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Abstract. A method for analyzing and categorizing the vowels of a sung query is described and analyzed. This
query system uses a combination of spectral analysis and parametric clustering techniques to divide a single query
into different vowel regions. The method is applied separately to each query, so no training or repeated measures
are necessary. The vowel regions are then transformed into strings and string search methods are used to compare
the results from various songs. We apply this method to a small pilot study consisting of 40 sung queries from
each of 7 songs. Approximately 60% of the queries are correctly identified with their corresponding song, using
only the vowel stream as the identifier.
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1. Introduction

One can easily envision the following scenario: a music listener has heard a pop tune on
the radio, and would like to download a copy from a computer database of musical pieces.
However, he knows neither the name of the song nor its singer, but can remember some of the
music itself. The most convenient method for this listener to query the music database is to
sing the remembered portion of the pop tune into his computer. The quickly growing field of
music information retrieval often uses such a “query-by-humming” paradigm for searching
musical databases. In most such systems, a fundamental frequency tracking algorithm is
used to parse a sung query for melodic content (McNab et al., 1996; Smith et al., 1997;
Mazzoni and Dannenberg, 2001). The resulting melodic information is used to search a
musical database using either string matching techniques (Ghias et al., 1995; Smith et al.,
1997; McNab et al., 2000) or other models such as hidden Markov models (Birmingham
et al., 2001; Shifrin et al., 2002).

What happens, though, if the person singing into the retrieval system is a terrible singer?
One approach that is being investigated is the development of sophisticated models of pitch
error (Meek and Birmingham, 2002). Such models, however, still assume that the user of
the system has some moderate singing ability. This is a general flaw with the use of singing
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(or humming, or whistling) as the primary method of music information retrieval: what
happens if the user cannot “carry a tune”? In these instances, a system may be able to
increase performance by analyze and evaluate sung lyrics along with pitch and rhythm.

Specifically, we would like to identify the vowels that the user sings, since the vowels
comprise the majority of time in singing (Miller, 1996). These vowels can then be used in
conjunction with pitch and rhythm as separate streams of information in the user’s query. The
most robust music query system is one that is user-independent. Therefore, it is desirable to
avoid training a query system to respond to a particular voice. For this reason, conventional
speech recognition algorithms are not applicable, as typically these systems require training
a hidden Markov model with 40 or more observations (Rabiner, 1989). Additionally, these
methods of vowel identification are likely to fail when the pitch of the query starts to vary by
an octave or more, as is common in singing but extremely uncommon in speech. For these
reasons, we explore a self-similar method of vowel identification, in which vowel content
is compared within a single query for the purposes of identification. In this self-similar
evaluation, the sung vowels are compared to each other within the ongoing vocalic stream,
rather than being compared to a specific template. This has the advantage in that different
styles of music and accent affect the vowel coloration, e.g., country-western vs. Italian opera.
In addition, as the self-comparison is within a single sung phrase, there is no need for training.

In this paper we develop the structure of self-similar vowel analysis and illustrate its appli-
cation to a set of sung queries. Results are presented from a study involving a small number
of singers producing a database of a few common, well-known songs. These results are
discussed with respect to scaling the method up to a production-level song-query database.

2. Vowel analysis method

In the following, we describe the method of self-similar vowel analysis in a tutorial format,
through its use in a small study. The general framework for this method of vowel analysis
can then be applied to a larger data set.

2.1. Query recordings

A total of 7 songs were sung 4 times each by every user. Songs common to the United
States were chosen: “Happy Birthday,” “Yankee Doodle,” “America the Beautiful,” the
Beatles’ “Yesterday,” “Row, Row, Row Your Boat,” “Somewhere Over the Rainbow,” and
“My Bonnie Lies Over the Ocean.” Only the first phrase of each song was used in an attempt
to keep the input queries at roughly the same length. The lyrics for each song were provided
to the singer, but no pitch information was given. The users were given no other instructions
as to musical performance.

Users were recorded in a quiet environment and were alone throughout the recording
session. Each recording required roughly 20 minutes. A Sony MZ-R55 portable minidisc
recorder and an Audio-Technica AT831b lavaliere microphone were used to record the
sung passages. The microphone was attached to the user at the level of their sternum. Initial
sampling rate was 44.1 kHz. The data were transferred digitally to computer where they
were downsampled to 8 kHz for analysis.
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2.2. User population

Users were volunteers who were drawn primarily from the graduate student population in
the EECS department at the University of Michigan. A total of 10 singers were recorded,
with 7 male and 3 female, ranging in age from 23 to 41. The singers were not screened in
any way. Six of the users had some musical background, while 4 had no musical experience.
All were native English speakers.

2.3. Signal analysis methods

A spectrogram is used to obtained information about the distribution of signal energy over
time and frequency. Each time splice in the spectrogram is normalized to have the same
average power. For each time slice, the fundamental frequency of the sustained vowel
f0 is estimated. This allows the amplitude of the harmonic partials to be located with a
simple peak-picking algorithm which searches for local maxima on the spectrogram. Both
the size and location of the regions searched for harmonic partials is dependent upon the
fundamental frequency. Specifically, given a time slice of the spectrogram S( f ) in decibels,
the amplitude of the kth harmonic partial is calculated as

Ak = max{S( f )}, f0(k − 1/2) ≤ f < f0(k + 1/2). (1)

The amplitude of the harmonic partials within each frame are converted to a vector with
fixed dimension by linearly interpolating between neighboring partial amplitudes (in dB)
across frequency.

In the present study, we performed a spectrogram analysis on each 8 kHz recording,
using a 512-point Hamming window and a 512-point FFT with an overlap of 307 points.
This corresponds to a data window of 64 ms at intervals of 26 ms. Fundamental frequency
used for the pitch-adaptive method of partial extraction was determined by using a standard
spectral contraction method for pitch detection (Hermes, 1993). Interpolation over the peaks
was performed over a 512-point evenly spaced grid of frequencies.

2.4. Data clustering methods

Once the signal has been broken into successive slices of interpolated spectra, clustering is
performed to segment the stream into vowel groups using the nearest mean reclassification
algorithm (NMRA) (Fukunaga, 1990). In this algorithm, the number of clusters is specified
in advance; otherwise, clustering is performed without any strong assumptions concerning
the structure of the data. In brief, NMRA proceeds as follows:

1. Choose the order of the cluster model, L .
2. Randomly assign each data vector vi to a cluster. Let the label of the i th vector be C(i),

so C(i) ∈ {1 . . . L}.
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3. Find the mean vector for the j th cluster, v̄ j , as

v̄ j = 1

|u|
∑
k∈u

vk, u = {i : C(i) = j} (2)

where |u| is the cardinality of the set u (i.e., number of elements in u).
4. Re-classify each data vector to the cluster with the nearest mean vector, using a Euclidean

norm as

C(i) = argmin
j

(v̄ j − vi )
T (v̄ j − vi ) (3)

5. Repeat steps 3–4 until the new clustering solution is the same as the previous clustering
solution.

In the present study, the number of clusters, L, is chosen to be four. This model order
was chosen empirically to generate enough clusters for basic vowel separation without too
many to cause problems with idiosyncratic vowel production. In general, the four clusters
tend to be: no vowel (either silence or a consonant), front (/i/-like) vowels, back (/u/-like)
vowels, and neutral (/e/-like) vowels. This coarse vowel representation (4 instead of the
typical 15 or so accepted vowels in Western singing (Titze, 1994)) provides more flexibility
across the range of voices and song production in identifying the sung vowel stream.

After every NMRA evaluation of a query, the clusters are sorted so that the NMRA
algorithm gives a consistent label to each of the identified vowel states. The clusters are
sorted by the second spectral moment of the mean cluster vector. For a vector v, we compute
the second spectral moment as

m = 1

K

K∑
k=1

(
vk − 1

K

K∑
j=1

v j

)2

(4)

where K is the dimension of v and vi indicates the i th element of of the vector v. Since the
spectral content of noise/silence is relatively flat, the second spectral moment is the smallest.
As the vowel /i/ has a strong high-frequency second formant (2000–4000 Hz), its second
spectral moment is also somewhat low. The /u/ vowel, whose first and second formants tend
to be in the low frequency range (<1000 Hz), has the largest second spectral moment.

The NMRA algorithm relies upon a random initial configuration for clustering. Therefore,
the final result is dependent upon this random initial configuration. To avoid obtaining an
unlikely solution based upon a poor choice of initial configuration, the NMRA algorithm is
run a total of 30 times for each data set. The most frequently occurring clustering solution is
chosen as the final result for that data set. The number of runs was determined empirically;
repeated runs of the NMRA algorithm above 30 did not seem to alter the mode of the
solution.

This method of self-similar evaluation of vowels does not work on all types of input
queries. For instance, one can easily imagine this method failing if the user sang only one
vowel as the query. In this case, the NMRA algorithm would still seek to divide this query
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into 4 distinct classes. (The NMRA algorithm does not require that each cluster contain
data. However, in all cases evaluated here, all clusters did have at least one member).

To avoid analyzing a query that does not fall within the self-similar, four-cluster model,
a series of warning tests are evaluated using the NMRA results. These warning thresholds
were all developed empirically from test data generated to resemble a genuine query. The
warnings are as follows:

1. The overall duration of the input signal must contain at least 100 time slices. In other
words, under the current settings, a query must be at least 2.6 seconds long.

2. Each cluster in the NMRA solution must contain at least 15 time slices.
3. No more than 20% of the NMRA solutions can differ from the mode solution. In other

words, under the current settings, only 6 out of the 30 NMRA solutions for one query
can be different from the final chosen solution.

2.5. String matching

In order to compare queries to songs that exist in a database, we have chosen to represent
our songs as strings. Two strings are then compared using an edit distance metric, which
determines the number of insertions, deletions, and replacements necessary to convert one
string into another (Needleman and Wunsch, 1970). Because we cannot know how much
of a song will be included in a query, we employ a modified sub-string-based edit distance
calculation. Under this modification, we do not penalize deletions from the beginning or
end of the database string. Thus, if a query contains only a few phrases from the middle of
a song, the resulting query is not penalized because of its length or position in the song.

Rather than operating directly on the results of vowel string clustering, we use these
results to produce a simplified string that can account for differing rates of production. The
NMRA algorithm returns a stream of numbers to represent a given query, where each time
slice is given a number that corresponds to a vowel cluster label. Instead of using this stream
directly, we form a reduced eight-symbol representation: one short and one long duration
symbol for each of the four vowel clusters. The duration of each vowel is determined by
the number of successive time slices with the same value of vowel cluster. If the duration is
longer than the average duration across the query, then that vowel is labeled long-duration;
otherwise it is a short-duration vowel.

In our proposed system, one substantial modification to the traditional edit distance
calculation is the choice of penalties that vary for each character in the string. Under the
standard edit distance calculation, there is some fixed penalty associated with insertion,
deletion, and replacement operations, and these penalties are often equal to unity. Here, we
modify the penalty functions to reflect our confidence in the vowel classification that has
been assigned. Each character in a string is made up of a number of time slices, all of which
must have the same vowel classification. We find a mean spectrum x̄ for each character in
the string by averaging the spectra {xk} from that character’s time slices. The character’s
mean spectrum (the mean across the duration of that character) can then be compared to
the vowel cluster’s mean spectrum (the mean across all time slices that have been identified
as that vowel by the NMRA algorithm). If the character spectrum is very similar to the
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cluster spectrum, we associate a high confidence value with this character identification,
and we penalize heavily for any modification to this character. Conversely, if the character
spectrum and the cluster spectrum are very dissimilar, then the confidence value should be
low, and the penalty for manipulating this character should be slight.

To compute the penalty function for each character, we first find the norm of the difference
between the character spectrum and the cluster spectrum in decibels as

d =
K∑

k=1

(x̄k − v̄k)2 (5)

where x̄i is the i th element of the character’s mean spectrum and v̄i is the i th element
of the mean cluster vector of the cluster that the character belongs to. We then take the
inverse of this value to be the penalty and normalize so that the maximum penalty for
any given character string is equal to unity. This penalty function is used for deletion and
insertion operations. For a replacement operation, we add the cost of a desired insertion
and deletion pair in “quadrature”. That is, the replacement of a character with penalty p
with another with penalty q yields an overall cost of

√
p2 + q2. If we were to add the two

penalties directly, then replacement would never be used, as it would be no less expensive
than a deletion-insertion pair. By adding the penalties in quadrature, this process becomes
analogous to the calculation of error when adding two uncorrelated variables, each of which
has an associated error.

2.6. Evaluating the success of the search

In our limited test data set, we have no “correct” vowel stream for each song to use in the
evaluation of the string matching success. Instead, we compare every string in the query set
to every other string in the query set. Then, we find the nearest neighbor across all queries.
We say that a “correct” match occurs when a query from the same song is chosen as the
nearest neighbor.

3. Pilot study results

3.1. Vowel clustering

Figure 1 shows a sample data clustering result for a single singer. The four clusters found
from the NMRA algorithm are shown in the figure by their respective mean spectra, averag-
ing the spectra (in dB units) across all members of each cluster. As can be seen in the figure,
the four spectra are quite distinct and reflect the general properties expected of each of the
vowel classes. For instance, the noise/silence spectrum (the heavy solid line) is relatively
flat, and the /i/-like spectrum (the light solid line) has a strong second formant, in the 2200
Hz range for this particular singer.

The four spectra above are representative only of a single singer. Each singer’s vowel
clusters have distinct spectra, as is expected for the different voices. The key is that the
different voices all have a shared characteristic—their signals divide into distinct vowel
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Figure 1. Sample vowel clustering for singer 6 singing a version of “America the Beautiful”. Each vowel cluster
is shown by its average interpolated spectrum. The heavy solid line is cluster 1 (consonants/silence), the light solid
line is cluster 2 (/i/-like), the dotted line is cluster 3 (neutrals), and the dashed line is cluster 4 (/u/-like).

classes. Again, the vowel spectra themselves are not compared across singer, but rather
a generalized representation (the stream of vowel labels) is compared. This effectively
divorces any idiosyncratic vowel production from the comparison process.

3.2. Nearest-neighbor matching

Figure 2 shows the percent correct in the nearest neighbor matches as a function of query
song. For each query, the nearest neighbor is found as the vowel stream that requires the
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Figure 2. Fraction of correct nearest-neighbor choices as a function of the query song. A correct choice means
that the nearest neighbor to the vowel stream is a vowel stream from the same song. There are 40 queries for each
song.
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fewest number of (weighted) edits to be transformed into the desired query. If that selected
vowel stream is generated from the same song as the query, then the selection is deemed
correct. There are a total of 40 queries for each song, for a total of 279 possible neighbors
from which to select, as we do not count the query itself as a possible neighbor. Therefore,
a 14% chance exists of a correct answer occurring at random. Across all songs, the nearest
neighbor selection is correctly chosen from the same song 60% of the time, and varies by
song between 42% (for “Yankee Doodle”) and 80% (for “America the Beautiful”).

One parameter that is likely to be influencing the results is the length of the overall strings
that are being compared. Since we are performing sub-string matching, there is no penalty
for deleting characters at the beginning or ending of the database string. However, there are
always penalties incurred for deleting characters in the query string that is being evaluated.
In the case of long-duration query strings, the overall edit-distance scores are likely to be
larger, because more deletions would have to be made to fit to a shorter string. Thus, long
strings are likely to be “closer” to other long strings simply because longer database strings
require fewer deletions.

Figure 3 shows the average string length as a function of song, along with the standard
deviation. It can be seen that the first song, “America the Beautiful”, has the longest average
string length. This song is also correctly identified the most often. In general, the trends in
figure 3 follow those of figure 3, indicating that string length may be an important factor in
the string selection. Indeed, when looking at the incorrect identifications, the overwhelming
incorrect choice is “America the Beautiful”, containing the longest string.

Figure 4 shows the nearest-neighbor results, broken down by singer instead of by song.
The overall average is 60% correct, with the variation by singer ranging between 32% and
100% correct.

It is clear that these two variables, song and singer, have a strong influence over the
results of the vowel query. In particular, it is important to note that the four singers with
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Figure 3. Average string length as a function of song. The string length is averaged across all singers and
repetitions. The errors bars show plus/minus one standard deviation.
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Figure 4. Fraction of correct nearest-neighbor choices as a function of the query singer. A correct choice means
that the nearest neighbor to the vowel stream is a vowel stream from the same song. There are 28 queries for each
singer.

no prior musical experience were singers 2, 5, 8, and 10. The vowels from three of these
singers (2, 5, and 10) were the most poorly identified of all the singers. This indicates that
musical training may influence vowel production, which is a less obvious connection than
its influence on pitch and rhythm production.

Figure 5 shows the fraction of queries for which the nearest neighbor is sung by the same
singer, as a function of the singer number. In general, the fraction of nearest neighbors from
the same singer corresponds roughly to the fraction correctly identified for each singer.
For singer 4, whose queries were correctly identified 100% of the time, many (79%) of
the selected queries were sung by that same singer. For singer 10, whose queries were
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Figure 5. Fraction of nearest-neighbor choices that are sung by the same singer as the query, as a function of
singer (regardless whether than choice was correct).
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Figure 6. Each panel shows the results for the 40 queries that originate from the song labeled in the top-right
corner of the panel. For each query, the average distance to each song is computed, averaging across the queries
from that song. The shortest average distance is selected between each query-song pair. The panels show the
fraction of time each song was selected as having the shortest average distance for that panel’s queries. The song
that is circled is the correct response, corresponding to the number of times the query song was selected as being
the best choice.

identified least, almost none of the selected queries were sung by singer 10. Again, the
trends in figure 5 seem to mirror those of figure 4, indicating that the matching is influenced
not by the singer of the given test query, but also by the singer of the reference queries.

3.3. Average distances between queries and songs

The nearest neighbor measure can be prone to outlier behavior. For instance, we may be
able to randomly generate 280 character strings and find one that closely matches a given
query. Rather than working with isolated matches, we can also look at average matches
across a population of character strings. For each song, we have 40 sung instances. We can
then measure the average distance between each query and the 39 remaining instances of
that song, as well as the average distance between each query and the 40 instances of each
of the remaining songs. Ideally, the average distance between a query and its song should
be shorter than the average distance between a query and all other songs.

Figure 6 shows the average distance between queries and songs. Each panel represents
the queries from a different song, so each panel represents the results from 40 queries. The
x-axis shows the different songs, and the y-axis shows the fraction of the 40 queries for
which the x-axis song was chosen as being the closest, after averaging the distances across
all queries corresponding to that song. For instance, looking at the “Happy Birthday” panel,
of the 40 “Happy Birthday” queries, roughly 40% them were closest to the “America”
character strings, roughly 20% were closest to the “My Bonnie” strings, etc. In each panel,
the correct song is circled. If the results were 100% correct, then we should see a delta
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function at 100% for the circled element, and all other elements would be at 0%. On the
other hand, if the results were randomly selected, then we should see a more-or-less flat
line across all songs, with each one receiving roughly 14% of the total.

We can see from the panels in figure 6 that four of the seven songs were correctly chosen
as being closest to the majority of their queries. The remaining three had the correct song
as the second choice. It is interesting to note that for the three second-choice results, the
first-choice result was always “America the Beautiful”, which correlates with the fact that
the string lengths for the “America” character strings are somewhat longer than those of
the other songs. Query length may influence the matching results: it is more likely that a
sub-string of a long reference string can be found to match a given query than that of a short
reference string.

4. System analysis

4.1. Qualitative analysis

The results of this small-scale study illustrate the potential viability of vowel-stream based
music information retrieval. However, the system presented here is far from perfect. The
system is currently only 60% accurate on a database of only seven songs. This suggests
that the algorithm as presented may not scale well to larger databases. In this section, the
system is analyzed to identify potential areas of improvement.

Currently, the weakest element of the system is the vowel extraction and classification.
It is not surprising that this task is difficult given the sizable body of research devoted
to unconstrained speech recognition. The four-cluster model was chosen to reduce the
complexity of the task to manageable levels, and it is remarkable that the NMRA clus-
tering algorithm naturally tends to select clusters that roughly correspond to non-vocalic
sounds and front, neutral, and back vowels. However, an analysis of the resulting clusters
shows that the simple approach taken here is not sufficient to produce robust and consis-
tent classification of vowels. This can be seen most clearly by examining the results of
the thirty NMRA trials run on each query. While many of the queries exhibit relatively
little variation with only one clustering solution strongly evident, a significant number
of queries show two or more sets of clusters that were each selected many times by the
NMRA algorithm. In most of these cases, such a lack of cluster robustness will set off the
third warning test, which indicates that 20% of the cluster solutions differ from the mode.
Unfortunately, this indicates a shortcoming in the analysis procedure rather than in the query
itself.

Another problematic feature of the NMRA clustering results is the inconsistency of
clusters between different repetitions of the same query by the same singer. One might
reasonably expect clusters to vary somewhat between singers or even among the different
songs being queried for the same singer. However, an inherent assumption of a query
system is that repeated queries should be represented by the system as roughly equivalent.
Unfortunately, the NMRA algorithm does not always represent the vowel streams for these
repeated queries in the same way. In some cases, the errors may be caused by improper
cluster registration across queries. There is some evidence that sorting the cluster means
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by spectral moment may not be sufficient to register the clusters in all cases, particularly
for higher pitched voices and voices that exhibit a strong singer’s formant. In most cases,
though, the variations for queries of the same song by the same singer cannot be removed
by a simple permutation of the cluster labels.

Ultimately, the problems with the NMRA-based vowel classifications seem to be primar-
ily a result of the use of an unsupervised classification method on data that does not exhibit
clearly defined clusters. This may be partly dependent upon the spectral representation
used for classification, but so far experiments have shown that the particular representation
used has little effect on the final results. For instance, the use of more traditional (and
compact) representations such as mel-frequency cepstral coefficients (Rabiner and Juang,
1993) produces little change in the system’s overall performance. While it is possible that
representations exist that may provide sufficient class separation to improve the perfor-
mance of the system, the nature of the data seems to suggest otherwise. For queries sung
in English and many other languages, vowels are not pure monophthongs. Thus, a given
vowel may transition smoothly from a front vowel to a neutral one, or from a back vowel to
a front one. Any frame-by-frame classifier will have difficulty with this type of data, since
it will necessarily need to classify frames that are “in the middle” between two classes. This
suggests the need for some higher-level analysis of the spectral data or clustering results
either before, during, or after clustering to improve cluster robustness.

The general instability of the NMRA algorithm also suggests that the string representation
employed by this system may not be ideal. While such strings might be a fine representation
given a relatively error-free representation of the vowel stream, string representations tends
to exacerbate the instabilities inherent in the clustering algorithm. Suppose an extended
vowel falls on the border between two of the clusters so that it is alternately classified as
one and then the other. The resulting string will be populated by numerous short vowels
rather than a single long one. When compared to a string for which this vowel was properly
classified, there will be a significant edit distance penalty. The difficulties introduced by this
situation are alleviated somewhat by the classification confidence scores used in the edit
distance calculations. Unfortunately, a similar and more common problem exists that is not
directly addressed by this confidence measure. Typically, short vowels interspersed with
consonants (as often occur during a passage of rapid notes) are not classified consistently.
The result is a possibly lengthy string of short vowels which may have little to do with the
vowels actually sung. Ideally, the system would treat these segments as suspect and reduce
their influence on query comparisons. In this system, however, rapid passages such as this
may be encoded as lengthy portions of the string, owing to the rapid spectral changes that
occur during such portions of the query.

Unfortunately, it is not clear what form a better representation might take. Intuitively,
one might suggest that duration should play a more key role in such a representation.
This takes advantage of the “landmark” property of long, extended vowels, which mark
long notes, typically at the ends of phrases. Visually, the use of such “landmark vowels”
seems to be the easiest way to register two similar vowel streams. This also exploits the
increased likelihood that extended frames of similarly classified data have been correctly
classified. Such a duration confidence score might be employed instead of or in addition to
the classification confidence currently employed.
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4.2. Edit distance analysis

One of the most prominent effects noted in the results of the present study is the strong
correlation between string length and retrieval performance. This effect can be explained as
a result of the sub-string matching methodology used. When a query string is longer that the
database string it is compared against, a penalty to the edit distance based on the difference
in length between the two strings is incurred. If, however, the query string is shorter than the
database string, the edit distance will actually be reduced because of the greater number of
unpenalized edit sequences that may be matched. A Monte Carlo experiment was employed
to examine this phenomenon quantitatively. Two uniformly random 8-symbol strings with
a particular length ratio were generated and the edit distance between the two strings was
measured. For simplicity, the confidence penalty was neglected so that each string edit
operation was assigned unity cost. For each length ratio, this experiment was repeated
10,000 times. The edit distances are normalized by the length of the query string. The mean
and standard deviation of the normalized edit distances are plotted as a function of the ratio
between the database string and the query string in figure 7. The string length effects noted
above can be clearly seen in this figure.

Figure 7 shows that longer strings in the database will tend to have shorter edit distances
to a given string than will short strings. Thus, it is not surprising that longer strings would
have a higher probability of selection. Since the present study also shows this trend, we
examine the actual edit distances between strings used in the present study. Figure 8 shows
the average normalized edit distances from our study plotted as a function of string length
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Figure 7. Expected length-normalized edit distance as a function of the ratio of compared string lengths, measured
using Monte Carlo simulation. The edit distance is normalized by the length of the query string. Error bars indicate
plus/minus one standard deviation.
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Figure 8. Average length-normalized edit distances between strings used in the pilot study as a function of the
ratio of compared string lengths. The various classes of comparison (same song same singer, same song different
singer, and different song) are shown separately.

ratio. In this figure, the data is separated into three classes: “same song/same singer,” “same
song/different singer,” and “different song.” The expected normalized edit distance is also
plotted for comparison.

We expect the different-song class to behave in a manner similar to the expected nor-
malized edit distance. Figure 8 shows that the different-song class has a slightly lower edit
distance than the expected value. This is most likely due to correlations between the different
songs or the production mechanism that are not accounted for by the uniform-random-string
model. We further expect that the same-song classes will have lower normalized edit dis-
tances than the different-song class, with the same-singer class having the lowest normalized
edit distance. Figure 8 does in fact show this trend; however, there is not as much separa-
tion between the classes as would be ideal. It should be noted that the classes have similar
standard deviations to those shown in figure 7; the standard deviations are not plotted for
clarity. This means that the mean value of each class is generally within one to two standard
deviations of the others. This overlap in edit distance between classes reduces retrieval
performance significantly.

We can see in figure 8 that the same-song classes are not exclusively dominated by the
trend shown in the different-song class and the expected normalized edit distance. For the
same-song classes, there is local minimum at the string-length-ratio of 1. This indicates
correlation between strings generated by same-song queries, and suggests that a different
model for same-song error should be employed. One potential alternative model suggests
that each query string is an error-corrupted realization of some ideal string. Then, the edit
distance between two same-song queries can be attributed to an error insertion mechanism.
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Figure 9. Expected normalized edit distance between a string and its corrupted version plotted as a function of
per-symbol error probability. Bars indicate plus/minus one standard deviation of the normalized edit distance. The
symbols show the intersection of this curve with the mean normalized edit distance obtained for each of three
comparison classes.

Under such a model, we expect deviations from a length ratio of one to result in higher edit
distances. Then, as error begins to dominate the string, the trend seen in figure 7 will become
more prominent. For simplicity, we model the error as a uniform per-symbol probability of
error, which may be an insertion, deletion, or symbol replacement (with equal probability of
each type of error). By measuring the edit distances resulting from such an error insertion
process, we can estimate the error probability that links different strings in each of the
classes.

Figure 9 shows the expected normalized edit distance as a function of the per-symbol
probability of error. Under this model, changes in length result from the error insertion
process and thus length is not treated as an independent variable. Symbols are included
to indicate the intersection of each class with the expected edit distance curve. For the
same-singer/same-song and same-singer/different-song classes, the mean normalized edit
distances are 0.518 and 0.574, respectively. These edit distances correspond to equivalent
per-symbol error probabilities of 0.66 and 0.86. Note that the expectation curve does not
reach the mean normalized edit distance of 0.602 for the different-song class below an
error probability of 1. This is because of our error insertion model, under which an error
probability of 1 does not completely decorrelate the corrupted string from the original
string. The equivalent per-symbol error probabilities for the other two classes are very
high—especially since one would hope that two queries by the same singer would be
represented as similar strings.

One particularly interesting feature of figure 9 is the decrease in slope at large values
of per-symbol error probability, which indicates that, at these values, different classes of
comparison are less separated by edit distance than at smaller values of per-symbol error
probability. On the one hand, this shows that the sub-string-based edit distance employed
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here loses its ability to distinguish classes as queries become more strongly corrupted by
error. This is particularly true for the current system, where the equivalent per-symbol
error probabilities are significant. On the other hand, this suggests that by reducing the
variability of the string coding methodology, we should be able to significantly improve
class separation and thus retrieval performance. Further, this indicates that each incremental
decrease in error will yield a greater increase in class separability.

5. Discussion

The results of the present small-scale study indicate that the vowel stream produced in a
sung query does provide sufficient information to allow for database retrieval. Further, we
have seen that enough differentiation exists between the front, neutral, and back vowels of
a singer to separate and crudely identify them using only a simple clustering algorithm.
The vowel stream may form an important part of a music retrieval system, especially for
queries that may contain little useful pitch or rhythmic information. However, before the
system can become generally useful a number of improvements need to be made.

The most important improvement that must be made to the system involves the vowel
classification subsystem. The NMRA vowel classification works well enough on individual
queries, but lacks consistency across queries that should be very similar. This is partly a
result of the use of an analysis method that is entirely self-referential in nature. The use
of a self-referential method of analysis and classification provides many benefits, such
as the ability to compare singers directly regardless of the various factors that alter vowel
quality and the ability to process a query without training. Unfortunately, the use of a purely
self-referential analysis makes the classification task more difficult and tends to degrade
consistency across queries. The introduction of a short training phase employing a well-
chosen set of lyrics and system-guided rhythmic alignment could improve the consistency
of classification results while also allowing the collection of useful statistics about vowel
production. The resulting analysis could employ both self-reference and other cross-query
information to perform classification.

Another possible improvement could come by performing classification at a higher level
than frame-by-frame. Using similarity matrices like those investigated by Foote (1999) and
Bartsch and Wakefield (2001), one can observe extended blocks of frame similarity that
might be grouped together for classification to eliminate spurious cluster transitions. This
may also improve classification accuracy. One of the primary difficulties with this approach
would be dealing with diphthongs and fast vowel sequences. This analysis might also
examine vowel prominence and stability for the purpose of detecting “vowel landmarks”
that could form the basis of a somewhat different representation of vowel streams.

Ultimately, it will also be necessary to find some method of representing vowel streams so
that the search database can be populated with something other than queries. It is conceivable
that useful vowel streams could be generated in a manner analogous to text-to-speech or
text-to-singing synthesis. In this manner, one could generate an entire database of vowel
streams from a database of lyrics or lyrically annotated musical scores. Ideally, the vowel
streams would be extracted from original recordings when available; however this task
is likely to be roughly as difficult as general-purpose melodic extraction. The tradeoff is
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very similar to that made by many music retrieval systems that employ symbolic musical
representations rather than attempt to work with audio directly.

6. Conclusions

This study suggests that a simple clustering of the spectral content of a sung query can isolate
different vowel classes within a single query. When applied to a small-scale database of
40 instances of 7 songs, 60% of the queries were correctly identified using only the vowel
stream. We expect that the addition of pitch and rhythm will substantially increase this
performance, and that vowel identification can be used to complement other methods of
music information retrieval.
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