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Abstract. We study the asymptotic behavior of the averaged diagonal matrix
elements of the Greens kernel for the Anderson Model on a one-dimensional strip
and for a set of special energies close to the center of the band.

I. Introduction

Let Z be a positive integer and let &, be the one dimensional lattice strip of with 7,
ie,9,=Zx{1,...,¢}, where Z is the set of all integers.

The Anderson model [11 on 2, is given by the random Hamiltonian
H,=—1A4+ AV on £*(9,), where

(Au) (x) Z (B)s,yu()

ye /
with
1 lf x—ye{(or1)9(_190)a(150)a(0’_1)}
0 otherwise,

A=

and

(V) (x) = V(x) u(x),

where {V(x)}1eq, are i.i.d. real random variables with common distribution u
whose characteristic function will be denoted by 4 and 4 is a real number.

Let m be a positive integer, A™ be the discrete rectangle [—m, m] x {1,2,...,¢}
and H,, ; denote the H, restricted to £2(A,) with boundary conditions u(x) = 0 for
all x¢ A™ Let x,ye D,, n > 0 and let 9,5, £*(2,) be the delta functions at the
points x and y respectively. We shall use the notations

Gn(x, y, E+ i) = <5x 5y> .

1
HE+in) = lim E{GL(Q. /). .. E+in)},

Hm,l—E_in

wherej = 1,...,¢ and E{-} denotes the expectation with respect to the disorder.
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It is a consequence of the “de la Vallee Poussin” theorem [2] that the
lin(’)l JI(E + in) exists for almost all E€R and all A+ 0. Under some mild
n!

regularity conditions for 4 Klein, Lacroix and Speis [3] have shown that the limit
above actually exists for all E€R and it is a smooth function of E for all 4 & 0.

The boundary value of Ji(E + in) described above contains a lot of infor-
mation about the random Hamiltonian H,. Note for example that under the
hypothesis of Theorem 1 of [3] the authors showed that the integrated density of
states N, (E) is absolutely continuous and

d 1t g
d—EN,l(E) Im 11m 1 Z I(E+iy),

while similar results are true for the summation of the Lyaponov exponents (see

[13D. .
One striking and important aspect of the behavior of the lir{)x JI(E+in), j=1,
nl

., £ as A approaches zero is the apparent sensitivity of its asymptotic expansion
on the location of energy E in relation to the spectrum of the free Hamiltonian H.
This was first discovered by Kappus and Wegner [4] who showed that in one
dimension if p has mean zero the leading coefficient of the straighforward
perturbation expansion in A proposed by Thouless [5] was inadequate if E = 0.
Derrida and Gardner [6] found that the same phenomenon occurs for the next to
leading coefficient in the case E = + 4 and actually conjectured that similar
“anomalies” occur for all energies of the form E = cos np/q with p < g relatively
prime. This was shown by Bovier and Klein [7].

The significance of the special energies mentioned above lies in the fact that for
these values the free Schrodinger propagator is cyclic (see[6,7]). In fact the
presence of this cyclicity is directly responsible for the failure of straightforward
perturbation expansions while it is exactly the same property that makes the
modified ones proposed in [6,7,9] amenable to rigorous treatment [8,9]. It is
worth noting however at this point that the nature of these modified expansions in
the case where u has mean zero [4, 6, 7, 8] is quite different than the one discovered
in [9] when the mean is different from zero and that one has to abandon in the
latter case the traditional perturbation techniques for isolated eigenvalues in
favor of a more general approach [9] where the harmonic analysis becomes much
simpler than the one used in [8].

Despite the fact that in one dimension the asymptotic behavior of H, is
completely understood, at least for the special energies mentioned above, very
little has been done for the case of one dimensional strips. In fact the only article
the author is aware of in that direction is a paper by Derrida and Zanon [10] where
a weak disorder expansion is derived for the Lyaponov exponents of the product
of random matrices when the unperturbed matrices have two degenerate
eigenvalues.

In this article we study the asymptotic behavior of lifr()l JIE+in),j=1,...,¢

n

as A approaches zero on a strip of size Z. To make the harmonic analysis more
tractable we will use the approach of [9] and we will assume that the mean of y is
different than zero. We also restrict ourselves to the set of energies for which the
free Schrddinger propagator becomes cyclic (see Corollary 3.4) and which we now
introduce through the following definition.
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Definition 1.1. We will say that an energy F is /-regular if and only if

nt
|E|<1+cos{,_‘_1

and it satisfies the equations

E+cos;f1—coanl:‘, k=1,...,¢
for some sequence of pairs of integers (p,, Qk=1,....c which can be assumed to be
unique by requiring that p, is relatively prime to g, forall k=1,2,...,7.
Trivially zero is /-regular for all £ = 1,2, ... . Moreover, one can easﬂy verify
that the set of /-regular energies is dense in ’

nk nk
<—<1 +cos/+1) 1 +cos/+1)
Our main theorem is:

Theorem 1.2. Let y be such that its characteristic function h is infinitely many times

differentiable on (0, + 00) with h(f) = O[(1 +t2)"%?] for all i = 0,1,2, ... and

some a > 0. If the first and second moments of u exist and they are both not equal to

zero, then for every {-regular energy E the function R 3/ — lifr(} JI(E +in)eC has
n

an asymptotic expansion to any order at A= 0 forall j=1,...,¢.

We finish this section with a few words about the strategy of our proof as well as
the organization of the present article. _
We first use the supersymmetric replica trick (see [11]) to express lin(} JI(E+in)
nl

in terms of the unique eigenvector, corresponding to the eigenvalue one, of a
bounded operator defined on an appropriate Hilbert space. Then we find
explicitly the set of equations the coefficients of the formal perturbation expansion
of the eigenvector mentioned above would have to satisfy. Finally we prove that
these equations have a unique well defined solution which defines a series that is
actually asymptotic.

The next section is devoted to the development of the formalism which permits
us to implement the first step of the above outline. In Sect. III we compute the
perturbation expansion and we prove, up to a key technical estimate, that it is
asymptotic and in the last section prove this crucial technical estimate.

II. The Supersymmetric Transfer Matrix

In this section we introduce a supersymmetric formalism similar to the one used by
Klein and Speis in [11] and explain how one can use it to study the boundary value
of Ji(E+in),j=1,...,¢ as n approaches zero.

For the benefit of those who are unfamiliar with this framework it is worth
mentioning that this formalism is essentially harmonic analysis of multicompo-
nent complex valued functions whose components satisfy certain differential
equations that can be canonically described through an appropriate superposition
of commuting and anticommuting variables (super variables).

Even though one could, on a purely technical level, introduce all the necessary
structure without the use of Grassman-algebras (anticommuting variables) it is
our experience that such an approach lacks any kind of intuition or insight and we
will not use it here. We also would like to point out that despite the fact that our
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definitions look different from the ones used in [11] the proofs of our propositions
follow along the same lines as the ones in [11] and they will be omitted.
We start with the following definitions:

Definition 2.1. Let # be a positive integer. Let 4(IR?%) denote the Grassmans
algebra over R?/ and let 4'(IR*%) be the vector space of 1-forms in 4 (R%‘). The
superspace %, is defined to be the set of all n-tuples @ = (&4, . .., &), where
¢1=((pi’l/7i’!//i)9 i=19~"’f,
p;eR? , i=1,...,¢,

and {§;,¥};i=1.....c is a family of {-forms whose non-zero elements form a
linearly independent set in A'(R??).

Let O, denote the set of strictly increasing finite sequences indexed by {1, ..., ¢}
and taking values in {1, ...,2/}. We shall make use of the forms
{¥w, }ae@feA(]R”) where fora = {i;,...,i,} = {1,2,...,2¢/} ¥,is defined to be

e ( am times the formal determinant at the Z x £ matrix whose rows are the

it ..., i and i* rows of the matrix
22 7,
g = iy o Yo 2/
1 0
o ... 1
£

and where |a| denotes the number of all the i;’s for which i, S/, k=1,...,7.

Definition 2.2. Let/ be a positive integer. A super function F is understood to be a
function F: £, — A (R?%) of the form

F(@)= ) FnY,
acl¢
Where ¢= (¢1, ceey ¢t’)’ @i = (q)i, lpi, l//i), l= 1, < ey /, Q= (qDl, ceey (0/) and
{F}4cq, 1s a family of complex valued functions defined on R*”.

We will say that a superfunction Fisin C*(%,) if and only if F, is of class C* on
R?* for all ae0),.

Definition 2.3. Let £ be a positive integer. We defined the integration over the
super space .Z, by the formula

jr@do =T [ E 00 [ @ e

where g, € 0, is the identity sequence g@y=ii=1,...,7.
We will say that a superfunction F is in L' (%) if F el (R?*%) for all ge 0,
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Definition 2.4. Let @, ¢’ ¥,. We define the inner product between @ and @&’
through the formula

¢
<¢7¢I>=Z¢l¢;a ¢=(¢1>’¢£)7 ¢’=(¢,19a¢lf)
i=1

where ;- &; =9, ¢ + YWy +Wiw), i=1,...,7.

Let K, be the cone at the positive semidefinite / x £ matrices and let f be a
complex valued function which is of class C! on K,. We associate with f the
superfunction F defined by

F(?) = Z@ 0. f(4p) ¥, 2.2)
aely
where 0,, a = {i;, i, ..., i,} is the partial differential operator defined by the
formal determinant of an £ x £ matrix whose rows are the i, , ..., i,’th rows of the
matrix

Ziall e iaw ]
‘a cee ™
[/ £1 216{( | 2/
1 0
0 1
£

0;;,5,j =1, ..., ¢ denotes the operator differentiation with respect to the variable
that corresponds to the i,j entry and A, is an /x/ matrix defined by
(A(p)ij:' (N (pj5 l’.] = 17 2: ey {

It is worth noting that if we set 44 to be the £ x £ super matrix defined by
(Ag)ij=D;- D;, 10, j=1,2, ...,/ we can rewrite (2.2) as

F(D) = f(4y), (2.3)

where f(A4,) is defined to be equal to its formal Taylor series, around the point 4,
which coincides with the right-hand side of (2.2).

Let & (K,) be the usual Schwartz space over K,. We shall denote by & (%,) the
set of all superfunctions of the form F(®) = f(4,) with fe &% (K,).

An important notion of the formalism developed so far is the one of
supersymmetries. These are transformations of the superspace .#, and are defined

by
Ub,l_;,é = (Ub,E,g‘pu RRE Ub,E,gq)z)
where
Up,5,:(P) = (p; + 208w+ 2b8y;, y; — 4bp&, w,+4bo,E)
b, b are arbitrary constants and ¢ is a 1-form independent from {;, ;};i=1,... .-
One can define the action of U, ; . on a superfunction Fin a natural way through
(see also [14])
(Up,5,eF) () = F(Up 5 D),

where it is implicitly understood that F,(p, +2b&y; +2b&y,, ..., 0, +2b&y,
+2b¢y,)is defined to be equal to its formal Taylor expansion around (¢4, . . ., 9,)
for all ae0,.
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Definition 2.5. Let 7 be a positive integer. We will say that a superfunction
F: &, - A(R?%) is supersymmetric it if is left invariant by all supersymmetries of

gt’-

Theorem 2.5. Let ¢ be a positive integer and let F: ¥, — A (R*) be a superfunction
in LN(£,) 0 C/(&,). Then the following are true:

1) §(Up,p,eF) (@) dD = | F(®)dD.

2) If F is supersymmetric then
[F(®)dd = F(0).

Remark 2.6. One can easily check that superfunctions of the form defined in (2.3)
are always supersymmetric.

Let 4 be an 2/ x 2/ matrix. We define the action of 4 on superfunctions F
which we shall denote by 4F through

AE),= ¥, det(d) F,  acd,
bels

where fora = {i;, ..., i,}andb = {j,, ..., j,} AL denotes the ¢ x £ matrix defined
by (ADen=4; ;. k.h=1,2,...,¢. Tt is easy to check that for 4, B 2/ x2¢

matrices
A(B(F)) = (AB)(F).

We now introduce the Hilbert spaces mentioned in the previous section. Let
EeR and A4 be the 2¢ x 2¢ symmetric matrix defined by

- %)
AE“(é”E 1)

where I, is the ¢ x ¢ identity matrix and

¢
E 12
127
&y = T ¢
12 E

One can easily verify by diagonalizing & that if | E| < 1 + cos ™
definite. £+1

Let Q;, i = 1,2 denote the vector valued operators, acting on smooth complex
valued functions which are defined on R? by

0= {[Qz]1 Qi) i=1,2,
(0= 7

[Qi]k=M¢k—£,i> k=¢+1,...,27,

Apg is positive

k=1,...,7,
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where M ¢, _, ; stands for the operator multiplication by the variable ¢, _, ; and we
have used the convention that a vector ¢ € R can be written as ¢ = (@11, @12),
o (@15 ©4))-
Let & (R?%) denote the usual Schwartz space over R?. For every energy E with
|E} <1+ cos ne
£ +1
n=1,2,3,... on ¥ (R?) through the following equationS'

2¢ 2
argr= 3% N(Turean)n|

ki,..., kn=1 iy,..., in=1

we introduce a sequence of positive norms |- ||E,

2.4)

L2(R2¢, dzf(p)

Definition 2.7. Let nand ¢ be positive integers and let E be a real number such that

|E| <1+ cos Ui . We define the supersymmetric Hilbert space H, g to be the

£+1
completion of the subspace of #(%,) under the norm | - ||, g, where

(1 Fllnp)® =Y Z(l|(14”2(1‘))a|lm)2+IF(O)I2 FeS(Z,).

acls m=1
Let 7 be a positive integer and let I be a compact set of (—1 — cos %_{1—,
1 + cos 7 -I—{ 1) One can easily check that

CilflasflssCIfIR
for all fe#(R*)and n=0,1,2,... and that
CoillFllao 2 I Flpe S CrliFlino 2.5)

forall Fe ¥ (¥,)and n =0,1,2, ..., where C; and Cj are constants that depend
only on the set I.

In view of relations (2.5) we can identify H, ; with the set of functions
F: %,— A(R?) of the form

F(@)= ) RV,

acly

where now {F,},_,, are in general elements of the completion of & (IR*/) under
s

Let # denote the usual Fourier transform on IR*/. We will be making use of an
operator on L'(%#,) which we will denote by the same letter # and is defined by

(FF,=F (), Fel(Z).

Let A be an ¢ x ¢ matrix. We shall also make use of the operator b, which acts on
superfunctions and is defined by

(byF)(p) = €242 (F)(p), ¢peR¥.

Let B be a 2/ x2¢ matrix. For convenience we view [B(Q), i=0,1,
k=1,...,2¢ as operators acting on & (%,) defined by

(B Q) (F)y = (B@(F)a, i=0,1,k=12,...,2¢.

Through a straightforward computation one can easily verify that [B(Q))];
extends to a contraction from H, ., to H, satisfying the intertwining relations

[B(Q)]k bé"EHny = —ibg,;ﬁng'—[(B(gEﬁn) (@) (2.6)
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foralli=0,1, k=1,...,2¢/,n=1,2,... and # = 0 where we have used the
natural extension

E+in 12 0
12
Epsig= "1/2
i/2 E+i17
and where
—2ifp., —il
(gE‘i—in:( iIE+n 0 )
Remark 2.8. If |E| <1+ cos /7:_[ 1 it is not hard to verify that the norms we

introduced here are equivalent to the ones Klein, Lacroix and Speis used in [11].
The reasons why we have to use these, at least at first sight, complicated norms
should become clear towards the beginning of the next section.

‘We now proceed to explain how one can use the formalism we have developed
so far to study the averaged diagonal matrix elements of the Green’s kernel

! (E + in) for the Anderson Model on a one-dimensional strip. From now on and

until the end of the present article , unless otherwise stated, will denote the width
of the strip &,.

Using the supersymmetric replica trick we can reexpress EE{G2((0,/), (0, /),
E + in)} (see 1111 of [11]) as

E{G.((0,),(0,/), E+in)} = i§ 7f V7j[(B/1 () Te)™ (Bg, ()]
x[T(By(n) Tg)™ (B, n(N1(®)dP  (2.7)
forally >0,m=1,2,...and j=0,1,2, ..., where

l .
(Br.A(0) (@) = <4202 [] h(i®7),

(Te(F))(P) = <™ =D [ OO F(P)dD, FeL'(%,),
(T(F))(®) = [®®F(@)db, FeIl(Z)).

4
B, () stands for the operator multiplication by H h(A®?Z)e™"® and we have used

the notation @? = {®;, ®,>, p? = ¢, ¢;, i = 1 L.
The propertles of the operator B, (n) T are well understood for 2 £ 0 and we
summarize them in the following theorem.

Theorem 2.9. Let n be a positive integer and let the distribution of the single sided
potential u be such that its characteristic function together with all its derivatives up
to order n + 1 are continuous on (0, + c0) with some decay at infinity. Then the
Jollowing are true:

1) B,(n) Ty extends to a bounded operator on H, , for all E€R andn = 0 with the
operator valued function {E + ine C:qn 20}3 E + in—>B;(n) Ty € H, , being norm
continuous.
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2) The spectrum of B, (n) Ty is discrete, zero is the only possible accumulation point
and 1 is a simple eigenvalue while the rest of the spectrum lies inside a disk centered at
0 and of radius strictly less than one for all . £0,7 20 and EcR.

Proof. See [11]. [

In view of the previous theorem we can now let m go to + o and # approach zero
in (2.7) to obtain

Liflg HE+in) =il v g /(@) (T ) (DdP, j=1,....¢, (28)
where &, , is the unique solution of the equation
(B,(0) TE) é}.,E = fz,E . (2.9
The remaining two sections are devoted to the study of the vector valued
function
Rsi— ¢, peH,

for A close to zero and E /-regular.

III. The Asymptotic Expansion

In this section we show that under the hypothesis of Theorem 1.2 the function
ReA—¢; e H, ¢ has an asymptotic expansion to any order in the disorder
parameter 1. We will assume the following technical result, the proof of which we
postpone until the last section.

Lemma 3.1. Under the hypothesis of Theorem 1.2 for every n strictly positive
integer there exists a constant M independent of A such that

1€ ellne1.eS M1 ENnE 3.1
Sforall A +0.

Through an explicit computation and Proposition I1V.1.4 of [11] one could
easily verify that

T(F) = ($sbs, 7)(F), EeR, FeL'(%,),

3.2
T(F) = (iJ,F)(F) , FeL'(¥Z,),
and
(B,(O)(F) = (Ey{V,b,yP (F), F superfunction,

where o (0 _ I,)

T\, 0 )
L is £ x ¢ identity matrix,

- <I 2 U)
AN T )

U stands for —1 times the £ x £ diagonal random matrix whose elements are £
independent copies of a random variable whose probability distribution is u and
EE, denotes the expectation over the product space of these variables.

We are now ready to prove a proposition which provides the insight behind
Definition 2.7.
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nl

/+1+1,thenTEzsan

Proposition 3.2. Let £ be a positive integer. If | E| < cos
isometry on H, p for alln=0,1,2....

Proof. One can easily check that if B,, ..., B, are square 2¢ x 2¢ matrices and
B, ..., B}¥ are their corresponding adjoints, then

2¢ 2

sy y [(Tesea.) oo

aeglb¢ ky, ..., kn=1 iy,..., =1

X [(mll [4(Q im)]km> (4F )a} (3.3)

-y % 3y [(Tuewn,)ue)]

acls ky,..., kn=1 iy,..., =1 m=1

<[(T Bz 0 @) @32 )]

forall A square 27 x 2/ matrices and all F, G € & (%,). On the other hand, since
commutes with b,_and & we get from relations (3.2) and (2.6) that if Fe & (%),
then

(TP 15 = G4
2¢ 2 n—1 2

>y % (11U 0L, ) iR, .

ael¢ ki, ..., kn=1 iy,..., in=1 m=1 L2(R2¢,d2¢¢)

The result now follows from Eq.(3.3), Definition2.1 and the fact that
CF A6y =Ag. O

For the study of the asymptotic expansion of &, ; we will need the following
technical results.

Lemma 3.3. Let A 2 0 and let C, denote the operator B,(0) efined through Eq. 3.1
Jfor the case where u is the Cauchy distribution with parameter one (i.e. h(r) = e~ "),
Then

[(CATE)"(F)] (@) = i@ (EEHIAI) D) +4i(D, 2P~ P 1B
% f <P 2PIPL D) 41 (D, 2P1PEIO) ,4i{D, 2Pi- 1P 107D F(®')dd’

(3.5)

Sfor all k=1,2,... and Fe L' (¥,), where {P,},n is a sequence of £ x £ square
matrices defined by

<Pk ) _ <—2(£E+i/11() —I,) <—2(éaE+ilI,) —I;) (I,) (3.6)
P_,) I 0 I, 0 0 ’
k — 1 times

and I, stands for the ¢ x ¢ identity matrix.

Proof. The proof is an immediate consequence of I11.2.3 and II1.2.4 of [3] and
III.23 of [11]. O
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Corollary 3.4. Let E be /-regular and let qy be the least common multiple of
qis---5q,, Where q,, ..., q, are the integer phases that appear in Definition 1.1.
Then (Tg)*==Ion H, g foralln=0,1,....

Proof. Let J be a positive number. One can easily check (see also [9]) that the
matrices P, k =0, 1, ... which appear in the exponent of the right-hand side of
Eq. (3.5) can be explicitly computed and are given by

Py = ((FE,}.)Z_I()_l [(1_'114:,/1)’(+2 - [(FE,/I)k]_l]’ k=0,1,..., (3.7

nk

where Iy ; = — (65+iAl) — )/ (g +i4l)* — I,. However since E + cos e

k=1,...,¢ are the eigenvalues of &; we conclude that (I ()% = I. Thus by
taking the limit as A approaches zero from the right we obtain from relations (3.5)

that " ,
(Tp)*=" " (F) = Te(F), FeL(Z,).
Since Ty is an isometry on H, ;. n =0, 1, ... the result follows. O
Corollary 3.5. Let E be ¢-regular and let n be a positive integer.

D NC, T F) g S X[ F i

forall FeH, ;. k=0,1,...and 2 = 0, where C is a positive constant that depends
only on n.

2) Let H) ;= {FeH, ;' F(0)=0}. Then
I(CaTe) (F) e < Me™“**| F,,

forall FeH p, k=0,1,2,...and 0 £ A £ 1, where as before M and C are two
positive constants that depend on n.

Proof.

1) Itis enough of course to show the inequality for k£ = 1. In this case it is easy to
see that if n is a positive integer and ae ¢, we can conclude from Eq. (2.6) that

(I (C T (F)allFP =

2¢ 2 n—1 2
IR W () N (2 EXCANATC N N (ARG
Kiyonns kn=1 ig,..., in=1 m=1 L2(R?%,42% )
for all A = 0.

However if 0 £ 1 <1,
CrrinACerin = A +4G,

where G is 2/ x 2¢ square matrix whose norm is bounded independently of A. Thus
the proof of (1) follows from relations (3.3) and Definition 2.7.

nl

2) If |E| < cos ,
£+1
Proposition 4.2 of [9]) that

then by diagonalizing the matrix I ; we get (see also

e S| Iy, |l S e
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for all 2 = 0, where d, , d, are two positive constants that depend only on E. Thus
we conclude from Eq. (3.7) that there exists constants Cy, M C > 0 such that if

k, = C,, then
= | 2P, BH || < Me™ %2

2P PTI =M
and
Im2P,_,P 2= CI,.

Let F be an element of H? ;. Using Theorem 2.5 we can rewrite (3.5) as

[(ClTE)k(F)] (@) — ei(d),(é’E+ilIz)(D>+}i<d>,2Pk_1P,:1<D>
X “ei(i {(D,2P P 1d') +(®’", 2P P 1 @)) __ 1] eti<®' 2Pi-1Pic lg7) F(@') do’

forallk=1,2,... and Fe ¥ (¥%,).

Recalling the notation of Definition 2.7 and using the bounds mentioned above
we conclude from Hélders inequality and a straightforward computation that if
ki > C,

(HC T () 15)” < Me™ ¢

foralln=1,2,....
Thus we have shown the inequality for this case where k 4 is bigger than a fixed
positive number so the rest of the proof follows now from part (1). O

Let E be /-regular and let ¢, be the least common multiple of the integers
q1» - - -, g, as discussed in Corollary 3.4. We can rewrite Eq. (2.9) as

A péae=0, A4%0, (3.8)

_ B Tp)= 1
7 .
If for a moment we assume that £, ; has an asymptotic explanation on H, g,
n=1,2,... of the form
N }.k
él,E= Z mél(fk)-l_oN(lA[N)a N=09 19 29"~9 (39)
k .

=0

where 4, ¢

we can conclude that the coefficients {£{}, . should satisfy the equations

N k
M Aos@ 0= =3 O (Zr BOTF) @™, 610
k=2 A=0

where A, i is the unbounded operator with H, . as its domain and defined by

= lim (B/l (O) TE)qE -1 !

AO,E = —ip kZ'o (TE)koD(TE)q_ks

A=0 A

where M, denotes the operator multiplication by @7 + ... + @2 and y, is the
mean of the distribution u.

At this point it should be clear that even at the level of formal perturbation
theory the operator 4,  plays an important role in the proof of the existence of an
expansion of the form (3.9). Fortunately one can study the nature of its spectrum
the properties of which can be described through the following theorem.
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Theorem 3.6. Let n be a positive integer and let E be £-regular. Then

1) id,, g viewed as an unbounded operator on H, p with domain H, ., = H, y is
symmetric.

2) The Friedrichs extension of — A} . is a positive self-adjoint operator on H, g
whose spectrum has the form

a(—43,5) = {0} V[C, + 0],

where C is some strictly positive constant C. Moreover zero is a simple eigenvalue
with eigenvector

EO (D) = exp —— 3 (di I 0@, (3.11)

while the rest of the spectrum is supported by the invariant subspace HY ;.
Proof.
1) Let F, Ge H,,, y and consider the equation

<F7(TE+a)qE(G)>n,E+a = <( Ek+a)qE(D’ G>n,E+a’

where {, >, y+, denotes the inner product of the Hilbert space H, ¢, and o is
sufficiently a small real number. Since My, is a bounded operator from H, , , g to
H, p we get, by differentiating both sides of the equation above with respect to «
and setting « = 0, that

-1 O e e
<F, ,Uo AO,EG> nE ™ <5(x (TE+a) |a=O(F), G>n,E.

However, since T} is an isometry on H, ; one can easily check that

o ge—1

5 T oD = =i 3 (T Mo (1) | (F) = o5 (P)
for all FeH,, , y and the proof of 1) follows.
2) Let Fe HY,, . Then

CF, = A3 5(F)ns = | Ao.5(F) I = lim HI_LCT_)

nE

On the other hand Lemma 3.5 implies that the operator I — (C,T;)?* is invertible
on HYpforall 4,0 <A< 1and

”[I—(C/lTjs)'m]_l(F)“nE—C/1 I Flly k> FeHr?,Ea

where C is some constant independent of A. Combmmg the last two relations
together we get that

It remains to show that ¢ as defined through (3.11) is an eigenvector that
corresponds to the eigenvalue 0. However this is a matter of a simple straightfor-
ward computation and is left to the reader. [
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We finish this section by presenting our proof for Theorem 1.2. Let E be
Z-regular and let £, p be the unique solution of (2.9) such that &; ;(0)=1and letn
be a fixed but arbitrary positive integer. We will show that the function

Roi—¢, e,

has an asymptotic expansion tonorderat A =0forallk=0,1,2,...,and that
its coefficients {¢{},_ . satisfy the equations

.....

EP(0) = 1, 5}3”(0):0, i=1,2,...,n
AO E’g’( )_

(n) s (n+1 aE (n+1-k)
(n + 1)A0,E£E = - kgz k alk (Bl(o) T'E) éE ] ng 1

(3.12)

We will use induction in n.
n=0.
Let Fe H, 14 5 and let Ge H, ;. Using Taylor’s theorem we get

(G, (B, (0) T)= (F)>p g = <G, FY x + A<G, Ao, g (F)), k

e <G (a B0 TE)"E>A=C(F)>

for some ¢ with |c| < |4]. Replacing F by &, ¢ we get

2
<G, Ao,E(fA,E - 51‘(30))>k,E = —Ai? <G, [667 (BA (O) 7}2)’"1 (ka)>
A=c k E

2
for some ¢’ with |¢'| < |A]. Since % (B, (0) Tg)*= is a bounded operator from

H, 4 g to H g, we get from Lemma 3.1 that
1<G, Ao, 5 (€15 — E Vil S MIA Gl g 1€ Ik, &

for all 0 £ 1 £1 and some M > 0 independent at A. Since G was arbitrary we
conclude from Theorem 3.6 that

10— EP M e < MM E el

forall0 £ 4 g and for some M > 0 independent of A. Thus &; z— ¢ in Hy ¢
forallk =0, 1, 2, ... and the proof in the case n = 0 is complete

n-n+1.

Let us assume that the result is true for » and let Ge H, ;. Using Taylor’s
theorem as before we get

0= G, io,sEans + (6.5, 5 | FpBOT | )
A=0 k,E

in+3 an+3 -
+<G £ 3)! (a/'{n+3 (B,(0) Ig) >l=0(€l,E)>k,E (3.13)
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for some |c| < | A]. Substituting
$iE= Z é(" +0(/1")

into the equation above and rearranging the summations we get that for small 4

Gitostred+ % 5| £ O(FE0m)  @n]+0,.0)

At omt2 nt2 . nt2-j
<G n+2)! = PIRGY )<a,11(BA(O)TE) > (& ))>k,E,

where O, ;(4) contains all the other terms which are of order higher than A"*2,
Using Eq. (3.12) we can now rewrite the equations above as

(6.4 Dto | e (600 £ Fa0) |+ O P o)

n+2 j
= <G, pAGE (;7 (B;(0) T)) (éé"”"")> (3.14)

k,E

for some ¢ such that |c| < |4].
Let £F*Y be the unique solution of

~ n+2 j )
(n+2)40, " V== 3% (") (—aj—, (B,(0) TE)'IE> (Egr29y.
j=2 6/1 1=0

We can now rewrite Eq. (3.14) as

n i 1
<G, AO,E|:/V‘+1<£AE Z y) 6(1)) m I(£n+1):]>k,E

1
= - <G7 i"+2 On,E(i)> .
k,E

The key estimate of Lemma 3.1 however allows us to estimate O, g (4). Indeed
one can easily check in (3.13) that even though O, y(A) may apriori depend on G
has to satisfy the bound ,

10w i, S MIAI" 1&gl + 141" 28,
forall 1,0 <|2| £1,some M > 0 independent of A and where ¢, converge to zero

as A - 0.
Using this crucial bound above we get from Theorem 3.6 that

i 1 E@n+
ln+1 <€Z E Z é()> (n+ 1)' 6](:7, v e E

forall 4,0 <|A| £1, and where M and ¢, are as before.

SMIA | Eaeli e+ &
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Multiplying by | 1|"** both sides of the inequality above and using the triangle
inequality we obtain that

(A—=M|A""?) ‘

° A‘i i 1 E(n+1)
An+1 (él,E - i=20 l' é)> (n+ 1)' éE *

An+1 2+ 1)
(n+ 1! °F

forall A, 0 < |A| £1, and where M, ¢, are as before. Thus

no ) 1 -
ln+1 <5A E— Z m)" ! CJ(ErH—l)

l'

k. E

f(')

+ &,
k,E

inH gforallk=0,1,...as A»0and Ef*Y =¢2*t. O

IV. Interpolation Bounds

In this last section we derive the key technical estimate described in Lemma 3.1.
Since for 4 away from zero the result follows through standard perturbation
techniques developed in [11] we restrict ourselves to the case where A is very small.
Without loss of generality we can also assume, via a standard approximation
argument, that the first and second moments of u are finite. Qur proof is mainly
based on the Calderon-Lions abstract interpolation theory as described by Theo-
rem 1X.20 of [12].

We begin by introducing a family of positive norms || ||, ., n=1,2, ...,

b,ceR, |E| <1+ cos — e on & (R?%) through the following equations:

£+1

S §

[ kn=1 ig,..., =1

2

+52 )’ [n (432 (Qim)]ksp]

LZ(]RZK’dZI(p),
where we have used the covention ¢} = (p?) = (¢, -¢))% i=1,2,..., 7.
Definition 4.1. Let #, £ be positive integers, let ¢, b be positive real numbers and
e
let |E| <1+ cos——-.

£+1°
H? % to be the completion of & (%) under the norm | |55, where

We define the weighted supersymmetric Hilbert space

(NFIE)? = 2 S (4} £ Fa lms,0)* + 1 F(0)|?, Fe S (Zp.

aclfm=1

Let n be positive integer and let ¢, b be positive real numbers with |b| < 1.
14

As in Sect. II it is easy to see that if 7 is a compact set of <—1 —~COS —— 11

1+cos-n—/—
£+ 1

CiHIFIZeSINFIRE<CIFIRG
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for all Fe # (&,) and for some C;, C; positive constants that depend only on the
set 1.

Let ¢ be a real positive number we will make use of the operator M, which is
defined by

M, (F). (@1 - » @) = n A+ 08 E(@1s ... ¢n), FECH(ZL)).

Lemma 4.2. Let h and o be as in the hypothesis of Theorem 1.2. Let j be a positive

£
/:_1 andlet FeH; g. If ky, ..., k;and iy, ..., i;are two
sequences with valuesin {1,2, ..., 2¢} and {1, 2} respectively, then forall A,|A| < 1,
veRand o' < a,

integer, | E| <1 + cos

2 j-1
e’ < I1 [Aélz Qim]km M/lz(Aiy+az’/4) A}E/Z B; (O)> (F)

2 i1
=e”’ (MAZ(—iy+az’/4) Alls/z) Ey {bw < Ul [A}lzlz 0.l Aé/2> (F)} 4.1)
+ AM 2 iy raay AY* By by (U O, (F) + ... + U, O,(F)}) + A2 0o (F),
where Oy (F), ..., O,(F) are super functions that satisfy the inequalities
QP IsE s M F|5E

foralli=1,...,¢ and c, b positive real numbers some M independent of ¢, b and
F and where' U, ..., U, are the diagonal matrix elements of U.

Proof. The proof follows immediately from an explicit straightforward compu-
tation and is left to the reader. [

Lemma 4.3. Let E, h and o be as in the previous lemma and let n be a positive
integer. let us assume (for the moment) that the mean of the distribution u of the
single sited potential is zero. Then

e | (M2 =iy +aiay BiO) (F) e S | Fllog + MA* | Fllid (42)
forall 2, || < 1, yeR, some M > 0 independent of A and all Fe H,  and
1(BLO) (F) I5E < (1 +MA) | F3E (4.3)

forall 4,|A| < 1, b, c positive real numbers, some M > 0 independent of c, b and all
FeH, ;.

Proof. Let ¢, b be two positive real numbers. Let j be an integer from {1,2,...,n}
and let ky,...,k;—y and i;,..., j;-; be two sequences with values in
{1,2,...,2¢) and {1, 2} respectively. Using Eq. (4.1) with o' = y = 0 we get that
if FeH; g, then
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e 1 (40208 [ 0 147 0,1, 417 B, «»] %
=e " Ey {15[1 (1 +b% 0¥ by [ I [4%? 0:,] &, Aé’z] (F)
+ f10+8 60 Ut 00,0+ .+ 0,0,

v ﬁl (1 + 5% %) 04 (F)

for all 4, | 4] < 1. One can easily check now that by taking L2(IR?¢,d?¢¢) norm
both sides of the equation above and using Jensen inequality (4.3) follows easily
from Definition 4.1.

Using once again Eq. (4.1) with o = o« and yeR we get

i~ 1
o <JI_I (452 Qi T, Mz iy+aja) A5 BA(O)> F)

m=1

=e B {bw <1l=£Il (1 + 22 @) h(2 (Pi2)>
i—1
X |:M12(—iy+a/4) <]l—:_[ [AE Q:.1] k,,.) Al/z} (F)}

+ME,7{19 £ 0, [k’(/l 2)4(”” a2 4)0,,4]

X M2 iy+ajay (O; (F))} + A% 0y (F),

where U is s equal to —1 times the £ x £ diagonal random matrix whose diagonal
elements U, ..., U, are independent copies of the two sited gamma distribution
with parameters 1 a/4. The proof of (4.2) now follows as, in the previous case,
from Jensen inequality and Definition 4.1. O

Let n be a positive integer and let |E| < 1 + cos ;:_/ i

quence of interpolating spaces L ¢ (¢£),0<t <1, k=0,1,2,... inductively by
deﬁning Lk E({) to be the ' interpolation space between LE 7! (¢r) and H, ., g,
whereL; (0) wepand Ly p(1) = H,,, g.

Lemma 4.4. Let n, E be as above, then L% ;(t) can be continuously imbedded in
HYZU-0=091 for all k = 0,1,2, ... and

IFIEN Y < M Flip
SJorallt,0 <t <1, FeLk () and some M > 0 independent of t and k.

We introduce a se-

Proof. Letjbeaninteger from {1, ..., n},andletk,, ... randiy, ..., i;_ be
two finite sequences with values in {1,2,...,2/} and {O 11} respectively. Clearly

<,,,” [Aé”Q,-mik,,,)

l’Eé | F
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and
1/2,1
SM|Fllptax

1,E

(0 meeun.) @

for all Fe ¥ (%,) and some M > ( independent of j. Interpolating between the
inequalities above and taking into account that the /'* interpolation space between
H}'%' and H{'} is H{%" we obtain that

IFIVE S M Fli e
for all Fe #(%,), t, 0 £ t £ 1 and some M > 0 independent of z.

The result now follows by iterating the Erocedure above and from the fact that
the #* interpolation space of H{/3!1~(1 =9 and HI/Z 1 js YA~

For our next lemma we will need a rather smaller weighted supersymmetric
Hilbert space H, . ,, which we now introduce as the completion of & (Z,) under
the norm | - |, g, Where

ntm
(1 Flnem)?= Y, Y (IEF*F) 5 121%™+ FO)?
acle j=1
n, m are positive integers, | E| <1 + cos /:_/ 1 and %, denotes the characteristic

function of (0, + ).

We shall also make use of a sequence of the interpolating spaces Lk,  ,.(¢),
0<t=<1,k=0,1,2,... which are inductively defined by setting L%, ; ,.(?) to be
the ™ interpolation space between LY. (f) and H,pg,, Wwhere
L}l,E,m(O) = Hn,E,O and L}n,E,m(i) = Hn,E,Bm'

Lemma 4.5. Let o and h be as in the hypothesis of Theorem 1.2. For every m,n
positive integers there exists k, positive integer such that

1 (T B (0))*(F) [l
+ 1| € (Te Mz 2 4414y Ba(0) (T B (0)) ) (F) [mod S M| Fl,

nl
£+1°
x=0,1, yeR} and for some M positive constant independent of A.

Jfor all A, |A| < 1. Fe H, ;. energies E such that |E| <1 + cos

ze{x+1iy,

nl
£+1
operator valued function G, which is defined on the strip S = {x + iy, 0 = x <1,
yeR} through the formula
G,(2) = e” (T B, (0) M2 8mz+m/2)2 >

where M? is the multiplication operator defined by

Proof. Let|E| <1+ cos and let m, n be two positive integers. Consider the

M) (91, -5 00) = l:[1 A+ 221" F(py, ..., 00, FeCH(L)).

Clearly G,(z) is a bounded operator on H, i g, for all ze S and G, is norm
continuous on § while being analytic in the interior of S. Moreover through a
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straightforward computation similar to the one used in part (iii) of Proposition
IV.1.4 of [11] one can easily show that

G NE) g0 = 1 (G F) s < MIFll, 5,
1Go + D) (F) lng.omS MIFll, 5,
and
1G5 Pl .sm= €T | (T5 B2 (02 (F) g 6m < M| Fllyg om

forall yeR, 4, |A| <1, Fe H, g, and some M > 0 independent of y and 4.
Interpolating between the first and second inequalities we get that

I(TeB, O B L2, (% | Flis-
Interpolating between the last two inequalities we get that
I(TeB, O () 12, 5 S M FULL . 5D

forall 4,|A| <1, Fe L} ¢ .(i%&
procedure k times we obtain

T B, O P Lk

forallA,|A| <1, FeH, pand some M > 0 independent of A. Using essentially the
same arguments with the ones presented in the proof of Lemma 4.4, one can show
that 271~ =912 jg canonically imbedded in L% g ,,(¢). Thus we conclude that if
we set k0 [f6mla2] 4 1 then

(T B, (0) X (F) [i7-d £ M*||F|l, g

forall 4, || <1, FeH,  and some M > 0 independent of A. Trivially the same
series of arguments could be applied for e** Ty M > iz+a/4)B1(0) Tz B, (0) and the
result follows. [

I Flln,e

Lemma 4.6. Let n, E, ky, « and u be as in the previous lemmas. Consider the
operator valued functzon I, which is defined on the strip S, = {x +iy:0 £ x < 1/4?,
yeIR} through the formula

I}.(Z) = EZZ(TEB).(O) Ml2(—z+a:/4))2 (TEBA(O))2k°+ 1 ,

where kg is the integer specified in Lemma4.5 for the case m= 1.
The following statements are true for all 1,0 <|1| < 1:

() I;(2) is a bounded operator on H, . , g for all ze S, .
(ii) I, is analytic in the interior of S; and norm continuous on S .
(i) Ler Fe H, g then
I3y + 1A2)NE) |ps2.e S M Fllyg,

and
I (LEN(F) “n+2,E = e I Fllns2,e

for all yeR and M, ¢ positive constants independent of y and 4.

Proof. (i) and (ii) are straightforward. Through an easy computation similar to
the one used in part (iii) of Proposition 1V.1.4 of [11] one can easily show that
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e(iy+ Va? “ (Mll[a/4—(iy+ 1/42)] BA(O) TEMlz[a/4—(iy+ 1/42)] BA(O))(F) ”n+2,E
SM|F|,e

forall Fe H, g, 4,0 <|A| <1, yeR and for some M > 0 independent of 4 and y.
Thus the first inequality of part (iii) follows from the fact that 7, and B, (0) are
bounded operators.

Let FeH, ; from Lemma 4.3 we conclude that since T is an isometry in
Hn +2,E>»

| ONE 2,0 S 1 Ba0) Miaiy gy (Te Ba(0)2 O (F) a2,
+ M| F,i g
for all 4, 0 <|A] <1 and some M > 0 independent of y and 1. Thus
HGEDE s 2,2 S 1 (TeBrO) T (F) lns2,p+ MA | Fllpsr,z
+ M2 | (T B, (0)** (T B, (0) (F) 2+, e

forall 4,0 < {A| < 1 and some M > 0independent of y and 1. The rest of the proof
now follows from inequality (4.3) and the fact that T is an isometry. [

We finish this section by combing Lemma 4.4 and Lemma 4.6 into a proof of

Lemma 3.1. Let # be a position integer and let | E| <1 4+ cos % Theorem
IX.20 of [12] and Lemma 4.6 imply that if the mean of the distribution u is zero
then 2

1(Te B2 (O)* > (F)ll 1, paarsay < €% | Fllu, (44

forall Fe L, z(a/%/4), Awith 0 < || < 1 and for some positive constant ¢, . On the
other hand, since T} is an isometry on H, , , ; we conclude from Lemma 4.3 that

(T B2 (@) > (F) llp1 2,5 S €¥ || Fllys 2,5 4.5)

for all FeH,,,, 4, with 0 <[i|<1 and for some positive constant c,.
Interpolation between relations (4.4) and (4.5) yields

I(TeBo0) > (F) 12, prziary S € I Fll £} pwizsay (4.6)

for all Fe L} (x4*/4), A with 0 < || <1 and where ¢ = max (¢, ¢,).
Iterating this interpolation in the same spirit of the proof of Lemma 4.5 we

obtain k(2ko+3) ka2
[ (T B, (0)) %™ (F) | LE p(ad?/4) Ze [ F”n,E

forall FeH, pand k=0,1,2,....
If k > log 16/aA* however, we conclude from Lemma 4.4 that

1 (T B2 (O * D (F)[|,/5" < Me*™ | Fli,, 4.7)

forall FeH, g, A, with 0 <|A| < 1. Thus we have shown that if x is centered and
under the hypothesis of Theorem 1.2, there exists an M > 0 such that for every 4
with 0 < || <1 there exists an integer P, such that

(T B, O (P Ia/g" < M| Fll, g (4.8)
for all FeH, .
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Now let once againk,, ..., k,and i,, ..., i, be two finite sequences with values
in {1,2,...,2¢} and {0,1} respectively. We will show that there exists an M
independent of these two sequences such that for all 4, 0 < || <1,

I;[1 (42 Qs )k, [(Te B (0)" 1 (F)] (4.9)

LES [ Fllne

forall Fe H, ;, and where P, is the same exponent that appears in (4.8). In view of
inequality (4.8) we need to study

(s, | TT 14Y Q) (T B,0)" P

in the case k; < /. Indeed in this case the super function above is equal to

™ [0k bt ( T1 AFEsQ0 ) BO) T B 0D | F).

An elementary computation however shows that the super function above is equal
to

2¢ n
([~2% @onod] I (4220, b, (TB )™ 1) )

n

—[Geber Qi ( T1 45265000, ) B (T, 00 | ).

m=2

Combining the latter with inequality (4.3) and (4.8) we can conclude that since Ty
is anisometry (4.9) holds. Thus we have shown that there exists an M > 0 such that
for all A, 0 < |A] <1 there exists P, positive integer such that

(T B, O ' (F) lns1,6 S M Fllp - (4.10)
Since T and B, (0) are bounded operators on H,, , , and H, we can rewrite (4.10)

as
1(B(0) Te)™ " 2(F) ln+ 1,6 S M| F i (4.11)

for all Fe H, ;, some M independent of 4 and where P, is the same exponent that
appears in (4.10).

Notice that up to now the assumption that u is centered was crucial. However if
lio is the mean of u one can easily see that

1B Te)™ " 2 (F) ln+ 1,54 200 S M Flln, 5+ 200

forall Fe H, g ;,,, 4~ with | 1| sufficiently small and some M > 0 independent of /.
Thus we conclude from (2.5) that (4.11) holds in general and the proof of
Lemma 3.1 follows immediately from the definition of £, ;. [
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