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1. Introduction 

Procedures for numerical evaluation of integrals have been devised but  rela- 
tively few methods of obtaining error estimates are available. Among the authors 
who have previously considered this problem are yon MIsEs [1], SARD [2] and 
AHLIN [12]. With minor exceptions the procedure of these authors is to express 
the error as a high order derivitive of the integrand; such an error is not always 
easy to bound. AHLIN develops a 2-term bound for a double integral using the 
Newton divided difference polynomial. He also expresses the error in the form of 
a contour integral, but he does not  give any method of bounding this integral. 

In this paper we derive four methods of bounding the error 

E,~ ..... ~. (/) = f... f ~:~(~) ... ~:~(~)/(x~ ..... :) d:... d::-- 
( t . t )  ,~ a,, 

- Y."" ~ ~'~,~1..-w,,~,l(~,, .... :~) 

of repeated Gauss-type quadrature. The applicability of the various procedures 
depends upon the properties o f / ,  the weight functions w~ (x s) and the limits of 
integration. It  is possible tha t  only one, or all of the procedures (each with its mer- 
its and disadvantages) can be applied to a particular integral. 

In equation ( t . t )  we assume that  wi(x s) (x~) sh ( i =  t ,  2 . . . . .  n ;  k----0, 1, 2 . . . .  ) 
is positive and integrable (.~) over the integration strip (ao bi) which may be 
infinite. The numbers x~ are the zeros of polynomials ihs,~ (x ~) (Ps,~ of degree m s 
in z ~) orthonormal over (a~, b~) with respect to ws(:~), and the ws, ~ are the corres- 
ponding Ganssian integration weights. Under the assumptions on w s (x~), the zeros 
z~ (k~ = t,  2 . . . . .  ms) are distinct and located in the open interval (a o bs) and the 
ws, ~ are all positive. 

Let  us establish a more concise notation. Let  K(j) denote the set of integers 
(k i, kj+ 1 . . . .  , k~), ~ = t, 2 . . . . .  n, where each k s ranges from i to ms. Let  R ~ be the 

t 
region of integration in (t . t) .  We put x/----x 1, x s . . . .  , x j, d V ( a  J) ---- [-[  w~(x s) dz s, 
I (~v") ----- /(~) - - - - -  / (~i, ~+I), and denote S--1 

E w,/(~ , ~;) .... ... ~:,,~,/(~-~, ~ ..... x~,), (i=I, 2 ..... ,~). 

The work of th~ paper was done by the author at the Unive~i~ of ~dberf~ 
in 1965--66. 
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Whenever  there is no confusion, we shall suppress subscripts  and superscripts.  
We shall therefore often write x for x i, k for k i, w k for wi, ~,  p , ( x )  for ihj,~(x), x 
for x ~, y for yX, m for mj,  and  m for m x, m~ . . . . .  m . .  Thus  the equat ion (t.1) can 
be wri t ten 

(1.1)' E,n(/) = f t ( x ) d V ( x )  -- Z w ~ / ( y , ) .  
lg# s~K(1) 

I t  is of course presumed tha t  the integral  on the r ight  of (1.1)' exists. More 
precisely, this implies tha t  given any  e > 0 there exists a compact  subset  S n of R n 
such tha t  

i = 1  
(t.2) 

where we define 

(t.3) 
b 

~ = f w,  (x) (x) k dx,  k = O, t ,  2 . . . . .  
t l  

I t  is convenient ,  further,  to define R i = × {[a~, b~], i = t ,  2 . . . . .  I~ and S i = 
× {[c i,  dl], i = t ,  2 . . . . .  1~ where i ranges from t to n, and each interval  [ci, di] 

is a compac t  subset  of [ai, b~]. Then  with  

(t.4) N = m a x  / (x)  l 
x E ~  

we assume in addit ion to (1.2) t ha t  

(,s) f wj(*){max[N.l*--c;+2d;r=,]}a.<,~g 
(aj, bj)--[¢t, ~] 

One assumpt ion  is common to all procedures:  we require t ha t  / have a bounded 
2 m / t h  part ia l  der ivat ive wi th  respect  to , i  on [ci, di] , / = t ,  2 . . . . .  n. This assump- 
tion suffices for the first of the four procedures. For  the remaining procedures we 
assume that ,  with x, y real, there is an open set ~ of complex numbers  ~ = x + ] f ~ y  
enclosing [ c i , d i] such that ,  with z i = x ~-x, ~ , ~ + ~ and C i = S i -  x × 8. i X ( S"  - -  S i) 
(a Cartesian product) ,  /(zi) is an analyt ic  function of ~ regular for z ~ ~ C i.  

These la t te r  assumptions  extend those of DAvis E3], MCNAM~E [4], H:iMMER- 

LIN [5] and STENGER [6] in the one-dimensional case. W e  combine the procedures 
of these authors  in an a t t e m p t  to  also obta in  useful results for the  case of repeated  
Gauss- type formulae.  

Al though we assume t h a t  the limits of integrat ion in ( t . l )  are fixed, bounded  
or unbounded points, the results of this paper  can also be  made  to include integrals 
of the  form 

f ... f g(x') H a:' 

where ~01 and  ~1 are constant ,  and % =  ¢ i ( ~ - x ) ,  ~i  =~i(a~/-X),  j = 2, ~ . . . . .  n ,  are 
differentiable and bounded a lmost  everywhere,  since [10, le~] the sequence of 
linear t ransformat ions  

(t.7) x ~ _  ~I-FV', + u ~  (W~-- ~)  (i = l ,  2, . . . ,  n) 
:2 2 

1 AHLIN ['12] obtains this result for the n = 2 case. 
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will transform the above integral (1.6) into the integral 

1 1 

0.8) f ... f G(u") J h du' 
- - I  - - I  i=Z 

where 

(1.9) J = H [ ~ ]  

and G = g  under the transformation (1.7). 

2. General Procedure for Extending One-dimensional Bounds 

The following procedure due to NIKOL'SKII [11] (summarized in [13] p. 
72--75) enables us to reduce the error of repeated integration to that of bounding 
the error of single integration. 

Define 

(2.1) Ij= f Y, ~+l/(~d,~+l)av(~), ( /=o,~ ..... n) 
St  s E K ( i + I )  

Here I ~ =  f / ( ~ )  dV(x~), and I o is the repeated sum on the right of (IA). 
8 n  

We thus obtain 

Theorem 2.1. Let Ij  be defined by equation (2.t). Then 

E m (1) = I~ -- Io + r (S ~) = ~ (Ii -- Ij_l) + r (S~). 
i = 1  

(2.2) 
In (2.2) 

(2.3) 

and 

, ( s  ~) = f / (x ") a v  (~) 
/ l n - ~  

I i  - -  I i _  1 = wi(x)  / (ad -1, x, dx - -  
Rt-x  s r K ( j + I )  k a /  

(2.4) 
~t 

- ~ w d ( d  -1, x~, y'~+l)J- d V ( ~ - l ) .  

A bound on r (S ~) is given by (t .2). On inspecting (2.4) we observe that  we can 
apply one-dimensional procedures to bound the quantity in braces on the right of 
this equation. Moreover, if for each j we can obtain a good bound for the quanti ty 
in braces on the fight of (2.4), then using (2.2) we can also obtain a good bound on 
the error E m (/). 

Then 

(2.5) 

Corollary 2.1. Let 

] Ii-- Ii-z] < Bi  (mi), J :  t ,  2 . . . . .  n. 

I E . (1) 1 -~ jX1B~ (~;) + * ,=IH a~ 

The above theorem and corollary are of course applicable if the xi,k~ and wi, ~ 
on the fight of (t A) are not Gaussian zeros and weights, i. e. to any other quadrature 
scheme. 
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In  the following sections we shall give four different procedures for obtaining 
B/(mi). 

3. Functions f with 2mf th  Partial Derivative 
Bounded on [cj, dj] 

The Hermite interpolant polynomial of degree 2m i -  t in x i (whose coefficients 
m a y  be functions of (x i-x, y/+X)), H/(xi), satisfies 

Hi (xk) = / (d - l ,  xk  ' y~+l) 
(3" t )  O H i ( x )  - -  8[(xi-l'x'Y~+X) at x = x k ,  ( k = 1 , 2 ,  . m) 

~x Ox "" ' 

also satisfies 

I (d-L x, y~+') - ~/(x) 
(3.2) 

--  (2m) t (O,:)~m / ( '¢-" Z(X), ~+1) ,C~ [Pm(X)]~. 

In  (3.2) Z (x) lies between the largest and smallest of x, x a . . . . .  x,~, and xm is the 
coefficient of x m in p~ (x). 

I t  follows that ,  since Gaussian integration is exact  for polynomials of degree 
2 m - -  1, we have 

wax) l(x;-L x, y~+') dx - ~ ~ t(~- ' ,  x~, y~+l) 
dj 

(3.3) _ ~;,~ a~m [ 
(2m)! ~ . m  /(~d-I '~ 'Yf  +~) - -  ~:i(x) EP~,(x)32dx + 

ct 

+ f wi(x) Hi(x ) dx 
[~,bj]-[~,dj] 

for some ~E [c/, d/]. On combining (3-3) with (t.2), (t.4) and (2.4) we obtain 

Theorem 3.1. Let I i be defined by (2.1). 

I n  (3.4) 0 =<e i <=ffioe, and ~i,,,~ is d~e coe[]icien~ o/x"~ in pi,,,~(x). 

Constants ~/,mj for well-known special cases are given in Table 2. 

Example 2 3.1. 
co 1 

E,,,,,,,,,(t) = f  x~'e -" f V t --y'cos(ax + b y ) d y d x - -  
x = O  y = - - I  

m l  m l  

- -  Z X wl,~,w2,,c°s(ax~, + bY,), 
p = l  v = l  

Note that  cos (a x + b y) = cos (a x) cos (b y) -- sin (a x I sin (b y) and we can evaluate 
the above using m a + m 2 points instead of m~m~. 
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a and b real and ~ > -- ~. Here 

,,17,__ g_k ,ml/'(,,~ ++,+ 0 ,., l m 2 - , . , , ~ l + i  
(2,~) t = (2~)t 

(2m,)---~ = (2~,)~,. . .+I - ~  ~~-/~) 

~ '  cos (a x + by) [ ~ b ~'~ in the region 0~'~ (ax +by)] ~ a  ~ ,  Since c o s  _ 

of integration, we find, using Corollary 2.t that  

- -  2 / ' ( ~ + 1 )  1 ~ - ]  "J- 2n½ ~,4m~/ J" 

Thus, while there is no restriction on b, we require that  [ a] < 2 in order that  our 
bound tend to zero as ml-+ oo. For example, with 0t = 0, a = ~-, b = 2.45, m~ = 4, 
mz=5 ,  the above estimate gives 1E,,.,,,,.(t)1<6.7×~o -8. The actual error is 
2.6 × t0-L 

4. Functions/' (~J) Analytic and Real when the Components of z J are Real 

We first note the foUowing Lemma. 

Lemma 4.1. Let u and v be real, let ] (u) be real and let /(u + V - ~  v) be regular 

in the ellipse ~ (e, d) wi2h center a c + d /oci at (c, d), major and minor axes d- -c  a 
2 ' 2 

and d--e  a~T-~-t-- t, respectively, wherea> 1, o = a  + ~ t. Then 
2 

(4A) inf { sup I /(u) - P , . - ,  (u) l} < { M ( a ) ~ - "  
/'i,.-I u~ (c,~ 

where P2m-1 (u) is a polynomial o~ degree 2 m - -  t in u, and 

(4.2) M(O)= sup IRe/(u+U--~v)l. 
w+fzio~ Cp{c,a) 

The proof of Lemma 4.1 IoUows from a result of ACHIESE~ (see e.g. [8] page 87). 
The right hand side of equation (2.4) is a linear functional in / .  Furthermore, if 

we replace c[, d i by ai, bj respectively, then any polynomial Ps,~_x(x i) of degree 
2m i -  t in x is in the null space of this functional. In particular, this is the ease for 
the polynomial PJ=l-a (xi) whose coefficients may be functions of (ad -x, ~+l),  which 
minimizes the maximum deviation of t(ad-L x~, ~+a) -P~.~_l(xt) over [c i, d~.]. 
Thus 

6 - x t - ~ =  / Y ~ + ~ ×  
~ - I  s EI~{J+I) 

(4.3) X t(x) [](M -x, x , g  +:t) -- Pt,~-x (x)] dx -- Z wk [j (+e i-x, xh, g+l )  _ 

- P,,,+_~ (x)]]. dV(d -~) + • i ,J 
where 

(4.4) 8 j = - - _ f  f E ~s+zP t ,~ - l (x )dxdV(~- l )  . 
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Using the notations of the introduction, let ~i=d'Q~(ci, di) where 8Q(c, d) is 
defined in Lemma 4.t, and let Ci, z i be defined as in the introduction. Let 1(~') be 
a regular function of ~ for zQC i, and define 

(4.5) Mi(o i) = sup[Ref(zi)[. 

Let 

(4.6) r°i = 8 inf M i(0) ~-,~. 

Then, by Lemma 4.] it  follows that  

(4.z) jnf { sup t/(~)- v,-,-l(~)l} < ~ .  
- ,m~-t " x E  S* 

In addition, it  follows by comparison with the Chebyshev polynomials s T,~(x), 
that for x ~ [a i, hi] - -  [e i, di], 

(4.s) IP,~-.(,)l < 2'~-'(N +~;){ma~[t, I,-- ~ ' ~ - 1 ] }  
where ro i is defined in (4.6), and N is defined in (t.4). 

We also assume that  the strip [ei, di] completely covers the zeros of pj,,n(x). 
On combining the above results and using (1.2) we finally obtain 

Theorem 4.1. Let / (z i) be an analytic/unction o/¢ regular/or g E C i ,and real when 
is real. Then J I i -  zi_t I < B i (mi) where 

p$ 

(4.9) Bj (mi) = (2co1 + el) H lz~ . 

In (4.9) co i is defined in (4.6), and 

(4.t0) e i _~ 2*'~-* (N + oJi) e, 

where N is defined in (t.4). 
Example 4.1. Let ci= --~, di=o~, and let 

sup [ Re / (d  -x, u + V~-tv,  #+1)[ = ~ (u, v) 

where u + y--~-tv ~8~ ( -  =, =), and where 

(i) qh(u,v) g M ( t  - - c v ) - a , a , c , M > O , O < v < c - 1 ;  
(ii) ~og(u,v) ~ _ m # ~ , b , A , M > O , O < v .  

Then it is readily shown by minimization of 9 (,tu, ,cv) (v + Vt - -~ ) - l* '  with 
respect to v that  

(i) m i n i m a x  ~ol(u,v) O - " n } < M [  2era ] ' [ t + ( h ~ + l ) t ]  - ' ' .  
, . , , ~ , , .  k . c ~ ¥ ~ . ) r  , 

O tu,*E~?p [ 2 ~ + x m J  

where in (i) k = ~ e  and in (ii) k = b ~  a. 
Note that  although ~(u, v) may be larger along the u axis than along the 

axis, we can always bound ~ (u0 v) as a function of v since u and v are constrained 

* Let P .  (x) be any polynomial of degree m, and put M = ,en~axfl [ P,. (x)[" Then for 
an l ,*l > ~, l P,,,(x) l < M t T,. ( x ) [ .  Here T,~ (x) is defined by T,. (#) = cos m 0 for x ---- cos B. 
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to be in the interior of the ellipse d'~ (-- =, ~). 
Example 4.2. 

t +a'x=y ~ sech [c(x + y  +z)]  dxdydz 
t=--oo y=--I x=--I 

where a and c are real. In this example weight functions are l/t -- x 2, t and e-e ;  i.e. 
we assume that Chebyshev-Gauss (with respect to x), Legendre-Gauss (with respect 
to y) and Hermite-Gauss (with respect to z) integrations will be used. Although 
both sech [c(x + y  +z)]  and (t +aZx*y=) -z have singularities that  are functions 
of the remaining variables when one of the variables is complex, these singularities 
are uniformly bounded away from the region of integration. 

1 t 0 < v <  n We have ]sech[c(z+y+u+V~-lv)] t  ~ cos(cv) ~ 2 ' z--b-' 
1 - -  --cv 

r t  

where z, y, u and v are real. We furthermore have It +a=yS(u + V-~-lv)2] -1] _< 
t 1 ( i .a2v=y ~ ~ ,  o < v ~ t ,  and therefore 

] seeh[c(u'4"]/-'~-~tv) WyWz] < ( t - -av)  i t - -  ) 
+ a * y * ( u + l / -  t v)' _2L v " 

a 2 Assuming e.g. ~- > ~-, it follows by Example 3.t above that the minimum of 

max I sech [c (u + ~ - - 1  v +____y +___z)] I (v + V ~ + t ) -  = = 
",y,'[ 1+a*y=(xt+V-~-tv)= 

with respect to v < a -x is less than 

2 m e  [ 1 + (a :+  1)'1 -~m art  

Moreover, for 0c and m large, 

co oo 

2 f  e-"dz  < 2fe-~'zS~dz < ~s= msl e -='. 
at ~t 

oo 1 1 
f e - "dz=V-~ , fdy  = 2, fV t  - xSdx = ~ r ,  

- -oa - -1  - -1  

substituting in equation (t 9) (Theorem t), and setting m a = m= = m, we get 

- ' '  t E.,, ,., ,.. (/) < ~! ( , , ( t  + 

32.se  (.[t -'t-(2ac/~t)=] ~ + 1) -=~ -I'- 
(*) + ~ [t + (2=c/~)'i" 2=cI~ 

+ ~t - t  ~ 2 ~  2~m,-x msl e -='. 

Let us consider for example, the case a=t/3 ,  c=t]t0.  We must choose = so 
that  the strip [ - -=,  a] completely covers the zeros of the Hermite polynomial 

Thus using 
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Hm,(z). Using m 3 =  7, we m a y  choose 4 ~ =  8. Wi th  m----6, we obtain 

[E,,e,v(/) [ < z~8(6.44 + 3 . 6 9  + .16) × t0-'---~ 5.7 × 10- ' .  

B y  ac tual  numerical  evaluation,  Ee, o, v (/) = 0.8 × ~0 -s. 

The  slow convergence of the above bound (*) is due to the singularities in the 
complex plane and does not  reflect upon the method.  Indeed bounding the 2 m / t h  
part ia l  der ivat ive of the integrand would be a formidable  task. Nor  can the methods  
of Sections 3,5 and 6 be easily applied to this case, especially for a and e large. 

5. Functions I(z~ ) Regular in [~1 ~ 1 ,  [aj, bj] -~ [ - -1 ,  1] 
The  method  to be  developed in this section is applicable to  functions / regular  

for z / = x i-1, ~, yi+lE Cj where C i is defined as in Section t and  ~i  = {~ :~ is complex 
and [~[ =<t}. We assume tha t  [c i, di] covers the zeros of p L y ( x )  and tha t  ](z ~) 
has a convergent  power series expansion 

OO 

(5.t) / (zJ) = Y~ F,. ~ (~ -1 ,  if+l) ¢~, z;~ C i. 
k=0 

The  bounds we shall obta in  are useful whenever  we can obta in  good bounds on the  
coefficients F/,~ in (5A). 

We  define numbers  e~ (these will in general  depend on mj) b y  

(5.2) e~ = ~ - X ~ , , ( x i )  ~, k = 0, 1, 2 . . . . .  
/=1 

Tha t  e/k----0 for k = 0 ,  t . . . . .  2 m i - - t  is well-known. In  the case when w i ( x ) =  
w i ( - -  x), e~,+x = 0 for all integers k, and it  is fur thermore  shown in [6] tha t  

/ ~  > e'~ > o, k < m i. 

Using the above facts and  definitions and  the  nota t ion  of Theorem 2A we 
find, a f ter  a little manipulat ion,  t h a t  I i -  I i_  1 (equation (2.4) wi th  c f = a i = - -1 ,  
d i = b i = 1) is given b y  

(5.3) xj-x~_~= f y ~ + '  ~, 6 V , , ~ ( ~ - ~ , y { + ~ ) d r ( ~ - ' ) .  

Using Corollary 2A, we thus have  

Theorem S. 1 . /1  the expansion (5.1) converges/or z i e C i , then [ I i -- I i_  I [ ~ B i (mi) 
where 

(5.4) Bi(mJ)-- ' i (mi)" *=oF/'~(/=/~l/~) 
provided the infinite sum on the right exists. Here 

(5.5) ~*~ = sup . 15 ,~ (d -L#+ ' ) l  
ad-lE~gt-1, y~+IE(S -~gf) 

4 Actually ~ = (2ms)~ suffices. However, our particular choice of ~ gives us a better  
bound on the final e term above. 



2 0 8  F .  STENGER:  

and 

(5.6) ~,i(mi)= sup 14 +,1. 
k=O, 1, 2, . . .  

Table t.  Error constants/or theorem 6.1. 

w(x)=( u,(x)=O-~)~ w(x)=O-x') -~  
kn 

n ) (n) ~ (n) ~ (n) 
2 .21164 .09817 4 .67495 
3 .t0222 .03988 3 .44001 
4 .06101 4 .01965 4 .32799 
5 .04051 1 .01118 2 .26158 
6 .02886 7 .0o697 88 .21761 
7 .02161 8 .OO464 43 .18634 
8 .01679 7 .00324 77 .16294 
9 .01343 0 .00236 oo .14477 

t0 .0t098 3 .00t76 88 .13026 
t2 .0O773 98 .00106 82 .10850 
t6 .00443 63 .OO047 6t5 .08134 7 

* [9] also contains zeros and weights for other quadrature schemes. 

Unde r  the  assumpt ions  on wj (x) the  numbers  vi (mi) a lways  exis t  and  can be  
c o m p u t e d  using equa t ion  (5.2). Some of these corresponding to  three  different  
w i (x) are given in Table  ¢ above.  

E x a m p l e  5.1. 
1 1 

f r " - ' - , ' - ' , . .  E.~,,~ (1) = j ~  ~ w, ;,j.yh. • 
--1 --1 '=  k = l  

I n  this case 

so that 

~ xk+4 yk+a 
x 4 y~ e* y = k 1 

k=0 

ylk-a  ~ 2k-1 = 0 ,  F , , ~ k ( y ) -  ( 2 ~ = ~ ) t '  
and  

x~k+~ F~ ~k-1 = 0;  k = 1, 2, 3 . . . . .  F , , , k ( x ) -  ( 2 k - 2 ) t  ' 

Hence  app ly ing  Theorem 4.2 we obta in ,  using 

oo I e 
~ =  #, ~ =  2, and ~ Z-F <-~ ,  

i= 

- -  [ • k = 0 ( 2 m l + 2 k - - 4 )  l -~- 2 k = o ( 2 m s + 2 k - - 2 ) t  

~ - e  / e \ 2 m 1 - $ . 6  - -  
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For example, with m 1 = 6, m B = 5 using the above estimate, 

o < Em,,~(I) < 6.t x 1o-~. 

By numerical integration we find that  E~ ,  ~ {]) ~ 3.9 x 10 -s. 

6. A s y m p t o t i c  Error Es t imates  

The method to be described in this section is particularly in the case when 
/ (~) is an entire function of ~, or in the case when / (z i) has singularities far from 
the region of integration. I t  is demonstrated for the case of Gauss-Legendre 
integration in [4] that  singularities of / (z  i) close to the region of integration can 
also be suitably accounted for in obtaining error estimates. However, in attemp- 
ting to extend that  procedure to higher dimensions, difficulties arise due to the 
fact that  singularities of ] (z i) are, in general, functions of n -- t variables. 

Let us examine the contour integral 

f wj (x) f (~-~, ~, ~+1) d~. (6.1) JT'- 2~V:~ (x-  0 Pi,.~g) 

In (6.t) L is the circle with center at the origin and radius 0 + ~ =  max ([ ci[, di) 
+ ~ where ~ is a fixed positive number. We assume that  ] (M-l, ~, ~+x) is a regular 
function of ~ for ~d-xES i-z and [~[ £ e +~}. I t  follows from (6.t) tha t  

Integrating (6.1) and (6.2) from c i to #i and interchanging the order of inte- 
gration in the repeated real and complex integral, we obtain 

b~ 

(6.3) ~ h=~ 

-- 2~W'-~ (x-¢)#~(¢) 
L ~4 

where 

,6.4) e ] =  f • 
{a.l, bf)_(ed,dq} 1¢--1 (X,-- X~) p . (  ,) 

and 

f p.,(x) dx. (6.5) w~, = (x~(;),) p~,(x,) 

We now asymptotically approximate the inner integral on the right of (6.3). 
We assume that  w(x) =O(I x t" e-I'll ~) where r and ;t are positive numbers. I'n (6.3), 
let ~ = m a x ( a ,  --~) and /3=ra in  (b, ~) where [¢[ ----~+~ and where ~ is a fixed 
positive number. Thus 

(6.6) = a 

+ ¢#~(¢) 

t5 Numer. Math. Bd. 9 
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Under the assumed exponential  form of w (x) and the orthogonal i ty  proper ty  
of the polynomials pro(x), the first integral on the right of (6.6) tends to zero at  an 
exponential  ra te  as x-+a or b, and hence does not  contr ibute towards an asymp- 
tot ic  sequence of the form {~-~}. Similarly expanding t/Pro (~) in powers of t /~,  

(6.7) f w(x)~.(~) dx-- " ; '  +O(t¢i-"- ' ) ,  I¢t-~°°, 

where ~ is the coefficient of x ~ in Pm (x). Fur ther ,  

/~(x)p~(.) {:+1 :+'~d~ 

(6.8) # 
~_ j'w(x) l ,~(~) 

= o ( 1 ¢ 1 - " - ' ) ,  I¢[-~°°- 
We subst i tute the above results into equation (6.3) to obtain 

Lemma 6.1. Let ~¢m be the coel/icient ot x m in Pm (x), and let w (x) = 0 ([ x [' e -1 • I~), 
/or both x-+a and x-+b, where r and ~ are positive numbers. L a  L be the contour t~1 = 
0 + (5 where ~ is a/ixedlbositive number and where, with o¢ >= max  (a, - -  O) and fl <_ rain 
(b, 0), 0 is chosen su]/iciently large so that the conditions (t.2) - -  (t.5) are satis/ied. 
Then 

l j  - -  l i_ I = f Y.. ~+ i  x 
~ - x  sEK(/+I)  

(6.9) I y~+X) ~ - '  x 2,~V-~ [/('~-~'~' [t +o([~[-,)] 
L 

In order to obtain an estimate on the bound of the difference I i -  I i_1 in (6.9) 
we again prefer to e x p r e s s / ( ~ - 1 ,  ~, y~+l) as a positive function M ( R )  of R = [~1 
which bounds / on the compact  set 8 i-1 X (8 " -  8i). Tha t  is, let 

(6.~0) M (R) = snp [t (~J-',  ~, # + ' )  I • 

On replacing the quan t i ty  in square brackets  on the fight of (6.9) by  t,  we 
obtain an asymptot ic  est imate on the bound of I i - - I i _~ .  

T h e o r e m  6.1. Let M i (R) be de/ined by (6A 0). Then (I i -  Ii_1) <= B i (m/) where/or 
large R 

(6.tt) B i ( m / ) - -  " ~  
- -  ~ /~ R ~  " 

Example 6.1. Let  M i (R) ~ A (l - - c  R) -~ where A, a and c are positive, 0 ~ R < 
c -1 .The minimum of A ( l - - c R ) - "  R -2~ qua function of R occurs for R = c  -1 

(t + ~-~)-~ aud is A e , '  (~ - ) ' c2 '~ ;  hence 

[ I '  - Is ' - ' ]  ~ /fl0~ ~ ] A e " ( - ~ )  "cv~" 
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In  the case when the integrat ion s tr ip  is bounded (and c < ~), we can choose m 
sufficiently large so tha t  the above error es t imate  is as small as we please. On the 
other  hand,  if the range of integrat ion in the ~th variable is infinite and / has 

Table 2. Error constants/or theorem 6.1 

Weight Function (~ _ x)~ (t + x)/~ x ~ e - *  _ . s  

0 t > - - t , f l > - - t  0 t>- - I  

Orthogonal Jacobi Laguerre Hermite 
Polynomial [ interval(--l ,  1)~ [interval (0, oo)] ~interval (--o~, c~)] 

I'(1 +0~+fl) B(1 + ~ + n ,  I + f l + n ) *  2n 
/'0 + ~ + f l + 2 n )  

* B (z, y ) =  r (x )  r (y)  r ( x  + y) 

complex singularities, R will remain bounded.  This implies however, t ha t  the 
largest  zero of Pi, ~ is to remain bounded,  which in turn  bounds m i. In  this case, 
the  Gaussian quadra ture  scheme will not,  in general, converge, and as in the case 
when evaluat ing a function by  its a sympto t ic  expansion, we m a y  find in this case 
tha t  there is a "bes t "  m i which minimizes [ I j -  Ii_ll .  

Example6.2. M i ( R  ) <=A exp {bR ~'} where A, b and  2 are positive. Assuming 
wi(x)=O(e-t*!a), x-+a or b, where f l > 2 ,  all Gaussian quadra ture  schemes 

converge in this case. We  obtain,  taking R ---- ~ b2 } ' 

,I:-- Ii_x[ ~ (i=I-ll lz~o) n~'~ A ( eb A I 2°*Ix 

Example 6.3. We app ly  the theory  of this section to bound 5 

?? /  Er~,,,,~, ,n.(/) = 100 e-y-*' Jo({ y) cos z dx dy dz 
x*- -4x  +104 

Z ~ - - O 0  y = O  X = - - !  

m, ~ m, Jo(~y~) cos,k, 
- - t 0 0  ~, • X WLk, W2,k, Ws, k, x~ l - -4xk ,+104  

/ ~ = t  k , = t  /**=t 

where Gauss-Legendre integrat ion is used with respect  to x, Gauss-Leguerre, wi th  
respect to y,  and Gauss-Hermi te  with respect  to z. T h u s / ~  = 2,/x] = t , / ,~ = V  ~. In  
the range of integration,  } t 00/(x 2 -  4 x + 104)l =< 1, [Jo ({Y) [ ~ t and I cos z I _ t .  
In the complex plane, t00][~*-- 4~ + 104] has poles a t  ~1 and ~ (~x = 2 + 10i, 
~ 2 = 2 - - t 0 i )  where [~sl > t 0 ,  s = t ,  2. Hence MI(R ) ~ ( t - - R ] t 0 )  -x. ]Jo( ~ ) [  

s Observe tha t  this integral can be evaluated with m 1 + m ~ + m 3 points instead of 
with mlm,m,, by ~-riting it in the form 

oo ¢o 1 
/F(z) dzfG(y)dy/g(x)dx. 

- o o  o --1 

15" 
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-n-R-} e + 0  (l~[ = ; and cos ---Ms(R ) = R ) .  

Using Table 2 and applying Theorem 6.t, we find that  

3 
Iz;-  z;_al 

i=t 

- -  ~ 8 m , /  J 

3.54(1.70 + t.70 + t.44) ×10 -s ~ t.7 × t0 -4 

with m a = 2, mz = 6, m s = 5. The actual error when evaluating the integral by  
numerical integration formula is 0.8 × 10 -5. 

Conclusion 

In  order to illustrate the four methods of bounding the error of repeated 
Gauss-type quadrature, we have given an example for each. I t  is worthwile to 
observe that  it may  be possible to apply more than one procedure to a particular 
integral; the user should choose that  procedure which best suits a particular 
integrand. 

Although the procedure of Section 3 is applicable in all cases, it is conveniently 
applied only to integrands for which high order partial derivatives are easily 
obtained. 

The procedure of Section 4 is applicable to integrals over bounded and unboun- 
ded regions. I t  is applicable only to integrands / which, when considered to be 
functions of complex variables, are analytic, and real when these variables are 
real. The sharpness of the error bounds obtained depends on how well we can bound 
the real par t  of ] in ellipses of complex numbers enclosing the integration strips. 

In  Section 5 we have given a procedure for integrals over bounded regions sym- 
metric about the origin. For  this procedure we require the integrand to be regular 
in a circle which includes the integration strip. The sharpness of the error bounds 
depends on how well we can bound the Taylor series coefficients of the integrand. 

The procedure of Section 6 is applicable to integrands regular in large circles 
enclosing the integration strips. Here we obtain not error bounds, but  asymptotic 
estimates on these bounds. 
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