconic.
In case (vi), we replace formulas (10) and (11) by the formulas

5, =amrTl el (mi—1<n<mn,,—2),
S,=(n+1—mn;)a™ " (m,—1=nsn,,—2)),

respectively.

It remains to treat case (vii), in other words, to show that if ja| =1
and f(z)= (2 —a)?, then N, is redundant.

Suppose again that n, ; —#;—> oo and that 3 is obtained frem N, by
deletion of the rows with indices #,. We shall prove that if Ms converges,
then either N;s converges or else s is unbounded.

Suppose that Ms—c. Then, for n1¢{n;}, the condition a*s, ,—2as,
+4~s§,.,—+¢ is satisfied; that is

a(@s,1—5,) — (@8, —s,_q) =c+o0(1),
as, 1 —S,=a"l{as,—s,_4) +alct+o(l),
@S9 — 8,01 =0"2(as, — S, 1) + (@7 +ac +o(1),
and more generally, for n,<n-1<n4+rk<n;q,
B8, — Spipor =@ F(as,— 8, )+ (@14 - FaFcto(k).

If a =1, boundedness of s implies that ¢=0. If as=1 and s}=s,—¢/f(1),
then Ms*—0. We may therefore restrict ourselves to the case where c=0,
and our hypothesis on s takes the form

(12) Az(un Sn) -0 (% +2¢ {%1}) ’

Now, if (12) holds also without its restriction on #, then N;s converges, by
Theorem 7. If (12) does not hold without its restriction, there exists a sub-
sequence of {n} for whose elements the quantity |A2(a%"%s,_,)| exceeds
some positive number 2%. For each of the corresponding indices #,, at least
one of the two quantities |A(a%%s,, ,)| and |A(a"1s,,,)| must exceed 7.
But since the first differences 4(a”s,) are nearly constant in the two blocks
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that precede and follow s,,_;, respectively, this implies that {a”s,} (and
hence {s,}) is an unbounded sequence. Therefore N; and M have the same
convergence field in the space of bounded sequences. Hence I, is redundant
in case (vii), and the proof of Theorem § is complete.

The question of laconicity and redundancy of Norlund matrices N,
where f is a polynomial of degree higher than 2, appears to be difficult. We
believe that the following statement holds.

Congecture. If { is a polynomial and f{0)==0, then N, is laconic if and
only if there exists an integer %2 and a polynomial g(z), of degree at most 2,
such that f(z) =g(7") and N, is laconic. (It is easy to prove the sufficiency
of the condition.)

5. Laconicity and redundancy of bounded convergence fields

Definitions. We say that the bounded convergence field of a laconic
Toeplitz matrix is laconic. If a Toeplitz matrix A is redundant, and if
moreover each of its submairices is either vedundant or has a bounded con-
vergence field greater than (4), then we say that (4) is redundant.

Theorem 9. There exist bounded comvergence fields that are both lacowic
and redundant.

Proof. let f(z)=2+41 and g(z)=(s+1)%. By Theorem 7, (N}) = (},).

By Theorem 8, (N,) is laconic, and it remains only to show that () is
redundant.

From the last part of the proof of Theorem 8, we can easily see that if
a matrix M is obtained by the deletion from N, of all rows with indices #;
ni<niq; 1=1,2,..), then (M)=(N,) if and only if lim(n;, —n;)=00,
and that M is redundant whenever the latter condition is satisfied. There-
fore (IV;) is a redundant bounded convergence field, and our theorem is proved.
It remains an open question whether every bounded convergence field is
both laconic and redundant.

Theorem 10. The bounded convergence field of the Cesaro-A transformation
18 redundant.

Let the matrix M be obtained by the deletion from C; of all rows except
those of indices #n, (n,<<#,.,, 7==1,2,...). We shall show that (M)=(Cy)
if and only if
(13) lim My safn, = 1.

Suppose first that (13) holds, and let s be a bounded sequence such that
Ms—>0. For n,Sn<n,. .,

(n+ Ai)‘lkz,os,a =(n+ 1)‘1’62;3,? + 1) 2 s,

R=wp+1
The first term on the right tends to 0 by the hypothesis on Ms. Together
with the boundedness of s, condition (13) implies that the second term on
the right also tends to 0 as #-—> oo, and therefore (M)=(C,).



392 P. Erpés and G. PIRANIAN

Suppose next that the deletions have been so extensive that (13) fails.
Then there exist a positive number % and a sequence of indices #; such that
#n, .1 —n,>hn, for re{r;}. Corresponding to each of these indices we choose
s,=1 in the first half of the block n,<n<n,.;, and s,=—1 in the second
half of the block. All remaining s, are defined to be 0. Clearly, Ms—>0
and C;s--0.

This proves our assertion, and Theorem 10 is established. We point out
that, with the notation used in the proof, M is laconic if and only if the
sequence {#,,,/n,} is bounded away from 1.

Theotem 11. If B is a regular Toeplitz matvix, then there exist laconic
matrices A and C such that (4) ((B)(C). In case (B} contains a divergent
sequence, the matvix 4 can be chosen so that (A) also cowtains a divergent
sequence.

Proof. To construct the required matrix C, we choose an increasing
sequence {x;} such that, for some appropriate sequences {%;} and {&;} of
integers (A;<Th;<<h;.q),

lim ( 3+ 3 )]b,,.4] =0.

0 el kish
We denote by C, the row of B with index #;, and we define { to be the
matrix whose + row is C,. Since C is a submatrix of B, the relation {C) > (B)
holds. To see that C is laconic, we note that if D is a submatrix of €, and
if {s,} is a sequence consisting of 0’s, except for 1’s in the blocks A< n <k,
corresponding to the rows deleted in the passage from C to D, then Ds—0
while Cs has the two limit points 0 and 1.

The other half of the theorem is trivial in case (B) contains no divergent
sequences. In the case where (B) contains a divergent sequence x, we may
suppose that Bx—>0. But because we shall apply the construction in the
proof of Theorem 2.2 of [3], we need the hypothesis that our sequence has
two limit points other than 0. We therefore replace x by a sequence y={¢*’",};
if #,—> oo slowly enough, then By—0 and ¥ has two limit points « and j
(x=F0p).

There exists a sequence of integers %, such that, in the terminology of [3],
Bz converges whenever z apes y over {%,}, and such that y (ky,) —>o, ¥ (ky,5)— 8.
With each index » we associate an index p=4p,, selected from the. greatest
two integers k, less than # in such a way that the sequence {(v,— v, )%}
is bounded. For each #, the elements a,, of the matrix 4 are defined by
the rule

¥, — Yy,
2 Ay = It » @, =0 (k # 7, p) .

" = iy 3

T e — Yy, Yn— Vs,

The convergence field of 4 consists of the sequences that ape y over {k,}
{see [3, pp. 141—142]), and it is therefore contained in the convergence
field of B. To show that A is laconic, suppose that we have obtained D by
deleting from A the rows with indices n;. If #;4{p,}, then the »;* column
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of A contains only one nonzero element, namely its element on the diagonal.
It follows that if infinitely many of the #; do not belong to {p,}, then (D) is
larger than (4); for if z,=0 except for ne {n}\ {p,}, then Dz is the sequence
{o}. It remains to deal with the case where all except finitely many of the
{n;} belong to {p,}. Here we note that there exists a sequence {¢,}, with
&,= -1 and e,,=(—1), such that for z,=¢,y, the transform Dz is again
the sequence {0}. Since z does not ape y over {k,}, 4z does not converge.
It follows that A4 is laconic, and the proof of Theorem 11 is complete.

We do not know whether Theorem 11 can be strengthened so that it
asserts the existence, for each divergent sequence wx in (B), of a laconic
matrix 4 such that xe(4)(B).

Theorem 12. If B is a regular Toeplitz matrix, there exists a regulay
matvix E such that (E) is vedundant and (E) > (B).

Proef. We point out that it is not sufficient to construct a redundant
matrix £ whose bounded convergence field is (B). The matrix E that we
seek must have the additional property that each of its laconic submatrices
has a larger bounded convergence field than B.

Let the symbols C; have the same meaning as in the proof of Theorem 11,
and let E be the matrix whose ™ row is the vector sum (C; + Cp+--- -+ C,,)/n.
Clearly, (£)> (C)>(B). If M is obtained by the deletion of all rows of E
except those of indices n, (n,<<m,.;; ¥=1,2,...), then M is again laconic
if and only if {n,,,/n,} is bounded away from 1, and M is redundant and
equivaleni to E if and only if %, /n,—1.

Remark. We defined laconicity and redundancy with reference to the
space of bounded sequences. Naturally, we could have used a larger or
smaller sequence space S. However, the larger the space S used in the
definition, the more difficult becomes the construction of a nontrivial redun-
dant matrix. Of course, we can always construct a redundant matrix by
overloading a preassigned matrix with superfluous but harmless rows. For
the case where S is the space of all sequences, we obtain a more interesting
example if to a matrix A for which 4s—0 implies that either s,—>0 or
s,— oo we adjoin infinitely many rows of the identity matrix. But we do
not know of any matrix whose convergence field is redundant relative to the
space of all sequences, in the sense analogous to that of our definition at
the beginning of this section.
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