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1. Introduction

Procedures for numerical evaluation of integrals have been devised but rela-
tively few methods of obtaining error estimates are available. Among the authors
who have previously considered this problem are von Misgs [I], SARD [2] and
AHLIN [12]. With minor exceptions the procedure of these authors is to express
the error as a high order derivitive of the integrand; such an error is not always
easy to bound. AHLIN develops a 2-term bound for a double integral using the
Newton divided difference polynomial. He also expresses the error in the form of
a contour integral, but he does not give any method of bounding this integral.

In this paper we derive four methods of bounding the error

by bw
Ep,,....;m (F) =a{---a{w1(x1) e @, (") F(#, ..., M) da L dat —

(1.4)
my M 1
— Z-'-Zwl,,,l...w,,,,,”f(x,,l,...,x',:ﬂ)
Ry=1 Aus=l

of repeated Gauss-type quadrature. The applicability of the various procedures
depends upon the properties of 7, the weight functions w;(*’) and the limits of
integration. It is possible that only one, or all of the procedures (each with its mer-
its and disadvantages) can be applied to a particular integral.

In equation (1.1) we assume that w,(#’) (x)%* (=1, 2,...,7; k=0,1,2,...)
is positive and mtegrable (&) over the integration strip {(4;, b,) which may be
infinite. The numbers «}, are the zeros of polynomials p; ,,, (" ) (P, m Of degree m;
in #*) orthonormal over (a;, b;) with respect to w, ("), and the w, , are the corres-
pondmg Gaussian integration weights. Under the assumptions on w, (#’), the zeros

24, (k;=1, 2, ..., m,) are distinct and located in the open interval (s;, b;) and the
w; 4, are all positive.

Let us establish a more concise notation. Let K(j) denote the set of integers
(Rjs By, ooy ky), =1, 2, ..., n, where each k; ranges from 1 to m,. Let R” be the

region of integration in (1.1). We put @ =12, 8, ..., &/, dV (&) = H w, () d+,
f (@) =f(@) =}, y’*!), and denote

> wff( -1 yi)=g... E‘Hb ve W @2 x‘, e 1) (i=1,2, ..., ).
SGKU) s r s M=l M=l hhl 1, ke : » » Vhyl» y &y »

* The work of this paper was done by the author at the University of Alberta
in 1965—66.
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Whenever there is no confusion, we shall suppress subscripts and superscripts.
We shall therefore often write # for «/, % for k;, wy for w; 4, p,,(x) for p; ,, (%), ®
for ", y for y*, m for m;, and m for m,, m,, ..., m,. Thus the equation (1.1) can
be written

(1.1) En(f) =R{ }(x)av (x) —sgzlmwi AUAR

It is of course presumed that the integral on the right of (1.1)" exists. More
precisely, this implies that given any ¢ > 0 there exists a compact subset 8” of R*
such that

(1.2) R”Isnlf(:c)| av(x) < egyf,
where we define

b
(1.3) po=fw,(x) (x)*dx, E£=0,1,2,....

It is convenient, further, to define R' = x {[a;, b,], =1, 2, ..., /} and §'=
x {[¢;» d;], i=1, 2, ..., 1} where j ranges from 1 to », and each interval [¢;, d;]
is a compact subset of [«;, b;]. Then with

(1.4) N =max | f ()|

we assurne in addition to (1.2) that

(1.5) f w; (%) {max[N,|x-—i'§_‘ﬁ|g’"’]} dx < & b
(a5, by)~[cy. dy]

One assumption is common to all procedures: we require that f have a bounded
2m;’th partial derivative with respect to 4/ on [¢;,4;],=1,2, ..., n. This assump-
tion suffices for the first of the four procedures. For the remaining procedures we
assume that, with x, y real, thereis an open set &; of complex numbers{ = x -+ V—y
enclosing [¢;, 4;] such that, with 2/ =a’~%, ¢, y’ *land C; =81 x &; X (8" — §)
(a Cartesian product), f(2;) is an analytic functlon of ¢ regula.r for z’eC

These latter assumptions extend those of Davis [3], MCNAMEE [4], HAMMER—
LIN [5] and STENGER [6] in the one-dimensional case. We combine the procedures
of these authors in an attempt to also obtain useful results for the case of repeated
Gauss-type formulae.

Although we assume that the limits of integration in (1.1) are fixed, bounded
or unbounded points, the results of this paper can also be made to include integrals
of the form

(1.6) Ir f g(-’v")ﬂ dx’

L f=1

where @, and y, are constant, and @;= @; @), y;=y,@"),j=2,3,..., n,are
differentiable and bounded almost everywhere, since [10, 12%] the sequence of
linear transformations

4.7) - %'-ZH#s + (‘Ps; %) G=1,2,...,7)

1 AHLIN [12] obtains this result for the # = 2 case.
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will transform the above integral (1.6) into the integral

1 1 "
(1.8) ._{ ---__flG(u")jg v’
where -
(1.9) ]:_H['/’i-z'%]

and G =g under the transformation (1.7).

2. General Procedure for Extending One-dimensional Bounds

The following procedure due to NikoL'skir [1I] (summarized in [13] p.
72—75) enables us to reduce the error of repeated integration to that of bounding
the error of single integration.

Define

(2.4) L=[ 3 wtf@ ¢av@), (=01,...n)
81 s€K(j+1)

Here I,= [ f(&") dV ("), and I, is the repeated sum on the right of (1.1).
Sn

We thus obtain
Theorem 2.1. Let I, be defined by equation (2.1). Then

(2:2) E,Nh=1,—1, +'(S")=,§1(If—1;~1)+7(3”)-
In (2.2) "~
(23) r(8 = [ f@")av(z")
Rr-8n
and

. 4 ) )
L=Ti=f, 2 it {0 /7 000 dx
(2 4) Ri-1 s€K(j+1) &

”
— S /@, 5, i)V @),

A bound on 7 (8") is given by (1.2). On inspecting (2.4) we observe that we can
apply one-dimensional procedures to bound the quantity in braces on the right of
this equation. Moreover, if for each § we can obtain a good bound for the quantity
in braces on the right of (2.4), then using (2.2) we can also obtain a good bound on
the error E,,, (f).

Corollary 2.1. Let

lI,"“Ii_l} §B1(Mi),7.=1, 2, vy B
Then

@3) | B D] = 5 B;(m) +2 [T
f= i=
The above theorem and corollary are of course applicable if the x; ,, and w; j,

on the right of (1.1) are not Gaussian zeros and weights, i.e. to any other quadrature
scheme.
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In the following sections we shall give four different procedures for obtaining
B;(m;).
3. Functions f with 2m,’th Partial Derivative
Bounded on [¢;, d,]

The Hermite interpolant polynomial of degree 2m; — 1 in %' (whose coefficients
may be functions of (2%, y'*)), H;(#), satisfies

H;(x;) = f@= %, it

G omym) _ of(@i, 5 4it

5 o at x=ux,, (k=1,2,...,m)

also satisfies

f@'™, %,y — Hy(x)

2 am ; ;
v it o @ 20,4 2 [ ()

In (3.2) y(x) lies between the largest and smallest of ¥, x,, ..., %, and »,, is the
coefficient of 4™ in p,, (x).

It follows that, since Gaussian integration is exact for polynomials of degree
2m—1, we have

m N ;
f w; () @™ %, YY) dx — 3w f@ Y w0
k=1

—3 2m ; ; 7
33) = ot 2 | @YY [10(5) [P ()] +
+ f w; (%) H;(x) dx

(a4, b1—[e1, d4]
for some x¢[¢;, 4,]. On combining (3.3) with (1.2), (1.4) and (2.4) we obtain

Theorem 3.1. Let I be defined by (2.1).
Then |I; — I,_,| < B;(m;), where

64 Byom) = {rmr | sup, | @] 1| FT0b

In (3.4) 0= ¢; < phe, and x; my 15 Lhe coefficient of x™ in p; . (%).
Constants «; ,, for well-known special cases are given in Table 2.
Example? 3.1,

[+

= [a%e* f V1 — y2cos (ax +by) dydx —
x=0 y=-1
my My
— 2 D W ,W,,CO8 (ax,, +by,),
p=1 p=1

2 Note that cos(ax 4 by) = cos(a#) cos (by) —sin (a #} sin (by) and we can evaluate
the above using m, + m, points instead of m,me,.
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a and b real and o> — 1. Here

Hom Dl et 1) |y o—tm et

(2m)! (2my)1
Homm n _715‘ —3[ & \tm
2mg)l — (2my)1 28mH1 ~ " (4m,)
Since |--2 _ cos (ax+by)| <a®™, P cos (ax4-by)| ¥ in the region
(ax)lﬂh ayﬁ”'l

of integration, we find, using Corollary 2.1 that

a2 P 2 ).

Thus, while there is no restriction on b, we require that | 2] <2 in order that our
bound tend to zero as m;—>oco. For example, with a =0, a= 1%, b==2.45, m; =4,
my=35, the above estimate gives |E,, ,. (/)| <6.7 X107, The actual error is
2.6 X107,

4, Functions f(z) Analytic and Real when the Components of 2 are Real
We first note the following Lemma.
Lemma 4.1. Let u and v be real, let f(u) be real and let f(u+ V=1 v) be regular
in the ellipse &, (c, d) with center at ‘ "(2' d , foct at (¢, d), major and minor axes d—c

and d;"’ Va2 1, respectively, where a>1, g =a+ Ya® —1. Then

a

(4.1) Anf {“21(10% |#0) = Pams )]} < 2 M (@) 0"

where P, () is a polynomial of degree 2m —1 in u, and

4.2) M (o) = sup |Ref(u+V—1v)].
#+y—1vELp {0, d)

The proof of Lemma 4.1 follows from a result of ACHIESER (see e.g. [§] page 87).

The right hand side of equation (2.4) is a linear functional in f. Furthermore, if
we replace c/, d; by a;, b, respectively, then any polynomial P,,,‘,_I(x") of degree
2m;—1 in ¥ is in the null space of this functional. In particular, this is the case for
the polynomial B,,, _, (+/) whose coefficients may be functions of (&, yi**), which
minimizes the maximum deviation of (&=, #, y{*") —P,,, _,(+) over [¢;, d;].
Thus

Li—I, ,= [ X witx
81 sEKG+Y

4 x{ fu 0 U@ 5 — a1 d = S i) —
— P (x)}} av @Y +¢;

where

(4.4) g=— [ S 2 wit'By,, (x)dxzdV (@Y.
81 (ay,by)—(cy, dp) s€K(+3)



Error Bounds for the Evaluation of Integrals 205

Using the notations of the introduction, let &;=4,(c;, ;) where &,(c, d) is
defined in Lemma 4.1, and let C;, 2/ be defined as m the mtroductlon Let f(z") be
a regular function of { for z’éC and define

(4.5) M;(g;) = sup | Re (/)]
#eCy
Let
8. -
(4.6) W)= n;’zf M (o) p—%™.
Then, by Lemma 4.1 it follows that
7 A, {s0p /@) — Bumya ()]} < ;.

In addition, it follows by comparison with the Chebyshev polynomials? T, (x),
that for x€[a;, b;] — [c;, 4],

(4.8) |Papy—1 (%) < 22™2 (N + o} {max [1’ |x _ ﬂ%ﬂ’nmq]}

where w; is defined in (4.6), and N is defined in (1.4).

We also assume that the strip [c;, 4;] completely covers the zeros of p; ,, (%).
On combining the above results and using (1.2) we finally obtain

Theorem 4.1. Let f(27) be an analytic function of { regular for 2 ¢ C; -and real when
L isveal. Then |1;—I,_,| < B;(m,) where

”

(4.9) B;(m) = (2w; + ¢; £
In (4.9) w; is defined in (4.6), and
(4.10) g 2" N +w)e,

where N is defined in (1.4).
Example 4.1. Let ¢;=—a, d;=a, and let

sup  |Refl@ ™ u+V— 10,y = ¢, v)
A€oy, di), i ]

where # +} —1v €€,(—a, «), and where
i) ¢ (w,v) SM{H—cv)™aeM>00<v<c
(i) @gu,v) =Me b, M>00<v.
Then it is readily shown by minimization of ¢ (a#, av) (v 4 V1 + %)~ with
respect to v that -
. . - em *1 1+ (k241
@ e {uf???, P e m} <M [a(12+k-)i] [ = k+ ) ] ;

() moin {ﬂgp @a(n, v) e“”"} <M [_z_i%%rm/z

where in (i) k=ac and in (i) =ba’.
Note that although @{u, v) may be larger along the # axis than along the v
axis, we can always bound ¢ (%, v) as a function of v since % and v are constrained

8 Let B, (x) be any polynomial of degree m, and put M = LJpax, jP {#}]- Then for
all| x| >1, | B, (#)] S M| T,,(»)|. Here T,,(#) is defined by 7, (x)zcosmsforx cos §.
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to be in the interior of the ellipse &,(—«, «).

Example 4.2.
- 1
f f f ﬁ%%;se(:h [e(x +v +2)]dxdydz
F=—00 y=—1 x=-—1

where a and ¢ are real. In this example weight functions are V1 — 42,1 and e™*'; i.e.
we assume that Chebyshev-Gauss (with respect to x), Legendre-Gauss (with respect
to y) and Hermite-Gauss {with respect to 2) integrations will be used. Although
both sechc{x 4y +2)] and (1 +a®x%y%) 1 have singularities that are functions
of the remaining variables when one of the variables is complex, these singularities
are uniformly bounded away from the region of integration.

We have |sechfc{z+y+u+V—10)]| = L L

cos(cv) =

41

, 0=v s
- <2c

{ o —cv

n
where 2, ¥, u and v are real. We furthermore have |1 4a?y?(u 4| —1v)2]}| <

1 1
<
(1=a%v® = (1—av)’ 0=<v=1, and therefore

sechc(u+V—1v)+ y+2]
1+aty?(u+V—10)2

1
N (1-—-av)(1——%t—c—v) .

Assuming e.g. —j— > %, it follows by Example 3.1 above that the minimum of

sechc{u+V —1v+y42)]
1+ayi{u+¥—10)2

(v+Vo? +-1)"2"

max
%55

with respect to v<<a™1is less than

2me 1+ (a2 + 1)} "2"‘. an
(1 +a%} a an—2¢"

Moreover, for a and m large,

00 oo
2fedz<2fe ™ 2mdz <P mgle ™.
o *
Thus using
-] 1 1
JePde=Vm, [dy=2,[V1 —x*dx=1}nm,
—00 -1 -1
substituting in equation (19) (Theorem 1), and setting m, = m, —=m, we get

64me )( an ){(aﬂ+1)%+a}~zm+

Epmmll) < n!(

ﬂ(l_*.aa)i am—2¢ a
* 32mye ([1 + (20:(:/91)“]L -+ 1 )-3M- +
1+ (2ac/m)2ph 20¢/n

+ o 2t gy 1 g,

Let us consider for example, the case 2=1/3, ¢=1/10. We must choose « so
that the strip [ —a, «] completely covers the zeros of the Hermite polynomial
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H, (z). Using mg =7, we may choose? a = 8. With m =6, we obtain
|Ego,:(N] < nb(6.44 +3.69 + 16) X 1077 =25.7 X 107¢.

By actual numerical evaluation, Eg ¢ ;(f) = 0.8 X 1078,

The slow convergence of the above bound (*) is due to the singularities in the
complex plane and does not reflect upon the method. Indeed bounding the 2m;’ th
partial derivative of the integrand would be a formidable task. Nor can the methods
of Sections 3,5 and 6 be easily applied to this case, especially for 2 and ¢ large.

5. Functions f(2f) Regular in |§]| <1, [¢;, b1 =[—1, 1]

The method to be developed in this section is applicable to functions f regular
for 2/ =a/~*,{,y* e C; where C; s defined as in Section 1 and &; = {{:{ is complex
and || <1}. We assume that 1_0 d;] covers the zeros of p; ,,,,(x) and that f(2/)
has a convergent power series expansion

(5.1) ZF @1,y h P,

The bounds we shall obtain are useful whenever we can obtain good bounds on the
coefficients F; , in (5.1).
We define numbers ¢} (these will in general depend on m;) by

. . mi .
(5.2) ¢h = Yk ——,ZIw,-,l(x})", E=0,1,2,....

That &, =0 for k=0, 1, ..., 2m;—1 is well-known. In the case when w;(x)=

w;(— %), €441 =0 for all integers &, and it is furthermore shown in [6] that
;u'ék>6£k>01 kgm}-.

Using the above facts and definitions and the notation of Theorem 2.1 we
find, after a little manipulation, that I;—1I,_, (equation (2.4) with¢;=a;=—1,
d;=b;=1) is given by

(5.3) Li—I = [ 2 w Z & F; (@1 gt av @)
§-1 seK(+1) k=2

Using Corollary 2.1, we thus have

Theorem 5.1. If the expansion (5.1) converges for '€ C;, then | I;—I,;_,| < B;(m,)
where

(5.4) B. (m — Yy (m;) Z ( )
0 §==1

provided the infinite sum on the right exists. Here

5-5) Bh= s |E,@ e
xi-1€ §i-1, yi+1€ (87— 8H)

4 Actually « = (2m,)} suffices. However, our particular choice of « gives us a better
bound on the final ¢ term above.
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and
(5.6) v;(m;) =k sup l5’2»;,+hl-
Table 1. Ervor constants for theovem §.1.

w(z)=1 w(z)=(1—z-)5 w(x)=(1-x')—“'
anns — -
in® [9]p. 916 o, k= sin‘(—i’:—_ni—) on =

n v (%) v (n) v (n)

2 21164 .09817 4 67495

3 10222 03988 3 44001

4 06101 4 01965 4 .32799

S .04051 1 01118 2 26158

6 .02886 7 .00697 88 21761

7 .02161 8 00464 43 18634

8 01679 7 .00324 77 16294

9 01343 O .00236 00 14477

10 .01098 3 00176 88 .13026

12 .00773 98 .00106 82 .10850

16 .00443 63 .00047 615 08134 7

* [9] also contains zeros and weights for other quadrature schemes.

Under the assumptions on w,(x) the numbers »;(m;) always exist and can be
computed using equation (5.2). Some of these corresponding to three different
w,(x) are given in Table 1 above.

Example 5.1.
1 1
tytery
= dxdy — — w, x yEgH1vE,
[ 7y —wi g
In this case
[s o]
4 _ ahtayhte
wyret =3 —3
k=0
so that
2k~
1 2k (y) (2); '4‘)‘! » ‘Fl,2k-—1 =0,
and

x3k+3

Fz,zk(x)=m. I;z,zk_1=0; k=1,2,3,....

Hence applying Theorem 4.2 we obtain, using

o0
Ho=mn, p=2, and Z—?—gi,

v, (my) 1 "’(mi) 1
0< ,,,l,,,.(,‘)szn[l Z(2m1+2k Tt Z:(2"':.+2k 2)‘]

< 22 ) (g7 o+ Y o) (g
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For example, with m, =6, m, =35 using the above estimate,
0<E, m(f) =61 X 1075,
By numerical integration we find that £, ,, (f)=3.9 X 1078

6. Asymptotic Error Estimates

The method to be described in this section is particularly in the case when
(%) is an entire function of Z, or in the case when f(z/) has singularities far from
the region of integration. It is demonstrated for the case of Gauss-Legendre
integration in [4] that singularities of f(z/) close to the region of integration can
also be suitably accounted for in obtaining error estimates. However, in attemp-
ting to extend that procedure to higher dimensions, difficulties arise due to the
fact that singularities of f(z") are, in general, functions of # — 1 variables.

Let us examine the contour integral

_ w, (x) f (a1, &, ¥t
(6.1) Ji= 2ny‘— f (x— L) t5,m{C) a.

In (6.1) L is the circle with center at the origin and radius e +d=max(|¢,|,d;)
-+ 8 where ¢ is a fixed positive number. We assume that f(@/~%, {, y{t!) isa regular
function of { for #~*¢S'~* and || < ¢ + 4. It follows from (6.1) that

6.2) Ji=w;{%)

f(:cf‘l, %, 3]£+1) — i P (%) H&l =1, 24, y?“}

& =) Pl

Integrating (6.1) and (6.2) from ¢; to 4; and interchanging the order of inte-
gration in the repeated real and complex integral, we obtain

fw(x)f(w"’ %y dx—zwk/ 5, 44
©3) =

B
[t s gieny gp [ 2i(%) Pul®) .
= i[;(a:’ Loy )deJ (x—:m{c)dx“’

where

(6.4) & = f w; (%) [f (@, x, yitl) — Z fai=1, 2, gt } dx

(% — x&) Pm (%2)
(ag, b}~ (cq, 49)

and

(6.5) w, = f w; (%) pm (%)

(% — %) P (%)

We now asymptotically approx:mate the inner integral on the right of (6.3).
We assume that w(x) =0 (| #|” e~1#1*) where 7 and A are positive numbers. In (6.3),
let «=max(a, —p) and f=min (b, o) where || =p +J and where § is a fixed
positive number. Thus

B m—1
w(”)?m( ) _ 1 j’_k
=2 pn@ d"*—m“mf w (%) )Zo(c) dx +

(6.6)
+ fﬁ:ﬁaf @ (%) P (%) {(.9’" + (%)m-u + (f{i):;’?}dx

15 Numer., Math. Bd. 9
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Under the assumed exponential form of w(x) and the orthogonality property
of the polynomials $,,(x), the first integral on the right of (6.6) tends to zero at an
exponential rate as x—a or b, and hence does not contribute towards an asymp-
totic sequence of the form {{™*}. Similarly expanding 1/p,,({) in powers of 1/,

8
(6.7) "g:,filggg‘} dx = gomee FOL™™), el

where x,, is the coefficient of 4™ in p,,(x). Further,

8
SR e

(6.8) 3] Cmi'?i(,x)@ |{|xlm+1+ |x|m+a}dx

—o(jE=n, [t
We substitute the above results into equation (6.3) to obtain

Lemma 6.1, Let x,, be the coefficient of 2™ in p,,(x), and let w(x) =0 (| x| e~1%1%),
for both x—>a and x->b, where r and 1 are positive numbers. Let L be the contour |{ } =
o -+ 0 where & is a fixed positive number and where, with o =2 max{a, — o) and § <min
(b, 0), o ts chosen sufficiently large so that the conditions (1.2) — (1.5) are satisfied.
Then

If’“I;‘-—I: f 2 wittx
/-1 sEK{j+1)

6.
(6.9) f Fa L0y [ +0(L] Cm"';l AL dv @Y, |]—>oo.

P
21:9

In order to obtain an estimate on the bound of the difference 7, —I;_, in (6.9)
we again prefer to express f(@' "1, {, y§+1) as a positive function M (R) of R=|{|
which bounds f on the compact set 8! x (S"— 8). That is, let

(6.10) M(R) = sup [F@=4, 0,97
f=1G81-1, {{| = R, y+1€(Sn—8Y)
On replacing the quantity in square brackets on the right of (6.9) by 1, we
obtain an asymptotic estimate on the bound of I;, —1,_,.

Theorem 6.1. Let M (R) be defined by (6.10). Then (I;—1I,_;) < B;{(m;) where for
large R

(641) Bytm) = 25 [Ta) 2420

i=1

Example 6.1. Let M;(R) <A (1 —cR)*where 4, a and ¢ are positive, 0 S R <
¢! The minimum of A(1 —cR)™* R %" gua function of R occurs for R=¢1

( 2‘; )_ and is 4 ea? (2:1) 2", hence

11—l = (1T ) () 4. (%

m)ac”‘.



Error Bounds for the Evaluation of Integrals 211
In the case when the integration strip is bounded (and ¢ < 1), we can choose m

sufficiently large so that the above error estimate is as small as we please. On the
other hand, if the range of integration in the jfk variable is infinite and f has

Table 2. Evvor constants for theovem 6.1

Weight Function (s __ o (4 4 518 %" e
a1, f>—1 a>—1
Orthogonal Jacobi Laguerre Hermite
Polynomial [interval(—1, 1)] finterval (0, co)] [interval (— oo, 00)]
x;’f 2atatftan 4l X n! I'(n+a+1) j_tﬂ
IFi+a+B) Bt +oa+mn 14+B-+n)* 2"

I't+a+pg-+2nu)

* _I'in 'y
B9 ="TaT)

complex singularities, R will remain bounded. This implies however, that the
largest zero of Dirms is to remain bounded, which in turn bounds m;. In this case,
the Gaussian quadrature scheme will not, in general, converge, and as in the case
when evaluating a function by its asymptotic expansion, we may find in this case
that there is a “‘best” m,; which minimizes | I, —I;_,|.

Example 6.2. M;(R) <A exp {b R"} where 4, b and 1 are positive. Assuming

w,;(x)=0{e~1"¥), x—>a or b, where §>>2, all Gaussian quadrature schemes
1

converge in this case. We obtain, taking R= (%?)U R

N Kiw , (eb A2
;=T = n/‘:' ’i A<2m)
Fomi ,uo

Example 6.3. We apply the theory of this section to bound?

o0 o] 1
. 100 e—y—# J (}y) cos 2
By, m ) = f f f G iy rioi  rdydz

F== 00 Y=0 Fmmo—i

e S B | Jo(Eym) cos 213

— 10 kéi ké: k.éi PLm BTk gl — dm, -+ 104
where Gauss-Legendre integration is used with respect to x, Gauss-Leguerre with
respect to y, and Gauss-Hermite with respect to z. Thus puf =2, u§ =1, g =}=. In
the range of integration, | 100/(x2—4x +104)| <1, | Jo( 3¥)| =1 and | cos 2| =1.
In the complex plane, 100/[(%—4[ +-104] has poles at oy and «y{o; =2 4107,
ay =2~ 10%) where |&,| >10, s=1, 2. Hence M,(R) < (1— R/10)™. |J { )| =

5 Observe that this integral can be evaluated with m, +m 4 -+ w1, points instead of
with m, mymm,, by writing it in the form

_.Z:F(Z) dsz(y)dy_j:H(x)dx.

13+
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(sx)e" [1+0 ()] =Mu(®) (£1=R); and |cos ¢ Se*=M,(R) (¢] =R).

Using Table 2 and applying Theorem 6.1, we find that
3

lEn&,r».. m.(f)l §Z1 'Ii - Ii—ll
i=

SNTENES S e
~ 3.54(1.70 +1.70 +1.44) X1078 = 1.7 X 1074

with m, =2, m,=6, my=>5. The actual error when evaluating the integral by
numerical integration formula is 0.8 X 1075,

Conclusion

In order to illustrate the four methods of bounding the error of repeated
Gauss-type quadrature, we have given an example for each. It is worthwile to
observe that it may be possible to apply more than one procedure to a particular
integral; the user should choose that procedure which best suits a particular
integrand.

Although the procedure of Section 3 is applicable in all cases, it is conveniently
applied only to integrands for which high order partial derivatives are easily
obtained.

The procedure of Section 4 is applicable to integrals over bounded and unboun-
ded regions. It is applicable only to integrands f which, when considered to be
functions of complex variables, are analytic, and real when these variables are
real. The sharpness of the error bounds obtained depends on how well we can bound
the real part of f in ellipses of complex numbers enclosing the integration strips.

In Section 5 we have given a procedure for integrals over bounded regions sym-
metric about the origin. For this procedure we require the integrand to be regular
in a circle which includes the integration strip. The sharpness of the error bounds
depends on how well we can bound the Taylor series coefficients of the integrand.

The procedure of Section 6 is applicable to integrands regular in large circles
enclosing the integration strips. Here we obtain not error bounds, but asymptotic
estimates on these bounds.

References

[1] Misks, R. von: Numerische Berechnung mehrdimensionaler Integrale. Z, Angew.
Math. Mech. 34, 201—210 (1954).

[2] Sarp, A.: New function spaces and their adjoints. Ann. N. Y. Acad. Sci. 86,
700—757 (1960).

[3] Davis, P. J.: Errors of numerical approximation for analytic functions, Survey
of numerical analysis, ed. by J. Topp. New York: McGraw-Hill Book Inc.
1962.

[4] McNaMEE, J.: Error bounds for the evaluation of integrals by the Euler-Mac-
laurin formula and by Gauss-type formulae. Math. Comput. 18, 368—381
(1964).

[6] HAiMMERLIN, G.: Ableitungsfreie Schranken fiir Quadraturfehler, Num. Math. 5,
226—233 (1963).



Error Bounds for the Evaluation of Integrals 213

[6] STENGER, F.: Bounds on the error of Gauss-type quadratures. Num. Math. 8,
150—160 (1966).

[7] Topp, J.: Survey of numerical analysis. New York: McGraw-Hill Book-Inc.
1962.

[8] MEeINARDUS, G.: Approximation von Funktionen und ihre Numerische Behand-
lung. Berlin-Géttingen-Heidelberg: Springer 1964.

[9] National Bureau of Standards. Handbook of mathematical functions. Applied
Math. Series vol. 55. 1964.

[10]7 McNaMEE, J., and F. STengeEr: Construction of fully symmetric numerical
integration formulas. To be published.

[11] Nixovr'sk1i, S.M.: Quadrature formulae [Russian]. Moscow: Fizmatgiz (Gos.
Izdat. Fiz. Mat. Lit.) 1958.

[12] AHLIN, A. C.: On error bounds for Gaussian cubature. SIAM Rev. 4, 25—39
(1962).

[13] StroOUD, A. H., and D. SeEcrEsT: Gaussian quadrature formulas. New York:
Prentice-Hall 1966.

Department of Mathematics
The University of Michigan
Ann Arbor, Michigan, 48104, USA



