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Abstract. We study the Thomas-Fermi-von Weizsficker theory of atoms and 
molecules. The main result is to prove universality of the structure of very large 
atoms and molecules, i.e., proving that the structure converges as the nuclear 
charges go to infinity. Furthermore we uniquely characterize the limit density 
as the solution to a renormalized TFW-equation. This is achieved by 
characterizing the strong singularities of solutions to the non-linear TFW- 
system. 

I. Introduction 

The Thomas-Fermi-von Weizsficker (TFW) theory for a molecule of K nuclei at 
positions ~ ,  . . . .  , ~K ~ ~ 3  and with nuclear charges z , . . . ,  z K ~ JR+ is defined by the 
energy functional 

e(~;_z;#)=A I (v~(x))2ax+}~ Y (~(x)2)5/3ax 
R3 ~3 

K 
- Z zyj3 W(x)Z[x--~yl-ldx+O(wZ, Wz), (1) 

j = l  

where 

D ( f  g) = �89 a3 ! a3 f(x)2 Ix-- YI-' g(y)2 dxdy. 

Here _z=(z 1 .. . .  ,zK) and -~=(N1, ...,NK)- g is defined on the set 

G = {~0 ~ Ll~ real, V~p ~ L z, D(~o z, lp z) < co}. 

(2) 

(3) 
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On G, I~0p)l < 0o. This and all the following statements about the TFW theory are 
proved in Lieb [10, Sect. VII] in which the foundation of the TFW-theory is 
established, see also Benguria et al. [1]. 

The first two terms in g represent the kinetic energy of the electrons in the 
molecule. The nuclei are considered infinitely heavy so they do not contribute to 
the kinetic energy. The third term is the nuclear attraction while the last term is the 
electronic repulsion. We are using units in which h2(2m)- ~ = - e = 1, where e and m 
are the charge and mass of the electron. The unit of length is �89 = h2(2m)- 1 e z, 
where ao is the Bohr radius. 

The physically correct value for ? is given by the Thomas-Fermi (TF) theory, 
]~=(37~2) 2/3, (the TF theory corresponds to A = 0  above, see again [10]). The 
constant A is usually chosen so as to reproduce the Scott term in the asymptotic 
Z-expansion of the true quantum energy (see [10, Theorem 7.30] and [7, 15, 16]). 
The numerical value is A=0.1859 (see [8]). 

By rescaling ip(x)~A3/27- 3~p(A1/2y- 3/2X), ~-+A7/27- 9/2~'~ z~A3/27- 3/2Z and 
~_~A-1/2~3/2~_ we get A = I  and ?=1  in (1) above. For simplicity we will 
henceforth assume A = 1 and y = 1. 

I f K  = 1 we get the TFW-theory for an atom. We will usually choose ~ t  = 0  in 
t~ 

this case. For molecules we will denote the total nuclear charge by Z = ~ zj. 
j = l  

In the TFW-theory we define the energy of a molecule with N electrons (N not 
necessarily an integer), to be 

E(z_;N)=inf{gOp;z;~_)[~peG, ~ ~pZdx<N}. (4) 

In the present work we are not interested in the dependence on the nuclear 
coordinates so we do not write it explicitly. 

It is known that there exists Nc(_z) > Z such that the variational problem (4) has 
a unique minimizer ~p(x;_z;N)>0 with ~Ipa=N, if and only if N<Nc(z_). We 
interpret 

Qc(z_)= Nc(z)- Z > O (5) 

as the maximal (negative) ionization the molecule can achieve, i.e. the maximal 
"number" of extra electrons a neutral molecule can bind. 

The function 
0(x; _z; N)=  ~p(x; _z; N) z (6) 

represents the electron density for the molecule. For  N<Nc(z_ ) the unique 
minimizer ~p(.;_z;N) of (4) is the unique positive function ~p~G with ~ p 2 = N  
satisfying the TFW-equation (The Euler-Lagrange equation for (4)) 

-AW+ (W4/3- J=~ zj[x-~jl-l+W2.,xl-~)W=-#W, (7) 

for a unique Lagrange multiplier/~ = #(_z; N). Here * denotes convolution. Since 
#E 

- / ~  = ~ ,  we call - #(_z; N) the Chemical Potential. Since E is a convex function of 

N, # is decreasing in N and there is a one to one correspondence between # and N. 
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When N = Nc(_z), ~p(x; _z) = ~p(x; _z; No) is the total minimizer for ~ on the set G. In 
this case #(_z; No) = 0. This case will also be referred to as the maximally ionized 
molecule. 

We define the Potential Function, 
K 

q~(x; z; N)= E z s l x - ~ j l -  1 _~;(.; _z; N) 2 �9 Ixl-1. (8) 
j = l  

In the atomic case the functions ~p and ~o are radially symmetric. In the special case 
of the maximally ionized atom there exists a unique radius Rz > 0 such that 
8r~o(Rz) = 0 or equivalently 

S Qz(X) d z x = z  , (9) 
Ixl<=Rz 

i.e. the total charge inside the ball of radius Rz, counting both the electrons and the 
nucleus is zero. We call Rz the Radius of Neutrality for the atom. 

Our main interest here is the behavior of the TFW model in the limit as some of 
the nuclear charges go to infinity. We could of course let all the nuclear charges go 
to infinity but we will consider the more general case. 

If 1 < L <  K we will consider z j ~  ~ ,  for j = 1 . . . . .  L while zs, j = L +  1 .. . . .  K are 
fixed. We denote z_'=(z,...,zL) and z"=(ZL+,...,zK). We will write _z'--+ov 
meaning zs~ ~ forj  = 1,..., L. In Benguria and Lieb I-2] it was proved that Qc(z) is 
bounded by a constant uniformly in z. Here we will prove that Q~ actually 
converges as _z'~oo. This was conjectured in I-2]. Furthermore we will prove that 
the electron density for the maximally ionized molecule converges away from 
~ . . . .  , ~L. At these points the limit density will have singularities that are not in 
L 1, this reflects the fact that the "limit molecule" has an infinite number of 
electrons, that clump together near the big nuclei. It will also be possible for us to 
give a surprisingly precise description of the order of the singularities (see 
Theorem 6 below) and thereby uniquely characterize the limit density. We will not 
restrict our attention to the maximally ionized case, but in general specify how N 
tends to infinity with z'. There are two different cases. We either specify that #(_z; N) 
or N - Z  should be fixed as _z' goes to infinity. The maximally ionized case 
corresponds to fixing # = 0. The main results are summarized in the following 
theorems. 

Theorem 1. I f  #>__ 0 there exist functions lp~(.; _z")> 0, ~o~(.; z") and an excess 
charge Q(_z"; #)~ ~ such that if we f ix  #(z; N ) = #  then 

lim ~p(x; _z; N)--~p,(x; z"), (10) 
z'--+ o0 

uniformly on the complement of any neighborhood of {~1,..., ~lL}, 

lim ~o(x; z; N) = cpu(x; _z"), (11) 
Z~--* o0 

in LPoc(~3\{~l, ...,~L}), all p<3,  and uniformly on the complement of any 
neighborhood of {~1, ..., ~K}, 

lim ( N - Z ) =  Q(z"; #). (12) 
_Zt-~ o0 
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Theorem 2. There exists Qo~(z")>0 such that 

lira Qc(_z) = Q~(z_"). (13) 
_ z ' ~ c o  

Corollary 3. In the case of the maximally ionized atom there exists R~ e (0, oo) such 
that 

lim Rz=Ro~. (14) 
Z - " ~  

Remark. If #(z; N ) = 0  then N = N~(_z). The existence of the limit in (13) therefore 
follows from (12) and Q(_z"; # = 0) = Q ~(_z"). The only part of Theorem 2 which does 
not follow from Theorem 1 is the statement that Q~(_z")> 0. A priori it is not clear 
that the "limit molecule" can have a negative ionization. 

Theorem 4. I f  Q e ( -  ~ ,  Q o~(Z_")) then Q < Qc(z) for z_' large enough. There exists a 
chemical potential #(_z"; Q ) e ~ +  such that if we f ix  N - Z = Q ,  then 

lim #(_z; N)=#(_z"; Q). (15) 
_g, ---roG 

The function #(z"; - ) is the inverse of Q(_z"; �9 ). Again fixing N -  Z = Q we find with 
the notation of Theorem i and writing # =/~(_z"; Q), 

lim ~p(x;z_;N)=~p,(x;z"), and lira q~(x;z_;N)=~o,(x;z_"), (16) 
_z, ---~ oo z ,  ---~ ~3 

in the same sense as in Theorem 1. 

Remark. Q = 0 corresponds to neutral molecules. Hence -/~(z"; 0) is the limit of the 
chemical potentials for very large neutral molecules. 

Corollary 5. With the assumptions of Theorem 4 we get the convergence of the 
ionization energy 

lim (E(_z; Z)-E(_z; Z +  Q))=g(_z"; Q), (17) 
~ ' - 4  oo 

where r Q ) e ( - ~ ,  8max(_Z")), 8max = 8(_Z"; Qoo). 

Proof. This is an easy consequence of the dominated convergence theorem and 
dE e 

(15), since - # =  ~ .  Indeed we get d(_z"; Q)= o ~ #(_z"; Q')dQ'. [] 

The next theorem gives the asymptotic expansions near each N j, j - - 1  . . . .  , L. 
The surprising conclusion of this theorem is that even if the N i s  are distributed in a 
highly non-symmetric way, both q~ and ~v will be spherically symmetric to very 
high order near N j, j = 1 . . . .  , L. 

Theorem 6. (a) Asymptotically near each ~ ,  j = 1 .... , L, 

lp,u(X -}- ,.~j; _Z") = 3 ]//'37g - 3/2 Ixl- 3 _ ~ 6  3 ~ / a  Ixl 1 

l /~  ~9:2 ixi 3 + o(ixl,,+ 1), 
323 
73728 

(18) 
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and 

qgr 25 2 37 - ~ n - ~ n4jxl 2 + O(Ixl'), (19) 

where a = - 1/2 + [ / ~ / 2  ,,~ 3.8. 
(b) The asymptotic form at infinity. I f  # = 0 

lim Ixl- a/2 log~po(x; _z")= - 2 ~ .  
Ixl --' oo 

If #o 

(20) 

lim Ixl ~o.(x; z") = - Q(z"; ~). (22) 
Ixl-* o0 

Remark. The highest order terms for the asymptotic expansions of ~o and ~p in (a) 
are the same as in the TF-theory. The power o- also appears here (see Veron 1-20] or 
Sommerfeld [18]). The asymptotic forms (20)-(22) hold, with the obvious changes, 
for finite _z also. These properties for finite _z, especially that ~p is exponentially 
decaying at infinity, and that q~ < 0 for large Ixl if N > Z, will be used throughout 
this work. 

As an important step in the proofs of Theorems 1 q  we give a unique 
characterization of the functions q~, and ~p~. This characterization which is 
interesting in itself uses the following renormalization procedure. Define the 
Renormalized Electron Density, 

L 

 7 tx; . . . . .  2 z_ )=Wu(x,z_ ) - Y, (d l lx-~j l -6+d21x-~j1-4)  (23) 
j = l  

where d I = 27n-3 and d 2 = - (27 /8)n-1  are computed from (18). Then 

Theorem 7. ~p, is the unique positive function on R 3 such that ~2) e Cb(I~ 3)c3L I(~ 3) 
(Cb=Continuous and bounded), and which satisfies the Renormalized TFW- 
equation 

-Aw~+ W~/a- Y~ (a l l x -~ j l -4+az lx -~ j1 -2 )  
j = l  

+ 5 .  * l x l - l + ~  ~ ; .=0 ,  (24) 
j = L + I  

on R 3 \ { ~ l ,  ...,~r,}, where al = 9 n  -2 and a2= -27 /4 .  q)~ is given by 
L K 

( pu ( X) =  E ( a l l x - - ~ j l - 4 + a a l x - - ~ i [ - 2 ) - t  - E z~lx-~il-~-o(2~*lx1-1. 
j = l  j = L + I  # 

Or2) satisfies (25) /t 
K 

fo(f)(x)d3x=a(z-";~) + Z z i - O + Z " .  (26) 
j = L + I  

Remark. Equation (26) illustrates the role of Q(2) as a renormalized density. In 
Theorem 37 below we give a different characterization of q~u and ~p,. 

The proofs of the theorems presented here will be given in Sect. 8. We will 
conclude this introduction by describing the general ideas. 

For all # > 0 

lim Jxl- 1 log~p.(x; _z") = - / z .  (21) 
Ixl--' 
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Theorems 1-4 state that in the TFW-theory the configuration of the outer 
electrons becomes more or less independent of the nuclear charges when these 
charges are very large. This implies on the one hand that molecules do not become 
very big and on the other that they do not collapse as the nuclear charges go to 
infinity. If electrons were treated as bosons, i.e., 7---0 in (1) molecules would 
collapse as zl , . . . ,  zK become very large, i.e. the electrons would all sit on top of the 
nuclei. 

The idea in the proof of the main theorems is to prove first that molecules' 
remain bounded. That is to give upper bounds to lp uniformly in _z. This is done in 
Sect. 3. Next we prove in Sect. 4 that molecules do not collapse, i.e. uniform lower 
bounds. In Sect. 5 we prove that any sequence of _z's and N's has a subsequence 
such that the convergences in Theorems 1-4 hold. To prove the theorems we have 
to prove that all subsequences have the same limit. To conclude this uniqueness 
property we first prove in Sect. 6 that the limits q~ and ~p of any subsequence satisfy 
the asymptotic expansions in Theorem 6. In Sect. 7 we use the asymptotic 
expansions to derive the renormalized TFW-equation. We finish the proof of the 
main theorems by proving that the solution to this equation is unique. 

In Benguria and Lieb [2] a series of estimates independent of_z were derived for 
q9 and ~o. These estimates subsequently yielded an upper bound to Qc(_z) 
independent of_z. In the present work we will rely heavily on these estimates. For  
the sake of completeness and since we improve some of the results in [2] we 
summarize these estimates in Sect. 2. 

In [13] Rother gets upper and lower bounds on q0, ~p, and Qc. Unfortunately 
these bounds are not uniform in _z. 

In I-17] the atomic case was studied numerically. It was found that in terms of 
real units with the choice of A that reproduces the Scott correction, i.e., A = 0.J 859 
and ~ = (37z2) 2/3, 

Q~o=0.031e and Roo=18.1ao, 

where e is the electron charge and ao is the Bohr radius. This might seem like a very 
bad value for Qo0 compared to the expected physical value Q~ = 1. That this is 

~(r) 

0 . 0 0 2 -  

i 

0 . 0 0 1  - 

-0.001 - 

-0.002', 

i 

~.o 4d.o 5d.o 
R ~ = l S . 1  

213.0 

! ! 
J 

Fig. 1. ~o~ (solid curve) and its asymptotic forms at 0 (dotted curve) and at oo (dashed curve). The 
unit for r is ao, the unit for ~0 is ao 1 



Thomas-Fermi-von Weizs/icker Theory 567 

really not too bad can be explained from the fact that if we restrict ourselves to 
integer values for N and ask when is the energy smallest we find 

E(N=Z,Z)> E(N=Z + I , Z ) = E ( N = Z  + 2 ,Z ) (=E(N=Z +Qc, Z)). 

We would then conclude that it is possible to ionize an atom with exactly one extra 
electron. 

Alternatively we can take into account the fact that an electron is not 
interacting with itself by introducing the Fermi-Amaldi correction (see also [2]), 
i.e., replace D(~v 2, ~p2) in (1) by (1 - 1/N)DOp z, ~p2). The effect of this is to multiply A, 
7, and Z by the factor N / ( N -  1). The critical number of electrons is then 1.03. 

In the Thomas-Fermi-Dirac-von Weizsficker (TFDW) model this effect is 
taken into account by introducing an exchange term in the energy functional. A 
numerical analysis has been made for a modified T F D W  model in [19] (with 
A = 0.2). For  the critical charge the result is Qc= 0.3 (Dreizler [4]). 

The graph for q~oo for the universal (infinite) maximally ionized TFW-atom is 
shown in Fig. 1. The unit for r is ao, the unit for q) is ao 1. The figure also shows the 
asymptotic forms given in Theorem 6. It is worth noticing how accurate the 
asymptotic curve agrees with the numerical solution even for fairly large values of 
r ( r~  15-20ao). More detailed results are given in [17]. 

We finally mention that it is an interesting open problem to prove that 
Z ~--~Q~(Z) is an increasing function. 

2. The Estimates of  Benguria and Lieb 

With ~ given in (8) we can write the TFW-equation as 

-- A~)-t-(~p4/3--q)+ #)~p=O. (27) 

Notice that we also have 

A~P(x)=4~z (~p2(x)- j~= l zs~(x- ~i) ) . (28) 

We will call (27)-(28) the TFW-system. 

Proposition 8 (Benguria and Lieb). For all N, and z 

2/p(x; _z; N) 4/3 ~ (p(x; z; N ) +  [C(2 ) -  #(2; N)]+ (29) 

for all 2 e (0, 1) and all x E ~3, where C(2) = (9/4) 7z22- 2(1 - 2)- a. 

We use the notation [a]+ =max{a,0} for a ~ R .  

Proof. Let u(x)= ~p(x) 4/3. Then from (27) 

- d u + (4/3) ( u -  ~p + #) u < 0.  (30) 

Let v(x)= 2 u ( x ) - ~ o ( x ) - [ C ( 2 ) - # ]  § From (28) and (30) we obtain 

Av(x)>(4/3)2(u-(p+ #)u-4~u 3/~, x : ~ j ,  al l j .  (31) 

Let S = {xlv(x) > 0}. Our aim is to prove that S = 0. Clearly ~ j  ~ S for allj. Thus on S 

d v(x) >_ (4/3)2u(u - 2u + [C(2) - #] + + # ) -  4~zu 3/2 

___ u [ (4 /3) ,~(1  - 2 ) u  - 4 ~ u  1/2 + ( 4 / 3 ) 2 c ( 2 ) ]  __> 0 (32)  
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with our choice of C(2). Since u(x), q~(x)~0 as x ~ oo, v (x )~  - [C(2) -# ]  + < O. If S 
is bounded v = 0 on OS and it follows that S = O, since v is subharmonic on S. If S is 
unbounded v(x)~O as x--,oe in S and we conclude again that S=O. [] 

Corollary 9. For the chemical potential of a neutral system we get 

--#(z; N=Z)>___ - 352-4~ 2. (33) 

Proof. C(2) takes its minimal value 352-%c 2 at 2 = 2/3. If # > 352-4~z 2 w e  get from 
Proposition 8 that (p(x)>= 2~p(x)> 0 for all x. Hence we must have N =< Z. Since # is 
continuous in N for fixed _z we conclude that N < Z. [] 

The bound (33) is an improvement of the bound given in [2, Theorem 7] which 
replaces 352- 4rc2(~ 150) by 27rc2(~ 266). 

Later on we will need to extend the bound in (33) to Q - - N - Z < O .  Such a 
bound i s more complicated and we have to wait until Sect. 5 to give the proof [see 
Proposition 29 proof of case (Q)]. 

In the next lemma which is also in [2] we derive an estimate which in some 
sense is converse to Proposition 8. Let eR(X) be the normalized ground state of the 
Dirichlet Laplacian on the ball of radius R centered at the origin, i.e., eR(X) 
= (2r~R)- 1/2 [xl- 1 sin(r~R- 1 Ixl) for Ixl _-< R and eR(x)--- 0 otherwise. Then I IVeRI 2 dx 
= rt2R - 2. Define gR(X) = eR(x) 2. 

Lemma 10. Let f2 c ]R 3 be any open set. I f  0 < ~p ~ H2(f2) satisfies Eq. (27) on 0 with 
(p e L2(f2) + L~ then for all x ~ f2 with dist(x, Of 2) > R, 

gR * r < (gg * ~p4/3) (x) + # + r~2R- 2. (34) 

Furthermore if f2 does not contain any nuclei we conclude 

~o(x) < gR * q)(X). (35) 

Proof. Since 0 < % Ip is the ground state for H = - AD + (~p4/3 _ qo). Here Ao denotes 
the Dirichlet Laplacian on Q. Thus for all X e H~(f2), 

S 117)~12_}_ S (ip4/3_q))lxl2dx). _ #  y i)d2dx. (36) 
Q ~ f2 

Using this inequality on Z = eR(X--" ), where dist (x, 0f2) > R gives (34). If ~o satisfies 
(28), ~0 is subharmonic on f2. gg is spherically symmetric, positive and of total mass 
one. This implies (35). [] 

In [2, Lemma 103 was used to prove an upper bound to q)(x) independent of the 
zj. Unfortunately this upper bound is not completely satisfactory near the nuclei. 
Here we will give an improved bound which is optimal to leading order near the 
nuclei. To do this we first notice (see also [3]) that if t solves t(t + 1) = 18, then for all 
k e N ,  

co - 9re- 2 Ix]- 4 + k Ixl * , (37) 

satisfies 

Am(x)<=47ze~(x) 3/2 for ]x[+0, (38) 



Thomas-Fermi-von Weizs/icker Theory 569 

on the set where co>0. We denote the positive root of t(t+ 1)= 18 by ~r and the 

1 ~ is the exponent that appears in negative root by - z .  Then o - = - ~  + ~ - -  

Theorem 6, -c = } + - ~ -  > 4 is used in the following 

Lemma 11. Assume Cp is a positive function on the set {xl Ixl > R), ~ is bounded, goes 
to zero at infinity and satisfies A~=4rc~ 3/2 on {x] Ixl >R). Then 

q~(x)<z(R/lxDIx[-4 on {xllxl>R}. (39) 

Where Z : [0,1)~N+ is defined by 

9rc-2 + C~-4  /f 0<~<cr176 (40) 
;~(~)=[25rc-2(1-~) -4 /f ~o<~<1 .  

Here (C, ~o) is the unique pair which makes )~ ~ C1([0,1)). 

Remark. We have C~167.6rc -2 and ~0~1/7. 

Proof We first notice that 

r -4 for Ixl>R.  (41) 

This follows easily from a comparison argument using that f (x )  
-25 rc -2 ( Ix l -R)  -4 satisfies A f < 4 z f  3/2 and f ( x ) ~ o o  as Ixl~R. 

From the choice of (C, ~o) we find that for Ixl = ~o 1R, f(x) = co(x), where co is 
defined as in (37) with k = CW- 4. By the very same comparison argument as for f 
we conclude that ~(x) < co(x) for Ixl _-_ ~ o  18. This together with (41) gives (39). [] 

We can now give the improved version of the bound of Benguria and Lieb, by 
simply copying their proof. 

Proposition 12 (Benguria and Lieb). For all at(O, 1) and all x, 

K 
(p(x;z_;N)-#(z_;N)< y, (Z (~ ) l x -~ i l -4+rc2~-Z lx -~ j t -2 ) ,  (42) 

j = l .  

where )~(~) is given in (40). 

Proof Given R>0.  For all x e R  3 we get from Lemma 10, 

gR * q~(x)- # < (gR * ~p4/3) (x) + ~2R- 2. 

Using H61der's inequality and the fact ~ gR = 1 we obtain 

~ ( X )  ~- g R  * (p(X) - -  ~ - -  r c2R - 2 ~ (gR * 0 ) 2 / 3 ( x )  �9 (43) 

On the set {x] Ix -  ~i] > R, all j}, we get using (35) that 

~(x)-~_<_~(x)+~2R-~. 
Convoluting on both sides of (4re)- 1A~o = - ~, z j 6 ( x - ~ j )  + ~ we find 

J 

K 
(4n)- lA~> - ~ zjgR(x-~j)+ [-q313+/2. 

j = l  
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Since ~b is continuous and converges to --#--Tz2R -2 at infinity it is easy to 
compare it with the corresponding TF-potential. That is the positive function 
which satisfies 

We find 

K 
(47z)-*A(b= - Z ZigR(X--Nj) + 0 3/2. (44) 

j=l  

~(x)__< ~(x). 

It is known (Lieb and Simon [11, Theorem V.12] or Lieb [10, Corollary 3.6]) 

that ~(x) < ~ ~(x), where ~a is the TF-solution for an atom with nuclear charge 
j=l  

density zjgR(x-~j). Then ~b~ satisfies the assumptions in Lemma 11, and 

~ b j ( x ) < _ _ Z ( ~ )  l x - ~ j ,  -4 on {xllx-~l> R}. 

For all x satisfying Ix -~ l  >e,  all j, we hence get 

~o(x)-#__< ~ Z Ix-~1-4+rc2R-2. 
j=l  

For any x4:Nj,  all j, we now choose R=c~minjlx-Njl.  Then 

e - 2 ~  ~ . - 2 l x - ~ j [ - 2 ,  
J 

and since Z is an increasing function we obtain (42). []  

Remark. In [2] the bound (42) was proved with )~(~) = 25~- 2(1 - ct)- 4. The g given 

here satisfies lim )~(~) = 9~z- 2. This limit is optimal (compare Theorem 6 and the 
Ct --~ oO 

remark after Lemma 21). 

Remark. In Proposition 12 q) is bounded in terms of#(z; N). It is thus important as 
mentioned earlier to prove that # is bounded if Q = N - Z  is fixed (see 
Proposition 29). 

3. Upper Bounds 

In this section we will prove that the electrons stay in a bounded region as _z~ oe. 
More  precisely we will prove that the LZ-norm of ~ on the set {x] ]xi >r} goes to 
zero uniformly in z when r ~  oe. From Propositions 8 and 12 we only know that ~p 
is uniformly bounded by a constant for large Ixl. Our first step is 

Lemma 13. For all ae(0,  1) and all x, 

( lp(x;z_;N) c/a<< - 1+  2n2] j=l ~ (Z (~ ) lx -~ j l -4+rc2~-2 lx - '~ J l -2 ) '  (45) 

where Z is given in (40). 
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Proof Let f j{x)=f l (~(7) Ix-~ j l -4+~2~-21x-~ j l -2 ) ,  where fl> 1. Define f (x)  
= y~fj{x). Proposition 12 states that fl(~p-/t) < f Consider the set 
S = {x]~p4/3(x) > f(x)}. Then clearly ~ j  ~ S, all j, and since ,p decays exponentially at 
infinity, S is open and bounded. On S we have ~4/3> fl(q~_#). Hence the TFW- 
equation (7) gives 

Alp 4/3 ~> (4/3) 0p 4/3 - (q~ - ]2))/])4/3 > (4/3) (1 -- t -  1) (/p4/3)2 . 

On the other hand for x + ~j,  

Afj = fl(12Z(a) Ix - ~ j l -  6 + 2ZC2 0~ - 2  IX __ ~ j [ -  4) ~ 6 (rC2~ - 2fl) - lfj2. 

Hence 

K 
A f  <=6(rc2~ -1 E f j2~6(g2~-2f l ) - l f  2 

j = l  

for x . ~ j .  If we choose 6(Tz2c~-zfl) -1 =4/3(1 _fl-1),  i.e., f l= 1 + (9/2)7z- 2~ 2, then 
704/3-f  is subharmonic on S. On aS, , p4 /3_f=0 ,  we conclude that S=0.  [] 

With this lemma we can now improve the upper bound Qc < 270.74K given 
in [2]. 

Proposition 14. Qc(Z_) <= 178.03K. 

Proof As realized in Benguria-Lieb [2] it is enough to consider the atomic case 
K = 1. As in [-2] we use the fact that if we define 

p(x) = (4rc,p(x) z + ~o(x)2) 1/2 , 

then Qc < Ix[ p(x) for all x + 0. We choose to estimate [xlp(x) at [xl = 0.9086. If at this 
point ~o(x)>0 we use Proposition 12 to estimate q~ and Lemma 13 to estimate 
~p(p = 0). In both cases we take a = 0.4424. We get Qc < 141.03. If ~0(x) < 0, we use the 
estimate in [2] (p. 1052 formula (44)): Qc<178.03. [] 

Remark. Compared with the numerical value Qoo = 11.54 (with A = i and ~ = 1, see 
1-17]) this is an order of magnitude wrong. 

Unfortunately the bound on ~p given in Lemma 13 is not in L z. To get a better 
estimate we will consider the problem of finding ~p outside the ball {x[ [x[ > r}. The 
origin x = 0 is arbitrary but should be thought of as being somewhere in the center 
of the molecule, r should then be so large that INj[ < r for all j. 

For the outside problem of finding ~p on {x[ Ix[ >r} the function 

K 

gPr(X)-- Y Zj[X--~j] - a -  ~ O ( y ) [ x - y l - l d y - # ,  (46) 
/ = 1  [yl<r 

will be considered as known. 

Lemma 15. There exists a constant C>O, such that for r >  max [~j[ + 1, 
J 

~gr(X ) ~ C r  - 1/2 IX[-  1 

on the set {x] Ix[ > r}. 

(47) 



572 J . P .  So love j  

Proof Let 6 = (maxl~jl + 1)1/2 then r' = r 1/2 clearly satisfies max lag[ + 1 < r' < r. 
J 

On the set {Ixl > r'}, ~ is subharmonic. An easy comparison argument shows 
that for all Ixl => r', 

q3r(x) < sup (r'(o,(y))Ix[- 1. 
[Yl =r '  

Now the definition (46) implies that 

sup Or(y)< sup (q~(y)-p)+ sup ~ O(y')ly-y'l-Xdy '. 
[yl=r  ' [yl=r ' lYl=r ' [y'l>~ 

From Proposition 12, sup (q~(y)- #) < const(r')- 2 and from Lemma 13, 
Irl = r '  

sup ~ O(y')ly-y'l-~dy'< sup ~ constlY'l-3ly-y' l- ldy ' 
ly l=r '  [y'l__>r ly[=r '  lY'l_>_r 

<const  ~ ly'l-4dy'<constr -1 
[y ' l>r  

Hence 

O,(x) < const (r'- 1 + r'r- 1)Ixl- 15 Cr- 1/2 Ixl- 

for all x with Ix[ > r'. [] 

Lemma 15 states that on the set {[xl>r}, ~, is smaller than the potential 
coming from a central charge of size Cr- 1/2. It is a well known fact (Lieb [10] or 
Lieb [9]) that the total number of electrons of an atom is of the order of the nuclear 
charge (for real atoms N < 2 Z + I ) .  Using the method of Lieb on the outside 
problem we can now prove that the amount of charge outside the ball of radius r 
goes to zero uniformly in _z as r goes to infinity. This idea is being used on the true 
quantum problem in [14]. 

Proposition 16. There exists a constant M > 0 independent of z_ and N such that for 
all r > 2 (n~ax l~ jl + l ), 

~p(x; z; N)2dx ~ Mr-  1]2. (48) 
Ixl>r 

Proof Choose q~ C~176 ) with supp~/== [1, oo), 0__<t/=<l and ~/(t)= 1 if t>2 .  Let 

t/~ : p3  _.p~ be defined by r/~(x)= tl(lx[/r ). Then if r > max I~j[ + 1, 
J 

A(tl,~) = ~An, + 2vrt, v ~  + (~;p) (~4/3 _ ~o + #) 

>~pAtl,+2VrlrV~P-(rl/P)(~ I O(y) lx-y l - 'dy .  
[yl>r 

We multiply this inequality by Ixl ~;p, integrate o v e r  ]R 3 and use (47), 

I Ix1,7;;~ (,Try) > I Ixl ~,~((A,I~)~ + 2 V~, V~)dx - C r -  1/21 ('7,~) 2 dx 

+ ~ (t/W) 2 (y)[x-- y]-1 Ix] (t/r~0) 2 (x)dxdy. (49) 
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It is not difficult to see (Lieb I-9]) that ~ I xL (tl,~)A (tlr~)dx < O. By symmetrization 
and using the triangle inequality 

I (~r~) 2 (Y) IX-- Y1-1 Ixl (~,~)~ (X) dxdy 
= (1/2)  I (~]rl~) 2 (Y)I X - -  Yl-  ~(Ixl + lYl) (r/rW) 2 ( x ) d x d y  > (1/2)  (I (t/~P) 2 dx) 2" 

Finally we estimate the "boundary" term, that is the first term in (49), using that for 
Ixl _-_ max I~jl + 1, W(x)<constN -3/2, 

J 

,, (,x[tlrAtlrlP2 + lxlt]rVtlrV(lPZ))dx, = -- I (~]r ~x~ V(~]r)lj)2 + ,x, ([Z~r)21p2) dx 

2r 

<cons t r  -4 ~ s2ds=constr -1.  
r 

Inserting the two above inequalities into (49) we arrive at 

0 > -- const r -  1 _ Cr- 1/21 (t/,~P) 2 dx + (1/2) (~ (~//p)2 dx)2. 

The right-hand side here is a quadratic expression in ~ (r/,p) 2 dx. We conclude that 

lP(x)2 dx<= ~ (tlrlp)2 dx< Mr - t/2. [] 
Ixl -> 2r 

Later on (Theorem 28) we will prove a uniform (in _z) exponential bound on ~p. 
The reason why we cannot prove this now is that we have to know that Qc(_z) is 
bounded away from zero for large enough zj. This together with Proposition 16 
will then imply that for a maximally ionized molecule we can find a ball 
independent of_z such that the total number of electrons inside will exceed the total 
nuclear charge Z. For an atom this means that the Radius of Neutrality is bounded 
above independent of z. But for the moment we can only say that the number of 
electrons outside a ball B, goes to zero uniformly in z as r~oo .  

4. Lower Bounds to ~o, ip, and Q~ 

The aim of this section is to prove that the electrons do not collapse to the point ~ j  
as z j ~  ~ .  We begin by proving a lower bound to q~. The major implication of this 
lower bound is that q) is positive in a _z-independent neighborhood of ~ j  (see 
Corollary 18). We use this result to compare the TFW-system to a much simpler 
boundary value problem to give improved lower bounds to q~ and ~p near each 
nucleus. We then extend the lower bound to ~p to a global bound and derive lower 
bounds to Qc and #. Finally we use these lower bounds to give the uniform 
exponential upper bound on vr 

Lemma 17. For allj = 1 . . . .  , K there exist rcj > 0 and sj > 0 such that for all 0 < ~ < zj 
and x > tcj with ~(3/2 ~> S j ,  

~(x; _~; N) >__ ( I x -  ~ J -  1_ ~(3/2 t x - ~ j l -  1/2 (50) 
for all x ~  3. 
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Proof Define the functions 

hp~( x )  = ~ I x -  ~ jl - 1 _ ~r I x -  ~ jl - ~12 . 

We will use a comparison argument to prove that 40>_h~ j). Denote R=(1/2)  

rain I~-~kl and let 
l * k  

Q+ = {xel t3[  [x-YTjl>R for all j} and O_ =N-3\Q+.  

Let S = {x140(x) < h~D(x)}. Since ( <  zj it is clear that Ni 6 S for all i =  1,..., K. At 
infinity we get from Proposition 1 4 that lim Ix] 40(x)= -Q~(_z)> - cons t .  Thus S 

i x l  ~ oo 

is open and bounded with 9 = h~ j) on gS. We will prove that h~ J)- 40 is subharmonic 
on S, which implies that S-- 0. We divide the proof of this into two steps. 

Step 1. Sc~E2+. 
If xeSnO+ then from Lemma 13, 

A40(x)=4mp(x)2 <= c~ ( ~i= ~ )~(~ l x -  ~il-4 + Tc2~ 2 lx--~i]- 2) 312 

< const Ix -- Nsl- 3 

where (after minimizing in e) the constant only depends on the N~. On the other 
hand 

Ahp)= lls (51) 

Thus if to( 3/2 is large enough we get Ah~J)>A40 on Snl2+. 

Step 2. Sc~E2_. 
In this case we estimate ~p by Proposition 8, 

A p = 4rctp 2 < 4~z [)~- 140 + 2 - ~ C(2)-I 3/2. 

On f2_, [x-~j1-1/2 is bounded below. Hence for any fixed 2e(0,  1), 

[2-  lh~X) + X - 1 C(2)3 + <= 2-1 ~ Ix - ~ i l -  1 

if ~31z is large enough (depending on 2). From (51) we obtain for x e Sc~E2_, 

4r~ [2-  ~ h~J) + 2-  t C(2)] 3+t2 __ 47c2- 312~312 Ix - Ytj[- 3/2 <= A h~)(x), 

if ~c is large enough (depending on 2). Thus on ShEd_, Ah(~)(x)~A40(x). [] 

Corollary 18. There exist r o with 0 < ro < 1/2 min I~ l -  Nkl and ~o > 0 independent 
of z_ and N such that if zs>(o, l*k 

40(x;_z;N)>0 for Ix-~jl<ro. (52) 

Remark. As zj-+O the TFW-solution will converge to the solution without the jth 
nucleus. Whether 40 will be positive or negative near ~s  in this case depends on the 
position of Nj relative to the other nuclei. 

For  a maximally ionized atom Corollary 1 8 gives a lower bound to the Radius 
of Neutrality Rz for large Z, since 40(Rz)< 0. For small Z it is easy to see using the 
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results of Benguria and Lieb [2] Sect. 3 that lim Rz = oo. Corollary 18 implies that 
Z--,0 

R z is bounded below by a non-zero constant for all Z (for an upper bound for large 
Z see Proposition 27). 

4.1. Comparison with Simpler Boundary Value Problem 

With the help of Lemma 17 and Corollary 18 we can now compare the solutions q~, 
~p of the TFW-system to the solutions y > 0, V> 0 of the following much simpler 
boundary value system: 

and 

A V --= 47c(V 3/2 - (6(x) )  

A y = (y4/3 _ fi V -1- #)  y 

on {xl[xl<r}, (53) 

on {xllx[<r}, (54) 

Vl~lxl=r~=0, YJ~lxl=r~=0, (55) 

where ( >  0 and fl >0.  Equation (53) is identical to the atomic TF problem with 
nuclear charge (. 

Before examining the solution to (53)-(55) we will show how to compare it to 
the TFW-solution. 

Lemma 19. With the notation of Corollary 18 we can for all C > 1 find 0 < rc < ro 
independent of z_ and N such that if V~, y~ are solutions to (53)-(55) with r=rc, 
/~=C -2 and ( o < ( < z j ,  then on {xl I x - ~ l < r c } ,  

q~(x; z; N)> C-  ZVr (56) 

~p(x; z_ ; N) > yr - Nj). (57) 

Proof. Let 2 = C-  1/3 e (0, 1). It follows from Lemma 17 that we can find rc such that 
(C 1/3 - 1)~o > C(2) on I x -  Nil < r o where C(2) was defined in Proposition 8. Hence 
from Proposition 8 we obtain 

lp (X) 2 ~ [-2-  l fp _1_ • -  1C(2) ] 3/2 ~ C(~3/2 

on Ix -Ni l  <rc. We thus get 

A (p = 47"c(lp 2 - -  zj6(x  -- ~ j ) )  "< 4 g  (Cr_p 3/2 - zj•(x - ~ j ) ) .  

Let q3c= CZcp then 

A (Pc ~ 4 g C 3  (P 3/2 - 4gC2zj(~( x - ~ j )  ~ 4~z(qSc a/2 - zjg)(x - Nj)). 

A simple comparison argument shows that V~(x-~lj)< (Oc(X) on I x - ~ j [  < rc. 
Since qSc> V~>0 on Ix-NjI  <rc we have 

&o = 0;~/~- ~o +~)~__<(~,/~- c -  ~v~ + ~)~;. 

On the other hand since fl = C-2, 

Ay~=(y~/a-c-2v~+#)y~ for I x - ~ l < r  c 

with y~ = 0 on [ x -  ~j[ = r o To arrive at y__< ~p we appeal to the comparison theorem 
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of Hoffmann-Ostenhof [-6]. To use this theorem we actually need to know that y; 
and V~ satisfy some regularity properties. These are given in the next theorem. [] 

Theorem 20. For all r>0 ,  fi>0, and # > 0  we have ( r ,a , ,>0 such that for all 
> ~,, p, u there exists a unique solution pair (y;, V~) to (53)-(55) with y ~  Hao(Br), y~ > 0 

for [xl<r  and V~>O. y~ and V~ have the following properties: 

O) y~ c c~ <= r}). 
(ii) y~, v~ e c~({0 < Ixl < r}). 

(iii) V~ > 0 on {0 < Ixl < r} and lim V~(x)Ixl = C. 
X--+0 

(iv) V~ and y~ are spherically symmetric and strictly decreasing as functions of  Ixl. 

Proof Equation (53) is the Thomas-Fermi equation. All the stated properties of V~ 
can easily be concluded from well known facts of TF-theory (see Lieb [10]). The 
existence can also be proved by standard ODE-techniques (see Veron [20]). 

Equation (54) is studied in exactly the same way as the TFW-equation (Lieb 
[10]) by considering the functionals 

~(Q)=J(VI/ /~)z+3/5JQs/3-f i~V~+#J~ and ~,(y)=~(y2). 

4' is defined on H~({xl Ixl -<_ r}) and r is defined on {e>01l/~cH~}.  That y~ is 
radially decreasing follows from the fact that V~ is radially decreasing as in [10, 
Theorem 7.26]. The only thing we have to prove is that y ~ 0 .  Choose 

e C;~ <r) such that r/= 1 on Ixl < (1/2)r. We can then prove (Lemma 21 below) 
that lim j V~q = oo. It is therefore clear that we can find ~,,p,u such that ~(q)<0 for 

~--* ao 

> ~,a,u. This implies y; + 0. []  

Remark. Since in Theorem 20 we need ~,a,u < ~, we see that (57) in Lemma 19 can 
be used only if z j >  (~,a,~ which depends on C and #. This again shows the necessity 
of knowing the boundedness of # given in the proof of Proposition 29 [case (Q)] 
below. Equation (53) by itself of course has a unique solution for all ~ > 0. 

The next lemma about solutions to the TF-equation is essentially due to Veron 
[203. 

Lemma 21 (Veron). For f ixed r > 0 we have for the solutions V~ to the boundary 
value problems (53)-(55) that 

V~(x) ,7 V~)(x) as ~ ~ co, (58) 

for all x, 0 < Ixl < r. The function V~ ") satisfies 

V~r)(x) = 97z- 2 Ixl- 4 -/- O(IxI~ (59) 

with a = -- 1/2 + ~ '~ /2 .  

Proof It is clear by comparison that ~ 1 < ~  implies V~< V~, and that V~(x) 
< 9re-2 ]xl-~. Thus lim V~ = V~ exists pointwise and in the sense of distributions 

on 0< lx [<r .  Hence we have that AV~=4z~V~/~ on 0<]x[<r .  Since 
lim Ixl V~(x)= o~, it follows from Veron [20, Theorem 5.1] that Vo~ >9rc-2lx1-4 
X ~ 0  

+ O(Ix[~). [ ]  
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Remark. Equations (56) and (59) show that the ~(~) in the upper bound (42) has the 
optimal limit lim Z(a) = 9n-  2. 

a-~0 
Since Lemma 21 gives good control on ~, our goal is to estimate q~, ~p below in 

terms of ~. For cp this was achieved in (56). To get a lower bound to lp we will use 
(57), so we have to give a lower bound to yr in terms of ~. 

Lemma 22. Let V~, y~ be the solutions of  (53)-(55). I f  0 < Ixl < r and ~ e (0, (i - [xI/r) 
(1 + Ixl/r)- ~) then, 

y~(x) 4/3 ~ f l ~ ( ( 1  - -  ~ ) X )  - -  7C 2~-  2(1 - -  6 )  2 Ixl- 2 - -  # .  ( 6 0 )  

Proof Using (34) and (35) we see that for R < lYt < r - R ,  

fiVe(y) < gR * y~/a(y) + # + 7r2R- 2. (61) 

If we use that yr is radially decreasing we find 

fiVe(y) < y;(([y[- R)y/[y[) 4/3 + It + 7z2R - 2. 

Now choose R=~IYl and x = ( [ y l - R ) y / l Y l = ( 1 - ~ ) y .  Since 0 < l x l < R  and 
~ (0 , (1 - lx l / r ) (1  +lxl/r) -1) we clearly get R < l y l < r - R .  [] 

Corollary 23. For all C > 1, #o > 0 we can f ind 0 < r c and 0 < ~o such that if (o < zi 
and #(_z; N)<#o we get 

lt)(x+~fiz_;N)a/3~f-2V~((1-oOx)--n2o~-2(1--ot)2lxl-2-#(z;N), (62) 

for all [x[<rc/2 and all ~e(0, 1/3). 

Proof This is just Lemma 19 and Lemma 22. [] 

4.2. A Global Lower Bound to ~p and Lower Bounds to Qc and # 

From Corollary 23 and (59) we get good lower bounds for lp near each nucleus 
with large nuclear charge. It is not difficult as we will see to extend this to a lower 
bound for ~p everywhere. Such a lower bound will then in turn imply lower bounds 
to Qc and to #(_z; N). We will first give the proof in the atomic case (K = 1), because 
the molecular case is technically much more complicated. 

Proposition 24. (Atomic case: K = 1, ~1 -- 0) For all r, #o > 0 we can f ind Z (~ such 
that for all N < N~, Z satisfying Z > Z (~ and #(Z, N ) <  #o, 

~P(x;Z;N)>(3/4)a/4lx[-3/2exp(--elxl), for Ixl>__r, (63) 

where e = max { N -  Z, #(Z, N)I/2}. 

Proof Since ~p and ~0 are radially symmetric it follows from Newton's theorem that 
~o(x) >= - (N-Z)Ix l -~ .  Inserting this into the TFW-equation gives 

AW<Wv/3 +(eIx1-1 +ez)W. 

We compare ~p with f ( x )  = (3/4) 3/4 Ix[ - 3/2 e x p ( -  e Ixl). For Ixl + 0, 

Af(x)  > f ( x )  7/3 + (e Ixl- x + ~2) f ( x ) .  
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Hence f - ~ p  is subharmonic on S = {x] f (x )> ~p(x)}. It follows from Corollary 23 
and Lemma 21 that for any C > 1 we can find 0 < r' < min(r, rc) and Z ~~ such that 
{[x]=r'}nS=O for all Z > Z  (~ and #(Z,N)<#o. Since ~p-f--*0 at infinity it 
follows that Sc~{[xl>r'}=O. [] 

We can now prove the lower bounds on Q and # in the atomic case. Notice that 
for the maximal ion (N = No), #(No, Z) = 0 so e = N -  Z = Qc. For  the neutral atom 
N = Z so e = #(Z, Z). A general lower bound to e thus implies a lower bound to Qc 
and #,,,tr,1. Since Qc(Z)~O as z - o 0  (see [-2]) we of course have to assume that Z is 
bounded away from 0. 

Theorem 25 (Atomic case). There exists 6 > 0 such that for all Z large enough and 
all N < Nc, 

eN, z - max { N -  Z, #(Z, N) 1/2} > 6. (64) 

Proof It is clearly enough to consider N, Z such that #(N, Z) is smaller than some 
constant. For  any r > 0 we can therefore assume from Proposit ion 24 that 

~p(x)2dx>=(3/4) 3/2 ~ Ix[-3 exp(-2elxl)dx 
Ixl ->_r Ix[ >_-~ 

1 
=>4n(3/4) 3/2 ~ s 1 exp(-s )ds> -4~z(3/4)3/2e- 1 ln(2er). (65) 

2er 

Using Proposit ion 16 we get a bound on e for all r > 2. []  

Remark. We see that the physically correct exponent p = 5/3 in TFW-theory  is 
critical for the above proof, i.e., the lower bound to ~ ~p(x)Zdx is only 

Ixl>=r 

logarithmically divergent in e. For  p > 5/3 the proof will still work, but for p < 5/3 it 
would not be a useful method. For  the same reason if one tries to give numerical 
values for the lower bound the result will be quite unsatisfactory. 

We now turn to the molecular case. Unfortunately the proof  here is technically 
complicated. 

Theorem 26. There exists 8 > 0 such that if z 1 (say) is large enough then 

e -  max { N -  Z, #(_z; N) 1/2} >= 8. (66) 

Proof. The proof is inspired by a proof  by L. Jeanneret of Lemma 7.18 in Lieb [10] 
given in an unpublished note to Haim Brezis. The proof will be divided into several 

steps. 

Step I. A Lower Bound to ~p 
As in the atomic case we can assume that # is bounded above by some constant. 
From Corollary 23 we can then assume that ~p is bounded below independent of_z 
near ~1. That  means that we can find 0 < r  1 <(1/2) min IN~-Ni] such that 

i * j  

tp(x)__>const for I x - g t l l - - r l .  

Now from Proposit ion 8 we know that 

~0(x)=>-- min C ( 2 ) = - 3 s 2 - 4 n  2. 
2~(0,  1) 
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Thus 

A W __< ~7/3 + (352- 4rc2 + #)~.  

Just as for the atomic case we can prove that 

l p ( x )>=C' [x -~ l l -3 /2exp ( - e ' l x -~ l l )  on { x l l X - ~ x [ > r l } ,  (67) 

where e' = (382-4~2 + #)1/2. Notice that this bound is not as useful as (63), since it is 
not given in terms of e. For simplicity we will from now on assume ~1 =0. 

Step 2. Spherical Average 
Here we use the trick of Lieb [10, Lemma 7.17]. Let [~P]a denote the spherical 
average of ~p, i.e., 

[-lp]a(r ) = (4rc)-1 5 ~p(rog)d~. 
S 2 

Define f(r)  = exp([ln~0]a(r)). Then from Jensen's inequality f(r)  < [~p]~(r). Fur- 
thermore f has the property (see [10]) 

[ A ~/~p]~ (r) >_ A f (r)/f (r) . 

Thus for r > max [~j[, again using Newton's theorem we find 
J 

A f (r) <__ [~04/3 - ~o + #]a(r) f (r) <= [~p4/3]~(r) f (r) + (er-1 + ~2) f (r) . 

I-~,212/3- I-,~1z/3 Defining g(r) From H61der's inequality we have [~p4/3]~_<L. ~ Ja - ,~J~  �9 
= - Af(r) + [O]2a/3(r) f(r) we obtain 

g(r) >= - (er- 1 + e2) f(r) .  (68) 

Step 3. Choice of  Radius 

Choose R >  2 (max I~j[+ 1 ) =  2 (max ] ~ j - ~ , [  + 1 ) > r l .  From (67)we see that 

f (R) > C 'R-  3/2 e x p ( -  e'R) =- C R . 

Choose m e n  (depending on R) such that 

(4/3)rcC~(m 3 - 1 ) R  3 > ~ ~p(x)Zdx. 
Ixl__>/~ 

From Proposition 16 we can choose m independent of_z and N. We claim that there 
is R' e (R, mR) such that 

f ' ( R ' ) < 0 .  

If not f > C  R on (R, mR) and H61der's inequality gives 

rtzR 

~P(x)e dx >= 4rc ~ [~P]2(r)r2dr 
Ixl >_- R R 

mR 

>4~z ~ f(r)2r2dr>(4/3)rcC~(m3-1)R 3 
R 

which is in contradiction with the choice of m. 
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Step 4. Auxilary Function 
Define for r > R the auxiliary function, 

b(r)= i dss-2 i[0]2/3(t) t2dt" 
R R 

Then  

and 

(69) 

Ab(r) = b"(r) + 2r- l b'(r) = [o]z/3(r). (71) 

Not ice  that  

b(r )= Ri [q]2/a(t)t2 St s-2dsdt <= [q]"(t)t2dt) t - ld t )  

= ((4u)-* ~ ~P(x)2dx) n 

from Propos i t ion  16 we can choose Ma=(4n)-*MR -1/2. Choose  q e C~(~+) ,  
0 < q < 1 with q(t) = 1 for t < 1 and ,/(t) = 0 for t > 2. Define ~/,(x) = ~(Ixl/n). F o r  the 
funct ion g defined in Step 2 we find (with R' as in Step 3) 

I g(x)exp(b(x))~h(x)dx= I ebq,aJ--fOr(ebl,) dS 
Ixl>-g ' Ixl=R' 

+ ~ feb{[QJz/'rl,-rg(Vb) 2 
ixl>_R, 

- rI,Ab- Arg-  2VbVrl,} dx . 

We assume that  n is so large that  t h = l  on (R, mR). If we use that  ~ r f ( R ' ) < 0  
(Step 3), O,b(R')~O and  Ab= [Q]2/3 we obta in  

I gebtl, dx<--- f feb{(Vb)Ztl,+Atl,+2VbVtl,} dx" (72) 
Ixl _-> R' Ixl => R' 

In the next  three steps of the p roo f  we will consider the three terms on the right- 
hand  side of  (72). We will prove  tha t  the first te rm is bounded  by a cons tant  and 
that  the last two terms go to zero as n-+oo. We begin with the last two terms. 

Step 5. 

i.,~ll.fe'Atl.dx <n -I/" ((4u) - I  ,~,>_.,J" ~(x)2dx) I/2 (,:,,~, e2b("')lArl(lxl)]Zdx) */2' 

since Aq(t)=0 if t <  1. N o w  from Step 4, 

2b(nx) < 2M 2/a ln(n Ixl/R)- 2/a ln(n Ix]/R) �9 

Choose  no so large that  2M~/a(ln(no/R))-2/3< 1/2. Then  for n > no, 

I~I~. 'febA""dx <=n-iI2MRI2 ( ix[~l  (nlxllR)' Id"( )l d ) 
= const ,  n -  1/'*M1/2R- 1/4. (73) 

b'(r) = r - 2  i [q]2/3(t) t2dt, (70) 
R 
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Step 6. 

Now 

[xl~R feb[7bVrlndx ~ r t - l M  1/2 (ixl~R (Vb)2(Vrl(Ix{/n))2eZOdx)l/2. 

{Vb(r){ < r-  2 [O],(t) t z dt t2dt < 3 - l/3M~/3r- 1. 

As in Step 5 if n > no, 

( Vb ) 2 ( Vtl(lxl/n)) z eZb dx < const, M4R/an3/Z R - 1/2. 
Ixl > R' 

Thus 

Step 7. 
Since b > 0 

febVbVtlndx <cons t . n -  1/4MVR/6R- 1/4. 
}xl R' 

(74) 

I feb(Vb)2tl, dx> f ftl.(Vb) 2dx. 
Ixl >=R' Ixl __>mR 

From (67) we see that f and I-0]~ are bounded below. Hence from (70) (Vb) 2 is 
bounded below. If we make sure n o is not too small, there exists dR,m > 0 such that 

5 feb(Vb)2q.odx >- dR,.,. (75) 
Ixl_>R' 

Going back to (72) we see from (73)-(75) that if no is large 

g(x) exp(b(x))tl.o(x)dx<= - (1/2)dR,.,. 
I~{>_R' 

Step 8. End of Proof 
From (68) 

~> exp(b(x))tl.o(X ) f (x) (e]x] - I + ~2)d x >_ (1/2)d R ,.. 
{xl 1~ = i - -  , 

But now the final result (66) follows from 

Ixl ~ R, exp(b(x))q"~ f(x)  (e ]xl- 1 + e2)dx 

~(\lxl=R~> 113(x)2dx)l/2 \R<lxl<2no~ exp(2b(x))(elxl-l +e2)2dx) '/2 

< CO)(R, no)e 2 + C(2)(R, no)e , 

for some constants 0 1) and C (2). [] 

4.3. The Uniform Exponential Decay of ,p 

In the atomic case, we will now prove, using the lower bound on Qc, that the radius 
of neutrality Rz for the maximal ion is bounded from above for large Z. This result 
is essentially equivalent to the uniform exponential bound as we will see in the 
proof of Theorem 28 below. 
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Proposition 27. For the maximally ionized atoms there exist R_, R + > 0 such that 

R_ =< lim inf R z _< lira sup R z ___< R +. (76) 
Z~oo Z-~co 

Proof. The lower bound follows from Corollary 18 since (p(Rz)< 0 (see also the 
remark after the corollary). The upper bound is a consequence of the lower bound 
on Q~(Z) and the bound on ~ ~p2dx given in Proposition 16. We just have to 

recall that ~ to(x)2dx = Q~(Z). [] 
Ixl > Rz 

Remark. For molecules Corollary 18 states that the set {xko(x; _z; N) > 0} is not too 
small for large z. As for atoms we can now also prove that for the maximally 
ionized molecule {qffx; _z; N ) >  0} is bounded for large z. This will follow from the 
proof of the next theorem (see (81) below) in which we give the uniform exponential 
decay of to. 

Theorem 28. There exist constants m, t 1 > 0 and a radius R > 0 such that if zl is large 
enough and ]x] > R then 

to(x; z; N) < m e x p ( -  q Ix] 1/2) (77) 

for all N. 

Proof From Proposition 16 we can find a radius R I >  max INj]+I such that 
J 

S to2dx<(1/2)6, where 6 is the lower bound in Theorem 26. Now consider 
Ixl>=Rl 

cpR~(x)- E z j ] x - ~ j [ -  ~ to(y)Zlx-yl-tdy. 
J lyI<R1 

Lemma 15 implies 

sup (pR,(X) N C R 1 3 / 2  q- I J .  (78) 
Ixl =Rl 

On {x[ Ix[ > R1}, (Pa~ is harmonic and qoR1 ~ 0  as Ix[ ~ oo. We can thus express q)R1 
using the Poisson integral formula for an exterior domain, i.e., if [x[ > R1, 

~RI(X)-=(4"I~R1) - 1  [. Ixl2-e~ I~J:R~ Ix--413 q)gi(4)dSe, 

<(4~rel) -1 f ~oR~(F,)dS~lx1-1 

Ixf-e~ 
- t - (4TcR1) - I (CR[3 /2 - I - I~ )  Ir x - - 4  3 I~l dS~, 

where dS~ is the Euclidean measure on {14{ =Rt}-  If Ixt >2R1 and 14l =R1 we find 

Ixl 2-R~ ~ - - ~  I!1 =<C'R~lxl-~" 
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Furthermore from Newton's theorem 

(4~R 0 - 1  I 
I~l =R~ 

qbc~(~)dSr ~. z j -  [. lp(y)2dy 
s lYI<=R1 

= Z - N +  ~ ~p(y)2dy<Z-N+(l/2)~. 
lyI>=R~ 

583 

Putting everything together we obtain for Ix[ > 2R1, 

1 tt 1 / 2  - 2  l 2 - 2  q~RI(X)<(Z--N+(1/2)f)Ix[- +C R1 Ix[ +CpRI[xl . (79) 

From (78) we of course have the much simpler estimate 

~oRl(x) <= CR;  1/2 Ix1-1 ..[_ #R 1 Ixl- 1, for Ixl > R1. (80) 

Indeed (80) is true for Ix[ = R1, for Ixl > R1 it follows from the maximum principle 
since both sides are harmonic. The difference between (79) and (80) is that for N -  Z 
large enough (79) will be negative for large Ixl. We know from (66) that either N -  Z 
=>6 or #1/2~6. If N-Z>_>_6 we use (79) to conclude that for Ixl>2R1, 

q)(x) - # < ~Pel(x) - # < -(1/2)6 Ix1-1 + C"R ~/2 Ixl- 2 + #(C'R~ Ixl- 2 _ 1). 

If #1/z>=6 we use (80) 

q~(x)-# < CR? 1/2 Ixl- ~ + 62(Rx Ixl- 1 _ 1), 

for Ix[ > 2R~. It is now clear that we in both cases can choose R > 2R 1 independent 
of _z and N (i.e., independent of # also) such that 

~o(x)-#<=-(1/3)filx1-1, for Ixl>=R. (81) 

From the TFW-equation we obtain for Ix[ >R,  

A~p(x) > tO(x) 7/3 + (1/3)6 [xl- l l ] ) ( x )  ~ (1/3)6 Ixl- l i p ( x )  �9 

We compare ~p with f = m exp(-2(~  [x[/3)1/2). Using Lemma 13 we can choose m 
such that ~o(x) __< f(x) for Ix[ = R. Since Af(x) <= (1/3)6 Ix[- i f(x)  we conclude ~p =< f 
for ]x[__>R. [] 

5. Compactness  

In the previous sections we have proved pointwise upper and lower bounds to ~v 
and ~o. We will now study the limit z j ~  for j =  1 .. . . .  L and z s. fixed for L<j<=K. 
As in the introduction we will denote this limit by _z'-~ ~ .  We first have to specify in 
what sense N tends to infinity. We are interested in two different cases 

N<Nc(_Z), N - Z ~ Q  as _z'~ ~ ,  (Q) 

#(z;N)-*# as _ z ' - ~ .  (#) 

�9 i ___} In this section we will prove that given sequences (N,), (g,) with z .  ~ as n ~ ~ and 
satisfying (Q) or (#), then we can find a subsequence (nk) such that to k -- (. ; _z,k; N,k) 
and ~o k-= r .; _z,k; N,~) and all their partial derivatives will converge uniformly on 
all compact sets disjoint from {~1 . . . .  ,~K}- Furthermore in case (Q) the 
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subsequence can be chosen such that #(_z,k; N,k) converges and in case (#) such that 
N,k--Z.~ converges. We first prove the last statements. 

P r o p o s i t i o n  29. In case (Q) we can choose a subsequence such that 

lim #(_z,~; N,~) exists. 
k ~  

In case (#) we can choose a subsequence such that 

lim (N . ~ -  Z,k) exists. 
k--* oo 

Proof We have to prove that #, is bounded in case (Q) and that N , -  Z ,  is bounded 
in case (#). 

Case (#) 
This follows exactly as in [2]. Let 

p,(x) = (4n~p,(x) 2 + %(x)Z) '/2 , 

then 

1 0 / 3  2 - 1 Ap, = 4rc(~p, + #%)p ,  > 0  

away from the nuclei, p, is thus subharmonic on the complement of the nuclei. 
From Proposit ion 8 and Proposit ion 12 it follows that k0.[ and ~p. are bounded for 
Ix[ = r where r is any radius larger than max lY/jl. Hence p, is bounded on Ix[ = r and 

J 
since p. is subharmonic 

p.(x)<=(supp~(y))r/[x[i for [xl>r, 

thus 

] N . - Z . ] =  lim ]xlp.(x)<r sup p . (x)<const .  
Ixl-* ~o Ixl =, 

Case (Q) 
This is more complicated. We can assume that Q < 0, since if Q > 0 we know that #, 
is bounded from Corollary 9 if we recall that #(_z; N) is decreasing in N. 

For  fixed z the function N~--~E(z_;N) is convex and decreasing and 
OE 

- #(_z; N). Hence with Q . - - N , - Z , ,  
ON 

0 < #(_z.; N.) = #(_z.; Z . - IQ , [ )  

IQ,I- X(E(-z,; Z , -  2 IQ.I)- E(_z,; Z.)). (82) 

We will prove that E(_z.; Z . - 2  [Q.I)-E(_z. ;Zn) is bounded as n ~ oo. Without loss 
of generality we can assume Q. = Q. Let ~p~ =to(.;_z,; Z,) be the TFW-function 
corresponding to a neutral molecule. Choose q e C~~ 0 < t / ~  1, such that 
tl(t) = 0 if t < 1 and t/(t) = 1 if t > 2. For  r < (1/2) min I ~ -  ~j[ we define t/r: ]R 3 ~ R  3 

i+-j 
by K 

~/.(x)= 1-- l-I r l ( lx- -~yr) ,  
j = l  
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~Ir is 1 near each nuclei. Define ~,~r)= ~, ~ We will use ~p~) as a trial function to -r_z n "t" Z n " l  I '" 

estimate E(z_,;Z,-21Q]). We must show that we can choose r such that II~p~.lh<' z 
< z , - . 2 1 Q  I. Since ~p_~, is the solution for a neutral molecule the corresponding # is 
zero. From Lemma 21 and Corollary 23 we conclude that 

lim lira inf ~ Op~_,(x) 2-1p~)(x)2)dx = co. 
r ~ 0  n~oo  ~ 3  

We can thus choose r such that 

lim inf ~3 0P-~"(x)2 - ~P~)"(x)2)dx > 21Q I. 
n--~ oo 

Then 

lim sup ~3 ~p~')(x) 2 dx = lim_ sup ~ ~p_~.(x) 2 -(1/)z.(X) 2 - -  Ip(zf)(x)2)dx < Z n - 2 IO[, 

where we have used that 2 I~pz = Z . .  From the definition of the energy 
E(_z,; Z . -2IQD we get that 

e(qJg~) > E(_z.; Z . -  2 [QI) 

for large n. Or since E(_z.; Z . ) =  g0P_~.) 

E(_z.; Z , -  21(21)- ~(z.; z.)__< e ( ~ 2 ) -  r 

= ~ & - l ) ( v ~  ~.)~ + ~ . ( v n y  +(1/2) v(,))  v(~o)dx 
-I-(3/5)~,,1~ 1~ 1)dx+ 2 ~ ~0_~~ ~ )  + D((1 ~ ~ ~ ~ -q,)~Pz., (1 - ~, )~ . )  "gZn VI7  - -  

Since ~_< 1 we arrive at 

E(z.; Z . -  2 IQI)- E(_z.; Z.) < I ((Vr/,) 2 - (I/2)A(q2))~P~. dx + I ~~ 1 - q2) dx 

"~ O ( ( 1  2 2 2 2 - ~,)~_~.. 0 - ,,)~_~.). 

Since 1 -772 is supported away from the nuclei, it follows from Propositions 8, 12 
(with # = 0) and Theorem 28 that the above quantity is bounded as n ~  ~ .  Going 
back to (82) we see that this finishes the proof of the lemma. [] 

We can now prove the main result of this section. In the proof we will need the 
inequalities of Gagliardo and Nirenberg (Gagliardo [5], Nirenberg [12]). 

Lemma 30 (Gagliardo and Nirenberg). I f  u, v ~ L~ ") and F ~ C"OR), 
with F(0)=0, then 

IluvlI~.)<C~(IlulIH~R.)IIvlIL~(~.)+ IlullL~(~->llvllw-~-)), (83) 

tlF(u)ll~<~.~ < Cm sup [IIF~O(u)IIL=~.~ItulI~-~{~C llulIn=~. ~. (84) 
l <_l<_m 

The main result is 

Proposition 31. Given a sequence (N., z_.).~, with N .  < N~(g) and z_'. ~ ~ as n ~  
and satisfying either (Q) or (lO, we can then choose a subsequence with the following 
properties. 

(i) The limits # = lim #.~ and Q = lim (N.~-Z .~)  exist. 
k -~  o9 k -~  o~ 
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(ii) 0 < to = lim ton~ and q~ = lim q~.~ exist in the sense of convergence in 
k~oo k~,co 

i.e., to.~, q~.~ and all their partial derivatives converge uniformly on compact subsets. 
(iii) ~0.~ converges in L~s ..... ~L}) for all e >0. 
(iv) to.~ converges in H 2 on the complement of any compact neighborhood of 

(v) The limits q~, to, and p satisfy 

0=--Ato+tov/3--(~~ I on R3k{~I , . . . , ~L} .  (85) 

A~o=4rc(to 2 -  ~ zSb(x- -~ j ) ) [  
\ j = L + I  / )  

(vi) For j = 1 .. . .  , L, cp and to satisfy 

tim lx--~jl4cp(x)=9rc -2,  lim Ix-~j13to(x)=31/37c 3/2, (86) 
x-*~j  x ~ j  

lim Ix[ cp(x) = - Q. (87) 
x--+ o0 

Proof From Propositions 29 we can assume that (i) is satisfied. 
(ii) We will prove that for all open sets f2 whose closure is compact in 

N3\{Na,- . . ,  NK}, (~P.) and (cp.) are bounded sequences in Hm(O). We will do this by 
induction on m. From Propositions 8 and 12 we see that (cp.) and (to.) are locally 
bounded on N 3 \ { N  1 .. . .  , ~K}. Hence they are bounded in H~ If (cp.), 
(to.) are bounded in Hm(~) for all O compactly in N ? \ { ~ I  . . . .  ,N~} we easily 
conclude from the Gagliardo-Nirenberg inequalities that (to7/3), (to~), and (~p.to.) 
are bounded in Hm(~2). Thus (Ato.) and (A q~.) are bounded in Hm(~). It follows from 
standard elliptic estimates that (q).) and (to.) are bounded in H m § ~(f2) for a smaller 
compact set I2. 

This concludes the induction argument. From the Sobolev embedding 
theorem we get that (q).) and (ton) are bounded in the topology of 
C m ( ~ 3 \ { ~ 1  . . . .  , ~K})- From Ascoli's theorem we conclude (ii). That 0 < to follows 
as in Step 1 of the proof of Theorem 26. 

(iii) We only have to prove that (q~,~) converges in L 3 - '  near each nucleus Ns, 
j = L+ 1, ..., K. Since we know that (~o,~) converges pointwise away from the nuclei, 
we can conclude the L 3 -%onvergence from the dominated convergence theorem, 
if we show that I(~o.)1 is bounded by a L 3-'-function near Ns, J = L+  1,..., K. From 
Proposition 8 we know that q),~ is everywhere bounded below by a constant. On 
the other hand for r < min INi-Nsl ,  ~0,~ is bounded above by a constant C s on 

i * j  

Ix - NJ] -- r (see Proposition 12). Thus 9,~ < (z s + 1) I x -  Nsl - ~ + Cs both near NJ 
and for I x - ~ s l = r .  Now 

~o, - ( ( z j+  1 ) I x - ~ s l -  + C s) 

is subharmonic on {0< [x -Nj ]  <r}. Hence 

cp. < ( z s + l ) [ x - ~ s l - ~ + C s  for [ x - ~ s l < r  

and the L3-~-convergence follows. 
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(iv) For j = L +  1, . . . ,K we have on {Ix-~jl <r} [r chosen in (iii)] from the 
TFW-equation, 

A tp.~ >(--(zj + 1)Ix--~j]-1 _ Cj)W.k. (88) 

We compare ~p.~ with f (x)= c exp(-(1/2)(z~+ 2)Ix-Nil)  which satisfies 

A T = ((1/4) (zj + 2) 2 - (zj + 2 ) I x -  ~ j [ -  1) f .  

If we choose rj < ((1/2) (zj + 2) 2 + C j)- 1, then for [x - Nil < r~, 

AT<( - Cj - (z j+ 1 ) I x - ~ l -  1 ) f .  (89) 

As k ~ o e  we know that since zj is fixed tp, k is bounded by a constant on 
{Ix-~jl=r~} (see Lemma 13). We can thus choose c such that ~pnk<f for 
Ix-~jl =rj. From (88) and (89) it then follows by a comparison argument that 

tp,~(x)<cexp(-(1/2)(z~+2)lx-Nj[) for Ix-~jl<__r~. 

Especially ~P,k is bounded by a constant near each Nj, j = L + 1, ..., K. This together 
with the exponential bound in Theorem 28 and the dominated convergence 
theorem imply the L2-convergence of ~p,~. (iv) then follows from the TFW- 
equation. 

(v) It is now clear that 7/3 2 ((P.~), 0P.~), (~P.~), 0P.~), and ((p. ~p.~) converge in the sense 
of distributions on N3\{N 1 . . . .  , ~L}. Since (85) holds for q~.~, ~p.k, and #.k it holds in 
the limit as well. 

(vi) The bounds 

lim sup Ix-~jl4qg(x)<=91r -2 and lim s u p  ]X--~jl31p(X)<=3lf3X 3/2 

follow from Propositions 8 and 12. The lower bounds 

liminflx-Njl4~o(x)>9rc -2 and liminflx-NjlaV)(x)>3V~j~3/2 

follow from Lemmas 19, 21 and Corollary 23. 
To prove (87) we write as in Theorem 28 for Ixl >R1, 

q~.(X)=-(CPR1).(X)+ I tPn(y)EIx-Yl-ldY. 
lyl > R 

Using the Poisson integral formula as in Theorem 28, we get for Ix] > 2R1, 

I~o.(x)-(Z.- N.)Ixl- 11 
< ~ W"(Y)2(Ixl-l+lx-yl-1)dy+(4rc)-XC'lx1-2 S I(q~g~),(r162 

lyl >_-Rx I~1 =R1 

From the uniform exponential decay (77) and the bound on q~ we see that given 
e > 0  we can choose R~ such that for some constant C and Ixl>2R1, 

Ixl I~0,(x)-- (Z, - g , )  Ixl - ~1 _-< ~ + C Ixl -~ 

If we let n ~ o e  we find 

[[xlqg(x)+Ql<e4-(4zc)-lC'CRllX1-1 [] 
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6. Asymptotic Expansions Near the Nuclei 

Our goal is to prove that given # __> 0 then ~o, ~p, and Q are uniquely determined from 
(85)-(87). Likewise given Q then r ~, and # are uniquely determined. This together 
with Proposition 31 will then imply Theorems 1 and 4. In this section we will 
present the first step which is to prove that q9 and ~p satisfy the asymptotic 
expansions in Theorem 6. For  technical reasons it will be necessary for us to keep 
track of the asymptotic expansion of the function 

W(x) = ~p(x) 4/3 - q)(x) . (90) 

Define the functions 

%(x)=lxl-4(al  +a2 lx l2+ . . .+a ,  lxl2("-l)), n ~ l ,  

lpn(X)=lx]-3(bl +b2lxl-q-...-q-bn]xl2("-l)), n>=l, (91) 

W.(x)=lxl -2(c l+c2lx l -2+. . .+c,_l lx l2("-e)) ,  n > 2 ,  Wl----O, 

where a., b., and c. are uniquely defined by requiring at, b l+O and that 
asymptotically near x = O, 

a~.(x)  = ~.(x) W.(x) + O(Ixl 2 . -  7), (92) 

A q~.(x) = 4mp.(x) z + O(Ixl 2"- 6), (93) 

W.(x) = ~p.(x) 4/3 - q~.(x) + O(Ix[ 2"- 4). (94) 

It is not hard to see that a~ = 9re-2, bl = 31/3z~-3/2, and that for n => 1, 

Ap,  - ~p. W, = e,bl Ix[ z"- v + O(Ixl z . -  5), (95) 

Atp --47rto2=(8rcb.+ l b ~ - ( 2 n -  3)(2n-4)a,+O lx12n-6 + O(Ix[2"-4), (96) 

W-(w4/3-q) , )=((4 /3)b lb ,+ a - c , - a , +  O lxlZ"-4 + O(Ixl2"- =). (97) 

From this we can compute all the a's, b's, and c's. q~4 and ~Pa are the functions given 
in Theorem 6. 

Proposition 32. I f  q~, q~ E C~~ < x < R}) satisfy 

-- A~p + tp 7/3 - ~o~ +/~to = 0 ,  (98) 

A (p = 4 g l p  2 , (99) 

and 

then 

and 

lira (p(x)lxl4=al and lira to(x)lxla = b l ,  (100) 
x~0 x~0 

~o(x)- ~ = q~4(x) + O(Ixr) ,  ap(x) = ~p4(x) + O(Ixl ~ + 1), 

where tr = 1/2 + V~/2 .  

W(x) + ~ = %(x )  + o(Ixl "+ 2), 
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Remark. We can compute 

Ws(x ) = 6 [x[2 + (3/8)zc 2 + (7r4/32)Ix[2--(7rc6/1152) [xl 4. 

Strategy of Proof of  Proposition 32. Without loss of generality we can assume that 
# = 0. We formulate the proof as an induction argument. We assume that for some 
n, 1 < n <  5, the following estimates hold: 

~o(x) - ~o.(x) = o(Ixl 2"-  6) + O(ixl~), (101) 

~ ( x ) - ~ o . ( x )  = o(Ixl 2"-  5) + O(ixl~ + 1), (102) 

W ( x ) -  vC.(x) = o([xl 2 . -  6) -t- O(Ix] a + 2 ) .  (103) 

We then prove that they hold for n replaced by n + 1. First notice that (101}-(103) 
hold for n = 1. In fact (101) and (102) are equivalent to (100), (103) follows from (101) 
and (102). 

In proving the induction step it is important to proceed in the right order. First 
we prove (103) for n replaced by n + 1. Using (103) for n + 1 we then prove (101) for 
n + 1. (102) is then a trivial consequence of (103) and (101). Before proving (103) we 
have to settle an important technical point. 

Lemma 33. I f  (101)-(103) hold for some n, 1 <n<6,  then 

v~o(x) = Vq~.(x) + o(Ixl 2" -  7) + O([xl ~-  1)0 (104) 

and 

V~(x) = V~,(x) + o(Ixl 2"- s) + O(ix[~). (105) 

Remark. While (104) has the right power law behavior compared to (101), (105) is 
very bad compared to (102), unless n = 6. Since we eventually will prove (101)-(103) 
for n = 6 this defect is unimportant, see also Corollary 36 below. 

Proof Choose n E C~(~+), 0 < n < 1 with suppn __c (1/2, 5/2) and n = 1 on (1, 2). For 
O<r<(2/5)R, let n, eC~({O<lx[<R}) be defined by nr(x)=n(ixl/r ). For all 
f e  C~({0 < Ix[ < R}) define fr = fnr. Then by a trivial identification f ,  e C~(N 3) and 

Af~ = f Anr + 2 Vf  Vn~ + n~Af e C~(~3). 

Thus by integrating by parts 

L(x) = -- (41r)- I(AL) * Ix1-1 = _ _  (47r)-1 [ ( _ f A n  " + nrAf ) . Ixl-  1 _ 2( f vn ,  ) . x/ ix l3] .  

Differentiating with respect to x we obtain for x ~ supp(Vn,), 

47rV fr(x) =(n~A f - f An~) * x/Ix[ a + 2 ( f  Vn,) * l/Ixl 3 

- 6 ~ f (y)  ( x -  y). gnu(y)Ix - y]- 5(x - y)dy. 

Since x q~ supp(Vn,) we do not pick up delta functions from differentiating x/[x[ 3. 
For f we will insert cp-(p, and ~p- ~p,. Notice that 

Z (~0 - ~0.) --- 4rc(~p 2 - ~0. ~) + O(Ixl  z . -  6) = o(Ixl  2 .  - 8) + O ( i x l ~  - 2) 
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from (93) and (101) (which we assume holds for n). Likewise 

A (11) - -  IDn ) = W l / )  - -  WnlDn --[- O ( [ x  12n -- 7) : O(IX 12n - 9) "JW O(Ixl ~- 1). 

Using q) - q~. = o(fx] 2"-6) + O(]x[~), with (5/4)r < Ix[ < (7/4)r gives 

l v ( e - , p . )  (x)l = I v ( , p -  ~o.)r(x)l 
< [o( r2 . -  6) + O(r=)] (f IA t/~(y) Pl x - Yl- z + i Vt/r(y)i I x -  Yl- 3) 

+ [o(r2.- 8) + O(r ~- z)] S r/~(y)Ix- Yl- ZdY 

o(r2.- 7) + O(r'-  1) = o(ix12.- 7) + O(Ixl ' -  1). 

Likewise for ~p - ~p. = o(Ix12"-  s) + O(Ixl  ~ + 1), 

IV(~0-~p.)(x)l < o(r2"- s) + O(r~)=o(lxl2n- 8) + O(lx['). [] 

Lemma 34. I f  (101)-(J03) hold .for n, 1 < n < 5 ,  then (103) holds for n replaced by 
n + l .  

Proof We have to prove that  

W ( x ) -  vC.(x) = c. Ixl z " -  4 + o(ix12.  4) + O(ix[~ + 2). 

For  any e > 0 we will prove that  there exists 0 < R e < R such that  for Ixl < Re, 

(c -2e)[x lZ , -4<W(x)-W,(x)+O(lxr+Z)<(c .+2e) lx[  2"-4. (106) 

We concentra te  on the lower bound,  the upper  bound  is p roved  in exactly the same 
way. Fo r  0 < r < R define 

a~,=(c.-e) -1 sup (Ixl6-2"[W(x)-W.(x)l+lc.-elrZ).  (107) 
Ixl_<r 

F r o m  (103). we get that  lim a~=0.  Define for k > 0 ,  
r--e0 

f~ = (W(x)  - VC.(x))Ixl 6 - 2 .  + (c .  - ~) ( - I x l  2 + a~(Ix [/r) 3) -t- k Ixl ~ + 8 - 2 . .  (108)  

It is only relevant  to have k + 0  if n = 5 .  Our  aim is to prove that  we can find 
0 < r~ < R such that  f~(x) > 0 for Ixl < r~. The  final result (106) will then easily follow. 
F r o m  the definition of a~ we get s > 0 for Ixl = r and from (103). f~(x) ~ 0  as x ~ 0 .  
Thus  either i f ( x ) =  0 for all Ixl _-< r or  there exists x0, 0 < IXo[ < r such that  

f~ (xo )<0 ,  Vf,"(Xo)=0 and Af~(Xo)>O. (109) 

We prove  that  for  r small enough (109) cannot  occur. 

V f f ( x ) = ( V W -  VI/V.)[x[ 6-2" + ( 6 - 2 n )  ( W -  IT.)Ix14- 2"x  

+ (c. - ~) ( - 2x + 3a~([xl/r) 3 Ixl- =x) + O(Ixl ~ + 7-  2,) 

= (41p(X) 1/3 V l p ( X )  - -  g q ) ( X )  - -  V Wn(X))IX[ 6- 2. + (6 -- 2n) (W--  W.)Ix[ 4-  a"x 

+ ( c . -  e) ( -  2x + 3a~(Ixl/r) 3 Ixl - 2x)  + O(Ixl  ~ + 7 - 2 . ) .  (110)  

Here  o(- ) and O(. ) are vector-valued functions that  are independent  of r. Even 
though  (105) gives an unsatisfactory estimate for V~p, we can get a good  estimate for 
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V~p(Xo) by using the above expression together with (103)., (104), and (109). We get 

~ ( X o )  1/3 V~(Xo) = v~o,(Xo) + v W.(xo) + O(Ixo I s -  l )+  o(ixof 2.- 7) 
+ a~(lXol/r)30(ixo[2.- 7) 

= 4~p.(xo)l/3 V~p.(Xo) + o([Xol 2"- 7) 

+ a~(lXol/r)30(ixo]2,- 7) + O(ixol ~- 1), (111) 

here we have used (94). 
We know that  W -  IV, = o(Ixl 2"- 6), thus since Vff(xo)= 0 we get from the first 

equality in (110), 

~ , W ( x o ) -  ~,W,(xo) = o(rxol 2~ 7) + a~(IXol/r? O(Ixol 2"- 7) + O(IxoU 1). 

Inserting this and (111) into the last inequality of (109) gives 

0 < %p.(Xo)- 2/3(V1p.(Xo)) 2 + 4~p4/3 W.(xo)_ 4mp.(Xo)2 _ A W.(xo) 

4- 41p(W(Xo) -- l/Vn(xo) ) -4- (are) 2 (lXol/r) 60(]xo] 4"- 10) 

+ a~(lxol/r)30(ixol=.- 8) + o(ixol=,- s) + O ( I x o U  =), 

where we have used (102).. Now (95)-(97) easily imply that  

A W = 4 1 I ) ~ 2 / 3 ( V l f l n ) 2  ..1_ .~lpn4 4/3 Wn_ 47zip..  3,..~. 1 2 . 4 _ p  t.4/31~.12.-8.0(lx]a.-6)..~. . 

Since Ixol _=r and a ~ 0  as r ~ 0  we can finally write 

0 "~ - -  4 - L4/3 - -  -~r + ~;(Xo)'/3(W(xo) - VC,(Xo))Ixo18-2"+o,(1)+O(Ixol~+6-="). 

Here o~(1) is a function of r that  goes to zero as r ~ 0 .  We now use the definition 
(108) of f~' and (102) for n = 1, 

4.3 t'n~' lh4/3 = L3 t - ' l <  I--4 h 4 / 3  "[- O x o ( l ) ]  ((C n - -  ~,) ( l  - -  a~(Ixol/r) 3 Ixol- 2) _ k Ixor + 6 - 2n) 

+ o,(1) + O(Ixol "+ 6-  2,). 

We have used that  f~(xo) < 0 and assumed r so small that  ]b~/3 + O~o(1 ) > 0. F rom 
the definition of a~ it is clear that  (c.-e)a~>O, hence 

-4~4/3o3~1 o= < - [@b~/3 + O~o(1)] k IXol ~ + 6 - 2n .~_ O r ( l  ) ..~ 0(ixol ~ + 6 - 2 n ) .  

It is therefore clear that  we can choose r~ and in the case n = 5 ,  k, such that  (109) 
never can be satisfied for Ixol <r~, i.e., f~[(x) > 0  on Ixl __<r~ or 

W(x) - W,(x) >= ( c , -  ~)Ixl 2"- ' (1  - a~rj 3 Ixl) + O(IxI ~+ 2). 

If we choose R~ = min {r~, er~(a',~(c. - ~))- 1} (recall that  (c. - e)a~ > 0), then for all 
Ixl_-<R~, 

( c . -  ~)a~or~ 3 Ixl _-__ ~. 

Thus for 0 < [xl _-_ R=, 

W ( x ) -  W.(x)>(c.-  2~)lxl2"-4 +O(lxl'+ 2). [] 

Lemma 35. I f  (101)-(102) hold for n, 1 <n< 5, then (101) holds for n replaced by 
n + l .  
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Proof  Since a < 4, (101) for  n = 5 is equivalent  to (101) for n = 6. We thus only have 
to consider n < 4. As a consequence of  L e m m a  34 we are allowed to use (103) for n 
replaced by n +  1, i.e., (103),+1. 

Let  c~,=~o,-cp~. We first prove  

lp 2 = ( c p -  ~,)3t2 + (4 r  0 -  ~A(%+ InlX] 2n-6 + o(Ixl2"- 6), (112) 

where 

l _  a,. a/2,. + (4re)- 1 [(2n - 3) (2n - -4)a ,  + 1 -  67z(a, + a + c,)a]/z] n - -  2t~1 L'n 

=(4rO- l (2n-3 ) (2n- -4 )a ,+  1-~,*13 .~i/2,t~n+ 1 . (113) 

Not ice  that  11=(3/2)a~/% v For  n = l ,  q51=0 and 

,p2 = (~o + w )  3/2 = ~o ~/'- + ~o l /2  w +  ~o~/2o(w2Ao2) 

--,.,~3/2.a_3--ft1/2,. I v l - 4  -{- O(IXI-  4) .  

We have used that  f rom L e m m a  34, W(x) = cl ]x[- 2 + o(]x[- 2). Hence  (112) holds 
for  n = l .  

F o r  n> 2, 

(~o + w )  ~/2 = (~o. + w . )  3~  + ~(q,.  + w . ) * ~ 2 ( ( w -  w . )  + (~o - ~o.)) 

+ (q,. + re.) 3/~ o((q,  - ~o. + w - w.)21(q,. + w . )  ~) 

= (q,. + w . )  ~/2 + ~oI/2(~o - ~ o . ) .  ~- - ~ - 2 ~ . , ~ ,  ,.~,~"- ~ 

.4_ O(IXI2n - 6) .~_ O(IXl4n-- 10),  

where we have again used L e m m a  34. Since n>2,  4 n - 1 0 > 2 n - 6 ,  and we can 
forget abou t  the last term. 

On  the other  hand  recalling that  cp 3/2 =(4r0-*d~ol  we find 

(~0 - -  (pn) 3/2 --~ (4re)- 1A ~,  = (4r 0-1A q), + ~q~ll2(q) - q),) + o(Ixl 2"- 6) .  

Equa t ion  (112) now follows from the identi ty 

(q?n "4- Wn) 3/2 - -  (4r0-1A q), = (l, - ~a~/Zc,) x 2 , -  6 "JI- O([X[ 2"- 4). 

Given  e > 0, if 1 -< n < 3 define 

g~+ (X) = q~(x) - -  ~gn(X)--(an+ 1 -di'-,f,)IXl 2 n - 4  , (1 14) 

if n = 4 define 

ge++_ (X) = (1 ) (X) -  ~On(X ) - -  (a  n + 1 ~ ~)Ixl  2. - , .  (i 15) 

Then  writing g~ = g  we find for [xl 4=0, 

Ag -47zg 3/2 =4rap  2 - A~on - 47z(cp - ~,)3/2 

+ (a,+ l + ~ ) (6rca I /Z - (2n -4 ) (2n -  3)) lxl2"-6 + O(lxl2"-#). 

Insert ing (112) gives 

A g - 4~cg 3/2 = • e(6rca ~/2 _ (2n - 4) (2n - 3)) Ixl 2 . -  6.4_ o(Ixl 2 . -  6). 
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Recall tha t  a, - z are the roo ts  of  t(t + 1) = 18, thus if - ~ < 2 n -  3 < a, i.e., n < 3 then  

6na{/2 - (2n - 4) ( 2 n -  3) = 18 - ( 2 n -  4) (2n - 3) > 0,  

and  if n = 4 this expression is negative.  Wi th  the definitions (114) and  (115) for g~ it 
is now clear tha t  we can choose  r e < R such tha t  for all x with 0 < Ixl < r~, 

Ag~_-4n(gL)3/2 <O and Ag~+--4n(g~+)3/2>O. (116) 

N o w  consider  oo=~o,+klxl~=9n-21xl-4+klxl ~. We k n o w  f rom (38) tha t  for 
Ixl~0,  dog(x)<=47zoo(x) 3/2. Choose  k=k~>O such that  co(x)>g~+(x) for [x[=r~. 
F r o m  (101)1 we k n o w  tha t  g~+/o~-+l as x-+0. We  will p rove  tha t  

co(x) > g~+ (x) (117) 

for all x, Ixl _-<re. If  no t  we mus t  have  Xo, Ixol <re  such tha t  

(g~+/co)(Xo)>l, 17(g~+/oo)(Xo)=O and A(g~+/~o)(Xo)<O. 

But then 

ag%(Xo)  = o~a(g%/o~) (Xo) + 2 vo~ ~'(g%/o~)(Xo) + (g%/~o) a ~O(Xo) 

< 4ng~+ cO(Xo) */2 < 4ng~+ (Xo)3/2, 

which is in cont rad ic t ion  with (116). Hence  (117) follows, i.e., 

q)(X) <~ ~gn(X ) + (a n + 1 -~-/3) IX 12n - 4 + (4 9 I(X) + k Ixl ~ = ~on + , ( x )  + ~ Ixl 2n - 4 .q_ O ( I X I ' ) ,  

if n < 3. I f  n = 4 we get since a < 4, 

~~ <- (~ 4(x) + (an+ 1 - e) [x[2~- # + q~ l(X) + klx[" 

= ~o s(x) + O(IxD ( =  ~o4(x) + O(Ixl~)). 

T o  get similar lower bounds  we use L e m m a  21 with r=r~. V~ solves 
A ~ = 4 n V ~  3/2 for Ixl~=0 and  V~(lxl=r~)=0. F u r t h e r m o r e  f rom T h e o r e m 2 0  (iii) 

lim (Ixl V~(x)) = ~ < oo. Since Ixl4g(x)-+9n -2 as x-+0,  we can of  course assume tha t  
Ixl--*o 
gL > 0 for Ix] < re. The  set 

sr = {xl0 < Ixl < r~, g~_ (x) < Vc(x)} 

therefore does not  conta in  {Ix[ =r~} nor  points  x such tha t  [xl is small. An easy 
c o m p a r i s o n  a rgumen t  shows tha t  S~ = 0  for all ( >  0. Tak ing  ( ,7  oo and  using 
L e m m a  21 gives 

9 = -  2 Ixl - 4 + O(Ixl~) < g% (x), 

or if n=<3 

I f  n = 4 we get 

~o(x) ____ ~oo + l (x )  - e Ixt 2 ~  4 + O ( I x l q  �9 

~o(x) ~ ~os(x) + O(Ixl ~) ( =  ~o4(x) + O(Ixl~)). [ ]  
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End of Proof of Proposition 32. We have proved that (101)-(103) hold for n = 1 and 
that if they hold for n then (103) and (101) hold for n +  1. Then clearly (102) also 
holds for n + 1. We can then conclude that (101)-(103) hold for n = 6. Since 3 < o- < 4 
this is equivalent to Proposition 32. []  

We can now reformulate Lemma 33 as 

Corollary 36. Vcp(x) = Vcp4(x ) + O([xl ~- 1) and V73(x) = V734(x ) -~ O(Ixltr). 

7. Uniqueness 

The proofs of the main Theorems 1-7 that are given in Sect. 8 below will be simple 
consequences of the following theorem and its proof. 

Theorem37. (a)Given It>=O, there exist unique cp, 0<73 and QelR, with 
2+3 3 ~P~Llo~ (Px \{Y/1 ..... Y/L}) for some 6>0 ,  and 73 in H 1 of the complement of any 

compact neighborhood of { Yt 1 ..... ~tL) and such that ~p, 73, and Q satisfy (85)-(87). 
(b) Let Qoo be the value of Q for # = 0  as described in (a). Then given Q e ( -  0% Qo~), 
there exist unique % 0 < 73 and # ~ P,~, with ~p and 73 as in (a) such that cp, 73, and t t 
satisfy (85)-(87). 

The existence parts of (a) and (b) follow from Proposition 31. The uniqueness 
parts will follow from a series of lemmas which are of independent interest. 

Lemma 38. 

~0,73~C~176 ) and 73~L~~ ..... Y/L})" 

Proof. This is standard elliptic regularity. []  

We can now conclude from Proposition 32 that for j =  1,..., L, cp and 73 satisfy 
the following asymptotic expansions near Y/j: 

~o(x) - i t=~o4(x -~ j )+O(Ix -~y  ) and W(x)=734(x-~)+O(Ix-~jl~+l).  

The idea is now to subtract the singular part from Q__732. We define the 
renormalized density (see also (23)) 

Q'2'(x)=73(x)2- {j~= l b2 ,x -  ~j]-6 + 2blb2]x-~j l -4}  , (118) 

where the b's are as in the previous section. From Proposition 32 we know that 
r = O(Ix-Y/~i-2). In fact we can conclude more. From (93) we see that 

A cp4(x ) = 4rc734(x) 2 + O(Ix12), 

thus 734(x) 2 contains no term of order Ixl-2 (we could have concluded this from the 
numerical values of the b,'s also). Hence Q~2)(x)= O(1) or 

Q(2) E L~oe0R3) (3 L1 (~3) .  (119) 

Notice that ~2) is not necessarily everywhere positive, but we can think of it as a 
charge density. ~2) has the following remarkable property: 



Thomas-Fermi-yon Weizs/icker Theory 595 

Lemma 39. 
K 

~O~Z)(x)dx=Q + E zj. (120) 
j = L + I  

Proof. It is clear f rom (93) that  A q)2 = 4n( b2 Ixl- 6 . jr  2ba b2 Ixl- 4). Hence  if we define 

we get 

{ K } 
Aqg(2)(x) =4re Q(2)(X) - Z zj6(x--~j), (122) 

j = L + I  

for x ~ {~tl, ..., ~L}. F r o m  Propos i t ion  32 ~0(2)~ L~o~(R3). Thus  A~0(2)~ H ~ ( ~ 3 ) .  
Since the Dirac-measure  Oo~H-3/ZOR 3) we see that  8"60r  for all 
multiindices ~ with [~1 > 1. We can thus conclude from (122) that  there exist zioN, 
j = 1,..., L such that  on all of N 3  

A@2)(x)=47z{O(2)(x)--j~=zjO(x--Jtj)} 

o r  

A @2)(x)q- zj[x-~j1-1 =47zQ(Z)(x) - E Zj6(X--~j). 
j = l  j = L + I  

N o w  the r ight-hand side is in L 2 near  N j, j = 1,. . . ,  L. Hence 

L 
~~ -k E zjlx-.~j1-1 

j : l  

is in H 2 near  ~tj. But f rom Propos i t ion  32 ~o (z) is bounded  near  ~tj, j = 1 . . . . .  L. We 
conclude that  zj = 0  for j  = 1,. . . ,  L. Thus  (122) holds on all of R 3. It is now clear that  

h(x)=~P'2)(x)- { ~" zjlx-~jl-l-Q'a)*[x'-' 

is ha rmonic  and h(x)~O as Ixl-- '~. Hence  h(x)=O, i.e., 

K 

~~ = E zjlx-~tjl-~-o(~)*lx1-1 (123) 
j = L + I  

F r o m  this and (87) we find 

Q = - lim (~0 (2 ) (X) [x I )  = f Q(2)(X) d x -  
x---~ oo 

We denote  

W(x)=~ */3- 

K 

E zj. D 
j = L + I  

L 

E (al]x-~jl-4+a2lx-~j1-2) 
j = l  

K 

E zjlx-~jl-l+~2~*lxl-l+~. 
j = L + I  

(124) 
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From (121) and (123) we find 

Lemma 40. ~p solves the Renormalized TFW-equation 

-A~p+ W~p = 0 ,  (125) 
o n  l R 3 \ { ~ t ,  . . . ,  ~L} .  

Lemma 41. W is bounded at infinity. 

Proof For the solutions constructed in Proposition 31 we of course know that 
w - - , ~  as Ixl ~ oo. For  the abstract solution we just have to prove that ~p is bounded 
at infinity. This is not too difficult and is left to the reader. []  

We define the following functional: 

L ( f ) =  d3 [V fl  2 + WlflZdx, (126) 

for all functions in the set 

F={feHt(Ra)l f=O(lx-~H+x) ,  v f=O( lx -~H) ,  for j = l ,  . . . ,L}. (127) 

Notice that L ( f ) <  oo for all f eF .  

Lemma 42. f e F => L( f )  > O. 

Proof It is enough to consider f e  C~~ ..., NL}). Then 

- ~ Wlf[ 2 = - ~ (A~p/~p)If[ 2 < - ~ W- 2(V~/))2 [f[2 + 2 ~ ~p -~ Vl~p[ IfllVf[ < ~ ] V f l  2 �9 [] 

Lemma 43. If  f e F then 

L(f)= ~ (IV(~ + f )[z-  IV~]2 + Wl~ + f ]2 -  wtpz)dax. (128) 

Proof The right-hand side of (128) is equal to 

L(f) + Re {~3 2V f Vlp + 2f A~P }. 

Notice that 

]V fl  1V~Pl + lfl IA~[ = O(Ix--~Y-4) + [WI Jfl I~)l = O(lx-- ~ F -  4), 

hence is in LI(IR3). We just have to argue that we can integrate by parts. But this is 
clear from [Vw] I f [ = O ( l x - ~ ] ~ - 3 )  �9 []  

We can now give the 

Proof of Theorem 37 (a). We have to prove the uniqueness. Assume (q~, ~p, Q) and 
(~3, ~, (~) are two different triples satisfying (85)-(87) for the same #. We have two 
corresponding functionals L, L. Notice that from Proposition 32 and Corollary 36 
~p-~?eF.  Thus from Lemmas 42 and 43, 

o __< L(~  - 1;) + L ( ~  - ~ )  = f ( W -  FV) (~2 _ C ) d x  
= S (1]) 4/3 - -  lp4/3)  ( t~2 - -  I/)2) + (Q(2) __ 0 ( 2 ) ) ,  Ixl- l ( Ip  2 - 1t )2) dx 

= I (e ~2) - 0 ~2)) * Ixl- x(O~2)- e(2))dx. 
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Since I x -  Yl - 1 is a positive definite kernel this last expression is non-negative if and 
only if ~3=~p. From (121) and (123) we find O=q0. (~=Q follows from (87). [] 

Proof of Theorem 37 (b). (Existence) From Theorem 37 (a) and Proposition 31 we 
get that Qoo = lim Qc(z_)> 0 (the lower bound is a consequence of Theorem 26). 

~,-+o~ 
The existence then follows from Proposition 31, since if Q < Q~o, then for z 1 . . . .  , zL 
large enough Q < QLz). 

For the uniqueness we proceed as in case (a). Given two triples (r ~p, #) and 
(~, ~,/~) satisfying (85)-(87) for the same Q, then 

0 = f (~04/3 - ~4/3) (~22 _ ~2) + (e~2)_ 0(~)), Ixl- ~(0 ( ~ -  ~(~)) dx 
+(~-~)f(~2-~)dx. 

But from Lemma 39 

~2_~2dx= ~ e(2~_O(2)dx=O. 

We again conclude ~ = ~p, (/5 = qo./~ = # follows from (85). [] 

8. Proofs of Main Theorems 

As a simple consequence of the results of the previous section we can now give 

Proof of Theorem 1 and Theorem 4. It follows from Proposition 31 that any 
sequence has a subsequence satisfying Theorem 1. From Theorem 37 all the 
subsequences must have the same limit. This implies Theorem 1. For  Theorem 4, if 
Q ~ ( - 0 %  Q oo(_z', _~)), then it follows from Theorem 1 that Q < QLz) for z' large 
enough. Then Theorem 4 follows in the same way as Theorem 1. [] 

Proof of Theorem 2. As noted in the remark after the theorem this is just a special 
case of Theorem 1, except for the lower bound which follows from 
Theorem 26. [] 

Proof of Corollary 3. We first note that Z ~ R z  is continuous. This easily follows 
from Theorem 6 in [2]. If Rz is not convergent we can find sequences converging to 
any value in some open interval. Since (P'z(Rz) = 0 we would conclude that the limit 
q).=o is constant in an open set. But then ~p.= o is zero on this set since A q).=o 
= 4mp~=o. [] 

Proof of Theorem 6 (a) and (b). This is just Proposition 32. Theorem 6 (b) is a 
consequence of the exponential decay (77) and (86) and the TFW-equation. [] 

Proof of Theorem 7. That ~p, has the properties given follows from Lemma 40 and 
Lemma 39. Equation (25) is just (123). The uniqueness follows from Theorem 37 
and its proof, if we can prove that V~p, is in L 2 on the complement of any compact 
neighborhood of {R1, ..., NL}. But this is clear, since from (24) Atpu is in L 2 over 
such a set. [] 
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