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Abstract: In this paper we concern ourselves with the small h asymptotics of  the 
inner products of  the eigenfunctions of  a Schr6dinger-type operator with a coherent 
state. More precisely, let 0~ and E)  denote the eigenfunctions and eigenvalues of  
a Schr6dinger-type operator H~ with discrete spectrum. Let 0(x,~) be a coherent 
state centered at the point (x, ~) in phase space. We estimate as h --+ 0 the averages 
of  the squares o f  the inner products (o(a,~,OJ~) over an energy interval of  size h 

around a fixed energy, E. This follows from asymptotic expansions o f  the form 

for certain test functions (p and Schwartz amplitudes a of  the coherent state. We 
compute the leading coefficient in the expansion, which depends on whether the 
classical trajectory through (x, 4) is periodic or not. In the periodic case the iterates 
o f  the trajectory contribute to the leading coefficient. We also discuss the case o f  
the Laplacian on a compact Riernannian manifold. 
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1. Introduction 

Let H = -h2A + V(x) be a Schr6dinger operator with V smooth, on IR" (in which 
case we assume V tends to infinity at infinity and therefore H has discrete spec- 
trum) or on a compact Riemannian manifold, M. The trace formula, [14], describes 
the small h asymptotics of  the average, over a spectral interval of  size h, of  the 
matrix elements of  a semi-classical observable, b(x, hD~), between eigenvectors of  
H: Let ~o be a Schwartz function whose Fourier transform is compactly supported 
and let E)  and Oj~ the eigenvalues and eigenvectors of  H.  Then, under certain 

conditions on the Hamilton flow of  the Hamiltonian H ( x ,  ~ ) =  �89 + V(x) on 

Se = {(4, x); �89 V(x)= E},  we have an asymptotic expansion of  the form 

fr~ b(~, x) d~ L +oo ) 
(b(0) (2~r)_~+ 1 ]~--(n-- 1) _1_ ~ Ck(~o)~k 

k=-n+2 

ei(Sy/h+a> ,) L7 oc "~ 
+ 2 (}(Ty) f b(x(t),4(t))dt+ ~d~(qb)h  J ]  . (1) 

V/] det( 1 - P,;)I 0 j=l j 

Here: 

�9 dg  L is the Liouville measure on SE, 
�9 ? runs over the periodic trajectories of  �89 + V(x) on ZE with periods T~ in 

the support of  ~b (the Fourier transform of  cp), 
�9 T~* is the primitive period of  7, 

�9 st =s  
�9 ~ is the Maslov index of  3~, 
�9 P,e is the Poincar6 mapping of  7, 
�9 c~( �9 ) are distributions with support in {0}, 
�9 d}( �9 ) are distributions with supports in {TT}. 

Tauberian theorems allow to pass to the limit where ~o tends to the characteristic 
function of  [E - ch, E + ch]. This gives, assuming that the set of  periodic points 
on rE  has measure zero, that 

(~?, b(x, hDx)O~) - 2c f b(x, 4)d#Lh -(n-l) + o(h-(n-U). (2) 
IEj-EI_-< ca (2~r) n SE 

From this one gets the following result on ergodicity of  eigenfunctions: If  the flow 
of  Jg  on 27E is ergodic, then, except for a subsequence of  density 0, 

lim (Of~,b(x, hDx)O~) = fzEb(x'~)dIJZ 
e?-< a-+o fxE d~L 

(3) 

(For a precise statement see [11].) Another way of  writing (3) in IR n is by using 
the so-called anti-Wick or Toeplitz quantization. Let (O(x,r (x, ~.) E T*IR", be the 
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family of  coherent states: 

231 

3n .~x  i ~ y  (y--x) 2 
- - n / 4  - - - -  --~ ~P(x,e)(Y) = 2 (2rch) 4 e 2he ~-e 2~ (4) 

The anti-Wick quantization of b(x, ~), baW(x, hDx), is the operator defined by the 
formula 

bAW(x, hDx)  = f b ( x ,  ~)(~,(~,~), �9 ) ~'(x,e) dx  d d .  ( 5 )  

It is easy to check that, under very general assumptions on b and V, 

(6) 

So (3) can be written as 

lim fb(x, ~)[(@(x,r @~)l 2 dxd~ = frE b(x, ~)dt~ L (7) 
e ) - < ~ o  fz~ d~ L 

In other words, ergodicity of the classical flow on XE implies that the measures 
](O(x,r ~]~)12 dxd~ converge weakly to the normalized Liouville measure of  Ne. 

Numerical computations, for the so-called billiard problem on the stadium [12], 
and for the hydrogen atom in a strong magnetic field, [6], show however that some 
concentration of eigenfunctions near unstable periodic orbits may occur. This scar 
phenomenon seems to disappear in the classical limit, contrary to the case of  modes 
and quasi-modes associated to stable periodic orbits. 

Our purpose in this paper is to show that, on the average, the pointwise limit 
of 

depends strongly on whether or not (x, 4) belongs to a periodic trajectory, and to 
analyze its behavior in each case. 

Before we state the results precisely, we would like to present the main ideas. 
The contribution of the periodic trajectories in the trace formula disappears in for- 
mula (2), since it appears in (1) at a lower order in h. On the other hand, the 
coefficient of  the contribution of y depends strongly on the support of b(x, 4), so it 
is natural to think that if one takes symbols whose supports concentrate near a part 
of a periodic trajectory as h goes to zero, the periodic orbit can make a contribution 
to the leading order term. Using such symbols amounts, in effect, to observing the 
wave functions at a smaller scale in phase space. Although this type of symbols 
does not belong to classical pseudo-differential classes, the anti-Wick quantization 
allows to consider such singular symbols. The simplest example is a symbol of the 
form 

b(xo,eo)(X, {)  = a ( x  - x0, { - { 0 ) ,  ( 8 )  

a Dirac mass at (x0, 40). Then (5) becomes 

b~e0)(x, hDx) = (4(x0, ~0), " ) ~(x0, r (9) 
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Such an operator is related to the theory of  Hermite Fourier integral operators. 
Formally, it can be viewed as a pseudo-differential operator with Weyl symbol, 

(x - x  0 )2 +( { _ go )2 

B(~0,~0)(x, ~) = (4rch) -~ e t~ , (10) 

which obviously is not in any standard symbol class. I f  (3) were still true for b Ar/ 
given by (9), we would get that for almost all eigenfunctions, the limit as Ej ~ E 
and h + 0 of  [(O(x,~), O7~)l 2 would be the result o f  applying the normalized Liouville 
measure to B(xo,{o), which is 

| 

_ (4~zh)-~ 
fB(x~162176 IVYe(xo,~o)l + 0 ( 1 ) .  (11) 

Our main result shows that, on average, there are extra contributions to l(O(x,~.), 

It is useful to express our main result for a more general class of  coherent states 
(see the next section for details). 

Prel iminary Definition. Let a E S(R~), and (x, ~) E R 2~ or T* M. A 9eneralized 
coherent state centered at (x, ~) and symbol a is defined locally around x as: 

O(~,~)(y) = p(y  -- x) (2 rch ) -~  2 -n/4 e -ixr eiCY/i~d y -- x (12) 

Here p is a C~ ~ cutoff function equal to 1 near  O, and in the manifold case the 
formula above is in a given coordinate system. 

Remarks. 

- The formal definition agrees with this one to leading order in h, but it allows 
for higher order terms which are needed to make the definition coordinate- 
independent. The Schwartz fimction a is invariantly a symplectic spinor, which 
is the symbol of  the generalized coherent state, see Sect. 2. 

- Proposition 2.4 below shows that the cutoff p is semiclassically inessential: 
modulo O(h ~)  the state above is independent o f  it. 

- In the case where a(t/) = (47r)  - n / 4  e -(~2/2), this is the usual coherent states defi- 
nition (up to the inessential cut-off and normalization). 

- The normalization in (12) is such that the L 2 norm of  Oa is O(h-"/2). It is (x,~) 
chosen so that the Wigner function of  the coherent state (see below) converges, 
as h ~ 0, to a Dirac mass at (x, ~). 

L Statement of  the Main Results. Let H~ = ~ / = 0  hIPl(x, Dx), where Pl is a dif- 
ferential operator of  order l on IR n (or M )  of  principal symbol p0, sub-principal 
symbol py1 (defined on manifolds if  P/ is regarded as acting on half-densities) and 

L L 
smooth coefficients. Let • ( x ,  ~) = ~ l = 0  P~ x, ~) and ~s~b(x, ~) = Y~l=o P~l(  x, ~-) 
be the principal and sub-principal symbols of  H~. We assume that PL is elliptic, 
Y{ is positive, and in case M = IR n, that ~,~ tends to infinity at infinity. Let E~ 

and q/~ denote the eigenvalues and eigenvectors of  H~. Throughout we will use the 
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following normalization of the Fourier transform: 

f (~ )  = (2~r)- ~ feir dx.  

Theorem 1.1. Let (x,~) be a po&t in T*(IR ~) (or T*(M)) not in classical 
equilibrium, and let E = g/f (x, 4). Assume that (x, ~) is not periodic with respect 
to the Hamilton flow of  Jr. Let ~o E C~(]R) with compactly supported Fourier 
transform, and let O~(x,r be defined by (12). Then, as h --+ O, 

I(~t(x,~),0?)l 2 ~ ck(a)h-n+�89 +k , (13) 
j k=O 

with 
2 - n / 2  �9 2 . ;  2 ' " 

co(a) = ~ -  (2~) -3n/2 ~(O)fe ,t x~/ e..~ a(tl ) a(tl - t~)dtldt. 

Moreover, Vc > O, 

(14) 

i(#~(x,r ~ =-c 2_n/e(2~)_3n/2h_n+ �89 
IEj(h)--EI < ch % 

x f e  -"2~/2 e "~ a(tl) a(q I t~)dtldt + o(h -n+�89 ). 

(is) 

We will next state the result in the periodic case, in coordinates. If (x, 4) belongs 
to a periodic trajectory 7 of action S? and primitive period T,/ > 0, let S(t) be the 
matrix solution of 

S(t) = JHess(oC~)(x(t),d(t)) �9 S(t) ,  S(O) = Identity , (16) 

(o 
where J is the matrix Id ,(x(t), ~(t)) is the trajectory of the Hamilton 

flow generated by 3C starting at (x, ~) and Hess(X) is the Hessian of H (see 
Sect. 3). Invariantly, the mapping defined by S(t) is the differential of the Hamilton 
flow of Yf, and S(t) determines, by continuity in t, an element of Mp(R n) (starting 
with the identity element at t = 0). Therefore one can associate to it a unitary 
operator, M(S(t)),  on L2(IR n) through the metaplectic representation. A key role 
will be played by the metaplectic quantization of S(TT), 

u := M(S(r,/)). 

We will denote 
r~ 

Sub~ := f Yfsub(x(t), ~(t))dt.  
0 

Theorem 1.2. With the above notations, i f  (x, ~) belongs to the periodic trajec- 
tory ?, 

I(G,e),~'j )1 ~ Edk(a)~ -"+�89 (17) 
�9 k 
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with 

/ o \  
.~ n/2 eil(e~+S~b,t)__ 

do = ~ (27Z) -3n/2 2 (~(IT~) fe- i t2 ie /Zei t" ia~j(Ula)(q-  t4)dqdt 
VZTr IcT/ 

(18) 

(the term 1 = 0 is precisely the previous coefficient, co). Moreover i f  7 has an 
infinitesimal Poincard section invariant by the linearized flow, and if  the Poincard 
mapping of 7 is diagonalizable over 112 and it has at least one hyperbolic summand, 
then as h ---+ 0 along the Bohr-Sommerfeld values, 

h - S~ m ~ oo along integer values, 
2~m ' 

one has: 

l(~(x,~_),~?)l 2 = ]~-n+�89 C 2_n/2(2rC)_3n/2 
IEj(~)-E] <= ch 

• f e  -itzi4/2 e it~# a(rl) aQ1 - t~.)d~ldt 

_]_ ~ -n+ l ! 2-n/2(2g)-3n/2 ~ sin(ciTy)eilSub~, 
t ,O (ITr) 

x f e  -i?~4/2 e it~ a ( ~  (Ula)(rl - t~)drldt + o(h -~+�89 ),  

where the series above converges absolutely. 

Remark. The result is still valid for any sequence of values of h of the form 

h -  S~ 0 < ~ < 1 ,  
2~z(m + ~ ) '  

the formula above being the same after adding c~ to Suby. Although we won't prove 
it here, in fact we believe that the case of h --4 0 continuously follows from simple 
modifications of our argument. 

We will now give an interpretation of the coefficient Co. Let 

D~ := {j;Ej C [ E -  eh, E + c/Z]}. 

Assuming E is a regular value of 2C and that almost all points on the energy shell 
J F - I ( E )  := SE are not periodic, the differentiated Weyl law of [14] says that the 
cardinality of this set is 

SQ~ = h-(n-1) fzE d#L - -  + o ( h - ( n - 1 ) ) .  
(27r)" 

Proposition 1.3. Assume that almost all points on the energy shell ZE are not 
periodic. Let Wiax,~) be the Weft  symbol of  the operator u H (u, ~(a ))~(~,r (on 
a manifold this is in a given coordinate system), that is the Wigner function of 
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tp(~,r Then, 

1 

f W~ x od#Z = h - :  (47r)_~/2fe_~t2~4/2 e~t,7X a(~)a(q - t~) dtldt + 0(]~ -1/4) 
'- 2~ XE 

(19) 

therefore the first term on the right-hand side o f  (13) is 

(f~o) h (2~zh) " f  W(ax;4)d# L + O(h-n+3/4). 
ZE 

(20) 

In particular: 

�9 I f  (x, ~) is not periodic, 

Wi~'r +o(h- �89  (21) [(O(x,e), Of~)l 2 = ~s~ • f ~ r 
jCOh f d# L 

�9 I f (x ,  ~) C 7 and 7 satisfies the assumptions o f  Theorem 1.2, 3v C ]R generically 
non-zero such that 

,(~(xg),@),2 = ~f2,~ x ( f W(ag-)d#L ) 
Je~ f cl~ L + vh -1 +o(h- �89  (22) 

$7 for h o f  the form h = ~m' as before. 

The next result is an immediate consequence of the preceding and shows a lit- 
tle more precisely the role of periodic trajectories on the pointwise behavior of 
semiclassical measures. 

Corollary 1.4. �9 Assume (x, ~) is not periodic. Then g~ > 0 there exists a subse- 
quence {Ejk } C f2t, of  positive density such that, for h small enough, 

z < ~-�89 ( fW~'~-)dgL + e )  . (23) 

= \  -�89 

�9 Assume (x, ~) ~ ~ with ~/ an unstable trajectory, and suppose moreover that 

2-n/2 

7"C 
_ _  (27z)_3n/2 ~ sin( clT~ ) eilSub ~ f e_it2a@2 eit,i a ~ (  Ul a )(r 1 _ t~)dtldt 

i+o (ITs) 
= : b > O  

(this is true in some of  the Gaussian examples o f  Sect. 6). Then Ve > 0 there 
exists a subsequence {Ejk } C (2~ o f  positive density such that, for  h small enough 
and o f  Bohr-Sommerfeld type, 

a L ) 
i(O(x,e>,Of~)l 2 > ~_l ( f mix,c)+ b = - ~  + - -  e 

\ h-~z f d~L 2cf  d~ L " 
(24) 

We will now give a coordinate-free interpretation of the integral appearing in 
the I th term in (18), Vl E ~. 
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Consider the symplectic vector space V = T(~,~)(T*M); let Mp(V)  denote the 
metaplectic group of V, double cover of the group of linear symplectic transforma- 
tions of V. Choosing a coordinate system near x, we get naturally-induced coordi- 
nates of T*M and therefore linear coordinates (6x, tl) on V. Given a coherent state 
0(~,~) we claim that, intrinsically, the function a(q) should be thought of as a smooth 
vector in the metaplectic representation of Mp(V)  (see Sect. 2). Let p be the Weyl 
representation of the Heisenberg group of V. Explicitly, acting on functions of r/, dp 
is the representation 

{ dP(6Xi)(a)(tl) = rlja(rl) 
dp(tlj)(a)(tl) =- - i ~ a ( t l )  . (25) 

Then the integral 

f e it2x~/2eit~X(Ula)(tl -- t~)dt (26) 

is the projection of Ula onto the space of tempered distributions f satisfying 

d p ( ~ ) ( f )  = O, 

where 
= (2, 4) (27) 

is the vector tangent to the trajectory at (x, 4). Indeed the operator 

.~ : cJ(lR n) ~ b F-+ I 7 ~-+ f e-it224/2eit~ib(rl - t~)dt E Y'(IR ~) 
- - O O  

is precisely f p(t exp(S))dt (the integral should be understood in the weak sense). 
With this notation, the integral appearing in the /th term in (18) is 

(~, N ( U a ) ) ,  (28) 

where the outer parentheses denote the pairing between 5f(IR ~) and 5P~(IR~). 

The Riemannian case. We finish this introduction by observing that the previous 
results apply in particular to the large eigenvalue asymptotics of the eigenfunctions 
of the Laplacian on a compact Riemannian manifold. Let M be a Riemannian mani- 
fold, A the (negative) Laplacian on M and )~j, 0j the eigenvalues and eigenfunctions 
of A. Instead of working with h22j it is customary in the Riemannian context to 
work with the square roots of the eigenvalues 

which can be done with trivial modifications to the proof. Pick (x, 4) C S 'M,  the 
unit cotangent bundle of M, periodic with respect to geodesic flow. Let (r,s), r = 
( r h . . . ,  r~-l)  be Fermi coordinates in a neighborhood of x, adapted to the geodesic 
7 through (x, 4). Thus if (r,s, ~, a) are the coordinates induced on T 'M,  locally 
the geodesic 7 is the parametrized curve {r = 0, 0 = 0, s - t, cr = 1 }. Let V be the 
tangent space to T*M at (x, 4). The coordinates (r,s,o,a) induce linear coordinates 
(6r, 6s, vlr, rls ) on V, and in these coordinates the vector ~(x,~) is (0 . . . . .  1,0 . . . .  ,0) 
(1 in the n th e n t r y ) .  Recall the interpretation given above of the coefficient (18). 
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We were led to consider the operator ~ = f_~o~p(exp(t~))dt mapping Schwartz 
functions of the variable q = (t/F, t/s) to tempered distributional functions of r/, where 
p is the Weyl representation of the Heisenberg group of V, (25). Since dp(F.) = iris 
in the present case, the operator ff is basically multiplication by the Dirac delta of 
qs, 

~(a)(~)  = 2~(~s )a (~ ) .  

Therefore, our main theorem (in the periodic case) takes on the following form: 

Theorem 1.5. Assume the geodesic through (x, ~) is periodic, o f  primitive length L. 
Let  Z be a smooth cut-off function in the Fermi coordinate chart. Then, for  every 
test function ~p with Fourier transform in C~(IR), and every Schwartz  function 
a E 5P(IR'~), 

(o(flj -- z ) I f  tPJ (r,s)ei~sd(V~r, x/~s)z(r ,s)drdsl  2 
J 

= ~ �89 21- ~ (27C) -3n/4 ~ O(lL)e -ir f a(~ ,O)(Ula)(qr ,  O)dflr 
lc7s 

n 1 
+ O(zZ- ) (29) 

as ~ --+ cx~ (one has in fac t  a ful l  asymptotic expansion in powers o f  xF).  

We won't bother to formally state the formula regarding 

I f  ~J (r,s)e~sd(x/~r,  s)x(r,s)drdsl 
J;l#j ~l <--~ 

in case 7 is unstable. 
Formula (29) simplifies for certain choices of test functions a, as we will now 

see. Recall that the operator U is the metaplectic quantization of the differential 
of geodesic flow at (x, ~), at time L. Such a differential leaves invariant both S 
and the radial direction in T*M. Those two directions span a symplectic subspace 
//1 of V. Let V2 be the symplectic orthogonal to V1. Then the differential of the 
flow preserves this decomposition of V; it is the identity on V~ and the linearized 
Poincar6 map on V2. Accordingly, it is natural to consider Schwartz functions a of 
the form 

a(tl) = e-@2 aa (~l~ ) . (30) 

On such an a, the operator U has the form 

2 
Ua(t l )  = e - ~ / 2 U  ~a "" " Pt 1)tr/F), (31) 

where Up is the metaplectic quantization of the linearized Poincar6 map of 7. On 
such amplitudes, our formula becomes 

2 ~o(~j - ~) l f  ~j(r, s)e~(is-s2/2)al (~f~r)z(r , s)drdsl 2 
J 

n 1 n 
= z~ ~21-~(2~z) -3~'/4 ~ (~(lL)e -z~lz 

lc2~ 

X f al(t/r)(Up/al ) ( t l r ) d ~ l r  -~- 0(27~-1) . (32) 
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This can be simplified further. Recall that the Fourier transform J is the metaplectic 
quantization of a certain element J of the metaplectic group such that j2  = - I .  Let 

~/# : :  ~r~gp j  ;-1 . (33) 

This is nothing but the metaplectic quantization of the Poincar6 map of 7 on L 2 
functions of the variable 6r. Since j is unitary, we have: 

Corollary 1.6. In the Riemannian context described above, for every Schwartz 
function b E 5~(IR n- l )  and every test function qo with Fourier transform in 
C~(IR),  we have 

2 ~o(~j - ~) l f  @(r, sl~eZ(is-sa/2)b(v/~r)z(r ,s)drdsl  2 
J 

"C} 121--~(27~)--3n/4 ~ ~o(lL)e -izlL f ~ ( r ) . d ( b ) ( r ) d r  + 0('c~-1). 
IE2~ 

Although we won't  go into details here, we mention that the operator ~ can 
be computed in terms of the transverse Jacobi fields of V- 

The paper is organized as follows: Sects. 2 and 3 deal with propagation of 
coherent states, Sect. 4 contains the proof of Theorems 1.1 and 1.2 and Sect. 5 the 
proof of additional results. In Sect. 6 we treat the case of Gaussian symbols and 
show that the elliptic case gives rise to "Poisson formulae." We conclude in Sect. 7 
by a discussion of the results. 

2. Coherent States and Hermite Distributions 

Let S a Riemannian manifold. In [1] (see also [8]) Boutet de Monvel and Guillemin 
associate to any conic isotropic manifold F in T*S a family of distributions on S 
whose wave-front sets are included in F. These distributions have symbols that 
are symplectic spinors on F. We will concentrate in this paper in the case where 
S = M • IR, with M an n-dimensional Riemannian manifold (M might be IR n) and 
F is one dimensional. We will work on a local system of coordinates, but, by the 
theory of Hermite distributions, the main results are independent of  any choice of 
coordinates. 

We begin by briefly recalling the definition of Hermite distributions as it applies 
to the present setting. Let a(x,z,~l) C C ~ ( M  • IR + x IR n) compactly supported in 
x and rapidly decreasing in t/ admitting, as z --+ oc, an asymptotic expansion of the 
following form: 

O<3 

a(x, z, ~) ~ ~ "c-J/2aj(x, tl) , (34) 
j=0 

where Vj the function aj is in the class C05~(IR n • IR n) defined as follows: 

Definition 2.1. We'll denote by CoSP(IR + x IR ~) the set o f  all smooth functions 
a(x, tl) that are compactly supported in x and satisfy: VK, M,N  non-negative inte- 
9ers 3Cx~N > 0 such that 

v(x,,7) c ~," x ~.." I,~K~ONal __< C~N. (35) 

(For the precise meaning of (34) see [1] Sect. 3.) 
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For (x, 4, ~) E T*(M) • IR, let I~,~,~ be the distribution defined locally by the 
oscillatory integral 

Ix~,r = f (2~z)~'c~e ir(~176 (y ,z ,  ~ z )  drld'c. (36) 
R n • R + 

By definition this is a Hermite distribution associated to 

v = {(0 ,  y ;  ~, p ) ;  0 = - ~  + y �9 ~, y = x, p = ~ } .  

In particular: 

(37) 

Proposition 2.2. The wave front of  Ix~, ~ is contained in F. 

To a,x, ~ we associate as in [14] the following family of functions on M (ac- 
tually the inverse Fourier transform in 0 of I2~,~=~ ): 

O(a~)(y)=(2rc) ~*~e " (~  ~-Y) f ei~(Y-~)a y , , ,  drl. (38) 
'- Rn 

Definition 2.3. The family {~(a,~)}~ is called a coherent state or wave packet 
centered at (x, ~) and of  symbol a. 

Each $(~,~) is a compactly supported C ~ function. As we showed in [14], the 
previous proposition implies the following: 

Proposition 2.4. The frequency set (or micro-support) of  O~x,~ is {(x, 4)}. 

Coherent states are localized in space around x to the extent that, to leading 
order, the y dependence of the amplitude a can be suppressed. This fact will be very 
useful in what follows, and it reconciles the definition above with the preliminary 
one introduced in Sect. 1: 

Proposition 2.5. Let a(y,r, tl) be a Hermite amplitude satisfyin9 (34). Let p be 
any C ~  function identically one near the origin in IR ~. Then 

~,~x,,)(Y) = P(Y -x)(27z) nr]e-i*( ~-~Y) f ei(y-X)~ao(x,~l/v~)d q + O(z n/4 1/2), 
Nn 

(39) 
uniformly on compact sets. 

Proof. By the estimates (34), it is easy to see that one has (39) with the right-hand 
side replaced by 

T n / 4 p ( y  - -  x)e - i r (~  ~Y) f ei(y-X)~aotY, q/v/~)drl. (40) 
IR n 

To go from here to (39), we do a Taylor expansion of a in y near y = x and we 
integrate by parts. Specifically, write 

n 
ao(Y, rl) = ao(x, rl) + ~ ( y j  - xj)gj(y, rl) , 

j=l 
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where the gj are smooth functions. We must estimate, V j ,  

Ij(y, z) = f ei(y-x)rl(yj -- xj)gj(y, rl/~f~)drl. 

Evidently 
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lj = i f e i ( y -x )~ j (g j (y ,  tl/~/r))dt 1 

which is clearly 0 ( 7 ;  ( n - l ) / 2 )  uniformly on compacts. [] 

Observation. If b is the inverse Fourier transform of the Schwartz function t/~-~ 
ao(x, tl), then in a neighborhood o f x  the coherent state above equals 

~ , -i~(~-~y) O~x,~_)(y)=(2~)'v~p(y-x)e - b( .~f~(y-x))  modO('cn/4-1/2). (41) 

Corollary 2.6. 

a 2 II  x,r = (27 h )-'tlao( x, 2 �9 )llLz(m.) + O ( ~ - n + l )  �9 (42)  

Moreover, i f  (x, ~) =t = (x', ~/), 

(@(ax,~), I]/(ax I1,~1 ))L2(M) = O(t~ ~176 ) ,  (43) 

and for any compact 0 containing x 
! ! 

a a a (1 
(O~x,~), O~,r f @~x,~)(Y)@~x,~)(y)dy = O(h~)  �9 (44) 

f2 

We will omit the straightforward proof. 

3. Semi-Classical Propagation of Coherent States 

Let 
3n n 

@~x,~)(Y) = (2n)-~- (2~h )-~ p(y - x)e-iX~-/2~e i~y/~ f a(v~tl)ei~(y-X)drl (45) 

be a coherent state at (x, 4). The next theorem shows how such a state evolves 
under the Schr6dinger equation. Let 

L L L 
H~ = ~ h t P t ( x ,  Dx), W(x,~)  = ~ P ~  Wsub(X,~) = ~ P l - l ( x , ~ )  (46) 

l--0 /=0 /=0 

and S(t) be as in Sect. 1. S(t) is the matrix of the differential of the Hamilton flow 
in coordinates. The associated linear transformation is symplectic and maps the 
tangent vector to the trajectory at (x(0), ~(0)) to the one at (x(t), ~.(t)). Since S(0) 
is the identity, one can naturally lift the S(t) to the metaplectic group, Mp(IR') in a 
continuous way, starting at the identity. We will continue to denote the lift by S(t). 
Let M(S(t))  be the family of unitary operators image of S(t) by the metaplectic 
representation. 



Pointwise Behavior of Semi-Classical Measures 241 

The following result shows that after evolution a coherent state remains a co- 
herent state and gives the leading term of the symbol. 

Theorem 3.1. Under the previous assumptions, Vt ~ IR there exists a symbol a(t) 
of  the form (34) dependin9 smoothly in t and such that 

e-ih-ltH~r~atl]l(x,~))" = ei(e(t)/h+f~b(x(s)'r .... mod (h ~ (47) 

uniformly one each compact in (t,x)-space. Here 

{ ( t ) = f (  d'2-x~ Jut~ 
o 2 

Moreover, the leadin9 term of a evolves according to 

ao(t) = M(S(t))(ao l t=0). (48) 

The proof of this theorem will be based on the theorem of propagation of 
Hermite distributions by Fourier integral operators, namely Theorem 7.5 in [1]. We 
will consider the distribution on M x S 1 whose Fourier coefficients are precisely 
the 1.h.s. of Theorem 3.1, with h = 1/(m + c). This dista'ibution satisfies a certain 
equation, which we analyze. Then we will show that the solution of this equation is 
mircolocally equal, in the region of interest, to a Hermite distribution whose Fourier 
coefficients are given by the right-hand side of  the theorem. Finally we will identify 
the symbol of  this Hermite distribution. These ideas have been used in the compact 
case in [14], but we give an independent proof. 

To H~ we associate the following family of  operators on M x $1: 

L 

A = ~ D-t+ZPz(x, Dx), (49) 
1-0 

where D = Do + c, c E [0, 1 ] a parameter. A is a differential operator of order L. 
We break the proof in a series of lemmas. The first one is straightforward: 

Lemma 3.2. Let 

and let 

~tt(y) = e-it~H1/~(1/l~x,~))(y) (50) 

0 ( 3  

u(t, y, O) = ~ eZ~~ ) . (51) 

Then u( t ) is a distribution that satisfies 

- o L - 1 O t u  = Au 

with initial condition 
u[,=0 = I a x,~,~; ' 

Next, we use (52, 53) to control the wave-front set of u. 

(52) 

(53) 
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Lemma 3.3. Let u be a distribution on IR • M • S 1 satisfying (52) and (53). Then 
its wave-front set is contained in the set 

{ (t,y,O;e, tl, Z);zq=O, (y,~l/z) = Ot(x,~/v),/9 = ~ + f(t) ,  e = -zS/f(x, ~/z)} . 

(54) 

Proof ObServing that u satisfies the differential equation (DL-IDt + A)(u) = O, one 
knows that the wave-front set of u is contained in the characteristic variety of the 
operator 

Q :~- DL-1Dt 4- A,  

which is the set 

Char(Q) = {(t,y,O;e,q,~); z~-la 

Observe that 

= - - ~  "cL-1pO(y, ~1 �9 (55) 
l=0 

Char(Q) N {zq=0} = {(t,y,O;e, tl, Z); e/z = -~g(y,~//z)}.  (56) 

Since the principal symbol O-Q of Q and the function z Poisson commute, it follows 
from (56) that the nutl-bicharacteristic strips of Q in the region {z=~0} are the 
same as the trajectories of the Hamilton flow of the function F = J~(y, tl/r ) + e/'c. 
We also know that the wave-front set of u is invariant under the Hamilton flow 
of the principal symbol of Q on T*(M x S1). In the region {zq=0} the Hamilton 
flow of F is, up to a rescaling, the Hamilton flow of af .  From this, using the fact 
that the initial condition has wave-front in the set F of (37) and the calculus of 
wave-front sets, one can show that the wave-front set of u is in fact contained in 
(54). [] 

Lemma 3.4. Let 

z ~  = { ( t , y , O ; ~ , ~ , ~ )  ~ T*(M • S'); ~#0,  ~/~ = - ~ ( y , ~ / ~ ) } .  

Then there exists a conic neighborhood of EE, f2, contained in T*(IR • M • 
S ~ )\{z =#0}, and a classical, first-order pseudodifferential operator on M x S~,B, 
such that 0 := DL-IDt - D L-1B and Q are microlocally equal on (2. Moreover 
[B, Do] = O. 

Proof It suffices to construct a first order pseudodifferential operator on AJ x S 1 
commuting with Do and such that A and DL-1B are microlocally equal in a neigh- 
borhood of the set 

{(y, 0;t/,z) E T*(M • S1); zq=0, ~ ( y ,  tl/z) = E } .  [] 

The following lemma is truly the heart of the proof. 

Lemma 3.5. Let u(t) a solution of (52) and (53). Then there exists a Hermite 
distribution I~a(t),~(t)/(o(t) such that: 

(u(t) -I~%,~(0,~(0(t)) ~ c ~ . i57) 

Here (xit), ~(t)) =Otix,  ~) is the trajectory of ix, ~) under the Hamilton flow of 
~ ( x ,  ~) and #(t) is as in Theorem 3.1. 
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Proof On one hand, by the previous lemmas, 

g := d ( " )  c c 

Therefore, the distribution u can also be described as the solution of the pseudo- 
differential equation 

O(u)  = g ,  (58)  

U[t=0 - -  I a - (59)  

On the other hand, one can construct a Fourier integral operator U(t) solving: 

DtU(t) = BU(t) rood C ~ , 

U(0) = identity, (60) 

even case M is non-compact, if in the equations above we restrict It] to be bounded 
and we restrict U(t) to act on functions supported in a compact set (see for example 
[ 17]). In terms of such U, 

= f  ( U  ~) (61) u(t) U ( t -  s ) ( f ) d s  + U(t) ~,~,~ , 
o 

where f is a smooth function satisfying 

D L - l f  = g. (62) 

Such an f indeed exists; observe that therefore the first summand on the right-hand 
side of (61) is smooth. 

To conclude the proof of the lemma we will use the theorem of propagation of 
Hermite distributions through Fourier integral operators. 

U is a Hermite distribution associated to F = {(0 = - ~ ,  y =x;  % p = z~)} C 
x,~,~ 

V~E. U(t) is a Fourier integral operator associated to the flow generated by the 
principal symbol of B, which equals ~r ~/~) in a neighborhood of F. An easy 
calculation of the Hamilton equations (see [14] for details) shows that this flow 
maps F into F(t) = {(0 = - ~  + f(t) ,  y = x(t); v, p = ~ ( t ) ) }  By the already cited 
theorem of propagation of [1], U(t)(I]~&~_) is an Hermite distribution associated 

to F(t). Since by (61) u(t) is equal to it modulo a smooth function, the proof is 
finished. [] 

To finish the proof of the first part of the theorem just note that by the previous 
lemma the differences 

V'(x(t),d(t)) 

(with ~ = 1,2 . . . .  ) are the Fourier coefficients in 0 of a smooth function o f M  x S1; 
therefore they are rapidly decreasing in z uniformly on x in compacts. This proves 
the first part of the lemma for values of h along the values h = 1/(m + e), m = 
t, 2,.. . .  It is clear however that the estimates must be uniform in c, and therefore 
we get the desired conclusion as h ---+ 0 continuously. 
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Finally, we sketch the computation of the principal symbol. A straightforward 
computation shows that 

a a t 
H1/z~l(x,s  = I//(x,{) (l -{- 0('C-3/2)) (63) 

with 
a' = .Yt~(x, ~)a + ~ 1/2(VxJf �9 D, - Vr  �9 t/)a 

+ ~ - 1 (  i D  ) ,  ~( n,r/)Hess H(x,~)(D,, t l)a + Yd'sub(x,~,)a 

where 

(D~, r/) Hess H(x,  ~)(D~, t7) 

~2jta D2 c32Jga D 02~~ 
= - -  + 

j, k=0 (~XjXk 

is the Weyl quantification of the Hessian of J r .  Moreover, 

7: 1Dtei(r~(t)+fo .,%~b(~(s),r a(t) 
) @ (x(O,r 

= d(~*(O+f~ ~%b(~(~),~.(~))d~),/,J(O [1 @ 0(27--3/2)) 
~(x( t ) ,~ ( t ) )  \ 

with 

(64) 

SO 
d 
~ M ( S ( t ) )  = i(Du, I1) JSS-t(D~,  q)M(S(t)) . 

Identifying once more gives the equation for S. 

(69) 

a'(t) = Jr(x, ~)a - ~-1/2(~D~ - 2tl)a + T-I(a ~- ~ub(X, ~)a). (65) 

Identifying term by term gives: 

i D do = ~( ~,~/)Hess Jr(x, ~)(D~,tl)ao . (66) 

We want to prove that a solution of this equation is given by 

ao(t) = M(S(t))ao(O) . (67) 

We can easily compute ~M(S(t ) ) ,  [13]: 

M(S(t  + 6t)) = M(S(t)  + 6tS(t) + O(~5t2)) 

= m((1 + 6tSS-~)S) + O(6t 2) 

= M(1 + 6tSS-I)M(S( t ) )  + 0(6t2) .  

Now remark that t + 6tSS -1 is the flow of Hamiltonian (x ,~yJSS- l (x ,  3) modulo 
6t 2. This implies that 

M(1 + 6tSS -1 ) = e i&(D~'tl)J~S-l(D~#l) @ O(5t 2) , (68) 
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Remark. It is possible to get the same result directly from the symbolic properties of 
Hermite distributions. Indeed the family of Hermite distributions constructed before 
can be considered, taking t as a variable, as a Hermite distribution on Ill x M x S ~ 
associated with the flow-out of  F by the principal symbol of the operator (D~o-IDt - 
A). This new Hermite distribution is in the kernel of  the operator ( D ~ - I D t - A )  
whose symbol gives rise to a flow tangent to A. The transport equation, see [1], 
gives exactly the result above. We leave this proof to another paper where the case 
of a general Hermite distribution will be considered. 

The Riemannian Case. For the Riemannian case discussed at the end of Sect. 1 
one also needs a theorem of propagation of wave packets, which is actually easier 
to prove; we will be sketchy. Let M be a compact Riemannian manifold, and A 
the (negative) Laplacian on M. The definition of coherent states in the Riemannian 
case is the same as that of Sect. 2. Consider the operator on M x S 1 

p := V / ~  + D  2 . 

This is of course a standard first-order ~DO, and the required theorem of prop- 
agation of wave packets is a consequence of the result that the Fourier integral 
operator, exp( i tP) ,  maps Hermite distributions of  Hermite distributions. 

4. Proof of  Theorems 1.1 and 1.2 

Fix (x, 3) E T ' M ,  not in classical equilibrium, and a C 5P(IR~). Denoting h -1 by 
~, we have: 

I(O(x,e~,0))l 2 -  ~,',~ e - i t z ( H - E ) d , a  ~dt �9 x / ~ f ( ~  , ~'(x,~)J 

1 ~ ^ ,  t,e~@f~(r 0 
- v~ZJq)t- ) 

a l i r a ( t )  "~A" x (r162 .,. (~),r + O(h~). (70) 

For simplicity we will take a(t)  = a(t, y, ~) to be the leading term in the expansion 
(34) of the symbol of Theorem 3.1, and therefore it evolves according to Eq. (48); 
higher order terms are treated identically. 

By Corollary 2.5 we know t'nat ~.q/(x,~),"a qQx(t)d(t)))'a(t) " is O(h ~ ) if (x, ~). 4= (x(t), ~(t)), 
so in (70) it is enough to integrate over intervals around the periods IT~ of 7 if (x, 4) 
is periodic and only around zero if it is not. The analysis is therefore localized to a 
neighborhood of x, which enables us to work in a fixed local coordinate system. Let 
flU) be a cut-off function around zero, and let f lU)  = fi(t - lT, l ) ~ ( - t  ) (only the 
term l = 0 arises in the non-periodic case). Since J f ( x , ~ ) =  E, we must estimate 
the integrals 

It( t)  = i l l ( t )  e a%b(x(s)d(s))ds/ (0  ~x, ~), ,I, a(t) ~,4t 
"t" ( x ( t ) , ~ ( t ) )  J ~ ~  " (71) 
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Lemma 4.1. Let 

,,,.o ,, , 9l(t - T~) := f l ( t ) e  \ ~" (x,O' ~" (,(0,~(,)) j 

be the integrand in (71). Then, modulo O(z-~176 is o f  the form 

n'2 -3n 2 -  / ( 2 ~ ) ~ -  z n e ilzS~+iisub~ e -iz fo x4ds+izx(d_(t)-~)+i f~ ~,b(x(s),~(s))dsc~l(t, v~ t )  

with e l ( t ,u)  E CoSP(IR • IR) (the class o f  functions defined in (35)) and such that 

~l(0, u) = ~( lT~) f e i~y4 (~  - u2(O))dy. (72) 

s d Proof  By Proposition 2.4 one can get rid of the cutoffs p in (~b(~,O,~b(~(Og(t))), 

since we compute c~ mod r -~176 This gives, after some manipulations: 

~(t ,  ~ t )  = (2~)-"/~/~(t)q~(lT,~ + t) 

x fei'/~[Y(~-(t)-O-~(x(O-X)]ei~y~a~r'~+t(tl)dyd~l. (73) 

at(t, u) = (2~)- ' /2/~(t)0( ir~ + t) 

x f e  iu [/r162 x] einyd(f)alre+tO1)dydrl. (74) 

By the stationary phase lemma, since (2, 4)4 = 0 one can see that ~ decreases rapidly 
with u. The same argument gives the result for the derivatives of ~, and the desired 
tmiformity as well. [] 

We have 

Ii ~ 2-~/2(2Jz) - ~ z" eitOs'/+s'~b') f e  -i~'f[~ ~d,+i~x(~(t)-~)+i f~ ~bt~ts),r r i f t )dr .  

This integral will be estimated thanks to the following proposition: 

Proposition 4.2. Let c~ E Co5~ • IR) and @ E C~(IR)  satisfym9: 

@(0) = 0 = @'(0) (75) 

Let  
I (z )  := f ei~(t)c~(t, v/zt)dt  . (76) 

Then: 
CK3 

l ( z )  ~ z -1/2 ~ C j T  -j /2 . (77) 
j - O  

Moreover, 
@H 0 o i ( ) t  2 

co = Je  ~ - -  e(O,t)dt .  (78) 

Proof  By the assumptions on (b there exists a T E C~(IR)  such that 

r  = t 2 T ( t )  

So 
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in the support of t ~ c~(t, u), Vu E IR. Substituting into I ( z )  and making a dilation 
s = x/fit we get: 

I ( z )  = z-1/2 ,s d s .  (79) 

Since e is rapidly decreasing in the second variable, uniformly with respect to the 
first, the integrand above is bounded by, say, the integrable function ( s : +  1) -1 
uniformly in r. Therefore 

lim "cl/2/(t) = f e is2 ~'(~ s )ds  = co . 
T---+ (x) 

To obtain the asymptotic expansion observe that in fact the function of a 

g(a)  = f e  i~2~(~) ~(sa, s) ds (80) 

is smooth in a neighborhood of a = 0: since ~ is Schwartz in the second variable 
uniformly with respect to the first every derivative with respect to a of the integrand 
in (80) is bounded by an integrable function uniformly in or. The expansion (77) 
is nothing but the Taylor expansion of g(a )  around a = 0. [] 

Remark .  If 0 is not a critical point of O, then one can easily show that I ( z )  above 
is O(~-~ 

We now return to It. Thanks to Lemma 4.1, / l  can be rewritten as: 

. Sy 

I l = 2-n/2(27z)-~.cned(T+sub';)  

• fei~O(t)e if~ ~sub(x(s)'~-(s))dS~l(t , v ~ t ) d t  4- O('c - ~ )  (81) 

with 
t 

O(t ) = - f x ( s )  �9 ~(s)ds 4- x �9 (~(t)  - ~), (82) 
0 

We obviously have ~b~(t) = (x - x ( t ) )  �9 ~. If (x, ~) is not a periodic point, then as 
mentioned we only need to consider the term l = 0, and therefore the asymptotic 
expansion of Theorem 1, follows from Proposition 4.2. 

If (x, ~) is periodic, 

and 
e"(lr,)----~. 4. 

This means that each integral II(T) has, by Proposition 4.2, an asymptotic expansion 
of the form: 

3n /l  . -~-  + S u b ' 2 .  1 
It ~" 2-n/ ' (2rc)-Te \ '~ 1/"c n-~ ~c~'c -j/2 (83) 

j = O  

with 

c~ = f e- i@2ez(O,  t )d t  . (84) 

Plugging (72) in (84) and summing over l gives the existence of (17) and the 
leading term (18). 
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Tauberian Arguments. To prove (15) and (19) we will use the following Tauberian 
lemma proved in [2] (see also [3]). Consider an expression of  the following form: 

T}W~((o)= ~wj(h)cp ( Ej(n)- E . ( 8 5 )  

J 

It will be useful to introduce the following 

Notation. We will denote by ~ the set of  all Schwartz functions on the line with 
compactly supported Fourier transform. 

The Tauberian lemma in question is: 

Theorem 4.3. (See [2].) Suppose wj(n), Ej(n),E and T~ itself satisfy all of  the 
following: 

1. There exists a positive function co(n), defined on an interval (0, no), and a 
functional ~o on ~ ,  such that for all qo E ~ ,  

T~-Wh(go) = J,o(gO)co(n) + o(co(n)), n ---+ 0 (86) 

(both Yo and co depending on E, in general). 
2. I f  f E ~ is non-negative, identically one near the origin and of mass one, 

and if  one defines g# > O, 
L,(r)  = [a-l f ( r / # )  

(so that {fu} is an approximate identity i.e. each fu is positive, of  mass one, and 
fr,(r) -~ 6(r) as # ~ 0), then Ve > 0 the limit 

~ ( c )  = lira ~ - o ( f u  * Z[-c,c]) 
,u-+O 

exists. Here Z[-c, cl is the characteristic function of  the interval [ - c ,  c]. Moreover, 
is continuous on an interval of  the form (0, e). 
3. There exists a k E Z such that h k = C(co(n)), n -+ o. 
4. There exists an e > 0 such that for every ~o there is a constant Cz such 

that for all E' E [E - c,E + e]: 

(87) 

(rough uniformity in E). 
5. The wj(n) are non-negative and bounded: there exists a constant C >= 0 

such that for all j and all h, 0 < n < n0: 

o __< w / n )  __< c .  (88) 

6. The eigenvalues Ej(h) satisfy the following rough estimate: for each C1 
there exist constants C2,No such that Vk 

# U  " F~j(n) < C1 + k n )  < C 2 ( n - l k )  No . (89) 

Define the weighted counting function by 

N~,c(h)= ~ wj(h) ,  (90) 
Ixj(~)l __<c 
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where 

. -  

h 
(91) 

T h e n  t h e  c o n c l u s i o n  is :  V c  > 0,  

N~,c(l~ ) = 5~(c)co(h) + o(co(h)),  h --+ O . (92) 

In the present context, we wish to take 

a h 2 
coj = ,Al(O x,e>,Oj)l . ( 9 3 )  

With the shown normalization, property (88) is ensured. The function co is 

co(h) = h -n+l , (94) 

so that hypothesis 3 is automatically satisfied, while the functional J~0 is given by 
Theorems 1.1 and 1.2 so that property (86) is true. The rough estimate on the 
eigenvalues (89) is certainly true in this case, see e.g. [2]. We need to verify the 
remaining assumptions 2 and 4 of  the Tauberian lemma above. 

Assumption 2: 

- if (x, ~) is not periodic, then 

@ 0 0  

~'~o((P) = f (p(t) dt  fe-it2X4eit~Xa(rl)a(rl - t~)drldt , (95) 
- - 0 0  

that is ~0 is proportional to Lebesgue measure on IR. Thus assumption 2 is trivially 
satisfied, with ~ ( c ) z  2c. 

S~ 
- if (x, ~) is periodic, let us only consider values of h of the form h = 2-~m' Then 

we must prove that the functional 

~o(~o) = ~ ( l T ~ / ) f  e - i t 2 ~ f e i t ~ a ~ ( U l  a)(q  - t 4 )dqd t  (96) 
l 

has the required property, and the limit function 5e(c) is continuous. This is true 
under a hypothesis of instability; this is an easy consequence of the following: 

Lemma 4.4. L e t  us suppose that the differential d(q~v)(x,r o f  the classical f low 
at t ime T~ and at (x, d) is diaoonalizable over II~, and  has r elliptic directions 
o f  angles Oj,j  = 1, . . .  , r  and  n - 1 - r hyperbolic directions o f  Liapunov angles 
#k, k = 1 . . . . .  n -  1 - r, with r < n -  1. Le t  # := supkak. Then 

l f  e - i~2x~ /2emia~(Ul  a)(tl - t~)d~ldt I < C e -IIl~ . (97) 

Before we prove the lemma let us mention that it easily implies the required 
continuity property of the functional Y0. 

P r o o f  Recall the interpretation of the right-hand side of (97) as a matrix coefficient 
of U z = M ( S ( T ~ ) )  1 in the metaplectic representation. Let (e, f )  E IR n, we define the 
Weyl operators as: 

�9 e f  . 

Z(e,  f ) a ( t l )  = e - ~ T  eW~a(rl - f )  . (98) 
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Then we have to estimate: 

If(a, giN(t2,  t~)a)dtl . 

Under the stated assumptions one can find a linear symplectic transformation R such 
that 

R-1S(TT)R = 

1 0 0 c~ 0 
0 Diag(cos(0j)) 0 0 Diag( - s in (0 j ) )  
0 0 Diag(e -~k) 0 0 
0 0 0 1 0 
0 Diag(sin(0j)) 0 0 Diag(cos(0j)) 
0 0 0 0 0 

0 
0 
0 
0 
0 

Diag(e ~k) 

(99) 

with c~ E IR. It is therefore sufficient to prove the estimate for the metaplectic quan- 
tization of  the above matrix. More precisely, let G := R-1S(TT)R and b = b(t/0, 
~/i . . . . .  t/~_~), we have: 

I(a,M(S(1T,/))Z(t2, t4)a) I = I(b,M(GZ)Z((1,0 . . . . .  0))b) [. (100) 

By (99) one sees that M(GI)Z((1,O . . . .  ,0))  = U~oU~I... U,n_ 1, where the U,i are 
unitary operators acting on the variable t/i. By the Cauchy-Schwartz inequality one 
easily deduces that 

lp 
](b,M(GI)Z((1,O . . . . .  0))b) l  < Ce-Tfu(~y ,e -ZUqj )d~y ,  (101) 

where # = pj = supk{l~k} and 

u(qj, e-~UtS) = ~ / f [  b(t/)12 d~/ 

•  

(102) 

With the notation 
l# 

rt := Ce--S  fu(tl j ,  e - I ~ j ) d ~ j ,  

let us first suppose l positive. Then 

l# 
lim eTr l  = C fu(~j,O)d~j , 

l---+ + cx~ 

so rl < C e  ~ for l large enough. If  l is negative then note that 

I# lp 
rl = C e T  fu(e~-~j,~j)d~ 5 , 

and apply the same argument. 

(103) 

(104) 

(105) 

[] 
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Finally, we need to establish the rough uniformity in E. To do that we must 
ask the patient reader to go over again the proof of the asymptotic expansions of  
Theorems 1.1 and 1.2. By (70) and Lemma 4.1, instead of the integral of Proposition 
4.2 we must estimate integrals of the form 

I A ('C ) = f ei~C~( t ) e i~tA ~( t, v~t )d t , ( 106 ) 

where A = E ; - E  ranges in a neighborhood of zero and ~b is the same phase as 
before. We have to show.that 

IA(Z) = O('c -1/2) (107) 

uniformly in A. Proceeding exactly as in the proof of Proposition 4.2 we are led to 
the expression 

IA (17) : "c-1/2 f eiS 27"(s/xF) eiS~/TA c~(s/x/z, s )ds . 

The integral is clearly bounded in z uniformly in A, again by the rapid decrease of  
a in the second variable. We note that if d ~ 0 the integral is O(z -~176 

5. Proof of the Other Results 

The Weyl symbol of the operator (0~x,~), " )O~x,~) is: 

o i p y  a W2~,O ( q, p) = J e -  T 0(x,0(x -- y/2)O~x,r + y/2)dy. 

Lemma 5.1. 

W2~,o(q,p)=(2rch)-~(4rc)-~/2Wl(q-~x,P~-~ ) . 

The proof is immediate. 
Let us define ~ := V~. We want next to compute 

h V~ a , p)d#s p) f %,:)(q 

(308) 

(109) 

Then, with z = 1/h. 

f W2~,~) (q' p)dt2L(q' p) = ~ (2~) -~ 

X fY~a(U,V)e -i(ux/r(q-x)-vx/7{p-~))dAq'p ]V~I  dudv. 

d A q ,  p 
with dpL(q, p)  = ~ the Liouville measure (dAq, p denotes the surface measure 

on the energy shell ZE = ~ 4 ~  induced by the Euclidean metric in the p,q 
A 

coordinates). Let us define the symplectic Fourier transform 4d/~ of ~ through the 
formula 

"r p )  = (2n) ~ f ~/~(u, v ) e  -i(uq-~'p) d u d v  . ( 111 ) 

(11o) 
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This integral is easily evaluated by the stationary phase formula; the phase is sta- 
tionary for 

q = x ,  p = ~, (u,v)  = 2 ( - V q H ,  V p H )  =)~(~,A) (112) 

with 2 real, This gives: 

f w ~ , ~ ( q ,  p)d#L(q, p)  = T�89 -~ f ~ ( 2 ~ ,  L~)d2 + O(~I/4). (113) 

It is well known (see e.g. [7]) that the symplectic Fourier transform of a Wigner 
function of the type (108) satisfies 

A 

~r v) = (a,Z(u, v)a) ,  (114) 

where 
Z(v, w )a(y ) = e-iUV/2 eiVy a(y  - u) . (115) 

This gives immediately (as a direct computation also shows) that 

1 

"d L ~'-~_(4n)-n/2 fe-it2~eit~Xa(rl)a(r l t~)drldt + O(h-1/4) f ~x,~ tq, P)  # = _ . 

The rest of the proposition is clearly obtained from Theorem 1.2. 
The proof of Corollary 1.4 is immediate by contradiction. The proof of Theorem 

1.5 is obtained by taking S~ = h~--A; the action of 7 by homogeneity of the 
Hamiltonian reduces to the period (if E = 1). 

6. The Gaussian Case and Related Poisson Formulas 

In this section we will show that the leading coefficient of  the asymptotic expansion 
of 

�9 (x,~_) V j  ' 
J 

given by Theorem 1.3 can be explicitly computed for certain Gaussian symbols a. 
We first need the lemma: 

Lemma 6.1. I f  7 has an infinitesimal Poincar~ section invariant by the linearized 
f low and i f  the PoincarO mapping o f  7 has r elliptic directions o f  angles Oj and 
n - 1 - r hyperbolic ones o f  Liapunov exponent #k, then one can f ind a symplectic 
mapping R such that R-1S(T~)R is the matrix 

i 0 0 u 0 0 0 Diag(cos(0j)) 0 0 Diag(-s in(0j))  0 
0 Diag(e-Uk) 0 0 0 
0 0 1 0 0 

Diag(sin(0j)) 0 0 Diag(cos(0j)) 0 
0 0 0 0 Diag(e uk ) 

(116) 
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Let us define the Schwartz function a R := M(R)ao, where a0(t /)= (4r~)-n/4e-@2. 

Lemma 6.2. a e is a Gaussian. More precisely, let us write R = D 

aR(tl) = 1 e -  lrlt(D--iC)(A+iB)-lrl . (1 17) 
(4re) -n/4 ~r § iB) 

Proof. See [13] p. 247, in particular for the definition of the square root. [] 

Proposition 6.3. Under the same hypothesis as in Theorem 1.2, 

~ o ( E J ( h ) - E )  cF h 2  o o  )1 E&(ae) (118) 
j \ 1~ J k=0 

with 

(47C) �89 ~ {~/ il(~+Sub'e+a.e-�89 r iOJ~ 
d~  IV~(x,~)l e "= / d-1 r ~ H k = l  c~ ~( lT ' )  

(119) 

+ o(a}). 

(120) 

Proof. This is a straightforward computation using, e.g., [13] p. 249. In particular 
the presence of the Maslov index a t comes from the square root already mentioned, 
as explained in [13] p. 239. [] 

R M(R)am, where Remark. One can easily check that if  we take a symbol a m = 

am(q) = Hm(q)e -@2 with Hi,,, m E N n-l ,  a Hermite polynomial, one gets in the 
elliptic case the following result: 

~j(p(Ej(~--E) (i/./(x~,~), ifijh ) [ 2 

I ~ ) l  - h- § Sub, + a, + 

+ 

(121) 

From this the computation for an arbitrary symbol a follows, by expanding the 
symbol on the Hermite basis. 

where a, is the Maslov index ofT. In particular tf(x, ~) is periodic with a PoincarO 
mapping fully elliptic o f  angles Oj, j = 1. . .  n - 1. 
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7. Discussion of the Results 

T. Paul, A. Uribe 

Our main theorems describe the weak asymptotics for small h of  the weighted 
spectral measure 

j 

on the class N of  Schwartz functions with compactly supported Fourier transform. 
Observe that the construction of  p is covariant as (x, 3) moves along the trajecto12r 
Y, of  the Hamilton flow of  Jr in the sense that there is a symbol a( t )  such that 

where ao(t) is the image of  ao by the metaplectic quantization of  the differential 
of  the flow d(~t)(x,O. Accordingly, the main properties of  p(~,~) are related to the 
mechanical properties of  7- We wish here to explore this relationship, mainly through 
the Poisson-type formulae of  the previous section. 

In order to simplify the formulae a little we will suppose in this section that 
~ b  = 0 (which is the case for example for a classical Schr6dinger operator, H~ = 
- h 2 A  + V). The formulae in the case ~ ,ub  4 0  can be easily recovered. 3 

The fu l ly  elliptic case. We will see that in the fully elliptic case the weighted 
spectral measure is asymptotic to an analogous measure constructed from the quasi- 
modes associated with 7. Recall (see [8, 4, 18, 15]) that one can construct quasimodes 
associated to any elliptic closed trajectory, to first order. The construction can be 
summarized as follows. Let Y be an elliptic trajectory of  energy E and let (x, ~) C 7. 
To (x, 3) and a symbol a we associate the vector 

~ )  i ~ . a ( t )  , .  (123) q~ = c j e  Ill(x(t),d(t))at , 
0 

where a ( t ) =  M ( S ( t ) ) ( a ) .  By Theorem 3.1 we have that for some a' 

ia~ t o i ~ ,I, a(t) ~ . l(t)-Et ' ~ t t~  ~'(x(t)d_(t))~ (Ht~ - E ) ( e  ' ~  a'a(t) ~ . ,I,a' O t h  3/2"~ (124) : ~'(x(t)fi.(t))) m 7"(x(t),~(t)) k 1" 

From this we get that 

r~ . l(t)-Et . . . . . .  
( m  - = i fO,(e'T + 

o 

/ i~--a(Te) a ) = ih ~e n ql(x,r ) - O(x,:)/ q- O ( h 3 / 2 )  �9 (125) 

Therefore (H~ - E)(b,~ = O(h  3/2) provided that: 

i) M(S(T~) )ao  = eir and 
ii) 2 =  s./ T~ + 2~k for some integer k. 

Here ao is the leading term of  a and S~, the action of  Y- A solution to this problem is 
precisely given by a = a~, m E 2g ", defined in the preceding section. Moreover such 

3 We will also assume for simplicity that # = 0 in (116) 
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1 0 (ii) is nothing but the Bohr-Sommerfeld an a~ gives 2 = a s + EmjOj + ~E J, SO 

condition (see [18]): 

( 1)  
S 7= 2rck+~mjOj+a s + ~ O j  h. (126) 

The computation of the constant C shows that if (b~ is normalized one has: 

~m m' (47ch)-�89 , 
[lit R q~;R )12_ .(~mm' + O(h~). (127) 

Let us suppose now that ? is non-degenerate on NE, so it belongs to a family {?s} 
of elliptic trajectories indexed by their action, s, where s ranges in a neighborhood 
of S t. Let E(s) and T(s) denote the energy and the period of ?s. Then the energies 
of the quasi-modes associated with this family are 

~k'm = E ( (27zk + ~ (mj + l ) oj + a,)  h) . (128) 

Moreover it is well-known that 

dE(s) 1 
- -  ( 1 2 9 )  

ds T(s) 

Therefore, there is a smooth function v(s) such that 

o ~k'm - E = l((2~zk + cm)h - S~) + ((2~k + cm)h - Sy)2v((27zk + Cm)h -- S t ) ,  

(13o) 
where cm := ~(mj  + ~1 )Oj + a 7. Let us define the numbers EQMk'm by the equation 

k, m 

EQM(h)-Eh T~,I ( 1 ~ )  - 2~k + EmjOj + ~r~ + ~EOj - . (131) 

Then (130) shows that, Vc > 0, as h ---+ 0 and for k's such that [27rkh - S~[ < cA, 
one has 

E k'm = E ~  t + O(h2). (132) 

In other words, in a neighborhood of 7 one can find quasi-modes ~P~ and energies 

E ~  t belonging to an interval of size h around E satisfying 

m pk, m IlJm Hh l[lk = ~Qm~k + O(]'b 2) (133) 

for large k(12Tckh - STI < oh). On the other hand, the right-hand side of (131) is 
precisely the argument of (p in the fight-hand side of (121). Taking into account 
(127) we can summarize as follows: 

k, 1;~ Proposition 7.1. Let 7 be elliptic and let EQM(h ) defined by (131). Then, as 
functionals on the class ~ defined in Sect. 4, 

E ~  ( - E ~,~ 
- ~ } + T (134) px̂ amz)'" ~) E 0 ~ I(@i~, OR 12 
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k, m where T is O(h�89 ) in the weak topology. Moreover, the EQM(h ) are asymptotic to 

the energies of the quasi-modes (ba~ in the sense of  (132). 

Remark. One also has a similar result for the weighted spectral measure for an 
arbitrary symbol a, by decomposing a on the Hermite basis, in which case the 
summation over r# would be non-trivial. 

The unstable case. Let us turn now to the case where y is unstable. 

Proposition 7.2. I f  ? is fully hyperbolic then on the class ~ the weighted spectral 
measure p~ (where a R is the Gaussian (117)) is, modulo h�89 (also in the weak x,~ 
topology), Lebesgue-continuous of  the form g(2)d2, where 

g ( 2 ) -  ~ h  2 z k -  + % - 2 (135) 

with 
1 e i2t 

h(2) = ~ f ~/I~o-1 cosh(#kt)dt. (136) 

Proof By the results of Sect. 6 in this case the coefficient do has the form: 

[VJ4D( x, ~)l I~;-~ cosh(l#k) 

By the Poisson summation formula, and using the fact that the Fourier transform 
of a product is a convolution, one gets the result. [] 

Remark. The formula above is, for small Liapunov exponents, a kind of "smeared- 
out Poisson formula." As shown by (136), h ( 2 ) ~  6(2) as all the Liapunov ex- 
ponents #k tend to 0. This shows that g(2) has peaks around the lattice ~ ( 2 r c k -  

s~ + as ) if ? is not too unstable. h 

We would like to finish with two informal remarks: 

1. No construction of quasi-modes is available in the unstable case; nevertheless 
numerical computations (see [12,6,9]) show that some phenomenon of localiza- 
tion of eigenfunctions near unstable periodic orbits are visible. Among the main 
properties of this controversial "scarring" phenomenon we point out: 

- The apparent localization doesn't occur more strongly as h goes to 0. 
- This localization is more visible if the Liapunov exponents of ~ are small. 

Our results show that the average over a band of energy of the Husimi functions 
(namely ](~(~,~), @jh)]2) share some of those properties. Corollary 1.4 shows that there 
is a nonzero density of eigenfunctions whose Husimi functions are actually pointwise 
sensitive to the presence of periodic trajectories. The contributions to the formulas 
of Theorems 1.2 and 1.4 are in accordance with the properties of scars mentioned 
before: 

- The fact that (x, ~) belongs or not to a periodic trajectory doesn't affect the order 
of the expansion, but rather changes the numerical leading coefficient. 

- This coefficient becomes greater as # (the highest Liapunov exponent) tends to 
0. 
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2. We finish by discussing the dependence of  the leading coefficient do with 
respect to the symbol a. The extra contribution of  a hyperbolic 7 to the leading 

E/(h)-E a h 2 
term of  ~ j c P ( = ~ ) l ( ~ ( x , r  )l is 

b ( a )  :=  ~ (~(lT~)e i@- f e-it2X~-eit~ia(tl-~(Ul a)(rl  - t~)drldt . 
l~:O 

(138) 

Let us take (x,{)  E 7 and let us suppose n = 2 (the case n > 2 can be treated 

analogously). Let a0 = (&r)-1/2e-q2/2. W e  wish to estimate (a0, UZ(t2,  t4)ao). First 
remark that 

I(a, a ' ) t  2 = f ~ ( u ,  v)~/Fd(u , v ) d u d v ,  ( 1 3 9 )  

where "#4 is the Wigner function of  a. Moreover it is well known that 

~ff/'M(S)Z(e,f)a(bl, V) = ff~Fa(s-l(b/ -- e, V -- f)) .  

~ o  has an effective support of  size 1 near the origin, since 

~ a  0 : e (u2+v2). 

Consider now (e, f )  = bs + bu with bs and bu tangent vectors belonging to the stable 
and unstable directions at (x, ~). Then ~fZ(e,f)ao will have an effective support near 
bs + bu. It is easy to see that the effective support of "ff/'ulZ(e,f)ao won' t  intersect the 
one of  ~Z(e , f )a  o as s o o n  as: 

1 + e  a 
Ib l > 1 - e ,  

or  
1 + e  - #  

Ibul > 1 - e - ~  " 

I f  one remarks finally that 

~l(Z(e,f)at. ~. ~- �9 ~/~fe xg) ,Y) = ~(~x,~)(Y - x/he)e-' ~7 , 

dtZ(e'f)a is microlocalized around the point (x + x/he; ~ + v ~ f ) ,  one may con- i.e. v'(x,e) 
clude as follows: 

I f  the "effective support" of  a is roughly of size 1 and contains the origin, then 
Ei(h)-e a 

j rP ( - -W~)  (~xg_),~)t 2 is sensitive to the presence of 7 in a tubular neighbor- 

, /~e ~+1 in the unstable hood of ~ of size ,/~e"+lv "~e~-I in the stable direction and ,.Vl_e 
one.  
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