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Abstract:  The dynamic stability of vortex solutions to the Ginzburg-Landau and 
nonlinear Schr6dinger equations is the basic assumption of the asymptotic particle 
plus field description of interacting vortices. For the Ginzburg-Landau dynamics 
we prove that all vortices are asymptotically nonlinearly stable relative to small 
radial perturbations. Initially finite energy perturbations of vortices decay to zero 
in LP(IR 2) spaces with an algebraic rate as time tends to infinity. We also prove 
that under general (nonradial) perturbations, the plus and minus one-vortices are 
linearly dynamically stable in L2; the linearized operator has spectrum equal to 
( - c % 0 ]  and generates a Co semigroup of contractions on L2(IR2). The nature of  
the zero energy point is clarified; it is resonance, a property related to the infi- 
nite energy of planar vortices. Our results on the linearized operator are also usbd 
to show that the plus and minus one-vortices for the Schr6dinger (Hamiltonian) 
dynamics are spectrally stable, i.e. the linearized operator about these vortices has 
(L 2) spectrum equal to the imaginary axis. The key ingredients of our analysis are 
the Nash-Aronson estimates for obtaining Gaussian upper bounds for fundamental 
solutions of  parabolic operators, and a combination of variational and maximum 
principles. 

1. Introduct ion 

In this paper, we study the dynamic stability of vortex solutions of the Ginzburg- 
Landau and nonlinear Schr6dinger equations: 

u t  = A u  -c- (1 - lul2)u --  ~5~ 
&7 ' 

(1.1) 

- i u t  = Au + (1 - lul2)u - 6E 
& 7  

(1.2) 

Here, u = u(t,x) is a complex valued function defined for each t > 0 and x 
(x~,x2) E IR 2. A = 02 + 02 denotes the two-dimensional Laplacian. The energy XI X2 
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functional 

R 2 
(1.3) 

The Ginzburg-Landau equation arises in the theory of superconductivity; see 
[4, 11,20] and references therein. The nonlinear Schr6dinger equation is a basic 
model for superfluids; see, for example, [7, 10,24, 15, 12]. These equations also play 
a central role as universal envelope equations for bifurcation problems and pattern 
dynamics; see, for example, [25]. 

Equations (1.1) and (1.2) admit vortex solutions. These are solutions of the 
form: 

~Pn(x) = Un(r)e inO, n = 4-1, •  . . . .  , 

g~(0) = 0, gn(+oc) = 1, (1.4) 

where (r, 0) denote the polar coordinates IR 2. The functions ~gn(x) define complex 
vector fields in the plane: (xl,x2)~-+ (Real ~vn, Imag ~P,), whose zeros are called 
vortices or defects. Since the evolution equations (1.1) and (1.2) define continuous 
deformations of the complex vector field, u( .  ,x), if  the initial total winding number 
or circulation at infinity is different from zero, one expects a principal feature of the 
dynamics to be the interaction of vortices or local flow fields organized around the 
zeros of u(t ,x) .  A description of the dynamics of an ensemble of spatially separated 
vortices, each having the local structure (1.4), is therefore of fundamental interest. 

The systematic study of this problem was initiated by Neu [24]; see also the 
work of Pismen and Rubinstein [30], and E [11]. In these works, the regime of 
small e, the ratio of vortex core size to the separation distance between vortices, 
is considered. In addition to his asymptotic analysis, Neu [24] presents numerical 
evidence for the stability of one-vortices and the fission instability of n-vortices 
(Inl __> 2). This motivates the underlying assumption of these asymptotic studies 
that the one-vortices (Inl = 1 in (1.4)) are stable. For e small, a solution is sought 
in the form of a product of one-vortices plus small error terms of higher order: 

u(t,x) = II  %i + o(~),  (1.5) 
i=1 

where ni = • N > 2. Since, Un(r) --+ 1 as r ~ co, the ansatz (1.5) incorporates 

the assumption that for x in a neighborhood of xj( t ,e) ,  u ( t , x ) ~  7Jnj ( ~ ) .  
~ N 

In the small e limit, matched asymptotic analysis is used to derive a coupled 
system of ordinary differential equations for the functions xi(t), i = 1 , . . .  ,N, which 
describe the centers of the widely separated vortices. In the Ginzburg-Landau case, 
the motion of the vortex centers is governed by gradient flow dynamics, while in the 
Schr6dinger case, by Kirchhoff's equations for point vortices of ideal incompressible 
Euler equation; see [12] for another formal derivation. 

An alternative approach is to rescale (1.1) and (1.2) by X -- ex, T = ~2t. The 
rescaled equations are the same except that the factor e-2 appears in front of non- 
linearities. The problem then is to take the singular limit e -+  0. In recent work, 
F.-H. Lin ([20,21]) proved the validity of the motion law of vortices in the rescaled 
Ginzburg-Landan equation on a bounded domain with Dirichlet boundary data (see 
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also [31] for related results). The main tool is energy comparison based on the 
energy functionals and the characterization of their minimizers in the limit ~--+ 0 
studied earlier in Bethuel, Br6zis and Helein [4] for static vortices. 

Regarding stability, there is work on the Ginzburg-Landau equation considered 
on the unit disc. Lieb and Loss [19] showed that ~, restricted to functions satis- 
fying certain symmetry assumptions, has nonnegative second variational derivative 
at n =-4-1 vortices. More recently, Mironescu [22] further showed that the sec- 
ond variational derivative at the n = + 1 vortices is positive definite, and hence the 
spectrum of the linearized operator is strictly positive. This result can be recovered 
using our method. See Theorem 5.2 for a nonlinear asymptotic stability result in this 
case. 

For the case of the entire plane, IR 2, it remains an open problem to prove the 
validity of the effective particle description of interacting vortices on long time 
scales. A principal difficulty is that vortex solutions have infinite energy (see (1.3)) 
and are therefore difficult to treat by variational methods. (A construction of the 
vortices as minimizers of a relative or renormalized energy was given in [34].) 
For the Ginzburg Landau equation (1.1), Bauman, Chen, Phillips, and Sternberg 
[3] proved the large time asymptotic convergence of a class of solutions with zero 
winding number to the finite energy steady states consisting of constants of modulus 
one lu[ = 1. The vortex solutions of the gradient flow generated by the Abelian 
Higgs functional in the case of critical coupling turn out to have finite energy [16]. 
Demoulini and Stuart [9] showed the convergence of each solution to a unique static 
vortex solution of the same winding number. 

Our goal of this paper is to investigate the stability properties of the vor- 
tex solutions (1.4) under finite energy or L2(IR 2) perturbations. We confirm the 
basic assumption of the interacting particle plus field description of interacting 
vortices concerning the stability of one-vortices. We view this as a step toward 
providing a rigorous description of the motion of well-separated vortices on the 
plane. 

Our main results are: 

Theorem El (Ginzburg-Landau Vortices). Consider (1.1) with initial data: 

uo(O,r,O) = ~n + vo(r,O)e in~ n : • 1 7 7  . . . .  , 

where v0(r, 0) is a general complex valued function. We decompose solutions of 
the initial value problem as: 

u(t,r,O) = ~n + v(t,r,O)e inO , 

and v satisfies the evolution equation: 

( v v - ) t = M ( ; ) + N ( ; )  , (1.6) 

where M is the self-adjoint linearized operator and N ( .  ) consists of  nonlinear 
terms. Then: 

1) Nonlinear asymptotic stability for radial data. I f  Vo = vo(r)CLPNLq(IRe), 
where p c [ 3 , 6 ) ,  q = 7 - 1 p ,  7 E ( l + P , 3 ) ,  there exists an e = e ( p ,  7,~n) > 0 
such that as long as IlVollLpnLq < e, Eq. (1.6) has unique global mild solution 
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v E C([0, oo);LP). Moreover, 

Ilv(t)llL~ = C(1 + t) -(~ l ) P - I  , 

for t > 0 with positive constant C = C(e). 

2) Linear dynamic stability for general data. Ifvo = vo(r, O) C L2(~-~ 2) and Inj = 1,  

solution v = v(r, O, t) of  the linearized equation vt = My satisfies: 

Itv(t)llL2 ~ IIv011L2, v t  ~ 0.  

3) Resonance at zero energy. The L 2 spectrum of the operator, M, is ( - ~ ,  0]. 
Associated to the zero point in the spectrum is a resonance mode, generated by 
translation invariance of  (1.1). This function does not lie in L 2 but ties in L p for 
any p >  2. 

4) Nonlinear asymptotic stability of vortices on Ix[ ~ R. The n = • vortices, 
e in~ UR(r), defined on the disc of  radius R, BR, are nonlinearly exponentially asymp- 
totically stable relative to all small L 2 perturbations which vanish on the boundary 
of  BR. 

Remark. The result concerning the zero energy resonance has implications for 
the behavior of  the resolvent, (M - 2 / )  - I  as 2 -~ 0, and therefore the time-decay 
properties as t ---+ oc of  the linearized evolution in suitable function spaces [17]. The 
resulting slower time decay is a subtlety which would have impact on a nonlinear 
stability theory of  vortices in the plane. 

Theorem 1.2 (Spectral Stability of Schr6dinger Vortices). Consider (1.2)with ini- 
tial data: 

uo(O,r,O) = 7in + vo(ri O)e inO, n = • , 

where vo(r, O) is a complex valued function. We decompose solutions of  the initial 
value problem as: 

u(t, r, O) = 7tn + v(t, r, O)e in~ , 

where v satisfies the evolution equation: 

( v ) t = i a M ( V ) + N ( V )  . (1.7) 

Here iaM denotes the linearized operator, N(  �9 ) is the nonlinear part, and 

(10) 
a =  0 - 1  " 

Then the L z spectrum of  iaM is equal to the imaginary axis. 

The remainder of  the paper is organized as follows. In Sect. 2, we derive 
Eq. (1.6) for perturbation v and write the equation as a coupled parabolic system 
for the real and imaginary parts o f  v. Sections 3 through 5 address the dynamics of  
vortices in the context of  the Ginzburg-Landau equations, with Sects. 3 and 4 focus- 
ing on the radial case. In Sect. 3, we employ the vortex profile equation to convert 
the linearized operators into divergence form. Due to the vanishing of  the vortex 
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profile at r = 0, the parabolic operator of divergence form is degenerate at zero. 
We adapt the classical Nash-Aronson estimates using cutoff functions to obtain a 
pointwise Gaussian upper bound for the fundamental solutions. In Sect. 4, we apply 
these results to get decay estimates for linear semigroup and then prove the non- 
linear asymptotic stability of all n-vortex relative to radial perturbations. In Sect. 4, 
we use the variational characterization of principal eigenvalues, and the maximum 
principle to prove parts (2) and (3) of Theorem 1.1. We identify the possible growth 
modes of perturbations in n-vortex, Inl > 2. We also comment on how to adapt our 
method here to show nonlinear asymptotic stability of one vortices on the finite disc 
domain with given Dirichlet data as treated in [19] and [22]; see Theorem 5.2. In 
Sect. 5, we prove Theorem 1.2 using results in Sect. 4, as well as the Hamiltonian 
structure of (1.7). 

2. Preliminary Analysis 

We consider the Ginzburg-Landau equation: 

ut = Au + (1 - ]ul2)u, x E ]R 2, 

ult-o = uo (x ) ,  (2.1) 

where u : IR~ • ]R 2 ----+ ]R 2, and A is the two dimensional Laplacian. It is known 
that (2.1) admits vortex solutions of the form: 

~Pn = Un(r)  einO, n = =kl,-4-2,.... (2.2) 

The basic properties of U , ( r )  are [24]: 

1) U~(r) is the unique solution to the ODE problem: 

! n2 
grr+ gr-~g+(1-g2)g=o, 

U(O) = O, U ' ( r )  > O, U(§  = 1. (2.3) 

2) U~(r) has asymptotic behavior: 

Un(r) ~ ar n (1 

where a is a positive constant, and 

r2 ) 
4 n ~ 4  ' a s r - - + 0 ,  (2.4) 

n 2 

U , ( r )  ~ 1 2r2, as r ---+ oc . (2.5) 

We are interested in studying problem (2.1) with initial data: 

Uo(X) = (Un(r)  + vo(r, O))e i'O , (2.6) 

where (r, 0) is the polar coordinate of IR 2, and vo(r, O) is a small perturbation in 
LP(]R2), with p > 1 to be specified. We remark that writing the perturbation as in 
(2.6) is technically convenient for our later analysis and has no loss of generality. 
To examine the evolution of perturbation vo(r, O)e i'~ we write u as 

u(t, r, O) = ( U , ( r )  + v(t, r, O))e in~ . (2.7) 
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Substituting (2.7) into (2.1) and using Eq. (2.2), we derive the following equation 
for v: 

2ni n 2 
vt = Av + 7 v o  - 7 ~ v -  U 2 v -  U 2 g + ( 1  - U2)v 

- g ~ l v l  2 - (2U~Re{v}  + Ivl2)v, (2.8) 

where My is the linear part and N ( v )  is the nonlinear part. Later, we will write v 
into its real and imaginary parts (v = c~ + iri), and will also use M to denote the 
resulting linear operator. Some details in deriving (2.8) are: 

(veinO)t = A(Un(r)e  inO) + ~d(ve inO) + (l  - ]Un +/)12)(Un ~- v ) e  inO , 

vt = - ( 1  - U2)U.  + e-i"OA(ve i"~ + (1 - lUg, + vl2)(U. + v ) ,  

where we have used 
2ni n 2 

e-i~~176 = Av + -~-vo - rTV,  

and 
1 

VO = - - ( -  sin O, cos 0 ) .  
r 

I f  we express v in terms of  its real and imaginary parts, v = c~ + ifi, Eq. (2.8) can 
be rewritten as the system: 

2n - 7  at = Ar  - 7~rio + + 1 - 3U, 2 c~ - Un(c~ 2 + 1/2) _ 2U~c~2 _ (~2 + r iz)e ,  

2n - 7  ri, = Ari + 7 ~ o  + + 1 - U~ ri - 2Un~ri - (~2 + ri2)ri, (2.9) 

with initial data: (~0(r, 0), rio(r, 0)). 

R e m a r k  2.I .  In the case of  the dynamics of  Schr6dinger vortices, then we replace 
the left-hand side of  (2.1) with -Jut .  Subsequently in (2.9), the left-hand side vector 
(c~t, ri,)r is replaced by -Jo(o'gt, fit) r, where d0 is the unit symplectic matrix ( o o l ) .  

We shall first consider the radial case, i.e., c~0 = C~o(r), rio = rio(r). For functions 
= c@,t) ,and ri = ri(r,t),  the system (2.9) reduces to: 

O~ t ~- ~ I n ) o ;  _ Un(O~2 @ f12) _ 2Uno:2 _ (g2 q_ r i2 )o ,  

fit = 5~(n) fi - 2 U ~ r i  - (0{ 2 -}- ri2)ri  (2.10) 2 

(n2 ) 
s = A +  - 7  + 1 - 3 U 2 ( r )  

- + - 7  + 1 - U (r) 

where 

(2.11) 

The operators have domain of  definition @ = {u E H2(IR 2) : r - 2 u  C L2(IR2)}. We 
will estimate the semigroups generated by these two operators, and establish decay 
o f  solutions for system (2.10) in the coming two sections. Our results will hold for 
any n, so for ease of  presentation we only consider n = 1. We will replace Un by 
U, and abbreviate the operators in (2.11) and (2.12) into ~ai, i = 1,2. 

(2.12) 
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3. Gaussian Upper Bound for the Semigrnnp e ~21 

In this section, we derive the Gaussian upper bound for the fundamental solution of  
the parabolic equation: 

ut = s  (3.1) 

Equation (3.1) is not in divergence form. The key idea is to make use of  the vortex 
profile equation (2.3) to convert it into one. Let us verify the identity: 

(u-l~C~'zU)q = U - 2 V  �9 ( U 2 ~ 7 q ) ,  (3.2) 

for any smooth function q = q(r, 0). We compute: 

A ( g q )  = ( A U ) q  + UAq + 2 V U .  Vq 

= _(l_U2 l) - 7 ~  U q + U A q + 2 V U . V q ,  

SO 

A + 1 - U 2 1 ) - 7g (Uq) = ~*~ 

= U -I  �9 (U2Aq + 2 U V U .  Vq)  = U - I v  �9 ( U Z V q ) ,  

which is just (3.2). The semigroup e se2t is positivity preserving by parabolic max- 
imum principle or by the Feynman-Kac formula [32]. I f  U were not zero at 
r = 0, then in view of  (3.2), we could directly apply the results of  Nash [23], 
Aronson [1], Osada [27] and others (see [8, 13,26] and references therein) to con- 
clude that U-15~2U or 5('2 itself has pointwise upper and lower Gaussian bounds 
for their solution kernels. However, the fact that U(0)  = 0 makes the problem de- 
generate and prevents us from doing so. Actually there is no Gaussian lower bound 
for ~a2. This is easily seen; because for r ~ 0, $ 2  ~-" (A + 1 - ~ )  which implies 
exponential decay o f  e ~eit near r = 0. To establish the Gaussian upper bound, we 
will introduce a smooth cutoff function ~/ compactly supported in a ball centered 

1 at zero. Outside this ball we use identity (3.2) and inside the ball we use the r2 
term of  s to help us overcome the degeneracy caused by U(0) = 0. A careful con- 
struction of  ~/is necessary to piece the two parts together and achieve the Gaussian 
upper bound for the solution kernel of  ~ 2 .  We find it convenient to proceed along 
the line of  proofs in Osada [27], who in turn followed the original ideas of  Nash 
[23], Aronson [1], as well as Aronson and Serrin [2]. 

The properties of  the function ~/ are summarized in: 

L e m m a  3.1. There exists a C2([O, oe))  function ~1 = *l(r), r > O, such that: 

1) r/(r) =- 1, / f  r E [0,r0] , where r0 c (0, 1); 
2) ,l(r) =_ O, i f  r > rl, where rl c (ro, 1), and r 1 > 0 i f  r E [0,rl);  
3) 0 < 17(r ) < 1, rlr(r) <= O, for  all r >= 0; 
4) f o r  any r ~ supp{r/}, 

2 41tbl 2 At1/ 
2 - 2 U 2 - ~ - §  - q  =< - 1 ,  
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and 
1 - f 2 1 lOIr/~l~ Arq 

- - 7  -}- y/2 q- t/ ~ 0 ,  

Proof See appendix. 
Let p = p(t -s ,x ,y)  be the fundamental solution of  (3.1), which satisfies the 

semigroup property: 

p( t - s , x , y )=fp ( t - z , x , z )p ( z - s , z , y )dz ,  s <z  < t. (3.3) 

We then have: 

Proposition 3.1. 
only on the vortex profile U, such that: 

f p2(t-s,x,y)dy < 
R 2 

f p2(t - s,x,y)dx < 
R 2 

p(t - s,x, y) < 

For any s < t, x, y ~ ~R 2, there is a positive constant C, depending 

C ( t  - s )  -1  , ( 3 . 4 )  

C ( t  - s )  -1  , (3 .5 )  

C ( t  - s )  - 1  . (3 .6 )  

Proof Note that (3.4) and (3.5) are similar, and (3.6) follows from (3.4) and (3.5) 
by the semigroup property. So we focus on the estimate (3.4). Next observe that 
we can, without loss of  generality, set s = 0, and x = 0. It follows from (3.2) that: 

qs = qU(U-I s q) = qUU-2V . (U2V(U-l q)) 

= U - l q V .  ( U a V ( U - l q ) ) .  (3.7) 

Let 
E(t) = fp2. (r/2 + (1 - r/)Z)dy. 

With the notation, f = fR2 dy, we have: 

Et = f 2ppt(t/2 + (1 - t/)2)dy = f 2ps + (1 - t/)2)dy 

= f 2(P~IZ)(Ap+ ( 1 - u Z - ~ )  P) 

+f  2p(1-q)Z(Ap+ ( 1 - u Z - ~ )  P) 

=_I+II. 

Concerning/ ,  our strategy is to use the dominance of  - r  -2 for small r. 

I = - f 2 V ( p ~ 2 ) . V p + 2 f ( p ~ ) 2 ( l - U  2 - 7  51) 

= - 2 f  [ r /V(pr / )+  pr/Vr/]. Vp + 2fp2r/2 (1 - U 2 -7~1 ) 

= - 2 f  V(pr/)  �9 (t /Vp + pVr/)  + 2 f  pV(p t / )  �9 Vr/ 

-2 f r lVr l 'PVP+2fp2r l2 (1 -U2-71 )  

(3.8) 

(3.9) 

(3.1o) 

(3.11) 
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= - 2 f  [V(p~/)[ 2 + 2 f  pV(prl). Vrl 

§ f V(rlVrl)pz + 2 f p2rl2 ( 1 -  U2 - ~ )  (3.12) 

<-f]V(pt l )[ i+f[[Vt l lgp2+V(t lVt l )p2+2~12p2Ql-g2-~)]  

( 2 21V~12 ~) 
= - f  [V(p~/)[ 2 + fparl= 2 - 2U 2 - ~ + ~ + . (3.13) 

By the Nash inequality [23]: Ilull 4 __< colllu[12llVul[ 2, 

(f(pq)2)2 > ~ (f(pr /)2)2 
f [V(pq)[ 2 > co ( f p ~ ) 2  = ~o ( - ~  - co(fp2~12) 2 , (3.14) 

where co is a universal constant. Inequality (3.14) implies from (3.13) that: 

/ 
I < - c o ( f p 2 r l 2 )  2 4- fp2tl2 ~2 - 2 U  2 - - 

Now using (3.7), we have: 

II = 2 f ( 1 - t l ) 2 U - I 1 2 7 V , ( U 2 V ( U  l p ) )  

- 2 f  U2V(U-lp). V((1 - ~ / )2U- lp )  

2 
-- r/~-- + . (3.15) 

z -21" U2((1 - r/)V((1 - ~l)U-~p) + ( l  - r/)U I p V ( l  - r /)) .  V(U-~p) 

- 2 f  U2[V((1 - ,I)U lp)( (1  - r / ) V ( U - l p )  + U - l p V ( 1  - r/)) 

-U-lpV(1 - tl). V((1 - rl)U-Ip) + (1 - r / ) U - l p V ( 1  - t/)- V ( U - l p ) ]  

= - 2 f  U2[IV((1 - r / ) U - l p ) [  2 - ( U - ' p ) 2 [ V ( 1  - ~/)[2] 

- 2 f  U2[V((1 - t / ) U - l p ) l  2 + 2 f p e [ v q l  2 

< -2c, f IV((1 - ~/)U-~p)I 2 + 2fp2jVrlr 2 , (3.16) 

where here and below c~ > 0 denotes a constant depending on r/. Again, by Nash 
inequality, we have: 

f IV((1 - rl)U-Zp)l 2 > on(f(1 - / ~ / ) 2 p 2 ) 2  (3.17) 

Inequalities (3.17) and (3.16) yield: 

II <= - c , ( f ( 1  - ?/)2p2)2 ~_ 2fp21Vt/[2.  (3.18) 
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Combining (3.15) and (3.18), we get: 

Et = I + II 

< -min(c0 ,  c~)((fp2q2) 2 + ( f ( 1  - ~)2p2)2) 

2 4 IVt/12 + f P2t12 (2  - 2U2 - ~ + ~ - -  + ~ ) 

1 
< - -  min(co, c~)(fp2(q 2 + (1 - ~/)2))2 
= 2 

( 2 4 ' V t / ' 2 - ~ )  
+fpa~2 2 - 2U 2 ~-~ + t / ~  + , 

o r  

1 ( 2 
E t  <= -~min(co ,  cq)E 2 + fp2q2 2 - -  2 U  2 - ~ § - -  

By Lemma 3.1, we then have: 

which implies: 

o r  

4lvql2 ~ )  
t/2 + . (3.19) 

1 
Et < - ~ min(c0, c n ) E  2 - fp2q2 , (3.20) 

1 
EI < - ~ rain(c0, c~ 7)E 2 , (3.21 ) 

E(t) < _C V t > 0 ,  (3.22) 
= t '  

where C depends on ~/ and U. Inequality (3.4) follows. This completes the proof. 

Proposition 3.2. Let r > O,(r be fixed. Let v(y) E Lz(IR 2) NL~176 2) such that 
v(y) = 0 if  ]y - x] < r. Suppose that u(t, y)  is a solution of  the Cauchy problem 
of(Or - Y2 )u  = 0 in (a, oo) x IR 2 with initial vahte u(a,y)  = v(y). Then for any 
t, ~ < t < a + r 2, we have: 

lu(t,x)l <= C(t - ~)-~ . exp{-Cr2/( t  - ~))llvl12, (3.23) 

with C a positive constant. 

Proof Without loss of  generality, we assume ( a , x ) =  (0,0). For 0 < s < t, define: 

h(s, y) = - C t  [y12/(2t - s) , (3.24) 

for some C1 > 0 to be chosen. Consider the equation 

ut A u + ( 1  U2(r) ~ )  = - - u - ~ 2 u ,  (3.25) 

and set 
m(r) = r/2 + (1 - r/) 2 . 

Multiplying both sides of  (3.25) by m(r)ue 2h, integrating over (0, ~) x IR 2, we have: 

f fm(r)ue2~u, ds dy = f d s f  m(r)ue2h(Au + (1 - U 2 - r - 2 ) u ) d y .  (3.26) 
0 R 2 0 R 2 
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The left-hand side of (3.26)  is: 

f ~m(r)e2hu2dylS-~o- f fe2hmu2h, dsdy. (3.27) 
R 2 0 R 2 

The right-hand side of (3.26)  is: 

~ff  rl2ue2h(Au -+- (1 - U 2 - r - 2 ) u ) d y  ds 
o 

T 

+ f  f(1 - tl)2ueZh(Au + (1 - U 2 - r - Z ) u ) d y d s  
0 

= ff t l2ue2h(Au + (1  - U 2 - r - 2 ) u ) d y d s  
0 

+ f  f(1 - ~ ) 2 e 2 h ( u - l b t ) V ( U 2 V ( U - l u ) )  dy ds 
o 

T 

= ff t l2ue2h(Au + (1  - U 2 - r - 2 ) u ) d y d s  
0 

- J ' f V ( ( 1  - r l ) 2 e 2 h ( U - l u ) ) U 2 V ( U - l u ) d y d s  
0 

_= I + / / .  (3.28) 

We can rewrite the first term as: 

[ = f f  - -  V ( t / 2 u e 2 h )  �9 V u  + q 2 u 2 e 2 h ( 1  - -  U 2 - r -2) 
o 

"g ~ "C 

2 2h 2 2 2h 2 2 2h - f f u V ( ~  e ) V u +  �9 ff~ u e (1 V 2 = - f f ~ l  e IV.I _~-2 )  
o o o 

T 
2 2h 2 1T i f  2 2 h 2  2 2h f f t l u e  ( 1 - U  2 A(~ e )u + - r  -a)  (3.29) = -ff  e Iv.P 

o o 

U s i n g  t h e  C a u c h y - S c h w a r z  i n e q u a l i t y ,  t h e  s e c o n d  t e r m  c a n  b e  e s t i m a t e d  a s  f o l l o w s :  

II  = - f  f ( 1  - 1])2S2e2hlv(s- lu)12 dyds  - f f UuV((1 - q ) 2 e 2 h ) - V ( U - l u ) d y d s  
0 0 
"C 7; 

= - f f ( 1  - n)2uzs ~u)l 2 d y d s -  f f u u ( 1  - t/)22e2hVh �9 V(U- 'u)dyds  
o o 

T 

_ f f Uue2hV((1 _ ~/)2). V ( U - l u )  dy ds 
o 

< - f f ( l o  - rl)ZU2e2hlV(U-~u)12 dyds+ ~ f f ( 1  - ~)21V(U lu)12e2hU 2 dyds 

": 1 z 

+ S  f f ( 1 0  - -  rl)2e2hu21Vhl2 dyds  -l- ~ o f f ( 1  - r l )2g2e2hlv(g  lu )12  dyds  

+S f f u%2hlVrll 2 dy ds . 
o 
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2 f  f(1 - ~)2u%2hlV(U-~u)l 2 dy ds 

2 2h 2 +8f fe2hu2lVh[2 dyds + 8f fu e [Vq[ dyds. (3.30) 
o o 

It follows, using the properties of ~I in Lemma 3.1, that 

Z@II < f f [ ~ @ l O  Vrl2+(1-U2-r-2)]  ~-  

+ f f (lVh[2tl 2 + 10[Vhl 2 + Ah)e2hu2dyds 
o 

< ff(Ah + ll[Vhl2)e2hu2dyds. (3.31) 
0 

By (3.26), 

m(r)e2hu2];-~ o < f f(mh, + lllVh[ 2 + Ah)u2e2hdyds 
o 

=< f f (44C1(C1- ~4) ~s]Y[2 2t----s/4Cl ~ u2e2hdyds. (3.32 ) 
0 

Choose Ct = ~min{m(r)'r C IR+}. Then (3.32) implies, since v is supported 
where l yl > r, that 

sup f e2hu2(s,y)dy <= C f m(r)e2hv2(y)dy. (3.33) 
sC[0,t] 4lylZ<<_t ly[>r  

For (s, y) such that s ~ (0, t), 41Yl 2 < t, h(s, y) => - -~;  for (s, y) such that s ~ (0, t), 
ly l  > ~: 

C1 r2 Clr 2 
- 2 t  - s 2t 

Thus 
C 1 r 2 C 1 r 2 

sup f u2(s,y)dy < Ce ---c- f v2(y)dy < Ce-=-llvll~, 
sC[O,t] 4lyl2_<_t [yl > r  

and so 
t 

f f u2(s,y)dy ~ Cte-@ll~lh~. 
0 41y12 <t  

By the local parabolic estimate (see Proposition 3.4 below): 

u(t,O) <-_ Ct -~ f u2dyds , 
4lyl2_-<t 

for some C > 0. It follows from (3.34) and (3.35) that 

(3.34) 

(3.35) 

(3.36) 
1 r 2 

u(t,o) ~ Ct-=e-C~vl]vlk2, 

for t C (O, r2]. The proof is complete. 
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Theorem 3.1, Let p(t,s;x, y)  be the fundamental solution of  ut = s 2u. Then 

0 < p ( t -  s;x ,y)  < C l ( t -  s ) - l e  -c21x-yl2/(t-s) , (3.37) 

for all t > s, x, y, where C1 and C2 are two positive constants depending only 
on U. 

Proof. We follow the arguments of  Aronson [1] or Osada [27], and include them 
here for the sake of  completeness. First, if  t - s > r 2, by Proposition 3.1: 

Ix-A 2 
p(t ,s;x ,y)  < C ( t - s )  -1 __< C ( t - s ) - l e  4<,-,~ (3.38) 

We now focus on the case t -  s __< r 2. As in the proof of  Proposition 3.1, the 
pointwise bound (3.37) is obtained using the semigroup property of  p ( t -  s,x,y),  
(3.3). We first break the integration region in (3.3) into the regions {z" Iz - x I > r} 
and { z ' l z  - x [  < r}, and apply the Cauchy-Schwarz inequality to obtain 

p(t - s;x, y) < J1 + J2 , 

J1 = f p2('c - s ; x , z ) d z  p 2 ( t  - z ; z ,  y ) d z  
Jz-x[ >_r Iz-xJ =r 

and 

J2 = p;(z - s;x,z)dz p2(t - ~; z, y)dz , 
Iz _<r I- ~ xl=r 

where s < r < t. We now show that for t - s  < r2: 

f p 2 ( t - s ; x , y ) d y  < C ( t - s ) - %  if2 (3.39) 
py-xl >r 

To this end, we consider: 

u(s,x) = f p(s - a ; x , z ) p ( t -  a ;y , z )dz ,  (3.40) 
Iz-yl>~ 

which is the solution of  equation u~ = 2a2u, s > a with initial data: 

u(a,x)=O, i f l x - y  [ < r ;  u ( a , x ) = p ( t - ~ r ; y , x ) ,  i f  I x - y [  > r .  (3.41) 

By Proposition 3.1, u(~r,x) E L z NL~176 and by Proposition 3.2: 

1 Cr 2 

u(t,y)= f p2(t-~r;y,z)dz <-_ C(t-~)-~e-~]lu(~,z)ll2, 
Iz-yl>r  

which implies (3.39) by Proposition 3.1. Similarly, 

Cr 2 

f p2(t-- a;y,z)dy < C ( t -  a ) - l e  (,-~) (3.42) 
I z - y l > r  

where 
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Now set r = Ix-yl ~ = (s+t) and assume t -  s < r21 Using (3.39) and Proposition 2 , - T -  = 
3.1, we get 

s ) - l e - C ~  Ix - yl } 
J1 < C ( t -  < C ( t - s )  -~ exp [ - c  t - s  - " (3.43) 

For Ja, we see that tz - x I < r - Ix-yL implies Iz - y] > r. Hence we have 2 ---~ 

J2 <= f p2(s - "c;x,z)dz f p2(t - "c;z, y )d z  
Iz-xl<r Iz-xl<=r 

<= f p2(s -- "c;x,z)dz f p2(t - "c,z, y ) d z  
Lz-yl>r Iz-yl>r 

by (3.42) and Proposition 3.1 
C l x - y l  2 

C(t - s ) - l e  ,-, . (3.44) 

Thus (3.37) holds if t -  s < r 2. This completes the proof. 
Finally, we outline the proof of  the local parabolic estimate: 

Proposition 3.3. Let  u be a solution to ut = ~'2u and 

Q = Q(y,  a, t) = {x E IR 2 Ix - yl 2 < (t - a)/4} x 0r, t ) .  

Then there exists a constant C independent o f  u,  ~r, t and y such that 

1 

lu(t,y)l < c ( t -  o ' )  - 1  u 2 . (3.45) 

Proo f  In view of  (3.2), and that by comparison &a2 is below A near r = 0, it 
is easy to check that the fundamental inequalities o f  Aronson and Serrin [2] (or 
Proposition 2.2 of  Osada [27]) hold for operator 2,f2. The rest follows from [2] on 
local properties of  solutions of  parabolic equations. 

4. Nonlinear Asymptotic Stability in the Radial Case 

In this section, we prove that any n-vortex solution is asymptotically stable under 
small radial perturbations (part (1) o f  Theorem 1.1). We will proceed with n = 1; 
the proof in the general case is the same except for minor modifications. Let us 
consider the parabolic system: 

gt  = ='~1 c~ - -  U (  0~2 -~- f 2 )  _ 2Uo~2 __ (0{2 7-  f l 2 ) g ,  (4.1) 

Bit = •2fl - 2Uteri - (c~ 2 + f i 2 ) f  , (4.2) 

where 
1 -- 3U2( r ) )  c~, ~c,('lc~ = Ac~ + -r-5 + 1 (4.3) 

(1 ) 
~<~2f = A f  + - - ~  + l - U2(r) f t .  (4.4) 
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The initial data (c~0,fi0)E (LP(IR2)) 2, for some p E (1, oc) to be specified. When 
(c%fi0) is radially symmetric, system (4 .1) - (4 .2)  governs the dynamics of  radial 
perturbations of  the one-vortex solution. We will establish a decay result for mild 
solutions of  (4 .1) - (4 .2)  in L p spaces without assuming radial symmetry. 

We first note that the semigroups e tzei, i = 1, 2, are positivity preserving. Re- 
sults of  the last section imply that e t~2 has a Gaussian upper bound, and so by a 
comparison argument, we have: 

Proposition 4.1. The semigroup e ts satisfies: 

Ile'Se2q:,[[p<Cll~ollp, v t > = o ,  V p c [ 1 , + o c ] ,  V ( p c L P ( ] R 2 ) ,  (4.5) 

and 
[let~2~ollq <__ c t  ( p - l _ q  ~)lt~ollp ' v 1 __< p < q __< oo ,  (4.6) 

with C > 0 independent o f  p. 

The next step is to obtain an upper bound for e tLp~ . Following the proof of  
Proposition 3.1, inequality (3.20), and writing L*al = s176 - 2 U ( r )  2, we find that 

E(t )  = f r2( r /2  + (1 - r/)2), 
R2 

where F is the fundamental 
inequality: 

Et < = --  ~ c q E  2 

1 2 
<= - ~ c n E  

solution of  the equation ut = s satisfies the 

- fF2t l  2 - 2fF2U(r)2012 + (1 - t/) 2) 

-- fV2[r/2 q- 2U(r)2(r/2 q- (1 --/7)2)].  (4.7) 

Since r / =  1 for r c [0, r0], we have on this interval that 

/72 7- 2U(r)2(r/2 q- (1 - t/) 2) ~ t/2 = (t/2 -~ (1 - / 7 ) 2 ) .  

On the other hand, r > r0, we have 

2U(r)2(r/2 Jr- ( l  - r/) 2) ~ 2g(ro)2(r] 2 + (1 - r])2) . 

It follows that 

1 2 Et <= - ~ c ~ E  - min (1 ,2U(ro)Z) f  F2(q 2 + (1 - r/) 2) -= - c o E  2 - c lE  . 

Integrating (4.8) from zero to t, and using E -+ +0% as t ~ 0 +, we get 

e -C i t  
E( t )  < e l c o  1 

= 1 --  e - c V  ' 

which implies that 

(4.8) 

E(t )  < C t - l e  -<t  , (4.9) 

for any t > 0, where C > 0 depends on e0 and Cl. It follows that Proposition 3.1 
holds for F with (t - s )  le-<(t-s)  replacing ( t -  s) -1. We are ready to show 
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Proposition 4.2. The semi#roup e tzp~ satisfies: 

]]et~[[p <-_ C ,  (4.10) 

for  C > 0 independent o f  p c [1,+co]; 

Ilet ellI2 =< re c,,., (4.11) 

and 
]]etZf~cp]]q < Ct-(P-~-q-~)e-CZt(P ~-q ~)]]p][p, (4.12) 

for  any 1 < p < q < +oo. 

Proof  First we deduce from F( t , x , y )  < Ct le-C~t, Vx, y, t > 0, that 

Ilet ' ol[  =< Ct-*e-~ (4.13) 

For any u o E L P A L  ~176 1 < p < 0% let u o = u + - U o ,  where u +=max(u0,O),  
u o ~ - min(u0, O). Then etS~u = e t ~ u  + -etLPlUo . For any t > O, et~Uoi > 0 by 
strong maximum principle. The comparison principle says that 

t ~ l  -t: 0:tz e u 0 ~ e t ~ Z u  , 

for any t,x. It follows that 

IIJ'uollp <= Ile' 'u+llp + Ile' 'Uo llp 

<= [[e'~Zu~l[p + Ilet~2u+pI p 

< 2C[luo]]p, (4.14) 

for any p E [1,+oc]. Interpolating (4.13) and (4.14) gives (4.12). Finally if we 
replace F by the solution u of equation ut = 5r in the proof of Proposition 3.1, 
and drop the terms - f ]V(uq) ]  2 and - 2 f u Z ] v ( ( 1  - q)U- lu ) [  2, we obtain without 
using the Nash inequality: 

Et < - C l E ,  

which gives the L 2 bound (4.11). The proof is complete. 

Remark 4.1. The estimate (4.11) may be true for any p E [1,oo], however we will 
not pursue it here since (4.10) and (4.12) are sufficient for our stability proof. 

Based on Proposition 4.1 and Proposition 4.2, we present 

Theorem 4.1. Let  us consider the system o f  integral equations corresponding to 
(4.1)-(4.2): 

t 
c~ = e t~f~ C~o - f e  (t- ')~'  [U(~ 2 +/~2) + 2Uc~a + ~(c~2 +/~2)], (4.15) 

0 

t 
B = et~2[lo - f e(t-~)ze2 [2Ue/? + (c~ 2 +/~2)/~], (4.16) 

0 

with initial data (c~0,fl0) C (L p ALq(IR2))  2, where p c [3,6), q = y-~p, y c 
(1 + P,3). Then there exists ~ > 0 depending only on U, p, 7, such that i f  
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max([[(~o, flo) lip, II(~o,/~o)llq) =< ~, system (4.15)-(4.16) has unique mild solutions 
(~,/3) c C([0, +oo); (LP(R2))2). Moreover, we have the decay estimates: 

]l~llp(t) < C(1 + t )  -(~-I>p-~ , (4.17) 

}[~[[p(t) =< C ( l + t )  2(])--1)p--1 , (4.18) 

for all t > O, where C = C(e) > O. In particular, (4.17) and (4.18) imply the 
asymptotic stability of the vortex solution U(r)e +iO under small radial perturba- 
tions. 

Analyzing with the same method the analogous parabolic system: 

~t = ~.~n)(~ __ Un(~2 __ f12)  __ 2Unc~2 __ (0~2 j r  f 1 2 ) ~ ,  (4.19) 

/~t = S(2n//~ 2Unc~/? - -  (0~ 2 J r  f l 2 ) f l ,  (4.20) 

where 

we obtain: 

(n2 ) 
~,P~n)c~ = Ax,yC~ + --~5 + 1 - 3UZ(r) c~, (4.21) 

5(~n)fl = Ax, yfl + - ~ f  + 1 - UZ(r) fl, (4.22) 

Corollary 4.1. Any n-vortex solutions Un(r)e inO, n = zkl,• . . . .  , are asymptoti- 
cally stable with algebraic rates 9iven by (4.17) and (4.18) under small radial 
perturbations in L p n Lq(]R2). 

Proof of Theorem 4.1. First we show that (4.15)-(4.16) has unique local solutions 
in C([O, T4t);(LP(R2))2). Letting (R1,R2) be the right-hand side of (4.15)-(4.16), 
we estimate: 

t 

IIR~il; _-< cll~ollp + c $ ( t  - s)-~/~e-Cl;-'(t-S~l]3~2 + f i i ; /2ds  
0 

t 
§  f t-2/pe-2Clp-l(t-s) I]~3 + fl3l]p/3 ds 

0 
t 

_-< C[l~ollp + C f ( t -  s ) - l / P e  -czp-~( t  S)(ll~zld2 + ]]fill2)ds 
0 

t 
+C f (t - s)-2/Pe-2c'p-~(t-s)(]lo~ll3p + []/~[[3p)ds, 

0 

so for t ~ [0, T], T > 0, we have 

sup IIR~l lAt ) - l lR~l ip ,~  <= Cll~Ollp+Cr 1 ~(1[~1 21p,~ + ll/~tlp, o~)2 
O<_t<T 

1 - 2  3 3 +CT P ( [ [ ~ [ ] p ,  cx~ ~-[ [~[[p,~). (4.23) 
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Similarly, 

t 

IIR211p _-< cIIBollp + cfllc~llp/2(t-s) -~/pds 
0 

t t 
+C fl Ic~2fll Ip/3(t - s)  -2/p ds ~- c fllfl3l[ p/3(t - s)  -2/p a s ,  

0 0 

which gives 

t 

]IR2llp,~ < cIIB011p+Cll=llp,~'l lPllp,~ sup f(t-s)-l/Pds 
tE[0,T] 0 

t 

+cI I~I ~ Ip,~'ll/~ll~,o~ sup f(t-s)-2/Pds 
tC[O,T] 0 

l 

+cII/~ll~,oo sup f ( t - s ) - 2 / P d s  
tE[0,T] 0 

1 1 

1 2 1 2 + C T  -~1 c~ 2 3 �9 ]Iflllp,~ (4.24) I tlp,~ liflllp,~ + CT -7  

It fol lows from ( 4 . 2 3 ) - ( 4 . 2 4 )  that (R],R2) is a bounded map from C([0, T]; 
(LP(R2)) 2) into itself; moreover, i f  T < 6 = g)(II(c~o, flo)IIp), then there is a unique 
solution (c~,fi) c C([0, T]; (LP(R2)) 2) by the contraction mapping principle. Such a 
solution can be continued to any t < T*,  for some T* < + o c .  

Next  we proceed to derive the estimate of I1(~, fi)l ]p(t), independent o f  T, where 
t E [0, T], T > 3. Let us define the norms: 

I l l=lllp ~ sup ( l + t ) " l l = l l ~ ( t ) ,  
tE[0,T] 

I l lPIII , ,  - ~up (~ + t )b l l / ~ l l , , ( t ) ,  
rE[o, T] 

(4 .25)  

where T E (0, T * )  and a > 0, b > 0, to be chosen. It fol lows from (4.15) that 

Ill<nip --< sup (l+t)alle'Sl~01ip 
tE[0, T] 

t 
§ sup (1 -+- t)"flle('-~)~eI(U(c~ 2 +/~2) q_ 2Uo~2 q_ ( g 2  __ fl2)~)llp 

tE [o, T] 0 

/ 
max / sup (i +  )alle'   ollp, sup (i +,)~ 

k, tE[o,~] tE[&T] / 
t 

+ sup (1 § t )a f ( t  - s)-l/Pe-C'P-'(t-S)l]3c~2 + ~211p/zds 
tE[0,T] 0 

t 

+ sup (1 + t )a f ( t  -- S) 2/Pe-2elp-~(t-s)l]~3 + fl20:]lp/3ds 
t6[0, T] 0 
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__< max(C(1 +~)~ sup (t-le-Cit) (q-I p-l)(1 +t)a[l~oIIq) 
tC[~,r] 

407 

t 
+ sup (1 + t ) ~ f ( ( t - s ) - l e - c ~ ( t - s ) ) - l / P ( ( 1  + S ) - 2 a l l l ~ l l l 2  

tE[0,T] 0 

+(1 + s)-2bl[[fll[[2)ds 

t 
+(1 + t )a f ( ( t  -- s) l e -CI ( t - s ) )  2/p(1 + s)-3~lllcc21[13ds 

0 

+(1 + t ) ~ f ( ( t -  s)-le-C~(t-s))-2/p(1 + s)-2a-~l l lBZlr l  2 �9 I[l~lllp)dx 
0 

~: C(q,p,a)(ll~ollLpc~L~ + [ll~l[l~ + Ill'liP 2 + IIr~lll~ + Illfl[IF 2.  IIt~lllp), 
(4.26) 

under the condition 

The integral tel-m 

a < 2b .  (4.27) 

t 
sup (1 + t ) ~ f ( t -  s) 1/pe-c~P-~(t-s)(1 + S) -2b ds 

tc[o, T] 0 

appearing in (4.26) is uniformly bounded in T under (4.27). Indeed, 

t 
sup (1 + t)a f ( t  - s)-l/pe-C~P-Z(t-s)(1 + s) -2b ds 

tE[0,6] 0 

t 
< (1 + cS)af(t - s ) - l / P d s  = C(p ,a) t  1-2/p <= C(p,a)c51--2/p . (4.28) 

0 

On the other hand, for t E (6, T], we have 

t--O t -6  
f ( t  -- s ) - l / P e - C l P - ' ( t - s ) ( 1  + S) -2b ds < C(p) f e-ClP-~( t -s ) (1  + S) -2b ds 
0 0 

< C(p,b)(1 + t) -2b , (4.29) 

and 

t t 
f (t -- s) -1/p e-CtP-l(t-s)(1 + S) -2b ds <= (1 + t - 6) -2b f (t - s) -1/p ds 

t -6  t 6 

-< (1 § t - c5) 2b(1 -- l /p)-l(~ I-1/p. 

(4.30) 
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The other integral terms in (4.26) are analogous. Combining (4.28), (4.29), and 
(4.30), we arrive at (4.26). We obtain from (4.16) that 

( ) llI/~lll~ ~ max C sup (l+t)~llflollp, sup (1-I-t)bct - ( q - ' - p  ')}lflo}}q 
\ t~[o,,~] t~[6,r] / 

t 
§  sup (1 § t)b f ( t  - s) -('P-~)p 'l}~fillp/~ds 

t~[O, T] 0 

t 
+ C  sup (1 § t)b f ( t  - s)-2p-'(ll~213llp/3 § IlBgllp/3)ds. 

tE[O,T] 0 
(4.31) 

We choose 

and note that 

q-a = b + p-1 , (4.32) 

Ilc~Hllp/~ ~ (fI~IP/~IHIP/7) 7/p = < (fI~[P/(?-I))(~-1)/P(fI/3IP)1/P, 

= I1~11~/(,-,)" IIHII~. (4.33) 

Now (4.31) gives 

t 
IIINllp ~ c l l ~ o l l ~ , ~ q + C  s~p (1 +t)bf(t-s)-(~'-l)P-'llallp/(~_~).llflllpds 

tC[o,r] 0 

t 
§  s~p (~ + t ) ~ f ( t  - s ) -Zp- ' ( l l~ l l%.  II/~ll~ + IINl3)ds. 

t6[0,r] o 
(4.34) 

Then if 

by (4.15) again 

q-1 > (7-- 1)P -1 , (4.35) 

II~lIp/(~-l)(t) ~ Ct-(q-l-@-l)P-1)e-Cat(q-t-(7 1)p-')ll~olL q 

t 
+ f  [leCt-s)~*(g(~2 + H 2) + 2Uo~ 2 § (0{ 2 § flR)~llp/(,-l) 

0 

< Ct-(q-~-(7-I)p-~)e-ctt(q-l-@-l)p-')l]O~OI]q 

t 
§  -- s )  - (2p t - (Y-1)P- '  )g -el(t-s)(2p-I - ( ' / - I )P - I ) [  13c~ 2 + f121 IF/2 

0 

t 
§  f (t - s ) - (3P- ' - (7 -1 )P- ' ) e  -cl(t-s)(3p-l-(7-1)p ')1 [~3 § ~f1211p/3 

0 

<= Ct-(q ~-(~-l)p-')e-C~t(q-~ (~-l)p ')l[~ol[q 

t 

0 
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t 
4-cf(( t  -- s)-le -cl(t s)) 3p- l - (7-1)p i(11~113 + I1~11~" I1#11~) 

0 

Ct (q-l (7_l)p-,)e_C,t(q i (v_l)p-l)}l~Ollq + I  (4.36) 

Thus 

sup (1 +t)2bI < c(11i~111~+/11#1112+111~i113+ II#lll~.lll~l/Ip), (4.37) 
tc[o,r] 

where we have used the integrals 

t 
f ( ( t - s )  le-C'(t-s))(2P-'-(7 l)p l ) ( ( l + s ) 2 a + ( l + s ) - 2 b  ) 
0 

< C(1 + t) 2b,  (4.38) 

t 
f ((t - s ) - l  e - c i ( t - s ) )  (3p 1-(~-1)P-1)((1  @ s )  -3a  Jr- (1 + s) -2b-a) 
0 

< C(1 -- t) -2b , (4.39) 

where C = C(a, b, p, 7) under the condition 

0 < ( 3 - ~ ) p - 1  < 1, 0 < ( 4 - 7 ) p  -1 < 1. (4.40) 

Combining (4.34), (4.36), and (4.37), we get 

fll#lllp _-< CIl#ollL,mLq + Cl[~ollq" IFI#III~ sup (1 + t )  b 
tc[o,r] 

t 
x f(t  - s) -0/-1)p-1C(s-le c l s ) ( q - l - ( 7 - 1 ) P - 1 ) d s  

0 

t 
+C sup (1 +t)b f ( t - s )  -(~-I)p 1(1 +s)-3bds 

tr T] 0 

t 
+C/ll~lrl~. III#IFIp sup (1 H-t)bf(t- s)-2P-1(1 +S)-2a-bds 

tE[0,TI 0 
t 

+t i l l # I l l  3 sup (1 +t)bf( t -s)-epl(1 +s)-3bds, (4.41) 
tC[0,T] 0 

where 

0 = C(lll~lll~ -II1#111~ + IJl~rll~ § II1#111~. I[ l~l l [p)l l l#l l t~ �9 

We optimize the decay rate by choosing 

a = 2b, (4.42) 

b = (7 1)p -1 , (4.43) 

1 < ( 7 -  1)P -1 § 2b. (4.44) 
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It follows from (4.43) and (4.44) that 

7 > l + p / 3 ,  3b > 1, (4.45) 

which implies that 2a + b = 5b > 1. Now (4.40) requires that 7 < 3. Since p __> 3, 
(4.45) says that 7 > 2 and 3 _-< p < 6. Thus given any p E[3 ,6 ) ,  we pick 
7 E (1 + p/3 ,3) ,  (a,b) according to (4.42) and (4.43), q-1 = b + p-1  = yp-1.  
Then (4.35), (4.40) and (4.44) hold. It follows from (4.26) and (4.41) that 

IPl( ,t)lllp =< CIl( o, to)[IL nLq + f(Ll/ lllp, Illtil[Ip), (4.46) 

where f = f (x ,  y) is a fourth degree polynomial containing no linear terms. Thus if 
II(~0, t0)llL~Lq is sufficiently small, [ll(~,ti)lllp remains bounded for all time. The 
proof is complete. 

5. Linear Stability in the Nonradial Case 

In this section, we consider the evolution of  general (nonradial) perturbations of  
vortex solutions, and prove part (2) of  Theorem 1.1. We will see that, in contrast 
to the Inl = 1 vortices, there is a potential for destabilizing In[ > 1 vortices due to 
nonradial effects. This is in agreement with J. Neu's  [24] numerical observations of  
the instability of  higher In I-vortices, in particular the splitting of  a n-vortex (Inl > 2) 
into n individual one-vortices under suitable perturbations. 

The system governing the perturbation v = ct + i t  of  an n-vortex solution U~e in~ 
is 

at = 5F~n)~ 2n --  7 f i  0 --  Un(O~ 2 -1- fi 2)  - 2Uno; 2 - -  (0( 2 -{- fi2)O{ , (5.1) 

tt  (n) 2n = 5~2 t + 7T~o - 2U~c~t - (~2 + t z ) t ,  (5.2) 

where (n2 ) 
Y{")ct = A e +  - 7  + 1 - 3Uff(r) c~, (5.3) 

5~")fi = A t  + - 7  + 1 - U2(r) t .  (5.4) 

Consider the linear part. In view of  the 0 independence of  the coefficients, we 
expand into Fourier series: 

Then (ctm, t im)  satisfies (n2 
O:m, t = ArO: m + --  7~  

flm, t = Ar f lm -}- - - ~  

O: = ~ O:m eimO , ( 5 . 5 )  
mff Z 

fl = ~ tim eimO . ( 5 . 6 )  
mEZ 

- - 1 -  3UZ(r)) O:m + ~(-m2o:m - 2inmflm), 

+ l - U2(r)) flm § ~(2inmo:m m2flm), (5.7) 
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or in vector notation: 

am am - 7  + 1 - 3gff( r )  0 C~m 
/ /2  * 

tim ~ ~ r fir// ~- 0 -- -F @ 1 - U 2n ( r ) tim 

1 ( - m a - 2 i n m )  ( C~m ) (5.8) 
+ ~  2inm -m 2 " tim ' 

where Ar is the two dimensional radial Laplacian. The operator formed by the first 
two terms on the right-hand side of  (5.8) is the operator we have analyzed in the 
radial case. It is easy to show that this operator has continuous spectrum equal 
to ( - o c ,  0] and the Nash-Aronson estimates in Sect. 3 imply that the L 2 spectrum 
equals ( - o c ,  0]. The "rotational terms" r-2fio and r-2c~o produce the matrix: 

--m 2 --2inm ) 
2into --m 2 , (5.9) 

whose determinant is equal to m2(m 2 - 4n2). Therefore, the matrix (5.9) has positive 
eigenvalue if 

m+O,  m 2 < 4n 2 , (5.10) 

and the possibility of  instability exists. As n increases, the number of  potentially 
destabilizing modes increases. 

In case In] = 1, only m = •  could be a source of  linear instabilities. While if  
m +  + 1, then (5.9) is nonpositive, so by our results in the radial case, such (am, tim) 
would decay to zero with time in L p spaces. Let us consider n = 1 and m = 1, the 
other cases o f  lnl = lml = 1 are treated identically. 

Let us transform (5.8) into a real coefficient system by first writing it as: 

( cq ) t = ( A r + l - U 2 ( r ) ) (  cq ) i l l  fll (5.11) 

2(1 
+~5 i - 1  " fll + 0 0 " fll " 

The matrix (1,) 
i - 1  

has eigenvalues 0, - 2 ,  corresponding to eigenvectors @2( i , -1 )  r, 1 ti 1 ~r Let us 

make the change of  variables: 

cq 1 i i 

then 
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where 

2 ( 0  0 ) _ U 2 (  1 1 ) (5.14) 
= ( A r + l - g 2 ( r ) ) I d + ~ 5  0 - 2  1 1 " 

The following property of  the one-vortex profile U is very useful in analysis ap- 
pearing later in this section: 

Proposit ion 5.1. Let U = U(r) be the one vortex profile. Then 

r 1U(r)  > U~(r), V r > O. 

Moreover, the self-adjoint operator 

2f3 -- A~ + (1 - 3 U 2 ( r ) ) ,  

defined on H2(IR 2) has spectrum o ' (~3 )  inside ( -oc , -ao ) ,  for some positive con- 
stant ao. 

Proof. Recall that U(r) satisfies the equation: 

g~r+ gr-Tg+(1-g2)g:o, 
g ( 0 )  -- 0, g ( + e c )  = 1, g~(r) > 0 ,  (5.15) 

for any r > 0. Differentiate (5.15) to r and denote U~ by w to get: 

1 2 2 
w~r+-W~r ~ - s  U + ( 1 - 3 U 2 ) w = O '  

or  
1 

Wr,- + --Wr § (1 -- 3U2)w = (w - r -1U) .  (5.16) 
r 

Now letting V = r-lU, we have from (5.15) that 

(rV)rr + r- l (rV)r  -- r -1V + (1 - U2)U = O, 

or  
r V r ~ + 2 V r + V r + r - l V - r - l V + ( 1  - U 2 ) U  = 0 ~ 

or  
Vrr+3r 1 V r  = r - l ( u  2 - 1 ) U  < 0 ,  (5.17) 

for any r > 0. We consider inequality (5.17) on r E [e, rl], where e << 1, rl >> 1. 
r 2 

For r small, U(r) ~ ar(1 - -~ + O(r4)), for some constant a > 0. Thus V(r) is 
monotonely decreasing in r if  r is small enough. With e sufficiently small, we see 
that V(r) has to go through a local minimum if  V(r) increases with r at all. In 
other words, there exists an interval [r2,r3] strictly inside [e, rl] such that V has a 
minimum over [r2,r3]. However,  inequality (5.17) and strong maximum principle 
imply that V(r) = const, for r C Jr1, r2], or U(r) = const, r. Therefore i f  r ~ [r2, r3], 
Urr = O, r-lU~ - r-2U = (r-iU)~ = 0, but (1 - U2)U > 0, contradicting (5.15). 
We conclude that 

V ' ( r ) = ( U )  < 0 ,  (5.18) 
F 
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or rUt <-_ U(r), for any r > 0. If V ' ( r 4 ) =  0, for some r4 > 0, then (5.17) says 
that V'(r4) < 0, contradicting (5.18). Thus we have strict inequality in (5.18), and 
rUt < U(r), for any r > 0. 

Next we consider the spectrum of  2'3. By Weyl 's  theorem on the essential spec- 
trum, we have that O'ess(2" 3 ) = ( - - O O , - 2 ] .  Moreover, 2"3 has a principal eigenvalue 
cq and corresponding ground state eigenfunction Ul == ul(r) > 0 in L2(IR z) such 
that 

2"3//1 = 0-1/,/1 , (5.19) 

or what is the same: 
AUl § ( l  3 U 2 ( r ) ) u l  = o I H  I , ( 5 . 2 0 )  

for any (x, y ) C  IR 2. By elliptic regularity ul is a smooth function. Similarly, we 
write (5.16) as: 

+ (1 - 3U2(r))w = ~ ( w  - r - l U )  < 0 .  (5.21) Aw 

Both Ul and w decay to zero as r --+ oc. Multiplying (5.20) by w, and integrating 
over IR 2, we get with integration by parts that: 

f mAw  + f ( 1  - 3U2)WUl = crl f UlW , 
R 2 R 2 R 2 

whose left-hand side is fe2 ~ ( U r - - r  1U)ul < 0. Noticing that fR2 UlW > 0, we 
infer that ol < 0, and the proof  of  lemma is complete. 

Proposition 5.2. The vector 

~(ur + u~ - =  (~0,a0) r -  l U ( r ) ,  F - 1 U )  

satisfies 2"(~0, b0) r = 0, for any r = (x 2 + y2) 1. However, (7o, 60) ~L2(IR 2) but is 
in LP(IR 2) for any p > 2. 

Remark. A mode of  this type is frequently called a resonant state. It is known to 
influence the decay rate of  the linear evolution operator generated by it. See, for 
example, [ 17]. 

Proof. It follows from (5.14) that W = 7 + 6 satisfies: 

4 6 .  Wt = ArW + (1 - 3 u Z ) w  - )5 (5.22) 

The pair (W,~/) is the solution to the system: 

Wt = ArW +(1 - 3 U 2 ) W -  ~ 2 ( W -  y ) ,  

?, = Ary + (1 - U2) '~  - U2W.  (5.23) 

Differentiating Eq. (5.15) to r and letting W0 = Ur, we get: 

A~Wo + (1 - 3u i )Wo + 2 ( r - l U  - Ur) = 0 .  (5.24) 
r ~ 
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Denoting 

v/0 u Wo u 
7 o = ~ - + 2 - ~ ,  ~o-- 2 2 r '  

we have from (5.24) and (5.25) that 
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(5.25) 

4 4 
A~Wo +(I- 3U2)Wo- ~5o = A~Wo +(i- 3U2)Wo- ~(Wo- yo) = O. 

Now using (5.24) and (5.15), we verify: 

(AT + (1 - g2))~o - g2Wo 

= ~(Ar + ( 1 -  U2)) (Wo +-~)  - U2Wo 

= ~[(3U2 -1)Wo + ~(Ur - r-I U)] + ~ Ar(r-I U) 

@~(1- U2)(Wo@ U )  - U 2 W o  

= r-2(Ur - r -1 U )  - -  ~ ( r - l U r r  - 2 r - 2 U r  + 2r-3U + r-2Ur - r -3  U )  

§ - U2)U 

= r-2(Ur - r -1 U) + ~(r-IA~U + r 3U - 2r-2U~) + (2r)- l (1  - U2)U 

= r - 2 ( U r - r - l U ) +  r -3U+~(r  U-2r-2U~)=O.  (5.26) 

u Wo ~ )  vanishes •.  Apparently, (7o, C5o)~(L2(IR2))2; Thus (7o,6o) = ( 9  + 2r, 2 
however, belongs to (LP(IR2)) 2 if p > 2. By Proposition 5.1, 6o < 0, and 7o > 0, 
for any r __> 0. The proof is complete. 

Proposition 5.3. Consider the self-adjoint operator ~ defined on 

= {(~,(~) E H 2 • H 2 : r-26 E La(]R2)} , 

Then the spectrum of S is equal to (-oc, 0]. 

Proof. By Weyl's essential spectrum theorem, aoss(~r ( - ec ,0 ] .  So we only 
need to prove that there is no positive eigenvalue. Suppose that al > 0 is the 
principal (the largest) eigenvalue of ~ .  By the variational characterization of the 
principal eigenvalue, we have: 

or1 = sup Q(7, 6) ,  (5.27) 
(~,(~)CH 1 • 
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where 

Q(a,b) = - f ( 7 2  + 62) + f(1 - 2U2)(72 q- 62) - 2 f  U2?a - 4 f  r-262 . (5.28) 
R 2 R 2 R 2 R 2 

Notice that the maximizer (7" ,6")  of Q must have 6*(r) --~ 0 as r -+ 0 for Q 
to stay finite. (7*, 6*) is a classical solution for r > 0. It is not hard to obtain 
6*(r) < O(r 2) by balancing terms in ( 2  ~ - 61)(7*,6*) = 0. In fact, it follows from 
the 6* equation that 

Arc~* -- ~ 6  "I" E LP(]R2) , (5.29) 

for any p E [2,00) due to ( 7 " , 6 " ) E H I ( I R  2) and Sobolev imdedding. We can 
regard (5.29) as the e 2i0 mode restriction of the two dimensional Laplacian. Hence, 
6* E W2'P(IR 2), p > 2, and is imbedded into C 2+e, e E (0, 1). Now we conclude 
by Taylor expanding 6* at zero, r-26 * E L2(IR 2) with (5.28), and (5.29). Thus 
(7",c~*) C D(~('). Thanks to the term --2fR2 U276 and that fR2 ]Vf[ 2 ~ L2 ]vlfl l  2 
for any f E HI(1R2), we have 

Q(7",6")  < Q(lT*l,-lO*r), 

which implies that 7* and 6* have opposite signs. That is either 7* > 0, 8" < 0 or 
vice versa. We arrange 7* > 0. Now forming the inner product in LZ(]R 2) (denoted 
b y ( . , - ) 2 ) o f  

(~(' -- 0-1)(7",6" ) = 0,  (5.30) 

with (70,60). Since o-1 > 0, (7" ,6")  decays to zero exponentially fast as r --+ oo. 
This can be seen as follows. The asymptotic behavior of U at infinity (2.5) implies 
that (5.30) is a weakly coupled elliptic system for large r: 

( ) [ (  ) Y* 1 + ~r 1 1 + A(r) 6* = 0,  
Ar 6" -- 1 1 ~- (71 

where A(r)  is a smooth 2 by 2 matrix in r, and [IAIIoo < 0(?'-2). The matrix 

( 1+o- 1 1 )  
1 1 + 6 1  

is positive definite and so can be diagonalized by a constant orthogonal matrix Q1. 
Let 

(71,61)T : (7", 6*)T QT , 

then (71,61) satisfies 

( 7 1 ) -  E( /~1 0 ) I ( 71 ) : 0 (5.31) 
ar 61 0 22 +B(r )  61 ' 

for 2i > 0, i = 1,2, and a matrix B = (bij), I[B[[~ _-< O(r-2). Letting q = 721 + ~ ,  
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we have from (5.31): 

A~q = 

> 

>_ 

> 

271ArTl+21V71]2+261Ar614-2]V61] 2 

271ArTl+261Ar61 
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2y l (2171+bl l ( r )y l+b12(r )61)+261(2261+b21(r )y1+b22(r )61)  

2 1 ~ + 2 2 6 ~  > min(21,22)q,  (5.32) 

if r is large enough depending on )~i, i = 1,2. Now it is easy to find a comparison 
function ~ = e -~r, # > 0 such that 

(At - min(21,22))c~ = (#2 _ ix/r _ min()q, 22))e - ~  =< 0 .  

By comparison principle of  scalar elliptic operators, we infer that 

q < Ce-~ ~ ' 

for some constant C if r is large enough. In other words, (7*, 6*) decays exponen- 
tially fast as r -+ oc. 

Thus we can perform integration by parts to get from (5.30): 

((y*, 6"), f (70 ,  60))2 = al((7*, 6"), (70, 60))2, (5.33) 

whose right-hand side is strictly positive, and left-hand side is zero, impossible. 
Hence no positive eigenvalue exists for ~qo, and cr(~q) is ( - o o , 0 ] .  This completes 
the proof. 

We are now ready to prove part (2) of  Theorem 1.1. 

Theorem 53 .  Consider the linearization o f  ( 5 . 1 ) - ( 5 . 2 ) f o r  the plus or minus one 
vortex and let a + ifi E L2(]I~ 2) be the solutions to the linearized system: 

~, = 2P~ 1~-  ~Po, 

2 
]~t = ~ l ) f l  Jr- ~ 0 ,  (5.34) 

with initial data (~o + ifio) c L2(IRa). Then 

11(~,/~)ll2(t) _-< 11(~0,/~0)112, (5.35) 

for  any t > O, i e. the plus or minus one vortex is linearly dynamically stable in 
L 2 with respect to arbitrary (nonradial) L 2 perturbations. Moreover, the linearized 
operator in (5.34) denoted by M is self-adjoint and nonpositive. 

Proo f  By our earlier discussion, we decompose (~, fl) into the Fourier series: 

~(t, r, O) = ~ ~j(t ,  r ) e  ijO , 
jEz  

fl(t, r, O) = ~ fij(t, r)e  ij~ . 
jGZ 
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The problem is reduced to an analysis of the linear evolution operator on each 
invariant subspace corresponding to e i j~ j E Z. By a comparison argument with the 
reduced problem on each Fourier mode j, we find that the only source of instability 
of plus or minus vortex comes from j = 4-1. This further reduces the problem to a 
study of semigroup e t~e. Since ~ is dissipative (the real part of the L 2 inner product 
R e ( S  f ,  f )  _-< 0), self-adjoint and densely defined, we have by the Lumer-Philips 
Theorem (Pazy [28]) that: 

Plet~(f,g)ll2 < II ( f ,g ) l [2 .  

The theorem now follows. 

Remark. There is another way of proving Proposition 5.3 and Theorem 5.1. We 
take m = n -- l in (5.8), and make the change of variables: a = iel, b = ill. We 
obtain the following system with real coefficients for (a, b): 

b t 0 Ar § 1 - U2(r) b 

+ ~ ( 1 1  1 1 )  ( ; )  " 

Clearly, (a,b) and (7, 3) are related by a rotation: 

( ; ) =  ~22 ( --11 1 1 )  " ( ~ )  " 

(5.36) 

(5.37) 

Then the zero resonance vector for the right-hand side operator in (5.36) is: 
(a,b) = (U,., U/r), whose two components are strictly positive. By the same varia- 
tional argument, we can show that the right-hand side operator in (5.36) or equiv- 
alently 5r has spectrum (-00,0]. The advantage of the (a,b) variables is that we 
do not need Proposition 5.1 to prove Proposition 5.3 or Theorem 5.1. Also the 
zero resonance vector (Ur, U/r) is simpler. The zero resonance vector comes from 
the translation invariance of the Ginzburg-Landau and Schr6dinger evolutions (1.1) 
and (1.2). 

We are however interested in obtaining a more refined understanding of the 
character of the zero point in the spectrum of the linearization about a vortex. We 
show, in our next result that the zero point is a pure resonance, i.e. there is no L 2 
eigenfunction at zero energy. This provides an understanding of the resolvent of the 
linearized operator at zero energy which is required in obtaining decay estimates 
for the associated evolution operator. See, for example, [17]. To prove this result, 
it appears that the (7, 3) variables are most expedient. 

Proposition 5.4. Zero is a resonance and not an eigenvalue of  5~. 

Proof. The maximum principle is the main tool of the proof. Our method is a linear 
version of the sliding domain method (Berestycki and Nirenberg [6]) for nonlinear 
problems, and was used in an earlier work (Xin [37]). 

Suppose (7/, 3 ' )E  L2• L 2 is an eigenfunction of 5~ corresponding to zero, 
which is the principal eigenvalue by Proposition 5.3. By variational arguments, as 
in Proposition 5.3, 7' and 3' have opposite signs and 6'(r)--+ 0 as r---+ 0. We 
choose ~/ < 0, for any r > 0. The equations for (W0 = 70 + ~0,60)= (Ur, 00) and 



418 

(W'  = 7' + 6I, 6 ' )  are 

ZIrW § (1 -- 3 U 2 ) W  - 5 6  r2 = 0 ,  

A ~ 6 + ( 1 - U  2 - 4 r - 2 ) 6 - U 2 W = 0 .  
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(5.38) 

(5.39) 

This implies, for 2 E ]R, that the functions 

~gx -- ,~V/o - W', 

satisfy: 

64 -= 260 - 6 ~ , 

ArW2 § (1 - 3U2)W2 = ~262,  (5.40) 

Ar6~ + (1 - U 2 - 4r-2)6,~ = U2W)o . (5.41) 

We first set 2 > 0. It follows from (5.40) that Wx ~ 0(r-26~.) due to 1 - 3U 2 ~ - 2  
as r---+ ec. By (5.41) we have then: Ar6r ~ 0(r-26~) ,  which implies by direct 
integration that 6~,~ ~ 0(r-16~) ,  and 6X, r~ ~ O(r-262).  Going back to (5.40), we 
see that W~.,~ ~ O(r-lWr and W,t,~ ~ O(r-2Wr or A~W~o is a higher order decay 
term than Wr So by (5.40), Wx ~ - 2 r - 2 6 r  +h.o.t.  Substituting this into (5.41) 
along with 1 - U 2 ~ r -2 + h.o.t., we obtain: 

Ar62 + ( - - r  -2  + h.o.t.)6~. = 0.  (5.42) 

Since 6' E L2(lR2), for any given )~ > 0, there is r0 -- ro(2) > 1 such that c~(r0) < 0. 
We can choose ro(2) large enough so that the above asymptotics become valid. 
By (5.42) and the fact that 6;.(r) -+ 0 as r ~ oc, we deduce from the maximum 
principle that 64 has neither a nonnegative maximum nor a nonpositive minimum 
for any r > r0. Therefore, 64 is negative for r > r0, and monotonically increases 
to zero as r ~ ec. In other words, 6' decays faster than 0(6o).  In particular, there 
exists R0 such that: 

6 ; ~ = 2 3 0 - ~ I  < 0, i f r  > R 0 ,  2 > 1. (5,43) 

By making Ro larger if  necessary, we have U > 2/3 for r > Ro. We infer from 
(5.40) that 

ArW2 + (1 - 3U2)W,~ ~ 0 ,  (5.44) 

i f 2  > 1, r > Ro. For r E [0,R0], there exists A1 = AI(R0) => 1 such that i f 2  > A1, 
Wx(r) > 0 and 6,~(r) < 0, for any r E [0,R0]. Thus if  2 > A1, (5.44) and the 
maximum principle imply that W,t(r) > 0, any r => 0. Also fix < 0, V r C [0, oc). 
Similarly, there is A2 >= 1, such that i f  )~ < -A2 ,  then Wx(r) < 0, 64 > 0, for any 
r ->_ 0. Define 

= inf{2 E IRIlW~ -> 0 and fix < 0, V r  E [0, oc )} .  

Then # C ( -A2 ,  A1 ), Wu >= 0, 3~ =< 0, Vr E [0, oc]. Now suppose that # = 0, then 
6u = -61 < 0. However,  as initially observed, 6' < 0, and so 6' =- 0. By (5.38) 
and Proposition 5.1, we infer that W' ~ 0, or 7' ~ 0, contradicting the assumption 
that (7', ~ ')  is an eigenfunction. We deduce that # > 0. 
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With 2 = # in (5.40) and (5.41), 6~ < 0, W~ > 0, strong maximum principle 
implies that either W~ > 0, ~ < 0, or Wa = c5~ - 0 for all r C [0, oo). The latter 

implies #c50 - ~ and therefore 6o E L2(IR2), a contradiction. 
Now suppose that there is a sequence {2,}, 2~ C (0,#) ,  2~ ~ #, as n --+ oo, such 

that 
inf  Wj..(r) < O, 
r > 0  

for each 2~. Since W;o,,(r) --4 0 as r ~ oo, there is a sequence {in} such that 

W,~.(rn) = inf  W2o(r) < O. 
r>O 

I f  {r~} is unbounded, there is a subsequence, still denoted {rn}, with r~ ~ oc. I f  n 
is large enough, r ,  > R0, then evaluating 

4 6  r , ArW~,,(r.) + (1 - 3uZ)wz.(rn) = ~ ;~.( .)  

at r = rn >> 1 yields 

(A~W)~. + (1 - 3U2)Wx.)(rn) >= (1 - 3U2(rn))Wx.(rn) > O, 

while 
4 

~(;~.~0(r~)  - 6'(~n)) < 0 ,  

because 2n --, # > 0, and 6' decays faster than 6o at infinity as we have showed 
above by (5.42). We have a contradiction. 

Therefore, {r .} is a bounded sequence, and there exists a subsequence, which 
we also denote {r.}, along which we have r .  -+ r *  E [0, oc). It follows that 

W~n(r.)--+ rYe(r*) __< 0 ,  

as n -+ oc, contradicting Wu(r) > 0, any r > 0. This means that there is a number 
#1 E (0 ,# )  such that 

inf Wr > O, VZ E (#1, #) ,  
r>0 

By minimali ty of  #, we have 

supf;o(r) > 0, V 2 E ( # I , # ) .  
r__>0 

/ l ! 
Therefore, there exists a sequence {)o~}, 2. E ( /q ,# ) ,  2. --+ #, as n - +  oc, and a 
sequence of  {r~} such that 

(5.~.(r~.) = sup6z , ( r )  > 0 .  
r>0 

I I f  {rs is unbounded, then r n -+ oo, up to a subsequence still denoted the same. By 
Eq. (5.41) with 2 = 2n: 

Arg)2. + (1 - U 2 - 4r-2)6~.  = U2Wj,. > 0.  (5.45) 
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! I f r  n > > l , t h e n  

1 - U Z ( r ~ )  = ( 1  - U ( r , ' , ) ) ( 1  + U(r;)) 

_ _  

= (rl)  e +h .o . t .  

1 ) 
2(rnt) 2 + h.o.t. 

which shows that 
1 2 t - - U  ( r n ) -  4(rn/) -2 < 0 .  

Evaluating (5.45) at r = rn >> 1 implies that the left-hand side is 

< (1 - U 2 ( r ~ ) -  4(/n) 2)cSz,(r'n) < 0 ,  

a contradiction. Finally, {r~} is bounded, and rn---' r * * E  [0, e c )  along a sub- 
sequence still denoted the same. We have 5if(r**)  => 0, contradicting our early 
conclusion that 5ff < 0. Thus all roads from the assumption of  zero being an L 2 
eigenvalue lead to a contradiction. We conclude that zero is not an eigenvalue but 
rather a pure resonance. The proof  is complete. 

Finally, we comment  on how to adapt our method to treat stability of  one vortices 
on the disc of  radius R, denoted by BR. We will consider the plus one vortex to 
be specific. Let u = UR(r)e i~ be the plus one vortex solution on BR, and consider 
perturbation of  the form v(t,r, O)e iO such that v(t,R, 0) = 0. Going through the same 
derivation as before, we see that (5.1-5.2) hold for the real and imaginary parts of  
v, with Un replaced by UR. We then decompose solutions into Fourier modes as in 
(5.5 5.6). For the radial part, or m -- 0, we follow the estimates in Proposition 3.1, 
however, they can be carried out directly on any solution v of  the linear equation 
vt = 5f2v since we can use the Poincar6 inequality instead of  the Nash inequality 
thanks to the zero Dirichlet boundary condition of  perturbation v at r = R. The result 
is that v decays to zero exponentially fast in the L 2 norm with a rate depending 
on R. Thus we only need to verify that the linearized operator S ~ ,  which is just 
2,~ in (5.14) with U replaced by /dR corresponding to the m = 1 mode, has strictly 
negative spectrum. Using this strict negativity of  ~ ,  we can prove: 

Theorem 5.2. Let  Ue(r)e in~ be a Inl = 1 vortex on BR the disc o f  radius R. 
Le t  u = (UR(r) + v(t ,r,O))e i~ where v is the perturbation satisfying v ( t , R , O ) =  0 
and v(O,r,O) E L2(BR). Then there exists constants 7 = 7 ( R ) >  0, and C =  
c(llv(O,r,O)ll2) > o, such that i f  IIv(O,r,O)ll2 is small enough: 

[[u(t,r,O) UR(r)ein~ <= Ce -Tt , 

holds f o r  all t > O. In other words, the one vortices are nonlinearly asymptotically 
stable with exponential rate. 

Proof. We show that the operator ~97~ has strictly negative spectrum. Since we are 
on a finite domain, ~ has only discrete eigenvalues in the spectrum except for 
- o c .  Suppose that 21 > 0 is the leading eigenvalue corresponding to eigenvector 
(vb v2). By the variational principle, we can arrange so that vl => 0, v2 < 0. Forming 
the L 2 inner product of  (70, c50) with 

~-(PR(Vl, V2) T = ~vl(Vl, v2) T , 
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integrating by parts, and using the zero boundary condition on (vl, v2), we get: 

f (Vl,rY0 q- V2,r(~0) : "~q ((q/0, ~50), (Vl,/22))2 �9 (5.46) 
r=R 

On the other hand, vl,r < 0, v2,r -> 0, at r = R, hence it follows that 2~ =< 0. So it 
is only possible that 2l = 0. Then the equation for Vl is 

+ 1 - Z U 2 ( r ) > l  - U (r) 2 = 0 ,  

or 
(Ar  -- 2 U 2 ( r ) ) v l  = - V l  q- g 2 ( r ) v 2  <= O,  

which implies via the strong maximum principle that either vl = 0 or vl > 0 if  
r < R. Similarly, v2 satisfies the differential inequality: 

(Ar -2U2(r )  ~ )  -- 122 = --/)2 --  U2( r )v l  ~ 0 ,  

and so either v2 = 0 or v2 < 0 for r < R. Since (vl,v2) is an eigenvector, one of  
its components is nonzero. Let us assume that Vl > 0 (or v2 < 0), r < R. Then by 
the Hopf  lemma, Vl,r < 0 (or v2,,. > 0), at r = R. It follows that the left-hand side 
of  (5.46) is strictly negative. We deduce a contradiction, and so 21 < 0. Since the 
spectrum is strictly negative, the linear evolution of  the perturbation has to decay 
exponentially in time, and so is the nonlinear one as long as the initial perturbation 
is smali enough. The proof  is complete. 

6. Spectral Stability of the Schrtidinger One-Vortex 

In this section, we show that the linearized operator for the Schr6dinger one-vortex, 
i a M -  JM, has spectrum equal to the imaginary axis. Therefore the Schr6dinger 
one-vortex is spectrally stable. The perturbation v(t,x) = (~, fi)r  to the Schr6dinger 
one-vortex solution satisfies: 

g t = JM , (6.47) 

ignoring the nonlinear terms of  v. By Weyl ' s  theorem, the continuous spectrum 
of  JM is the entire imaginary axis, so we only need to show that there is no 
eigenvalue on the right half  plane. Hamiltonian symmetry then ensures that there 
are no eigenvalues in the left half  plane either. 

Theorem 6.1. The operator irrM has L 2 spectrum equal to iN. 

Proof The proof  follows from a general result appearing in [29]. We present the 
argument in the current context. Suppose JM =_ iaM has an eigenvalue 2, Re{2} > 
0, corresponding to the eigenfunction ~b. Then 

JMO = )@,  (6.48) 

and so 
eJMtl/I = e2tl/l. (6.49) 
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Using skew symmetry of  J and symmetry of  M, we have for any u(t,x) satisfying 
ut = JMu: 

z ( M u ,  u) = + 

= ( MJMu, u ) + (Mu, JMu ) 

= (MJMu, u) 4- (MJ*Mu, u) = O, (6.50) 

for any u C ~ ( M ) .  It follows rather that 

0 = d(MeXq~, e2tl/i ) 

which implies that 

= de('~+X)t(MO, 0 ) ,  

(MO, gt) = O. 

Since - M  is a nonnegative self-adjoint operator, 

( - M O ,  ~)  = (v fLMO,  v/L-MO) = O, 

(6.51) 

(6.52) 

implying 

,/z 0 = 0, 

and so M 0  = 0. In view of  (6.48), we deduce that 0 = 0, a contradiction, and the 
theorem is proved. 

Remark 6.1. The previous theorem does not immediately imply linear dynamical 
stability of  the Schr6dinger one vortex. A key ingredient in controlling the time 
evolution of  the linearized SchrSdinger flow is an expansion of  the resolvent of  M 
near the zero energy point. Proposition 5.4 is a component of  this analysis, which 
we hope to pursue in future work. Note also that the operator JM is not skew 
symmetric, so there is no immediate L 2 uniform bound. 

7. Appendix: Proof of  Lemma 3.1 

Let us consider the C ~  function: 

f ( x )  = a +  tan -1 x , i f x ~ [ 0 , 1 ]  

- - 0 ,  i f x >  1, (7.1) 

where a > 0 is a positive constant to be determined. We compute for x E [0, 1): 

zc t an- I  ~x 
2 < 0  

f ' ( x )  = (a + (tan -1 ~)2)2(1 + (~x) 2) = ' (7.2) 
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where equality holds at x = 0, and 

4~ . ( t an  -1 ~x 2 ~ T )  "g _ 7c.g 1 
f"(x)  = (a + (tan -1 ~)2)3(1 + (~)2)2  (a + (tan -1 ~)2)2 " (1 + (~x)2) 2 

~x 7~2x 
tan-1 T . 5 -  (7.3) 

d ( a + ( t a n  I ~)2)2 (1 + (~x )Z)  2 " 

Let I = a + (tan 1 ~x 2 T ) ' II = 1 + (~)Z,  then 

g 2-- g2 (a-r- (tan-1 ~ ) 2  ) 

+ ~ - x  tan-  1 2 -  , a + tan-  1 

.~2 [ z c x ( t a n - ' 2 ) 3 + 3 ( t a n - i 2 ) 2 + r c a x ( t a n - 1 2 ) _ a l  = I 3/ /-2 2 " 

TC 2 
=_ I-3II -2. ~ G ( x ) .  (7.4) 

gXo l We see that G(x) ~+ +oo as x -+ 1, and for x0 = 7 ~ '  x0 > �89 tan -1 ~ -  = tan -1 
7r = g, SO 

2 (6)3 (g )2  ( ~ 3  g 1 ) a  a(xo)=  +3 g + 

~f5 + 3  + 1 a < 0 ,  (7.5) 

( 2 (~z]3 ~ --1 a*. if  a > v ~  gr + 3 ( ~ ) 2 ) ( 1 -  ~-~) = Thus ~x* 

that G(x) > 0 i f x  E (x*, 1) and G(x*) = 0. Let us consider: 

for x C (x*, 1). Since 

x (tan-~ 2 )  3 

and 

f"(x) -- rC21-2. H -2"  G(x), 
f ( x )  2 

= x * ( a ) ,  x* ~ ( 1 , 1 ) ,  such 

=< ~---x 2 6  1 ( t a n - 1 2 ) 2 + 6 ( t a n - ~ 2 ) 4  ' 

x (  tan-I  ~x ) 2 -  2 6-~ 2 6 (  rex) 2 < _ _ x  2 + tan -1 
= 2 /  ' 

for any constant 6 > 0, we get 

G(x) < re6 (tan -~ rcx'] 4 ( 
2 j  + 3 + ~ - +  2 , '  + 2 

(7.6) 

a 
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and so 

f " ( x )  ~2 
= 2 f ( x )  

~aa ~ ) ( t a n - l ~  2 ( @  7~cS(tan-1 ~)4 + (3 + ~-  + T )  + -- 1)a 
a 2 q_ 2a(tan-1 ~)2 + (tan-1 ~)4 

~2 ( (  rc6a ~ )  ~ 1 ) < - -  �9 :r6 + 3 + + (2a) -1 + -- a -1 
= 2 - 2 -  

TO2 ( 3 7"C~ 7"C~--1 g~ -1 ) 
= T ~ a + ~ + T + T U a  + - 5  - - 1  a-1 " (7.7) 

It follows that ge > 0, B6 = cS(e), a = a(cS), such that 

0 < f " ( x ) / f ( x )  <= ~, Vx E ( x * , l ) .  (7.8) 

Obviously, 

We have now a function: 

l im f " ( x )  _ l im f ' ( x )  
x---+x* f ( x )  x-~l f ( x )  

- 0 .  

f ( x )  E C 2 ( [ x  *, 1]) ,  f ' ( x )  <= O, f " ( x ) / f ( x )  < e ; 

f " ( x )  > O, f ( x )  > 0, Vx E [x*, 1]; f " ( x * )  = O. (7.9) 

Let us define the function: 

f (x) ,  
9(x) =-- 2 f ( x * ) -  f(2x* - x ) ,  

It is easy to check that 

g(x) E C2([2x * - 1, 1]), g"(x*) = 0; 

9'(x) < 0, Vx E (2x* - 1,1) ; 

x e Ix* ,1] ,  
(7.10) 

x E [2x* - 1,x*] . 

g(x) >__ o, 

S".(.x) Vx c (x*, 1), 
f(x) , (7.11) 

9"(x)/g(x) = -f"(2x*-x) Vx E (2x* - l ,x*)  
2f(x* )--f(2x* --x)' 

Notice that in (7.11), f ' (2x*  - x )  > 0. Moreover, f ' ( x )  < 0 for x C [x*, 1] and 
2x* - x  > x* on  x E (2x* - 1 , x * )  implies 

f(2x* - x) < f ( x * ) ,  (7.12) 

f ( 2 x * - x ) -  2f(x*) < - f ( x * )  < 0, (7.13) 

on xE(2x* - 1,x*). It follows from (7.13) that 9"(x)/9(x) <= O, for any x ~ (2x* - 
1,x*); while (7.12) gives 

2 f ( x * ) -  f (2x* x) >= f ( 2 x * - x )  > 0,  

or 
f '(2x* x) < H(2x* - x )  

2 f ( x V ) - - - - f ~ 2 ~ - x )  = f(2x* ---x-)- ' 
(7.14) 
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for x E [2x* - 1,x*]. It follows that 

g(x) C C2([2x * - 1, 1]) ,  

g(x)  > O, V x E [2x* - l, 1) , 

g ( i ) ( 1 ) = 0 ,  i = 0 , 1 , 2 ;  

g(i)(2x* - l ) = O, i =  1 ,2 ,  

g(Zx* - 1) = 2 f (x* )  > 0 ,  

Ig'(x)/g(x)l  < sup I f ' ( x ) / f ( x ) l ,  
xc[x*,lJ 

g" (x ) /g ( x )  <= g, Vx E [2x* - 1, 1]. 

Now since 2x* - 1 > - 1 ,  we extend 

g(x)  = 2f(x*) ,  Vx E [ -1 ,2x*  - 1]; g(x)  = O, 

To summarize, we have 

Vx E [2x* - 1,1] ,  

Vx E [1, + o c ) .  

g(x)  E C 2 ( [ - 1 , + o 0 ) ) ,  g(x)  = 2 f (x* )  on [ -1 ,2x*  - 1) ;  

g"(x) < ~, g'(x) < O, 
g(x)  = = 

[g'(x)/g(x)I < sup I f ' ( x ) / f ( x ) l ,  
xC[x*,I] 

g ( x ) -  O, Vx > 1.  

Vx c [ -1 ,+cx) )  ; 

We define 

t l ( X ) = ( 2 f ( x * ) ) - I g ( x - l ) ,  Vx => 0 ,  

where c~ > 0 is a constant to be chosen. It follows from (7.18) that 

2 1 ~(x)~C~0R+), 0<~__<1, 

r / (x )=  1, V x E [ 0 , 2 m c * ] ,  

t / = 0 ,  Vx => 2c~. 

Let r0 = 2coo*, rl = 2c~. I f  c~ C (0, �89 then r0 < ri < 1. Moreover, 

FIt(X) __ _ l g ' (  x -- 1) 

~(x) g(X _ 1) 

425 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 



426 M.I. Weinstein, J. Xin 

By our construction, 

)/4 x ( ~ - 1  ( ~ - 1 )  

So 

On the other hand, 

su f ' (x)l  
--<x up 

=< sup _~tan 1 
x>0 a + (tan ~ - ~ )  2 

7~ 
< m 
= 2 , / a '  

t/t(x) < 2~z0~ 
t/(x) = ~ - '  gx > 0 .  (7.20) 

t/"(x) + �88 < t / " ( x )  1 g" ( x _  1) < • Vx > 0 .  (7.21) 
t/(X) = t/(X) 0~2 ~ ( x _  1) =- ~2' 

Combining (7.20) and (7.21), we conclude that Vz > 0, ~t/(r) E cg(IRI+) such that: 
t/(r) - 1, if  r E (0,r0), where r0 ~ (0, 1); t/(r) -~ 0, if r _>_ r~, where rl E (r0, 1); 
and 0 < t/(r) < 1, t/ '(r) =< 0, Vr > 0. Moreover, we have 

At/ _ AFtl < L .  IVt/[__ _ It/Y[ < - - ~  (7 .22)  
t/ /I - -  ~ 2 '  t/ t/ - 20{v/~, 

for all r > 0. For r ~ (0, rl ), that is on the support of  t/, we have 

2 4]Vt/[ 2 Ayt/ 2 ~2 e 
2-2u2 7 + - 7  - +  t/ --<2-7+--+7~2a 

Similarly, 

< 2 - r 2 +  + 2 - e -  . ~2 a ~'2 0{2 
(7.23) 

l _ U 2  1 10]Vt/]2 Art/ ( ~  5Tc2) 1 
- T g +  t/---7~+ t/ < 1 -  - ~ - -  2 a J  0{~" 

We take e = 1, then choose a = a(e) as in (7.8) and a > 40~22; finally we make 
1 small enough in (7.23). It follows that there exists 0{ = C~o C (0, g) such that 

2 4tVt/I 2 A~t/ 1 
2 - 2U 2 - 7y § t/~7-- + t/ --< 2 - 40{2-- =< - 1  , (7.24) 

1 - e 2 1 10tVt/I 2 Art/ 
- ~ - +  t / ~ +  t/ < O, (7.25) 

for all r E (0,rl  = 2~0) which includes the support of  t/. This completes the proof 
of  the lemma. 
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