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A model for the Fermi contact interaction is proposed in which the nuclear 
moment is represented as a magnetized spherical shell of radius ro. For a hydro- 
gen-like system thus perturbed, the Schr6dinger equation is solvable without 
perturbation theory by use of the Coulomb Green's function. Approximation 
formulas are derived in terms of a quantum defect in the Coulombic energy 
formula. It is shown that the usual Fermi potential cannot be applied beyond 
first-order perturbation theory. 
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Atomic hyperfine interactions involving s-electrons are well accounted for by the 
Fermi contact operator [1, 2] 

~,f' = ,~aas .  la3(r ) 

a =- }gg~l~Bl~u/a a, 8a(r) = 8(r)/4rrr =. (1) 

Additionally, nuclear spin-spin coupling in NMR can be attributed predominantly 
to a second-order mechanism involving the Fermi contact interaction [3]. An 
unfortunate concomitant to this mechanism is the appearance of divergent nuclear 
magnetic self-interactions [4]. These divergences are unphysical. The problem shows 
up in fact even when (1) is applied to the second-order perturbation energy of a 
hydrogen atom [5]. An extensive literature exists on attempts to circumvent this 
difficulty in calculations of spin-spin coupling constants in molecules, notably HD 
[61. 

We should like to propose as an alternative, a model for the contact interaction 
which leads to an exactly solvable atomic problem. Thereby, spin-spin coupling can 
be treated as a f irst-order perturbation and divergences are avoided entirely. In 
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physical terms, the point nuclear magnetic dipole implied by the Fermi Hamil- 
tonian (I) is to be replaced by a uniformly magnetized spherical shell of radius ro. 
This is effected simply by the substitution in Eq. (1): 

3(r) -+ 3(r - r0). (2) 

We designate the resultant operator as the modified Fermi potential [7]. 

A hydrogen-like system perturbed by a modified Fermi potential is represented by 
the Schr6dinger equation (for s-states): 

-~-~ - ~ + -~-gg,I~BUNS.I ~b(r) = E~b(r). (3) 
r 

We adopt the modified atomic units 

h = e = tz = 1, tz = m(l + m / M )  -1, 

and introduce the radial function P(r )  such that 

r = e(r) l (4~r2)  112 

and the wavenumber k where 

E = k2/2. 

The Schr6dinger equation then reduces to the form 

~2 2Z 
(k2 + - ~  + 7 ) P ( r )  = ~ P ( r o ) ~ ( r  - ro) 

a = h2/~e 2 = 1 (4) 

(5) 

(6) 

(7) 

where 

hv =- (s.I)vh,  (s . I )v  = �89 + 1) - s(s + 1) - I ( I  + 1)], r = I _+ �89 

(8) 

For atomic hydrogen (Z = 1, I = �89 using the experimental free-electron g-factor 
g = 2.0023193134, 

A = 2.1600 • 10 -v, A1 = �88 ho -- -�88 

Now Eq. (7) is isomorphous with the defining equation for the S-wave Coulomb 
Green's function [8] 

k 2 + ~ + g(r, ro, k) = 3(r - r0) (9) 

having defined 

g(r, ro, k) = rroGo(r, to, k). (10) 

The appropriate boundary conditions are 

r-ll2g(r, ro, k)--+O, rll~g/~r--->O as r---~ 0 (11) 

and 

g(r, ro, k) -+ O, Og[~r -+ 0 as r ~ ~ (12) 
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which are applicable as well to the Schr6dinger equation (7). Thus the latter must 
possess solutions of the form 

Ap 
P~(r) = ~ Pv(ro)g(r, ro, k)  (13) 

provided that k does not lie in the unperturbed Coulomb eigenvalue spectrum. The 
Green's function is given by [8] 

g (r, ro, k) = (2ik) -1F(1 - iv)M~J2(- 2ikr <) W~J2(-  2ikr >) (14) 

where v =- Z / k ,  I m k  > 0, M and W are Whittaker functions as defined by Buch- 
holz [9]. Since we shall be concerned with bound states, it is expedient to make the 
substitutions 

iv--> v, - i k - - >  k. 

Accordingly 

g (r, ro, k) = - (2k) -1 r(1 - v)M~(2kr <) W~(2kr >). (15) 

We have in addition dropped the second index on the Whittaker functions since it 
will have the value { throughout. In place of (6) we have now 

E~ = - k 2 / 2  = - Z 2 / 2 v  2 (16) 

which has the same form as for Coulomb eigenvalues but with non-integral values 
of the quantum number v. For ,~ << 1 (,~ ~ l 0- 7 for hydrogen) it can be anticipated 
that the bound state energies given by (16) will differ only minutely from the values 
E,  = - Z 2 / 2 n L  It is convenient to introduce a quantum defect such that 

v = n + 3, n = 1, 2 , . . . .  (17) 

Then 

Z 2 Z 2 
Ev = -2n---- fi + - ~  8 + 0(82). (18) 

A consistency condition on the eigenfunctions (13), obtained by setting r = r0, 
gives a transcendental equation determining the bound state eigenvalues, viz., 

2r---~ g(ro, ro, k) = 1. (19) 

Now the S-wave Coulomb Green's function defined by (9) has the spectral rep- 
resentation 

g(r, ro, e) 5 P,(r)P,(ro) = , e = - Z 2 / v  2 (20) 
r t  e - -  e r ~  

in terms of the unperturbed s-state radial functions P.(r) .  In the discrete spectrum, 

P,(r)  = (Z/n)l l2M,(2Zr/n) ,  e~ = - Z 2 / n  2. (21) 
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For the perturbed state n = N, v = N + 3, the Green's function expanded in 
powers of the quantum defect takes the form 

g(r, ro, ~) = ~ + ~ PN(r)P,,(ro) + k(r, ro, ~N) + O(a) (22) 

where k(r ,  ro, eN) is the reduced Coulomb Green's function [10, 11] 

k(r ,  ro, eN) -- S P . ( r )P . ( ro )  (23) 
~ t # N  8 N  - -  8rt 

Putting (22) into (19), with neglect of contributions O(8), and solving for the quan- 
tum defect, we obtain 

A~N a 
4Z2rg IP~(ro)l = 

8N,F ~ AF [3N2 ]. (24) 
1 - ~ [~ IP~(ro)l 2 + k(ro, ro, ~N) 

Explicitly for the ls state, N = 1, 

P l ( r )  = 2Za/2r e -z~ (25) 

and from formulas given by Hameka [10] and Hostler [11] 

-2zr [ 1 
k(ro, ro, el) = 2Zrg e ~ [-~2Zro 

] 
+ In (2Zro) - 2Zro - f ( 2 Z r o )  + Y - ~1 

(26) 

2Zr I- 1 ]" 
1 + A p Z e -  o[2-~o - l n ( 2 Z r o )  + 2 Z r o  + f ( 2 Z r o ) -  y +  1 

where 

ffe 
x - 1 - 

f ( p )  = x 2 x dx  

= _ (  e ~ -  1 - p) 
p2 + E i ( p ) - I n p -  y. 

The l s  quantum defect is thus given by 

AFZ e -  2zro 
31,p 

(27) 

(28) 
Under the further approximation that ro << 1 (bohr) 

AFZ(1 -- 2Zro) (29) 
81,F ~ 1 + AH2r0 

In the more detailed derivation given elsewhere [7], it was shown that Eq. (29) 
applies more generally to all  bound hydrogen-like s-states. 

For AF > 0, say the F = 1 state of hydrogen, the quantum defect (29) converges 
uniformly to zero as r0--> 0. Thus for a repulsive deltafunction potential, the 
energy reverts to its unperturbed Coulomb value. For AF < 0, say the F = 0 state 
of hydrogen, Eq. (29) remains valid so long as [AFl/2ro << 1. The quantum defect 
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goes th rough  " r e s o n a n c e "  near r0 = last/2. The condit ion 131 << I is violated so 
that  the entire derivation becomes invalid. The desired limit can however be ob- 
tained by considering the asymptotic  forms of  Eqs. (15) and (19) as k ~ oo (or 
v--~ 0). F rom formulas given in Buchholz [9] 

1~(1 - v)M~(2kro)W~(2kro) ~ 1 as k ~ oo. (30) 

Thus 

or  

-4kr-----~ ~ 1 (31) 

k ~ [AFl/4rg. (32) 

The l imit k --~ oo does indeed correspond to ro ~ 0 for negative AF. By virtue of  
(16), Ev ~ - c~  as ro ~ 0, showing that all bound states are pulled down to - oo  
by an attractive Fermi potential. Velenik et al. [12], using variational arguments,  
arrived at the same conclusions with regard to repulsive and attractive deltafunc- 
tion potentials added to a Coulombic  system. 

By expanding the quantum defect (29) in powers o f  AF and substituting into (18), 
one obtains a per turbat ion expansion of  the hyperfine interaction energy. As shown 
in Ref. [7], in the limit ro -+ 0, the first-order term approaches the Fermi formula  

E ' I '  =  Fl .(0)l 2 (33) 

while a11 higher-order per turbat ion contributions diverge. 
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