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Abstract. We study the asymptotic behavior of the averaged diagonal matrix 
elements of the Greens kernel for the Anderson Model on a one-dimensional strip 
and for a set of special energies close to the center of the band. 

I. Introduction 

Let r be a positive integer and let ~e be the one dimensional lattice strip of with E, 
i.e., ~e = 7Z x {1, . . . ,  ~}, where 7Z is the set of all integers. 

The Anderson model [1] on ~e is given by the random Hamiltonian 
Ha = - � 89  + 2V on fz(~t) ,  where 

with 

and 

(Au) (x) Y~ (A)x, y u(y) 
y6~d 

if x - yE {(0, 1), ( -  1,0), (1, 0), (0, --1)} 
otherwise, 

(Vu) (x) = V(x) u (x),  

where { V(x)}x,ee are i.i.d, real random variables with common distribution 
whose characteristic function will be denoted by h and 2 is a real number. 

Let m be a positive integer, A m be the discrete rectangle [ -  m, m] x {1, 2 , . . . ,  f} 
and Hm. a denote the H~ restricted to f2 (Ae) with boundary conditions u (x) = 0 for 
all xCA m. Let x,y~Nt, q > 0 and let 6x,gyeE2(@e) be the delta functions at the 
points x and y respectively. We shall use the notations 

/ ' 
G~(x,y,E+iq)= 6~ Hm, a - E - # /  

J~(E+itl)= lim E{G~((O,j),(O,j),E+itl)}, 
m - ~  -t- ocj 

wherej  -- l, . . . ,  f and E {. } denotes the expectation with respect to the disorder. 
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It is a consequence of the "de la Vall6e Poussin" theorem [2] that the 
limJ](E+irl) exists for almost all E ~ R  and all 2=~0. Under some mild 
~+o 

regularity conditions for h Klein, Lacroix and Speis [3] have shown that the limit 
above actually exists for all E~IR and it is a smooth function of  E for all 2 ~= 0. 

The boundary value of J~ (E + it/) described above contains a lot of infor- 
mation about  the random Hamiltonian Hz. Note for example that under the 
hypothesis of  Theorem 1 of [3] the authors showed that the integrated density of  
states Nz (E) is absolutely continuous and 

d N,~(E)= i Im lim 1 ~ J~(E+irl) 
j = l  

while similar results are true for the summation of  the Lyaponov exponents (see 
[13]). 

One striking and important aspect of  the behavior of  the lim Jd (E + it/), j = 1, 
n~o 

�9 . . ,  d as 2 approaches zero is the apparent sensitivity of  its asymptotic expansion 
on the location of  energy Ein  relation to the spectrum of the free Hamiltonian H o . 
This was first discovered by Kappus and Wegner [4] who showed that in one 
dimension if # has mean zero the leading coefficient of  the straighforward 
perturbation expansion in ,1. proposed by Thouless [5] was inadequate if E = 0. 
Derrida and Gardner [6] found that the same phenomenon occurs for the next to 
leading coefficient in the case E = + �89 and actually conjectured that similar 
"anomalies" occur for all energies of  the form E = cos rcp/q with p < q relatively 
prime. This was shown by Bovier and Klein [7]. 

The significance of  the special energies mentioned above lies in the fact that for 
these values the free Schr6dinger propagator is cyclic (see [6, 7]). In fact the 
presence of  this cyclicity is directly responsible for the failure of  straightforward 
perturbation expansions while it is exactly the same property that makes the 
modified ones proposed in [6, 7, 9] amenable to rigorous treatment [8, 9]. It is 
worth noting however at this point that the nature of  these modified expansions in 
the case where/z has mean zero [4, 6, 7, 8] is quite different than the one discovered 
in [9] when the mean is different from zero and that one has to abandon in the 
latter case the traditional perturbation techniques for isolated eigenvalues in 
favor of  a more general approach [9] where the harmonic analysis becomes much 
simpler than the one used in [8]. 

Despite the fact that in one dimension the asymptotic behavior of Hz is 
completely understood, at least for the special energies mentioned above, very 
little has been done for the case of  one dimensional strips. In fact the only article 
the author is aware of  in that direction is a paper by Derrida and Zanon [10] where 
a weak disorder expansion is derived for the Lyaponov exponents of  the product 
of  random matrices when the unperturbed matrices have two degenerate 
eigenvalues. 

In this article we study the asymptotic behavior of  lim J~ (E + i~),j = 1, . . . ,  d 
n~o 

as 2 approaches zero on a strip of  size d. To make the harmonic analysis more 
tractable we will use the approach of  [9] and we will assume that the mean of/.t is 
different than zero. We also restrict ourselves to the set of energies for which the 
free Schrtdinger propagator becomes cyclic (see Corollary 3.4) and which we now 
introduce through the following definition. 
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Definition 1.1. We will say that an energy E is g-regular if and only if 
ng 

I EI < 1 + cos T ~  q- and it satisfies the equations 

nk npk 
E +  cos = c o s - - ,  k = 1 . . . . .  g 

d +  I qk 

for some sequence of pairs of integers (Pk, qk)k = 1 ..... e which can be assumed to be 
unique by requiring that Pk is relatively prime to qk for all k = 1, 2 , . . . ,  d. 

Trivially zero is d-regular for all d = 1,2, . . . .  Moreover, one can easily verify 
that the set of d-regular energies is dense in 

nk 
( - 0  + cos + cos 

Our main theorem is: 

Theorem 1.2. Let It be such that its characteristic function h is infinitely many times 
differentiable on (0, + oo) with h(~ = O[(1 + t2) -'/z] for all i = O, 1 ,2 , . . .  and 
some ~ > O. I f  the first and second moments of  lz exist and they are both not equal to 
zero, then for every g-regular energy E the function ~ 2 ~-+ lira J~ (E + iq) ell2 has 

~o  
an asymptotic expansion to any order at 2 = Odor all j = 1, . . . ,  #. 

We finish this section with a few words about the strategy of our proof as well as 
the organization of the present article. 

We first use the supersymmetric replica trick (see [11]) to express lira J~ (E + iN) 
n+o 

in terms of the unique eigenvector, corresponding to the eigenvalue one, of a 
bounded operator defined on an appropriate Hilbert space. Then we find 
explicitly the set of equations the coefficients of  the formal perturbation expansion 
of the eigenvector mentioned above would have to satisfy. Finally we prove that 
these equations have a unique well defined solution which defines a series that is 
actually asymptotic. 

The next section is devoted to the development of the formalism which permits 
us to implement the first step of the above outline. In Sect. III we compute the 
perturbation expansion and we prove, up to a key technical estimate, that it is 
asymptotic and in the last section prove this crucial technical estimate. 

II. The Supersymmetric Transfer Matrix 

In this section we introduce a supersymmetric formalism similar to the one used by 
Klein and Speis in [11] and explain how one can use it to study the boundary value 
of  J~ (E + iN), j = 1, . . . ,  ( as ~/approaches zero. 

For  the benefit of those who are unfamiliar with this framework it is worth 
mentioning that this formalism is essentially harmonic analysis of multicompo- 
nent complex valued functions whose components satisfy certain differential 
equations that can be canonically described through an appropriate superposition 
of  commuting and anticommuting variables (super variables). 

Even though one could, on a purely technical level, introduce all the necessary 
structure without the use of Grassman-algebras (anticommuting variables) it is 
our experience that such an approach lacks any kind of intuition or insight and we 
will not use it here. We also would like to point out that despite the fact that our 
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definit ions look different  f rom the ones used in [11] the proofs  o f  our  proposi t ions 
follow along the same lines as the ones in [11] and they will be omitted.  

We start  with the following definitions: 

Definition 2.1. Let  f be a positive integer. Let  A (~2e) denote  the Grassmans  
algebra over  R2e and let A 1 ( R  2e) be the vector  space o f  1-forms in A (~2e). The  
superspace &a t is defined to be the set o f  all n-tuples # = (#1 . . . .  , ~ ) ,  where 

q~i = (~oi, q?i, ~ui) , i = 1 . . . . .  ~, 

~ 0 i ~  z , i = 1 . . . .  , ~, 

and {q)i,~u~}~=~ ..... e is a family o f  1-forms whose non-zero  elements form a 
linearly independent  set in A 1 (N2e). 

Let (9r denote the set of  strictly increasing finite sequences indexed by {1, . . . ,  ~} 
and taking values in {1 . . . .  , 2 f} .  We shall make  use o f  the forms 
{7~,},~e e A (R2r where for  a = {i~ . . . . .  ir ~ {1, 2, . . . ,  2~} 7~, is defined to be 

1 
times the formal  de te rminant  at the d x d matr ix  whose rows are the 

(2 i f " l ( l a l  !) 
il ~, i) ~_ and i~ h . . . .  1 rows o f  the matr ix  

I Oe gte 2 g 

~ I 1 

• / • 1  ~ / / 1  �9 �9 �9 N =  
. .  �9 

, ,  . 

and where [a[ denotes  the number  o f  all the ik'S for  which ik < Y, k = 1, . . . ,  f .  

Definition 2.2. Let  f be a positive integer. A super funct ion F is unders tood  to be a 
funct ion F: &ae ~ A OR at) o f  the form 

F ( ~ )  = ~ F,((0) g t ,  

where ~ = (~1 . . . . .  ~e), ~i = (~0i, ~7i, ~ti), i = 1 . . . . .  g, q~ = ( q 9 1 , . . . ,  ~0t) and 
{F,},E~ t is a family o f  complex valued functions defined on p2e.  

We will say that  a superfunct ion F i s  in C k (&a/) if and only i fF ,  is o f  class C k on 
•2e for  all a ~ (9 e . 

Definition 2.3. Let  f be a positive integer�9 We defined the integrat ion over the 
super space &ae by the formula  

I F ( ~ )  d ~  = - -  Fa~(~~ . . . . .  ~~ I-I dZ~~ (2.1) 
t" i = 1  

where a I e (9 e is the identi ty sequence a r (i) = i, i = 1, . . . ,  Y. 
We will say tha t  a superfunct ion F is in U (&ae) if  F, s L 1 ( I t  2e) for  all a e  (ge, 
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Definition 2.4. Let r  ~ ' e  Ze .  We define the inner product between q~ and ~ '  
through the formula 

d 

( ~ , ~ ' ) =  y~ ~, .  ~ ,  ~ = ( ~ , , . . . ,  r ~ '  = ( ~  . . . . .  ~ ) .  
i = 1  

where r Cf = ~01. ~0~ + �89 + q~f q/~), i = 1 , . . . ,  d. 
Let Ke be the cone at the positive semidefinite ~ x d matrices and let f be a 

complex valued function which is of  class Ca on Ke.  We associate with f the 
superfunction F defined by 

V ( ~ )  = ~ Oaf(Aq,  ) ~, , ,  (2.2) 
a r 1 6 2  

where O,, a = {ix,  i2 . . . .  , ie} is the partial differential operator defined by the 
formal determinant of an ( • d matrix whose rows are the ia, . . . ,  ie'th rows of the 
matrix 

2i01a . . .  iOae 

iOea . . .  2iOee 

1 . . .  0 
�9 . �9 

0 . . .  1 

2~ 

Oij, i , j  = 1 . . . . .  d denotes the operator differentiation with respect to the variable 
that corresponds to the i , j  entry and A~ is an f x g matrix defined by 
(A~o)ij = (oi" ~oj, i, j = 1, 2, . . . ,  f . 

It is worth noting that if we set A~ to be the f x Y super matrix defined by 
( A , ) i j  = ~ "  q~j, i, j = 1, 2 . . . . .  f we can rewrite (2.2) as 

V(qg) = f ( A ~ ) ,  (2.3) 

where f ( A , )  is defined to be equal to its formal Taylor series, around the point A~o 
which coincides with the right-hand side of (2.2). 

Let 5e (Ke) be the usual Schwartz space over K e . We shall denote by 5e (Ze) the 
set of all superfunctions of the form F(q~) = f ( A , )  with f e  5a (Kt). 

An important notion of  the formalism developed so far is the one of 
supersymmetries. These are transformations of the superspace ~e e and are defined 
by 

Ub,~.r = (Ub,~ ,r162 . . . . .  Ub,~,r 

where 

U b , [ ~ , r  = (~0 i - t -  2b~q/i  + 2 b ~ ( t i ,  q / i  - -  4b'(oi~, q/i + 4b~~ 

b, b-are arbitrary constants and ~ is a 1-form independent from { ~i, q/i}i= a ..... e. 
One can define the action of  Ub, ~, ~ on a superfunction F i n  a natural way through 
(see also [14]) 

(Ub,6,~F) (qb) : F(Ub,6, r ~ ) ,  

where it is implicitly understood that Fa(~Oa + 26~ua + 2 b ~ 1  . . . . .  ~oe + 2b~( ;e  
+ 2 b-~ q/i) is defined to be equal to its formal Taylo r expansion around (~0a, . . . ,  ~0e) 
for all a e (9 e . 
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Definition 2.5. Let f be a positive integer. We will say that a superfunction 
F: Lee ~ A (R2e) is supersymmetric it if is left invariant by all supersymmetries of 
Lee. 

Theorem 2.5. Let ~ be a positive integer and let F: Lee ~ A (~2g) be a superfunction 
in L 1 (Lee) n C e (Lee). Then the following are true: 

1) I(Ub, b,r = ~F(@)d@. 

2) I f  F is supersymmetric then 

F(@) d@ = F(0).  

Remark 2.6. One can easily check that superfunctions of the form defined in (2.3) 
are always supersymmetric. 

Let A be an 2~ x 2 f  matrix. We define the action of A on superfunctions F 
which we shall denote by A F  through 

(A (F)). = ~' det (A~) Fb, a e (9 e , 
b ~ *  

where for a = {il, . . . ,  ie} and b = { J l , . . .  ,Je} Ab denotes the d x f matrix defined 
by (Aba)k,h = Ai~, jh ,  k ,h  = 1,2 . . . . .  f .  It is easy to check that for A , B  2E x 2 f  
matrices 

A (B(F)) = (AB) (F). 

We now introduce the Hilbert spaces mentioned in the previous section. Let 
E e F ,  and AE be the 2 f  x 2 f  symmetric matrix defined by 

AE=~ re' 
where Ie is the • x f identity matrix and 

f 
E, 1/2 ] 

0 I' 
g ~ =  0""" "'.,,1/2 I E 

"i/2 ""E I 
nf  

One can easily verify by diagonalizing 8~ that if l El < 1 + cos ~ At is positive 
definite. 

Let Qi, i = 1,2 denote the vector valued operators, acting on smooth complex 
valued functions which are defined on N :e by 

QI = {[Qi]l ""[a i ]2e) ,  i =  1,2, 

- , k = l , . . . , f ,  [Oi]k O~Ok, i 

[Qi]k = M~ok-e,i, k = f + 1 . . . . .  2 f ,  
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where Mq~ k e i stands for the operator multiplication by the variable ~0 k e i and we 
- '  " 2e - '  have used the convennon that a vector ~0 e R can be written as ~o = ((~o 11, ~012), 

�9 . . ,  (~otl, ~ot2)). 
Let 5 e (R  2e) denote the usual Schwartz space over R 2e. For  every energy E with 

rot ~ 
I E I < I  + c o s T - ~ -  f we introduce a sequence of  positive norms II'llff, 

n = 1,2, 3, . . .  on 5 a (~-Y) through the following equations: 

2e 2 ([-10-1 [A1/2(Qi ) ( f )  [2 
( I l l  I1. ? = Z , , , ; :  )k., �9 (2.4) 

kl, . . . ,  kn = 1 il, . . . ,  in = 1 1 m L2(~2g d2tt# ) 

Definition 2.7. Let n and ~ be positive integers and let E be a real number suchthat  
red 

I EI < 1 + cos 7+-]-" We define the supersymmetric Hilbert space H,, E to be the 

completion of  the subspace of ~ (Lee) under the norm II �9 II,,E, where 

( l l f l l , , ,~) 2 = Y', i (II(A~iE(F'))alI~) 2+ IF(O)I 2, FeDe(~e)" 
a ~ t  m = l  

( Let E be a positive integer and let I be a compact set of - 1 - cos g +~-]-, 
.t ) i + c o s ) ~ -  . One can easily check that 

c~ Ilfll ~ _= II711~ < c i  II711 ~ 

for all f ~  6e (R  ze) and n = 0, 1, 2, . . .  and that 

C, II FIl,,o _-< II FII.,F _--__ C, II FIl,,o (2.5) 

for all F~ 6 e (Lee) and n = 0, 1,2, . . . ,  where Ct and C~ are constants that depend 
only on the set I. 

In view of relations (2.5) we can identify Hn, E with the set of  functions 
F: Lee ~ A (~x. 2d)  of  the form 

F(q~) = ~ Fa(~O ) ~da, 
ae~r 

where now {Fa}a~r are in general elements of  the completion of  6e (R  2e) under 

II" I1 ~ n �9 
Let ~ denote the usual Fourier transform on ~2e. We will be making use of  an 

operator  on L 1 (Lee) which we will denote by the same letter ~- and is defined by 

( F)o = (Fo),  L  (LeD. 

Let A be an ~ x f matrix. We shall also make use of  the operator ba which acts on 
superfunctions and is defined by 

(bAF)a(q 0 = e i<~ ,Aq '>  ( F a ) ( ( p ) ,  ~ x  2e .  

Let B be a 2d x 2d matrix. For  convenience we view [B(Qi)k, i = 0, 1, 
k = 1 . . . . .  2d as operators acting on 5P(Lee) defined by 

([B (Q3k (F)), = ([B (Qi)]k(F)),, i = 0, 1, k = 1, 2 , . . . ,  2d.  

Through a straightforward computat ion one can easily verify that [B(Q0]k 
extends to a contraction from H,  + 1 to H,  satisfying the intertwining relations 

[B(Q,)], b#,+, ~ = - iba~+,, ~ [(BCg~+,,) (Q,)]k (2.6) 
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for all i = 0,1, k = 1, . . . ,  2t ~, n = 1 ,2 , . . .  and t / >  0 where we have used the 
natural extension 

E +  it/ 1/2 
", ", 0 

1/2 "',, "',,, 

ge+,~ = 0 '"'""" "'"",,,,i/2 
1/2 E +  it/ 

and where 
cgE+i = ( - 2 i S e + , n  --0 iI)  

i I  

re: 
Remark 2.8. If  I EI < 1 + cos ~ it is not hard to verify that the norms we 

introduced here are equivalent to the ones Klein, Lacroix and Speis used in [11]. 
The reasons why we have to use these, at least at first sight, complicated norms 
should become clear towards the beginning of the next section. 

We now proceed to explain how one can use the formalism we have developed 
so far to study the averaged diagonal matrix elements of the Green's kernel 
J] (E + it/) for the Anderson Model on a one-dimensional strip. From now on and 
until the end of the present article : ,  unless otherwise stated, will denote the width 
of the strip @e. 

Using the supersymmetric replica trick we can reexpress 1E, {Gma((0,j), (0,j), 
E + it/)} (see III.1 of [11]) as 

]E{G=a ((0,j), (0,j), E +  it/)} = i S ~j ~j[(B~ (q) TE)"(fl~,~(t/))] 

x [T(B~(t/) TE)" (fl~,a(t/))](4)d4 (2.7) 

for all t / >  0, m = 1,2, . . .  and j = 0, 1,2, . . . ,  where 
g 

(fl~,a(t/))(4) = e'<O'~+"o> I-I h(24~),  
i = 1  

(TE(F))(4) = e '<~'r Se'<*"*>F(4)d4, F e L ~ ( ~ e ) ,  

(T(F))(4)  = Se'<~'*'> F ( 4 ) d 4 ,  F~LX(L#e). 
e 

B z (t/) stands for the operator multiplication by I-I h (2 4 2) e-  n~ and we have used 
i = 1  

the notation 4 2 = (4~, 4~), ~o 2 = ~0~. ~0~, i = 1, . . . ,  : .  
The properties of the operator Ba (t/)Te are well understood for 2 4= 0 and we 

summarize them in the following theorem. 

Theorem 2.9. Let t~ be a positive integer and let the distribution of  the single sided 
potential lt be such that its characteristic function together with all its derivatives up 
to order n + 1 are continuous on (0, + oo) with some decay at infinity. Then the 
following are true: 

1) Bz(q) T~ extends to a bounded operator on H,,ofor all E ~ , .  and t/ >_ 0 with the 
operator valued function { E + it~ ~ C: t~ > 0} ~ E + it~ ~-~ B ~ (t/) T~ ~ H~, o being norm 
continuous. 
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2) The spectrum of  B~ (q) T E is discrete, zero is the only possible accumulation point 
and 1 is a simple eigenvalue while the rest of  the spectrum lies inside a disk centered at 
0 and of radius strictly less than one for all 2 4= O, q > 0 and E ~ .  

Proof. See [11]. [] 

In view of the previous theorem we can now let m go to + ~ and ~/approach zero 
in (2.7) to obtain 

limJ](E+itl)=i~uj(~j~E,~(~)[(T(~g,~))(qO]d~, j =  1 , . . . , ~ ,  (2.8) 
n+0 

where ~g, z is the unique solution of the equation 

(Bx (0) T~) ~a, ~ = ix, ~. (2.9) 

The remaining two sections are devoted to the study of the vector valued 
function 

for 2 close to zero and E g-regular. 

Ill.  The Asymptotic Expansion 

In this section we show that under the hypothesis of Theorem 1.2 the function 
I~2~--~z ,  EeH.,E has an asymptotic expansion to any order in the disorder 
parameter 2. We will assume the following technical result, the proof of which we 
postpone until the last section. 

Lemma 3.1. Under the hypothesis of Theorem 1.2 for every n strictly positive 
integer there exists a constant M independent of  2 such that 

II ~ ,E II.+ 1.E =< M II ~ ,E II..E (3.1) 
for all 2 =~ O. 

Through an explicit computation and Proposition IV.1.4 of [11] one could 
easily verify that 

T~(F) = (C~Ebg~)(F), E~IR, F~Ll(Lfe),  
(3.2) 

T(F) = (iJe~)(F) , F6LI(LPe), 
and 

where 

(Bz (0)) (F) = (IE v { V~ bay} ) (F), F superfunction, 

Ie is ~ x f identity matrix, 

o") 

U stands for - 1 times the f x ~ diagonal random matrix whose elements are f 
independent copies of a random variable whose probability distribution is/1 and 
E v denotes the expectation over the product space of these variables. 

We are now ready to prove a proposition which provides the insight behind 
Definition 2.7. 
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n f  Proposition 3.2. Let f be a positive integer. I f  IEI < cos T ~ -  + 1, then Tg is an 
isometry on H~,Efor all n = 0, 1,2 . . . .  

Proof. One can easily check that if B~ . . . .  , B~ are square 2g x 2 f  matrices and 
B~, . . . ,  B* are their corresponding adjoints, then 

2~ 2 n -  1 

a ~  k l  . . . .  , k n = l  il  . . . . .  i n = l  = 

n - I  

2~ 2 n -  1 

ae~9~' k l  . . . .  , k ~ = l  il . . . . .  i n = l  1 

n - 1  

for all A square 2 f  x 2 f  matrices and all F, G e 6 v (LPe). On the other hand, since c~ E 
commutes with bgE and ~ we get from relations (3.2) and (2.6) that if FE 6e (~ee) , 
then 

(11 TE (F) II ~)2 = (3.4) 

z e  2 . - 1  I z ~ C E F ) .  2 . 

a~(9r kl . . . . .  k n = l  i l , . . . , i n = l  L2(r~2r 

The result now follows from Eq.(3.3), Definition2.1 and the fact that 
(g*AE~E = AE. [] 

For the study of  the asymptotic expansion of  ~z, g we will need the following 
technical results. 

Lemma 3.3. Let 2 > 0 and let C~ denote the operator B~(O) efined through Eq. 3.1 
for the case where IX is the Cauchy distribution with parameter one (i. e. h (r) = e -  Irl). 
Then 

[(C~ TE)  k (F)] (~ )  = e i<@, ( ~  + ia~,),~> + �88 zP~ _ ,  P,~ ' ~> 

X ~ e �88  +�88 <q~',2vlP,~lo) e �88 2 P k - I P s  lO  ' )  F ( ~ ' ) d ~ '  (3.5) 

for all k = 1 , 2 , . . .  and F ~ L  1 (~ee), where {Pk}k~r~ is a sequence o f f  x ~ square 
matrices defined by 

\ /, 

k -  1 times 

and Ie stands for the f • E identity matrix. 

Proof. The proof  is an immediate consequence of  111.2.3 and 111.2.4 of  [3] and 
111.2.3 o f [ l l ] .  [] 
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Corollary 3.4. Let  E be f-regular and let qE be the least common multiple o f  
ql , . . . ,  qe, where ql , . . . ,  qe are the integer phases that appear in Definition 1.1. 
Then (TE) qE = I on H , ,E fo r  all n = O, 1 , . . . .  

Proof. Let 2 be a positive number. One can easily check (see also [9]) that the 
matrices Pk, k = 0, 1 . . . .  which appear in the exponent of  the right-hand side of  
Eq. (3.5) can be explicitly computed and are given by 

Pk+x = ( (F~ ,a )2 - - / e )  - '  [(FE, a) k+2 --  [ (F~,) . )k ] -X] ,  k = 0, 1 . . . . .  (3.7) 

n k  
where F~, a = - (g~ + i2/e) - ]/(gE + i2Ie) 2 -- It" However since E + cos k +----]-' 

k = 1 . . . .  , d are the eigenvalues of  g~ we conclude that (F~,o) qE = I. Thus by 
taking the limit as 2 approaches zero from the right we obtain from relations (3.5) 
that 

(TE)q~+'(F) = TE(F),  F e L ' ( ~ e ) .  

Since T~ is an isometry on H,,E, n = 0, 1 , . . .  the result follows. [] 

Corollary 3.5. Let  E be f-regular and let n be a positive integer. 

1) II [(QTE)k(F)  II.,E < e cak II FII.,~ 
for  all F~  H.,E, k = O, 1 . . . .  and 2 > 0, where C is a positive constant that depends 
only on n. 

2) Let  HOe = {FeH, ,E:F(O ) = 0}. Then 

II (CaTE)k(F)II.,E <= Me-Ca* II FII.,E 
for  all F e l l ~  k = O, 1, 2 . . . .  and 0 < 2 < 1, where as before M and C are two 
positive constants that depend on n. 

Proof. 

1) It is enough of  course to show the inequality for k = 1. In this case it is easy to 
see that if n is a positive integer and a e (9 t we can conclude from Eq. (2.6) that 

(11 ( ( Q  T~) (F)). l} ~)2 --< 

2, 2 " - '  .,1~(( 
~, Z ( [ -1  [(A~/2+iZCdE+u)(Qi,)]k A~/2~E+,a)(F)), 

k l  . . . . .  kn = 1 i t  . . . . .  in = 1 k r r ~ l  "/ l[ L2(R2e, d2lfp) 

for all 2 > 0. 
However if 0 < 2 < 1, 

cg~+iaAgCgE+ia = A E + 2G , 

where G is 2 f  x 2d square matrix whose norm is bounded independently of  2. Thus 
the proof  of  (1) follows from relations (3.3) and Definition 2.7. 

zd  
2) If  I EI < cos t~7- '  then by diagonalizing the matrix F~, a we get (see also 

Proposition 4.2 of  [9]) that 

ealZ <= II FE, a II --<-- ed2a 
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for all 2 > 0, where d~, d2 are two positive constants that depend only on E. Thus 
we conclude from Eq. (3.7) that there exists constants Co, M, C > 0 such that if 
kx > Co, then 

11 2PI Pk -111 < M e  -ck~ 

and 
112Pn_xPk-lli < M 

I m 2 P k _ l P k  -1 > C[r 

Let F be an element of  HOe. Using Theorem 2.5 we can rewrite (3.5) as 

[(Cx TE) k (F)] (qS) = e i< ~,~*~ + ~xlt)r + ii<r ae~_,e~, $> 

x ~ [e~ (i <~' 2 P , P E  lq~,> + ( O ' ,  2P1Pff  J" 0 ) )  - -  i ]  e �88 <at ,  2 P k -  ,P:ff lq~,> F(~ ' )  dq~' 

for all k = 1,2, . . .  and FzSe(~e) .  
Recalling the notation of  Definition 2.7 and using the bounds mentioned above 

we conclude from H61ders inequality and a straightforward computation that if 
k2 > C O 

(11 (C~ T~y (F) II.~y =< Me -c~k 

for all n = 1, 2, . . . .  
Thus we have shown the inequality for this case where k2 is bigger than a fixed 

positive number so the rest of  the proof follows now from part (1). [] 

Let E be Y-regular and let qE be the least common multiple of the integers 
q~ . . . . .  qe as discussed in Corollary 3.4. We can rewrite Eq. (2.9) as 

A~,E~,E = 0, 2 # 0, (3.8) 

where A~ E = (B~(0) T~) qE - I 
' 2 

If  for a moment we assume that ~z,~ has an asymptotic explanation on H.,~, 
n = 1 ,2 , . . .  of the form 

~ ,~  = ~ ~.v 2k ~k) + On([2[N), U = 0, 1, 2, . . .  , (3.9) 
k=O 

we can conclude that the coefficients {~k~}k~N should satisfy the equations 

N ( ~  ) 
(~) Ao,~(~i ~-1~) = -E_=_2 (f) (B~(0) r~)"~ ~=o (~i~-~), (3.10) 

where A0, g is the unbounded operator with Hz,e as its domain and defined by 

(B z (0) T~) q'~ - I qE- 1 
Ao E = lim = - i # o  ~, (Te)k M~,(Te) q-k,  

' 2 ~ 0  )~ k = 0  

where M~ denotes the operator multiplication by ~ + . . .  + 4 2 and #o is the 
mean of the distribution p. 

At this point it should be clear that even at the level of  formal perturbation 
theory the operator Ao, g plays an important role in the proof of the existence of an 
expansion of the form (3.9). Fortunately one can study the nature of its spectrum 
the properties of  which can be described through the following theorem. 
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Theorem 3.6. Let n be a positive integer and let E be f-regular. Then 

1) iAo, ~ viewed as an unbounded operator on H., E with domain H.+ 2 ~ H., E is 
symmetric. 

2) The Friedrichs extension of - A  2 is a positive self-adjoint operator on H a O,E 

whose spectrum has the form 

{0} [C, +oo], 

where C is some strictly positive constant C. Moreover zero is a simple eigenvalue 
with eigenvector 

- i  
~(o)(q~) = exp ~ -  <q),FE, or (3.11) 

while the rest of the spectrum is supported by the invariant subspace H~ 

Proof. 

1) Let F, G~H,+2,~ and consider the equation 

<F, (TE+=)"~(G)>.,E+~ = <(Tff+~)q~(F), G>.,e+=, 

where <, >n,E+. denotes the inner product of  the Hilbert space.H.,E+, and ~ is 
sufficiently a small real number. Since Mr is a bounded operator from H.  + 2, E to 
H.,e  we get, by differentiating both sides of  the equation above with respect to 
and setting ~ = 0, that 

However,  since TE is an isometry on H.,E one can easily check that 

0 I q~-I 1 Ao r (F )  a~ (Tff+')"E[~=~ = - i L  k~O (T*)q~-~ M~(T*)k] (F) = #~ , 

for all F~Hn+2, E and the proof  of  1) follows. 

2) Let FEH~ Then 

(F, -A2,E(F)>. ,E= I[Ao,E(F)II2,E = lim I - ( ~  TE)q~- (V) 2 

2 ~ 0  + n ,E  

On the other hand Lemma 3.5 implies that the operator I -  (C~TE) qE is invertible 
o n H  ~  

IJ[ I - (C~TJq-I (F) I I . ,~  <= C2 IrFll.,E, F ~ H ~  

where C is some constant independent of  2. Combining the last two relations 
together we get that 

( F , - A 2 , r ( F ) ) . , r >  CII 2 Fll.,E. 

It remains to show that ~o) as defined through (3.11) is an eigenvector that 
corresponds to the eigenvalue 0. However this is a matter of  a simple straightfor- 
ward computation and is left to the reader. [] 
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We finish this section by  present ing ou r  p r o o f  for  T h e o r e m  1.2. Let  E be 
#-regular  and  let ~z,E be the unique solut ion o f  (2.9) such tha t  ~x,E(0) = 1 and let n 
be a fixed but  a rb i t r a ry  posit ive integer. We will show tha t  the funct ion 

has an a sympto t i c  expans ion  to n th order  a t  2 = 0 for  all k = 0, 1, 2 . . . . .  and tha t  
its coefficients y~(o)~ satisfy the equat ions  I ~ E  J i = l  . . . .  , n  

~o) (0) = 1, ~i) (0) = 0, i = 1, 2 . . . .  , n ,  

Ao,~r ~ = 0 (3A2) 

( n + l )  A ~ ( . ) = _  n + l  ~O,~SE T~) r ~ " + ~ - a )  n >_ 1. 
k=2 k 4=0 ' - 

We will use induct ion in n. 

n = 0 .  
Let  Ff f / - Ik+4 ,  E and let G~I-Ik, ~. Using  Taylor ' s  t heo rem we get 

+ 2Z IG, (~--~2~ (B~(O) T~)q~)~=c(F) ) 

for  some c with I c I < 12 I. Replac ing  F by ~ ,  ~ we get 

( G ,  Ao, E ( ~ a , E -  r = --22(G,I~22(B,~(O) TE)krzI,~=c,(~k,E))k,E 

t~ 2 

for  some c' with I c'[ < 121. Since ~ (B~ (0) Tg) ~E is a b o u n d e d  ope ra to r  f rom 

Hk + 4, E to Hk, E, we get f rom L e m m a  3.1 tha t  

I (G ,  Ao,~ ( ~ , E  - ~0)))k,E I ----< M I 2 I  II G Hk, e II ~,E Ilk, E 

for  all 0 < 2 < 1 and  some M > 0 independen t  at  2. Since G was a rb i t ra ry  we 
conclude f rom T h e o r e m  3.6 tha t  

for  all 0 < 2 < 1 and  for  some M > 0 independent  o f  2. Thus  ~z, E ~ ~o) in Hk, 
for  all k = 0, 1, 2 . . . .  and  the p r o o f  in the case n = 0 is complete .  

n---}n+l. 
Let  us assume tha t  the result  is t rue for  n and let G ~ Hk, g. Using  Taylor ' s  

t heorem as before  we get 

0 = ( G ,  2 A o , E ( ~ , E ) ) z , e +  G, ~. ~(B~(O)TE) qE (~,E) 
i = 2  , ~ = 0  k,E 
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for some I c l < 12 I. Substituting 

r ~ r 0(2") 
i=0 e i! + 

into the equation above and rearranging the summations we get that for small 2 

<G, 2Ao, E(~a,E))+ ~2 --  (j) (Ba(0)TE) "~ ( ~ - J ) )  +O. ,E(2)  
i=2 i[ b=2  ~ a=0 k,E 

G' (n + 2)! j = ~.=o / k ,g  
j ~ (O A (0) TE) qE ( r  , 

where O., E (2) contains all the other terms which are of  order higher than 2" + 2. 
Using Eq. (3.12) we can now rewrite the equations above as 

= G , j =  2 J 

r 2 T.,~i o + 2.+2 o.,E(2) 
i = O  k , E  

(B,~ (0)TE)qE),~=O(~"+2-J))>k, E (3.14) 

for some c such that [c[ < 121. 
Let ~,+1) be the unique solution of  

= _  ( j ) b~(a~(0)r~)"E (~I"+2-~)). 
j = 2  A=0 

We can now rewrite Eq. (3.14) as 

1 2 i 

(n + 1)! ~ .+  1) k,E 

The key estimate of  Lemma 3.1 however allows us to estimate O., E (2). Indeed 
one can easily check in (3.13) that even though O., E (2) may apriori depend on G 
has to satisfy the bound 

[I On, E (2) I[k,E ~ MI 21 "+3 II ~,~  IIk,~ + 121 "+2 ex 

for all 2, 0 < I 21 < 1, some M > 0 independent of 2 and where ez converge to zero 
as 2 ~ 0 .  

Using this crucial bound above we get from Theorem 3.6 that 

i=0i! E j  ~ k ,  (n + 1)! ~"+"  

for all 2, 0 < 121 < 1, and where M and ea are as before. 
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Multiplying by I 21 "+ 1 both sides of the inequality above and using the triangle 
inequality we obtain that 

( 1 - M I 2 I  "+2) ~ , e -  i=o ~" H ~ / )  (n + 1 ) ~ .  i 

/~i ~(E i) ~ n + l  ~ k , E  <MI21 + ( n +  1 ) ~  ~"+ ' )  +a~ i - 0  

for all 2, 0 < ]21 < 1, and where M, aa are as before. Thus 

,~"+~ ~ ' ~ - , : o  ~ 77 ' ~ '  -+ (n+l)~ ~i"+" 
i nHk ,  E f o r a l l k = O ,  1 . . . .  a s 2 - - + 0 a n d ~ " + l ) = ~ :  +~. [] 

IV. Interpolation Bounds 

In this last section we derive the key technical estimate described in Lemma 3.1. 
Since for 2 away from zero the result follows through standard perturbation 
techniques developed in [11] we restrict ourselves to the case where 2 is very small. 
Without loss of generality we can also assume, via a standard approximation 
argument, that the first and second moments of # are finite. Our proof is mainly 
based on the Calderon-Lions abstract interpolation theory as described by Theo- 
rem IX.20 of [12]. 

We begin by introducing a family of positive norms I[ [I.~,b . . . . . .  n = 1,2, , 
n f  

b, e ~ R,  I EI < 1 + cos ~ on 5 p (~2~) through the following equations: 

2d 2 
E (llflln, b,c) 2 = Y Z 

kl  . . . . .  k n = l  il . . . .  , i n = l  

x I~ (1 -t- b 2 ~ ) c  [AtE/2 (Q,m)lkff> 
m =  1 L m :  1 LZ(R2d, d2dq~) 

where we have used the covention ~o~ = (~o 2) = (~ox - q)i)2, i = 1, 2 . . . .  , f .  

Definition 4.1. Let n, f be positive integers, let c, b be positive real numbers and 
n f  

let ]EI < 1 + cos 7-+-- ~ . We define the weighted supersymmetric Hilbert space 

H,~;~ to be the completion of 5 P (Life) under the norm II c,b I I., ~, where 

(IIF ~,b~2 ~ (II(A~/2F)a E 2 Hm, b,e) + [F(0)I  2, F ~ ( A ~  �9 n, E )  : 
a~(gy m= 1 

Let n be positive integer and let c, b be positive real numbers with ]b ] < 1. 

( As in Sect. II it is easy to see that if I is a compact set of - 1 - cos f + ~ ,  

) 1 + cos ~ - - ~  

C I  II F c,b c,b c,b ' FII.,E _-< II., 0 _-< II Ci II F I[.. 0 
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for all F~  5 e (Se:) and for some C~, C} positive constants that depend only on the 
set 1. 

Let a be a real positive number we will make use of  the operator M~ which is 
defined by 

[M,(F)] , ( tpl ,  . . . ,  ~o,) = f i  (1 + ~p~)'F~(qh, . . . ,  q~,), F~CI(ZPe).  
i = 1  

Lemma 4.2. Let h and ~ be as in the hypothes& of  Theorem 1.2. Let j be a positive 

integer, I EI < 1 + cos ~ and let F~ H~,E. I f  k l ,  . . . ,  kj and il . . . . .  ii are two 

sequences with values in { 1 , 2 , . . . ,  2 : } and { 1,2} respectively, then for all 2, 12 [ < 1, 
y e ~  and c( < ~, 

) e -r2 [A~/2 Q j k , .  M22(-iy+~t'/4) A1/2 B.,t(0) (F) 

= e -y~ (Ma~(-i,+,,/4)A~/z) lEv bw [A~/2 Q j k , ,  A~/2 (F) (4.1) 
1 

+ 2Mz~(-,r+,,/4) a~/2 (IEv {b~v (U~ 01 (r)  + . . .  + U: O: (F)}) + 22 O0 (F),  

where Oo (F), . . . ,  O: (F) are super functions that satisfy the inequalities 

[I Qi(F)II c'bl,E= < M II FII~; b 

for all i = i, . . . ,  : and c, b positive real numbers some M independent o f  c, b and 
F and where U1 . . . . .  U: are the diagonal matrix elements of U. 

Proof The proof  follows immediately from an explicit straightforward compu- 
tation and is left to the reader. [] 

Lemma 4.3. Let E, h and ~ be as in the previous lemma and let n be a positive 
integer, let us assume (for the moment) that the mean of  the distribution # of the 
single sited potential is zero. Then 

e-r~ II (Mx2(-ir+,/4)Bz (0)) (F)II,,E ~ II FII,,E + M 2  2 II FII~,'~ (4.2) 

for all2, [2[ < 1, y ~ ,  some M >  0 independent of 2 and all F~H,,g and 

[[ (Bz (0)) (F)[[c,b < (1 + M22)  [[ F c,b II., ~ (4.3) n,E 

for all 2, [ 21 < 1, b, c positive real numbers, some M > 0 independent of  c, b and all 
F~H,,E. 

Proof. Let c, b be two positive real numbers. L e t j b e  an integer from {1,2, . . . ,  n} 
and let kl . . . . .  k~-I and i l , . . . ,  J j - i  be two sequences with values in 
{1,2, . . . ,  2 : )  and {1, 2} respectively. Using Eq. (4.1) with ~' = y = 0 we get that 
if F~Hj ,  E, then 
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e -y2 f l  (1 +b2q~4) c [A~/z Qi..]k,.A~/ZBz(O) (F) 
i = 1  

{ ] = e -'~ ]Ev f l  (1 + b 2 rp~) c bav [A~/2 Qi..] k.. A~/2 (F) 
i = 1  

+ f i  (1 +bZq~4) r [ 2 b ~ v ( U l O l ( r ) +  . . .  + U<O<(F)]~ 
i = 1  ) 

g 

+ 2 2 l-I (1 + b 2 q~)c Oo (F) 
i = 1  

for all 2, [2[ < 1. One can easily check now that by taking L 2 (~2Cd2<~o) norm 
both sides of  the equation above and using Jensen inequality (4.3) follows easily 
from Definition 4.1. 

Using once again Eq. (4.1) with 0( = 0~ and y~lR we get 

(ye ) e-Y~ [A~/2 Qim]km M~(-ir+~/4) A~/z B~ (0) (F) 

e Eo b~o ( I ( 1 +  �9 h(~qg) 
i = 1  

,=, .~o; ~ ,,,=,H ( l + x ~ e ~ )  ~/4 

x M,~-~,,+~/4> (0~(F))} + ,t ~ Oo (F), 

where 0 isequal to - 1 times the ~ x f diagonal random matrix whose diagonal 
elements Ua, . . . ,  U< are independent copies of the two sited gamma distribution 
with parameters 1, a/4. The proof of  (4.2) now follows as, in the previous case, 
from Jensen inequality and Definition 4.1. [] 

rcf 
Let n be a positive integer and let I EI < 1 + c o s ~ .  We introduce a se- 

quence of interpolating spaces k L, ,e( t ) ,  0 ___ t _< 1, k = 0, 1,2 . . . .  inductively by 
defining Lk,~ (t) to be the t th interpolation space between k- L.,e (t) and H.+2,E, 
whereL.X E (0) = H.,~ and L.~,E (1) = H.+z,E. 

Lemma 4.4. Let n, E be as above, then k L.,~ ( t ) can be continuously imbedded in 
H~,~u-(a-O~']'lfor all k = 0, 1,2 . . . .  and 

II F 1/2u -(1 -t)~l, 1 < M It F l[ L~ ~(t) n ,  E : �9 

for all t, 0 <_ t <- 1, F s  L~, E (t) and some M > 0 independent of  t and k. 

Proof. Let jbe  an integer from {1, . . . ,  n}, and let kl ,  . . . ,  k,_ 1 and il,  . . . ,  ij_ ~ be 
two finite sequences with values in {1, 2 . . . .  , 2 f}  and {0, 1~ respectively. Clearly 

[A~/2Qi.,lk. (F) < IIFIIn, E 
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and 
( ~i__ 11 ) 1/2, 1 

[A~I2Qjk= (F) < MIIFN,+2,~ 
1,E 

for all F~ 5O (~e)  and some M > 0 independent o f j .  Interpolating between the 
inequalities above and taking into account that the t th interpolation space between 
H1/2,  1 and H ~ x is H t/2" 1 1,E 1,E 1,E we obtain that 

II F n,gt/2'l =< M l[ F N LA, E(O 

for all F~ 5O (Lee), t, 0 _< t _< 1 and some M > 0 independent of t. 
The result now follows by iterating the procedure above and from the fact that 

the t th interpolation space of  Hi(  2t1-(1 -t).l and H~(~ '1 is H~( 211-(1 -ok +,1. [] 

For  our next lemma we will need a rather smaller weighted supersymmetric 
Hilbert space H.,~, m which we now introduce as the completion of  5 ~ (~e)  under 
the norm [I �9 ]In,e,,., where 

nWm 
(IIFIIn,~,,.) 2 = Z Y'. (II(A~/ZF)<'tI~) 2121~~ 2 

�9 e~e J= 1 

n~ 
n, m are positive integers, I EI < 1 + cos T ~  q- and ~r o denotes the characteristic 
function of  (0, + oo). 

We shall also make use of a sequence of  the interpolating spaces Lk,,E,,,(t), 
0 < t < 1, k = 0, 1, 2, . . .  which are inductively defined by setting Lk,,~,m(t) to be 
the t th interpolation space between k- 1 L.,E,m(t) and H.,E,s.,, where 
Ll.,r,m(O) = H.,r,o and U.,r,m(1 ) = H.,E, Sm. 

Lemma 4.5. Let ~ and h be as in the hypothesis of  Theorem 1.2. For every m, n 
positive integers there exists ko positive integer such that 

II (reBa(0))2k~ II ~ 

+ II e z: (TEMz~(-~ +~/4) Ba(0) (TEB~(0)) 2k~ 1) (F) m a I1,,,'~ < M II FII,,.e 

for all 2, 121 < 1. F e H , ,  E energies E such that IEI < 1 + cos f - ~ - ,  z e { x + i y ,  

x = 0, 1, y e 1t} and for some M positive constant independent of  2. 

z r g  
Proof. Let I EI < 1 + cos , ~ ] -  and let m, n be two positive integers. Consider the 

operator  valued function G~ which is defined on the strip S = {x + iy, 0 < x < 1, 
y E R} through the formula 

Ga(z) = e 22 (TeBa(O) M a_ 8mz+cr 2 , 

where M{ is the multiplication operator  defined by 

[Mc~(F)]a (~01, . . . , ~0,) = H (1  --[-/~2~/4.)c/4 Fa ((/91 . . . .  , ( P , ) ,  
i=1 

F ~  C ~ (~e~). 

Clearly G~(z) is a bounded operator  on H,,E,s, , for all z e S  and Gz is norm 
continuous on S while being analytic in the interior of  S. Moreover through a 



568 A. Speis 

s t raightforward computa t ion  similar to the one used in par t  (iii) o f  Proposi t ion  
IV.1.4 of  [11] one can easily show that  

II (aa(iy))(F) Iln,E,o = II (G~(iy)(F) tl .,E < M II FII.,E, 

I1 (Gz(1 + iy))(F)[[n,E, 8m <~ M II FIl. ,~,  
and 

II (Gz(T~ff-~)(F) 11.,~,8,. = e (1-~-m)2 II (ZzBz(0))2 (F) ][.,~,sm < M q[ F II.,~, 8.. 

for all y~F.. ,  2, [21 < 1, F~H.,~,sm and some M > 0 independent  o f y  and 2. 
Interpolat ing between the first and second inequalities we get that  

II (T~B~(O))2(F) II tt..e.,.(~-~-~ ) < M II Flln,E. 

Interpolat ing between the last two inequalities we get that  

II (TEB~(O))2(F) I] Z],E,m(1-~-~ ) < M II Ftl L~.,E,.,(x-~--~ ) 

for all 2, 121 < 1, F ~  LI.,E,m (T~-m) and some M > 0 independent  o f  2. Iterating this 
procedure  k times we obtain  

t1 (TeB~(O))2k(F) ]lLk.,E,m(X-~-m) ----< Mk II FII.,E 

for all 2, 12l < 1, F ~  n . ,~  and some M > 0 independent  o f  2. Using essentially the 
same arguments  with the ones presented in the p r o o f  of  L e m m a  4.4, one can show 
that  H2~  tl - (1 - 0~j, a is canonically imbedded  in L. k, E, m (t). Thus  we conclude that  if  
we set k 0 = [ ~ ]  + 1, then 

[l (T~B~(O))Zk~ [ t ~  < Mk~ [I FII,,e 

for all 2, 121 < 1, F ~ H , , e  and some M > 0 independent  o f  2. Trivially the same 
series of  arguments  could be applied for  e z: TEMz2(_iz+,/4)B~(O ) TEBz(0 ) and the 
result follows. [] 

Lemma 4.6. Let n, E, ko, a and It be as in the previous lemmas. Consider the 
operator valued function F~ which is defined on the strip S ~ = { x + iy : O <_ x <_ 1/2 2, 
y ~ ~ }  through the formula 

F~ (z) = e z2 (Te B,~ (0) M,~( _~ +,,/4)) 2 (T~ B z (0)) 2ko + a, 

where k o is the integer specified in Lemma 4.5 for the case m = 1. 
The following statements are true for  all 2, 0 < t2l < 1: 

(i) F~(z) is a bounded operator on H,+z ,e for  all z 6 Sx. 

(ii) F~ is analytic in the interior of  Sx and norm continuous on Sx. 

(iii) Let F~ H,,~ then 

I[ (F~(iy + 1/22))(F)[[n+2,E ~ M I[ FII . ,e ,  

and 
tl (Fz(iY))(F)t1.+2,~ < eta= II Flln+2,g 

for  all y ~ F .  and M, c positive constants independent o f  y and 2. 

Proof. (i) and (ii) are straightforward.  Through  an easy computa t ion  similar to 
the one used in par t  (iii) o f  Proposi t ion  IV.1.4 o f  [11] one can easily show that  
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< MI IF I I . ,E  

for all F e  H.,E, 2, 0 < I,~ I < l ,  y e R and for some M > 0 independent of 2 and y. 
Thus the first inequality of part (iii) follows from the fact that T~ and B~(0) are 
bounded operators. 

Let F~H.,r from Lemma 4.3 we conclude that since Te is an isometry in 
n n +  2,g , 

II (Fz(iY))(F)11.+ 2,8 < II (B~(O) Ma2(-ir+~,/4)(TEBa(O)) 2k~ (F)1I.+ 2,E 

+ M22 [I Ell n+2,E 

for all 2, 0 < 121 < 1 and some M > 0 independent of y and 2. Thus 

II (F~(iy))(F)11.+2,E < II (TEB~(O))2k~ 11.+2,~ + M22 I[ FII.+2,E 

+ M22 II (TEBz(0)) 2k~ (TEB.~(O))(F)II.X~�89 

for all 2, 0 < I AI < l and some M > 0 independent o fy  and 2. The rest of the proof 
now follows from inequality (4.3) and the fact that T E is an isometry. [] 

We finish this section by combing Lemma 4.4 and Lemma 4.6 into a proof of 
n f  

Lemma 3.1. Let n be a position integer and let I EI < 1 + cos r Theorem 

IX.20 of [12] and Lemma 4.6 imply that if the mean of the distribution/z is zero 
then 

II (ZEBa(O))2k~ II L,.,~(~2/4) =< e clx2 IIFll.,~ (4.4) 

for all F~  L1,E(~22/4), 2 with 0 < 121 < 1 and for some positive constant cl. On the 
other hand, since TE is an isometry on H.+2,E we conclude from Lemma 4.3 that 

II (TEBa(0))2k~ + 3 (F) 1I.+2,E =< eC~ II FIl.+~,~ (4.5) 

for all F~H.+2 , r ,  2, with 0 <  I,~1 < 1 and for some positive constant c2. 
Interpolation between relations (4.4) and (4.5) yields 

II (TEBz (0)) 2k~ + 3 (F)II L. ~, ~(~=/4) < eC~ II F II L.~ ~=/4)  (4.6) 

for all F~L~.,E(~2z/4), 2 with 0 < [21 < I and where c = max(c l ,  c2). 
Iterating this interpolation in the same spirit of  the proof  of Lemma 4.5 we 

obtain 
II (T~B~(O))k(2k~ 3)(F) II L.k,E(~:/4) < eCk'~2 l[ Flln,n 

for all F~H.,E and k = 0, 1, 2, . . . .  
I f  k > log 16/~22 however, we conclude from Lemma 4.4 that 

II (TrB~(O))k(2k~ ~/,,,1 < MeCk~ ~ II .,~ = Flt.,~ (4.7) 

for all F~ H. , r ,  2, with 0 < 121 < 1. Thus we have shown that i f g  is centered and 
under the hypothesis of Theorem 1.2, there exists an M > 0 such that for every 2 
with 0 < 121 < 1 there exists an integer Pa such that 

II (Tv.Bz(O))e'~(F) ~/4,, < M II r l l . ,~  (4.8) n,E 

for all F~H.,~. 
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Now let once again k~ . . . . .  k, and i l ,  . . . ,  i. be two finite sequences with values 
in {1,2, . . . ,  2f} and {0,1} respectively. We will show that there exists an M 
independent of these two sequences such that for all 2, 0 < [ 21 < 1, 

f i  (4.9) [A~/ZQi"]km[(TEB'~(O))e~'+I(F)] < II FII.,E 
m =  1 1 , E  

for all FE H,,~, and where Px is the same exponent that appears in (4.8). In view of 
inequality (4.8) we need to study 

[Qil]kl [ ~=2 [A~/2 Qi'jk" [(TEB'~(O))Pz + I (F)]I 

in the case k~ < Y. Indeed in this case the super function above is equal to 

An elementary computation however shows that the super function above is equal 
to 

2~ 

Combining the latter with inequality (4.3) and (4.8) we can conclude that since T e 
is an isometry (4.9) holds. Thus we have shown that there exists an M > 0 such that 
for all 2, 0 < 121 < 1 there exists Pa positive integer such that 

It (ZeBz(O))e~'+x(F) II .+ ~,~ < M II Ell .,E. (4.10) 

Since TE and Bz (0) are bounded operators on H. + z and H. we can rewrite (4.10) 
a s  

II (Bz(0) Te)e"+2(F)II.+ 1,~ < M II FII.,~ (4.11) 

for all F~ H.,E, some M independent of 2 and where Pz is the same exponent that 
appears in (4.10). 

Notice that up to now the assumption that/~ is centered was crucial. However if 
Po is the mean of/z one can easily see that 

II (Bz(O) TE) P~+ 2(F) II n+ 1,E +.;t#o ~ M II FH =,g+~uo 

for all F~ H., E + auo, 2 with [ 21 sufficiently small and some M > 0 independent of 2. 
Thus we conclude from (2.5) that (4.11) holds in general and the proof of 
Lemma 3.1 follows immediately from the definition of Ca,E. [] 
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