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SYMBOLS AND NOMENCLATURE

C = local velocity of sound
Cn = normal force coefficient
CmaoSL = pitching moment about xo (positive in stall)
gy Crg = Jen Yem dimensionless non-steady pitching stabil-
) ’3—%5) ity derivatives
o
. . 0n Yom dimensionless normal acceleration stabil-
cnw,mez 9 ———
(35) A(gE, ity derivatives
cn%,cn\ - JCn ,Ktm dimensionless steady pitching stability
9L L derivatives
JEE) 3EL)
den Yem incremental lifting steady aerodynamic

Cnyy Cmy= XK FL coefficients

pressure coefficient

= laplace transform of f(x)
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K, (z) = modified Bessel Function of second kind
‘ with modulus z

M wr
== = reduced frequency
B Uo

k

L = length of body of revolution
M = free stream Mach number

P = local static pressure

do = free stream dynamic pressure

q = steady pitching velocity (Fig. 2c¢)

R(x) = locus of surface of body of revolution

S = reference area

S(x) = cross-sectional area of body of revolution
at station x

t = time in seconds

Uo = free stream speed

% . = local velocity

w(x, t) = upwash velocity (Fig., 1)
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Xo = center of rotation of pitching motion
X, r, 0 = cylindrical coordinates
X, Y, Z = body stability axes through xq

GREEK SYMBOLS
o = angle of attack
B =W ﬁ;-l = compressibility parameter
Y = ratio of specific heats
$o : = free stream velocity potential
4, o1, 9o = perturbation velocity potentials
v = total velocity potential

W = frequency of periodic motion
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I. SUMMARY

The general velocity potential for a slender pointed body of rev-
olution oscillating periodically in a supersonic uniform stream is pre-
sented., The solution is shown to reduce in the limit to the sum of
well-known stationary source-sink and doublet solutions when the fre-
quency of oscillation approaches zero., Stability derivatives for low
frequency oscillations are determined by making use of the approximate

- potential obtained by expanding the oscillating velocity potential
in powers of reduced frequency, retaining only the first order terms
in reduced fréquency. In particular, the following four cases of steady
and non-steady supersonic motion are treated: (1) harmonic pitching
about a point xo; (2) harmonic normal oscillations in pitch; (3) steady
pitching about a point xp; and (4) steady angle of attack, Equations
for the slender body theory normal force and pitching moment stability
derivatives are also determined.

Two types of bodies of revolution are examined to demonstrate
how the aerodynamic stability derivatives may be varied by changing
the contour of the body. "Flaring" the aft end of the body increases
the lift as well as increasing the aerodynamic damping moment of a
finless body.




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-80

IT. INTRODUCTION

Attention has been directed lately to the problem of dynamic sta-
bility of low-aspect-ratio high-speed aircraft (Ref. 1 and 2). The
problem of determining the static and dynamic aerodynamic force and
moment stability derivatives of low-aspect-ratio wings at supersonic
speeds has been treated by many investigators (Ref. 3, 4, 5, 6, 7,

8, and 9). Little consideration beyond first approximations has been
given to the corresponding problems for bodies of revolution (Ref. 10).
The dynamic stability derivatives for such bodies become of prime im-
portance for finless missiles and missile configurations having rela-
tively low area, low-agpect-ratio surfaces.

It is the purpose of this paper to present the general potential
for the harmonic motion of a slender pointed body of revolution in a
steady supersonic stream. Following this, the doublet potential for
low frequency harmonic oscillations is demonstrated, The slender body
theory doublet potentials are also determined. Example solutions for
a body of revolution are calculated to illustrate the variation of
the stability derivatives with Mach number in a limited supersonic
Mach number range. It is shown how the stability derivatives can be
modified congiderably by varying the contour of the body of revolution,

The solutions for steady pitching and steady angle of attack are
also presented for comparison purposes.
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ITI., FUNDAMENTAT, SOLUTIONS

The well-known non-linear potential equation for compressible
non-steady flow in cylindrical coordinates is (Ref. 11); figure 1,

2 —_—
%x‘*' ‘r!(,"Pn*"‘Pu)L* "‘i‘z"’ee ""é"—; {:Ptt+ %{" %ﬂd"\%’ } = (1)

Where, from the time dependent energy equation for compressible flow,

1, ¢t _
Y+ L+5s = FO) (o)

We will proceed to linearize equation (1) in the customary man-
ner by assuming that the desired solution to equation (1) can be rep-
regented by

‘P=‘A‘xﬂ:9) +P(xym,0,t) (3)

where
%2 (x.1.0)

Y (x,h,0,t) is the perturbation potential represent-
ing the unsteady body of revolution
(considered small with respect to ¢o)

is the free stream potential

Should equation (3) be substituted into equations (1) and (2) and the
products and second and higher powers of the derivatives of ¢ be neg-
lected as being of secondary order of magnitude, we arrive at the
Prandtl-Glauert equation for non-steady compressible flow.

B Yer - honmfea-r it 5 e+ ZM fy =0 (1)

The solutions with which this paper is concerned will satisfy
equation (4). As such, these solutions are all subject to the usual
limitations of the linearized theory. The solution sought in this
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paper is

:Zf cos 6
" on (5)

where ¢, is the solution to the equation

B - an- ot et 2 =0 (6)

Direct substitution of equation (5) into equation (4) will verify this.
Here, the perturbation potential representing the body is composed of

=1+t (1)

The potential oy is'axially symmetric with respect to the x-axis and
cannot yield "lifting" velocity perturbations (except as a product
with the ¢5 potential velocity perturbations). The potential ¢ being

T
odd with respect to the plane © =-§-will yield the desired lifting

velocity perturbations.

A, The Non-steady Source-sink Potential

Let

f—-N(i,n)UbP{"w(t'cez } ‘ (8)

in equation (6). There results

NML"'—"NfL B Ny - == "B‘*N =0 (9)

Further, make use of the Laplace transformation, and let
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N(S,h) =f°'w1°' {-SX} N(x’h’)d%_ (10)
If N(O "') 3 (o”‘)- appropriate to pointed bodies, operat-
ing upon equation (9) with equation (10) yields,
d*N . 1 dN ( ) 0
A odn -B ceu)N" (11)

The desired solution to equation (11) is the modified Bessel func-
tion of the second kind,

(s )+ Ko (or 25 )

(12)
Using transform pair (871.5) of reference 12, we obtain
w 22\ %
Cod|cg2(*"-BR )™
N(;m): [CB( ) ] £7Bn (15)
EETOE

The point source solution to equation (6) is obtained through equa-
tions (8) and (13).

Y= wp {“'“’(t rﬁé)} CEAGE 3"")’/‘] 1Br
= [ o%] ¥ (14)

If the sources are distributed along the x-axis at points ¢
according to f(¢), then equation (14) becomes

x-Bh
¥ g fint) [f(&)up LM (-8)] con (. [(1-5-8%]2) d g
| [(x-E)™-B2]"

(X-5)> B (15)
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if w = 0, as in the steady source-sink solution, then equation
(15) becomes the easily recognized form

x-Bx
(f(8)dt,

) A [(X- E)- BW] )

X-£> Bx

(16)

B. The Non-steady "Doublet" Potential

Equations (5) and (15) are now employed to obtain the desired
gupersonic non-gteady doublet potential, The differentiation in-
dicated in equation (5) involves differentiating under the integral
sign of an' improper integral, This differentiation is presented
in Appendix A and results in the doublet potential below,

, ¥-Br , ) ,
¥, = oxp{ dut] me{,f;—’gf f(ﬁ)ucp{%%#(x“v’)} Aim{zs. o8-8 ’l)»d

fx (g’)L(X E)M‘P{ CBt (x-E )}Cot(ci”@[(x-g)ﬁ B’;e] "z) dg

k [(X— £)- 8] 4 (17)

, dum ff(ﬁ)(x 5 ap 2 (x-8)] cos (2 [<x 6 w4 d%

etk
(e8] %
X-€ > Bw

If, in equation (17), w = O, the recognized steady doublet
potential results. X- B

- me F(E)(x-§) 4§,
[(X 5)1 5 e /7_

-£>Bh
(18)




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
TMM-80

Equation (17) is the desired non-steady doublet solution to equa-
tion (4), The balance of this paper will be devoted to present-
ing particular solutions to equation (4) appropriate to: (a) har-
monic pitching about a point xg; (b) harmonic normal oscillations
in pitch; (c) steady pitching about a point xg; and (d) steady
angle of attack. All of these situations can be treated by making
use of equation (17) and its derivatives. |

C. Boundary Conditions

The boundary conditions for the steady or non-steady super-
sonic flow about a body of revolution specify that the velocity
component normal to the surface of the body at the surface must
be zero, That is, if

£ = R(%) OsX 4L (19)

is the locus of the surface of the body in all meridian planes,
then the boundary condition is (Fig. 1)

90\ o _w@t) o

(20)

in general. Equation (20) takes a different form for each of the
four steady and non-gteady motions previously mentioned,

1. Harmonic pitching about the point xgo
In this case o&{(£)=d, %P.Nt} , and from figure 2a
and equation (20)

(21a)

[RARE _(O%{Lwt} 058Uyt (L~ L]

dh Jrso
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FIG. 2b HARMONIC NORMAL OSCILLATIONS IN PITCH
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FIG. 2c STEADY PITCHING ABOUT Xo
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FIG. 2d STEADY ANGLE OF ATTACK
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2. Harmonic normal oscillations in pitch
From figure 2b and equation (20)

%) . ‘
(-a-g)g:ou% xgp{»wtj .0 (21b)

3., Steady pitching about the point xo
From figure 2¢ and equation (20)

<_@_§) - - ‘CétG[Uoo('l'ﬂ—('ﬁ‘XO)] (510)
L

R+0

The capital letters X and Z in figure 2c denote body
stability axes, The point xo is the center of gravity, and
the steady pitching velocity is taken in its defined sense.

L. Steady angle of attack
From figure 24 and equation (20)

(M) = Ul €848
% Jrag

(214)

This case has been treated in the literature before
(Ref. 13 and 14) and will not be dwelt upon in any great de-
tail in this paper, other than to compare it with the other
solutions.

Equations (17) and (18), together with equations (21),
are now used to specify the function f(¢). The value of

(é;i%) is obtained in Appendix B, where it is shown that
T
R>0

67‘:) = PO ypfiwt}one (o)
(% Rso R* WP{ |

The function f(g) is now determined through equations
(21) and (22) for all of the cases treated in this paper.
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IV. NORMAL FORCE AND PITCHING MOMENT COEFFICIENTS

The steady and non-steady pressure coefficients can be obtained
from the general Bernoulli equation,

, /P
RSy (e JTE
P P

Equation (3) is substituted into the Bernoulli equation, and terms
are dropped in keeping with the process used to linearize equation (1),

. T
Keeping only terms odd with respect to the plane o ='§ results in the

approximate "1lifting" pressure coefficient.

A4S
Uo Uo*

1%3:: -2

(23)

If normal force coefficient and moment coefficient are defined as

—_ (T A,
Cn= -s"JonCPRCOle o dy
and Lo
Cm:%i chRmcﬂé)meoLedob

because Cp is proportionate to cos 9, it follows that

L
ALY a
) .
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and

L
| Yo, X

We are now in a position to obtain the lift and vpitching moment coeffi-
cients for the four motions discussed in Section IV,
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V. THE LOW FREQUENCY OSCILLATIONS AND STEADY MOTION

The task of obtaining solutions for the non-steady supersonic
flow about bodies of revolution using equation (17) is simplified
for the case of low frequency oscillations., It can be shown by ex-

" panding equation (17) into powers of reduced frequency that for har-

B

monic frequencies of the order OfTE— the non-gsteady potential can

be represented by the first order terms in k with an error of about

5% or less. For bodies of the order of 20 to 30 feet in length in

the Mach number range of 1,5 to 2.5, the first order terms in k in
equation (17) would represent the non-steady potential for harmonic
frequencies of the order of 35 to 115 radians per second within about
5%. Before proceeding to this expansion process circumvent the im-
proper integrals in equation (17) by introducing the dummy variable

u through the substitution

_t-%
Codh AL = Bh

If equation (26) is substituted into equation (17), there results

(26)

(27)

Y--me %{Wtj BP (?,)u&PiLwM%Mw} ( Mu)wikualm

B}b

o ff( ) i“"M%cosku almo (L% Mmhu)hmhmdm

Bk.

AwM I:‘{?)v@{'i"y" cod»u.] CM( AMJnu,) (‘M‘au,a(.u,}

B
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carrying out the expansion into powers of k we obtain

Y= - codOp {Lwt} {B ;C'(x-sx coohw) Cosh L duc

cosk ' (28)
BY

_iMBR | (£-Bx Coth a) m+o(ﬁ‘)}
cwc‘%ﬂ_
LV

If w = O in equation (28), the well-known steady potential results.

¥ - Coy OB ﬁ‘(x-m Coshar) cackandua

Cook™' ¥
B

(29)

Equations (28) and (29) will be used to obtain the four non-steady
and steady solutions with which we are concerned.

A, Harmonic Pitching About the Point xo

The equation for the distribution f (&) is obtained from equa-
tions (21a) and (22). ' '

f(ﬁ)" 'S"—ﬁ'?) [Uoo(o-l»i,w (1"’3‘0)0(0] (30)

Equation (30) is substituted into equation (28) and equation (28)
substituted into equation (23) to obtain the pressure coefficient

on the body.
L LAY TN Ch RS
U “Jx Uo 3¢ Lo

_ MR 311+O(,k1)§
Uo a‘ﬂ
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The integrals I, appearing in equation (31) are presented in
Appendix C. These integrals will also appear in the remaining
expressions for the steady and non-steady pressure coefficients
to be determined., Equation (31) is now substituted into equa-
tions (24) and (25) to obtain the desired derivatives.

. I
Cn= SLJ[ B(L:4 “%D WREe By, I;]R‘W

3)6 (32)
| 9 '
C"‘«(“C"v(—f+§f.tj[15(l+'3 )-M R%-B%%}R%M (33)

The slender body theory expression for pressure coefficient
is obtained by substituting equation (2la) into equation (B-6)
in Appendix B and substituting the resulting equation into equa-

tion (23). This equation is then substituted into equations
(24) and (25) to obtain the following:

s(1) VoL.
Cni=2 == [("T.“)"EE(L)] | (34)

and

s (, _*
Cmy=-2 22 (1- 2= (5)

B. Harmonic Normal Oscillations in Pitch

From equations (21b) and (22), we have

_s(®)
S

(36)
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Equation (36) is used in equations (28), (23), (24), and
(25), respectively to yield

= P
an=§'j [BI,~M R—?‘)L——J Rd'}L (37)
and
gy ™ Cug o +§?f B1,-M"R 5 ]Ryd% C8)

The corresponding slender body theory expressions are:

YoL.

Cugy =2 2 (39)
and
O [ ¥ (st
Ss(L o VoL. S
Cmyp=1 "5 [ L sOu T sLE } (40)

C. Steady Pitching About the Point

Equations (21c) and (23) yieldd

()2 s(%) o (5-0) "
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Substitution of equation (41) into equation (29) and the
resulting equation into equation (23) and thence to equations
(24) and (25) gives

28 (1 2L, _ I,
Cwm/—*- S I[Iﬁ-a-; - %o M] R cL)é (42)
and
% (1. oI, o |
-ﬂo N (
Cmﬂf Cng,—: too [I|+-27 —XOW] N Kd,)é (43)

o

The corresponding slender body theory expressions are:

S@u) Yo
Cnﬁf 2= - (44)
and
S(L) fo \e xlo VoL. lS('){)'y‘d%
Cme= 2 — \I-— )+ e (45)
g 3 L L o1s(t) o* s(t)

D. Steady Angle of Attack

From equations (21d) and (23)

f (‘é)=s—7(fi)- Use{ (46)




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY

UMM-80

Then, from equations (46), (29), (23), (24), and (25)

28 (121,
oni= 5| |37 R

[+

L
Zo 2B [[d1l;
Cwmy=Cy T+ 51 [W] Ry dy

o

The slender body theory results are:

s(v)

and

s(t) /%o Vou.
o =2 5 (T 5w )

This completes the list of steady and non-steady stability
derivatives. These equations will be demonstrated in the next

gsection for two different bodies of revolution.

OF MICHIGAN

(48)

(50)
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VI. EXAMPLE RESULTS FOR TWO BODIES OF REVOLUTION

The equations obtained in the previous section will now be applied

to the two bodies shown in figure 1. The stability derivatives for

body (a) of figure 1 will be obtained using both the first order in
frequency equations and the slender body theory. Following this, it

will be shown how modifying the shape of body (a) to body (b) changes
the stability coefficients,

Body (a) of figure 1 is generated by revolving a parabolic arc
about the x-axis. The equation of this parabolic arc is

R=.02 (10.x¢=2%) 0% 2 8 (51)

Body (b) incorporates the nose of body (a) with a short cylindrical
section and a slightly "flaring" rear section,

The equation for
the locus of the surface of body (b) is

R=.02 (102 ~2*) 05 «

£ 5 (52a)
R= .50 5 x £6 (52Db)
R= .087/S x —., 0229 géﬂcég (52¢)

The point of rotation xo for the steady and non-steady pitch-
ing derivative was taken to be xo = L4.78 for both bodies. This point
was chosen as being typical for certain rocket-propelled missiles,

Figure 3 presents the values of Cp, and Cne, for body (a) using

equations (32), (33), (34), and (35). The limitations of the slen-
der body theory in predicting the magnitude and variation with Mach

number of these stability coefficients is apparent. This depends,

of course, on the validity of the first order in frequency theory.
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Figures 4, 5, and 6 present values of Cngs Cmgs Cnys me, qu,
and Cmq for body (a) using both theories., Ths remarks above relative

to the two theories apply to these results also.

An interesting result of these calculations is obtained by .com-
paring figures 3 and 6 which present the non-steady and steady pitch-
ing derivatives, respectively. In dynamic stability analyses the
steady pitching derivatives qu and Cmq are often used rather than

the non-steady derivatives qu and CM&‘ If this procedure were fol-

lowed for body (a), both the magnitudes of the derivatives and

the variation of the pitching moment derivative with Mach numbsr
would be in error in the Mach number range of figures 3 and 6. In
both cases, however, the sign of the pitching moment derivative is
such as to indicate a damping moment due to a pitching angular ve-
locity.

The slender body theory derivatives for both bodies are given
in Table 1, and indicate qualitatively the effects of changing the
shape of body (a) to that of body (b). All coefficients are based
on the same reference area; the cross-gectional area at x = 5,

TABIE 1

Slender Body Theory Stability Derivatives

body  Cp, Cm, Cog q% Cny Cn, Cn. O
(a) 82 .93 3% -,13 1,58  -,13 1,25  -,002
(b) 3.63 .15 147 -.48 3,08 -.,59 1,61  -.114

Table 1 shows that body (b) has increased 1lift over that of body
(a)., It is also apparent from the values of Cma that the static

center of pressure has moved rearward with changing body (a) to body
(b). Thus, body (b) has improved margin of static stability over
that of body (a).

Both bodies possess steady and non-steady damping in pitching
about xo. However, body (b) shows an increase in both Cmq and ng
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over those values appropriate to body (a). Thus, body (b) has greater
damping in pitch than body (a).

The above discussion indicates briefly how the aerodynamic pro-
perties of bodies of revolution can be modified by varying the shape
of the body. In general, it can be stated that increasing the base
area of a body of revolution will improve its steady and non-steady
1ift and pitching moment characteristics in the supersonic range
of Mach numbers,
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APPENDIX A

Derivation of the Non-steady Supersonic Doublet Potential

Equations (5) and (15) can be combined to obtain the supersonic
doublet potential for bodies of revolution. However, the differen-
tiation demanded by equation (5) involves differentiating the impro-
per integral in equation (15). The differentiation is simplified
if the dummy variable is first introduced into equation (15) through
the substitution

1-%

U P pua——

B (A-1)

If equation (A—l) is substituted into equation (15), there results

k)

»an

Y= wpi»wt} f(g)b//p{t
gy

(A92)

oules (5

The differentiation required in equation (5) is easily performed

):O-g-l;emw{uwt fé}r;\o "“’M'”cumz ok i) coshan du
Biv (4-3)
J;—‘g ;(é)jif{“‘;“’a“”ce«m} m(-“cifb"w&w) pluk L dun
5
A g 2 e (5 i) bt
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where f(o) is taken to be zero for pointed bodies. Substitution
of equation (A-1) into equation (A-3) yields equation (17).
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Evaluating ﬁit(gf)m:&
From equat?gn (20) we have
AN
( zm)z “w(¥k) oo (-1)
K—’O

Now, from equation (27)

( 71); - o Gx#ygiwt} ’,ﬁ‘i‘.‘: B {¥'(£-BR coalyar) cmlmdu}@-z)

-1g
1f we let Bk
Cool 1. —é&i | (33
Then equation (B-2) becomes
¥-BR
(ﬂ)=0u9xw£Lwt}£&': L f'(ﬂ(f“g)d,% |
R->e [(¥-8)-BR>] > (3-4)

This gives

(%) - -ﬁ;ﬁ Wf’{bwtg Coa 8 (8-5)

K-bo
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and so

( Bﬂ) AR it oo 6
=

Ik (5-6)
R0
The combination of equations (B-1) and (B-6) yields
F)- -g—%lw(%t)wpi-iwt} (57

Equations (B-5) and (B-7) can be combined to yield the slender body
theory non-steady potential for bodies of revolution.

S0 w(¥,k) cea 6

_ -8
2" R (B-5)
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APPENDIX C

The Integrals In (n = 1, 2, 3, 4) Appearing in the Steady
and Non-steady Pressure Coefficients

Certain integrals appear in any or all of the expressions for
pressure coefficient derived in this paper. These integrals are:

L: °g| (1-BR Cosly ) coahy s dun

-y (c-1)
o 3R
[,=\S'(£-BRCoslo ) (X-BRCoolvar) Corbvax dun
“ (c-2)
cosly, ¥ |
"BR
I,-(s (1-8R catboan) coshan dus
(c-3)
ook 2
BR
I Js (£-BR Cosha) dus |
| —w (G-4)

When these integrals are dlfferentlated with respect to x, it
should be remembered that S(o) = ( )= 0 for pointed bodies of
revolution.
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