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Abstract: Contrary to what would be predicted on the basis of Cramér’s model con-
cerning the distribution of prime numbers, we develop evidence that the distribution of
ψ(x + H) − ψ(x), for 0 ≤ x ≤ N , is approximately normal with mean ∼ H and
variance ∼ H logN/H , when Nδ ≤ H ≤ N1−δ .

0. Introduction

Cramér [4] modeled the distribution of prime numbers by independent random variables
Xn (for n ≥ 3) that take the value 1 (n is “prime”) with probability 1/ log n and take
the value 0 (n is “composite”) with probability 1 − 1/ log n. If pn denotes the nth prime
number this model predicts that

lim
N→∞

1

N
card{n : 1 ≤ n ≤ N,pn+1 − pn > c logpn} = e−c

for all fixed positive real numbers c. Gallagher [6] showed that the above follows from
Hardy & Littlewood’s [10, p. 61] quantitative version of the prime k-tuple conjecture:
If D = {d1, d2, . . . , dk} is a set of k distinct integers, then

∑

n≤x

k∏

i=1

�(n+ di) = (S(D)+ o(1))x (1)
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as x → ∞, where S(D) is the singular series

S(D) =
∑

q1,... ,qk
1≤qi<∞

( k∏

i=1

µ(qi)

φ(qi)

) ∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

e
( k∑

i=1

aidi

qi

)
, (2)

where e(θ) = e2πiθ . Hardy & Littlewood showed that the right hand side above may be
written more transparently as

=
∏

p

(
1 − 1

p

)−k(
1 − νp(D)

p

)
, (3)

where νp(D) denotes the number of distinct residue classes modulo p found among
the members of D. (See the remarks following the proof of Lemma 3 in §2.) Since
νp(D) = k for all sufficiently large p, the product (3) is absolutely convergent. Hence
its value is 0 if and only if there is a prime p for which νp(D) = p. Gallagher [6] showed
that from (1) it follows that

∫ X

2
(ψ(x + λ log x)− ψ(x))k dx ∼ mk(λ)X(logX)k

when λ � 1. Here mk(λ) = E(Y k) is the kth moment of a Poisson random variable Y
with parameterλ, and a � bmeans that a/b lies between two positive absolute constants.
Thus the distribution of π(x + h)− π(h) is approximately Poisson when h � logX, as
predicted by the Cramér model.

In this paper we investigate the distribution of primes in longer intervals. Let H =
H(N) be a function of N such that H = o(N) and H/ logN → ∞ as N → ∞.
The Cramér model predicts that the distribution of ψ(n + H) − ψ(n) (for n ≤ N ) is
approximately normal with mean ∼ H and variance ∼ H logN . Assuming a strong
form of the Hardy-Littlewood conjecture (1) we will show that this prediction holds
in the range where H/ logN → ∞ and logH/ logN → 0 as N → ∞. In the range
Nδ ≤ H ≤ N1−δ we provide evidence showing that the Cramér model is incorrect, and
conjecture instead that the distribution of ψ(n + H) − ψ(n) is approximately normal
with mean ∼ H and variance ∼ H log(N/H).

When h � log x, the moments ofψ(x+h)−ψ(x) and ofψ(x+h)−ψ(x)−h are of
the same order of magnitude. However, for larger h one would expect that the moments
of ψ(x + h) − ψ(x) to be far larger than those of ψ(x + h) − ψ(x) − h. We obtain
our conclusions on the distribution of ψ(x + h)−ψ(x) by analyzing these latter, more
delicate moments. To facilitate this study, we set�0(n) = �(n)− 1, with the result that

ψ(x + h)− ψ(x)− h =
∑

x<n≤x+h
�0(n).

Thus the main term is eliminated at the outset, which simplifies our calculations con-
siderably. We recast (1) in an equivalent form that pertains to �0(n): If d1, . . . , dk are
distinct integers, then

∑

n≤x

k∏

i=1

�0(n+ di) = (S0(D)+ o(1))x (4)
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as x → ∞ where S0(D) is related to S(D) by the identities

S0(D) =
∑

I⊆D

(−1)card IS(I), (5)

S(D) =
∑

I⊆D

S0(I). (6)

Here it is to be understood that S0(∅) = S(∅) = 1. One of the main steps in Gallagher’s
argument is to show that

∑

d1,... ,dk
1≤di≤h
didistinct

S(D) ∼ hk (7)

as h → ∞. There are
(
h
k

)
subsets D under consideration, but each one occurs k! times

in the above sum. Thus the above asserts that the mean value of S(D) tends to 1 as
h → ∞. Correspondingly, we need to estimate the quantities

Rk(h) =
∑

d1,... ,dk
1≤di≤h
didistinct

S0(D) . (8)

From (2) and (5) we see that

S0(D) =
∑

q1,... ,qk
1<qi<∞

( k∏

i=1

µ(qi)

φ(qi)

) ∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

e
( k∑

i=1

aidi

qi

)
. (9)

The task of estimating averages of this expression is quite challenging, but our burden is
substantially lightened by work of Montgomery & Vaughan [16] concerning a strikingly
similar quantity. Let

mk(q;h) =
q∑

n=1

( h∑

m=1
(m+n,q)=1

1 − hφ(q)/q

)k
(10)

be the kth centered moment of the number of reduced residues (mod q) in an interval.
Lemma 2 of Montgomery & Vaughan asserts that

mk(q;h) = q
(φ(q)
q

)k
Vk(q;h), (11)

where

Vk(q;h) =
∑

d1,... ,dk
1≤di≤h

∑

q1,... ,qk
1<qi |q

( k∏

i=1

µ(qi)

φ(qi)

) ∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

e
( k∑

i=1

aidi

qi

)
. (12)
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When k=1, the conditions in the innermost sum cannot be fulfilled, and thusV1(q;h)=0.
When k = 2, the conditions in the innermost sum require that q1 = q2 = a1 + a2. Thus

V2(q;h) =
∑

d|q
d>1

µ(d)2

φ(d)2

d∑

a=1
(a,d)=1

|E(a/d)|2, (13)

where

E(α) =
h∑

m=1

e(mα). (14)

Montgomery & Vaughan showed that

Vk(q;h) 
k (hq/φ(q))
k/2(1 +O

(
h−1/(7k)(q/φ(q))2

k+k/2))

for each positive integer k. Unfortunately, this is not quite sharp enough for our present
purposes, so our first job is to refine the above.

Theorem 1. In the above notation,

Vk(q;h) = µkV2(q;h)k/2 +Ok

(
hk/2−1/(7k)

( q

φ(q)

)2k+k/2)
(15)

for every positive integer k, where µk = 1 · 3 · · · (k − 1) if k is even, and µk = 0 if k
is odd.

Here the main term is the kth moment of a normal random variable with expectation
0 and variance V2(q;h). We remark that the work of Granville & Soundararajan [9] (see
§6a) places restrictions on the uniformity (in k) with which (15) can possibly hold. With
Theorem 1 in hand, we are able to estimate the Rk(h).

Theorem 2. Let h be an integer, h > 1, and suppose that Rk(h) is defined as in (8).
Then

Rk(h) = µk(−h logh+ Ah)k/2 +Ok
(
hk/2−1/(7k)+ε)

for any nonnegative integer k, where A = 2 − C0 − log 2π and C0 denotes Euler’s
constant.

For the smallest values of k, one can be more precise, since it is clear thatR0(h) = 1,
and that R1(h) = 0. Also, from (5) and (48) we know that

R2(h) = −h logh+ Ah+O(h1/2+ε). (16)

From (6) it follows that the left hand side of (7) is

k∑

r=0

(k
r

)
Rr(h)(h− r)(h− r − 1) · · · (h− k + 1).
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Hence we obtain Gallagher’s estimate (7) in the more precise form

∑

d1,... ,dk
1≤di≤h
didistinct

S(D) = hk −
(k

2

)
hk−1 logh

+
(k

2

)
(1 − C0 − log 2π)hk−1 +O

(
hk−3/2+ε). (17)

We put

MK(N;H) =
N∑

n=1

(ψ(n+H)− ψ(n)−H)K, (18)

and note that this is

=
N∑

n=1

( H∑

h=1

�0(n+ h)
)K =

∑

h1,... ,hK
1≤hi≤H

N∑

n=1

K∏

i=1

�0(n+ hi). (19)

Here the hi are not necessarily distinct, but once the distinct values have been identified,
and their multiplicities accounted for, we can appeal to (4). The quantities Rk(h) arise
in the main term. Thus from Theorem 2 we can derive an asymptotic estimate for the
above, provided that the error term in (4) is sufficiently small and H is not too large.

Theorem 3. Let Ek(x; D) be defined by the relation

∑

n≤x

k∏

i=1

�(n+ di) = S(D)x + Ek(x; D),

and suppose that

Ek(x; D) 
 N1/2+ε (20)

uniformly for 1 ≤ k ≤ K , 0 ≤ x ≤ N , and distinct di satisfying 1 ≤ di ≤ H . Then

MK(N;H) = µKH
K/2

∫ N

1
(log x/H + B)K/2 dx

+O
(
N(logN)K/2HK/2

( H

logN

)−1/(8K) +HKN1/2+ε
)

(21)

uniformly for logN ≤ H ≤ N1/K , where B = 1 −C0 − log 2π and C0 denotes Euler’s
constant.

In the case k = 1, the set D is a singleton, S(D) = 1, and the hypothesis that
E1(N; {1}) 
 N1/2+ε is equivalent to the Riemann Hypothesis (RH).

In place of (20) if we assume only that Ek(x; D) 
 E for some E ≥ N1/2+ε then
(21) holds with the modified error term

O
(
N(logN)K/2HK/2

( H

logN

)−1/(8K) +HKE
)
.
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We note that in deriving Theorem 3 from Theorem 2, we start with hi that are not
necessarily distinct, and must reduce to distinct di , which is the reverse of the problem
encountered in deriving Theorem 2 from Theorem 1, where we start with distinct di , and
want to appeal to an estimate involving not necessarily distinct mi .

Since theµK are the moments of a normal random variable with mean 0 and variance
1 we deduce from Theorem 3 the following corollary.

Corollary 1. Let H = H(N) be a function of N such that

H

logN
→ +∞,

logH

logN
→ 0

as N → ∞. Assume that the hypothesis (20) holds for arbitrarily large K . Then the
distribution of ψ(n + H) − ψ(n) − H for n ≤ N is approximately normal with mean
0 and variance H logN , in the sense that the proportion of n ≤ N for which ψ(n +
H)−ψ(n)−H ≤ c

√
H logN tends to�(c) as N → ∞, uniformly for |c| ≤ C. Here

�(u) = 1√
2π

∫ u
−∞ e−v2/2 dv is the cumulative distribution function of a normal random

variable with mean 0 and variance 1.

For largerH , Theorem 3 furnishes only a limited number of moments and we cannot
deduce a distribution result. However we expect that the contributions of the Ek(x; D)
cancel sufficiently so as not to overwhelm the main term:

Conjecture 1. For each positive integer K ,

MK(N;H) = (µK + o(1))N
(
H log

N

H

)K/2

uniformly for (logN)1+δ ≤ H ≤ N1−δ .

This implies the weaker

Conjecture 2. Suppose that (logN)1+δ ≤ H ≤ N1−δ . The distribution of ψ(x+H)−
ψ(x) for 0 ≤ x ≤ N is approximately normal with mean H and variance H logN/H .

Certainly Conjecture 2 does not hold when H � N , but perhaps it holds whenever
H = o(N). It would be interesting to investigate more thoroughly what happens in this
range.

Hardy & Littlewood [10] provided heuristics that point toward the quantitative prime
k-tuple conjecture (1). In §4 we argue in the same spirit to obtain indications in favor of
Conjecture 1.

To obtain further support for our conjectures, we interpret the situation in terms of
the zeros of the Riemann zeta function. We recall that Goldston & Montgomery [8]
showed that if RH is true, then the stronger form (F(α) ∼ 1) of the Pair Correlation
Conjecture as formulated by Montgomery [13] is equivalent to the case K = 2 of the
Conjecture above. In the same spirit, Chan [3] has shown (assuming RH) that Conjecture
1 is equivalent to the assertion that

∫ X

1

( ∑

0<γ≤T
cos(γ log x)

)k
dx = (µk + o(1))X

( T
4π

log T
)k/2

. (22)
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Viewed in this way, we see that the Pair Correlation Conjecture asserts that the variance
of the sum ∑

0<γ≤T
cos(γ log x)

is the same as it would be if it were a sum of uncorrelated random variables, and Conjec-
ture 1 asserts that this same sum has the same normal distribution that it would have if
the terms were independent random variables. In somewhat the same vein, Bogomolny
& Keating [1] used Hardy–Littlewood conjectures concerning primes to arrive at the n
level correlation function of zeros of the zeta function.

Freeman Dyson observed that the Pair Correlation Conjecture is analogous to known
properties of the spacings of the eigenvalues of certain families of random matrices.
We note that (22) has a similar analogue in random matrix theory. Let U(N) denote the
classical compact group of unitaryN×N matrices. ForA ∈ U(N), let e(θ1), . . . , e(θN)

denote the eigenvalues of A. Rains [19] has observed that if M is an integer, |M| ≥ N ,
then the point (Mθ1, . . . ,MθN) is exactly uniformly distributed in T

N asA varies with
respect to the Haar measure dA on U(N). It follows in particular that the distribution of

Re TraceAM =
N∑

n=1

cos(2πMθn)

is exactly the same as the distribution of

N∑

n=1

cos 2πXn,

where the Xn are independent random variables, each one uniformly distributed on
[0, 1]. It follows by the Central Limit Theorem that this distribution tends toward a nor-
mal distribution with mean 0 and variance N/2. By an easy calculation it can also be
shown that the kth moment of this distribution is 0 if k is odd, and is ∼ µk(N/2)k/2 if k
is even.

As for numerical studies, Brent [2] has compiled evidence not only for (1) but also for
the stronger hypothesis (20). Odlyzko [18] and Forrester & Odlyzko [5] have found that
the local distribution of the zeros of the zeta function fits well with predictions based on
random matrix theory. The authors [15] have reported on numerical evidence in support
of the conjectures. Finally, Chan [3, pp. 36, 49, 63] has assembled evidence in favor
of (22).

Cramér’s model suggests that

π(x + (log x)a)− π(x) ∼ (log x)a−1 (23)

as x → ∞ with a fixed, a > 2. This, however, is known to be false, since Maier [12]
showed that

lim
x→∞

π(x + (log x)a)− π(x)

(log x)a−1 ≷ 1

for any fixed a > 0 (for general results of this nature see Granville & Soundararajan
[9]). Presumably (23) is valid for most x, and the exceptions discovered by Maier are
quite rare. Indeed Selberg [20] showed that on RH, (23) holds if a > 2 for almost all x,
and Corollary 1 shows on hypothesis (20) that (23) holds if a > 1 for almost all x. As
for longer intervals, suppose that α is fixed, 0 < α < 1. Cramér’s model would predict
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that ψ(x + xα) − ψ(x) − xα is approximately normally distributed with mean 0 and
variance Xα logX as x runs over the range X ≤ x ≤ 2X. Our Conjecture 1 predicts
normal distribution, but with a variance that is smaller by a factor of 1 − α. Thus it
seems that in this range, Cramér’s model is not just occasionally inaccurate, but instead
is actually inaccurate on average.

1. Proof of Theorem 1

Montgomery & Vaughan [16] devised a useful basic inequality (their Lemma 1), which
we now quote.

Lemma 1. Let r1, . . . , rk be squarefree integers, set r = [r1, . . . , rk], and suppose that
any prime dividing r divides at least two of the ri . Then for any complex-valued functions
G1, . . . ,Gk defined on (0, 1] we have

∣∣∣∣
∑

b1,... ,bk
1≤bi≤ri∑
bi/ri∈Z

k∏

i=1

Gi(bi/ri)

∣∣∣∣ ≤ 1

r

k∏

i=1

(
ri

ri∑

bi=1

|Gi(bi/ri)|2
)1/2

.

Montgomery & Vaughan [17] have derived several variants of the above; an exposi-
tion of such variants is found in Chapter 8 of Montgomery [14]. For our present purposes
a different type of variant is useful.

Lemma 2. Let q1, . . . , qk be squarefree integers, each one strictly greater than 1, and
put d = [q1, . . . , qk]. LetG be a complex-valued function defined on (0, 1), and suppose
that G0 is a nondecreasing function on the positive integers such that

q−1∑

a=1

|G(a/q)|2 ≤ qG0(q) (24)

for all squarefree integers q > 1. Then

∣∣∣∣
∑

a1,... ,ak
0<ai<qi∑
ai/qi∈Z

k∏

i=1

G(ai/qi)

∣∣∣∣ ≤ 1

d

k∏

i=1

qiG0(qi)
1/2.

Proof. We write qi = risi where the si are pairwise relatively prime and any prime
dividing [r1, . . . , rk] divides at least two of the ri . That is, ri = (qi,

∏
j �=i qj ). Clearly

d = rs1 · · · sk , where r = [r1, . . . , rk]. The condition
∑
ai/qi ∈ Z forces si |ai for all

i. Hence, on writing ai = sibi , we find that the left hand side above is

=
∣∣∣∣

∑

b1,... ,bk
0<bi<ri∑
bi/ri∈Z

k∏

i=1

G(bi/ri)

∣∣∣∣ .

If there is an i for which ri = 1, then the conditions in the above sum cannot be
fulfilled, the sum is empty, and there is nothing to prove. Thus we may assume that
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ri > 1 for all i. In Lemma 1 we take Gi(x) = G(x) for 0 < x < 1, and Gi(1) = 0.
Thus by Lemma 1 and the hypothesis (24), the above is

≤ 1

r

k∏

i=1

(
ri

ri−1∑

bi=1

ri |G(bi/ri)|2
)1/2 ≤ 1

r

k∏

i=1

(
r2
i G0(ri)

)1/2
.

Since G0 is nondecreasing, the above is

≤ 1

r

k∏

i=1

(
r2
i G0(qi)

)1/2 = 1

d

k∏

i=1

(
q2
i G0(qi)

)1/2
,

as desired. �
We now begin the main body of the proof of Theorem 1. We take k to be fixed, so

that the dependence of implicit constants on k is suppressed. If k is odd, then the desired
estimate is already found in (18) of Montgomery & Vaughan [16]. Thus we may assume
that k is even. From (12) and (14) it is clear that

Vk(q;h) =
∑

q1,... ,qk
1<qi |q

( k∏

i=1

µ(qi)

φ(qi)

) ∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

k∏

i=1

E(ai/qi).

In Lemmas 7 and 8 of Montgomery & Vaughan [16], it is shown that all contributions
to the above are


 hk/2−1/(7k)
( q

φ(q)

)2k+k/2
,

except for those terms for which the qi are equal in pairs, with no further equalities
among the qi . There are (k − 1)(k − 3) · · · 3 · 1 = µk ways in which this pairing can
occur. Take the pairing to be qi = qk/2+i , and set bi = ai + ak/2+i . Thus the terms that
remain to be estimated are precisely

µk
∑

q1,... ,qk/2
1<qi |q
qi distinct

k/2∏

i=1

µ(qi)
2

φ(qi)2

∑

b1,... ,bk/2
1≤bi≤qi∑
bi/qi∈Z

k/2∏

i=1

J (bi, qi), (25)

where

J (b, r) =
r∑

a=1
(a,r)=1
(b−a,r)=1

E
(a
r

)
E

(b − a

r

)
. (26)

First we show that the condition that the qi should be distinct in (25) can be dropped. To
see this, put F(α) = min(h, 1/‖α‖), where ‖θ‖ = minn∈Z |θ − n| is the distance from
θ to the nearest integer. Thus

|E(α)| ≤ F(α) (27)
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for all α. Let Q denote the set of those k-tuples (q1, . . . , qk) such that 1 < qi |q for all i,
and with the property that among the qi there are three or more of them that are equal. In
proving their Lemma 8 (see the treatment of T3), Montgomery & Vaughan [16] establish
that

∑

q∈Q

( k∏

i=1

|µ(qi)|
φ(qi)

) ∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

k∏

i=1

F(ai/qi) 
 hk/2−1/(7k)
( q

φ(q)

)2k+k/2
.

Since this majorizes the difference between (25) and

µk
∑

q1,... ,qk/2
1<qi |q

k/2∏

i=1

µ(qi)
2

φ(qi)2

∑

b1,... ,bk/2
1≤bi≤qi∑
bi/qi∈Z

k/2∏

i=1

J (bi, qi), (28)

it follows that we can continue with the above expression. Suppose that 0 < bi < qi for
exactly j values of i, and that bi = qi for the remaining k/2 − j values of i. Since there
are

(
k/2
j

)
ways of choosing the j indicies, we see that the above is

µk

k/2∑

j=0

(k/2
j

)
V2(q;h)k/2−jWj (q;h), (29)

where W0(q;h) = 1 and

Wj(q;h) =
∑

q1,... ,qj
1<qi |q

j∏

i=1

µ(qi)
2

φ(qi)2

∑

b1,... ,bj
0<bi<qi∑
bi/qi∈Z

j∏

i=1

J (bi, qi). (30)

Here the term j = 0 gives the desired main term. Thus it remains to show that the other
terms are smaller.

To prepare for an application of Lemma 2, we estimate J (b, r). By (27) we see that
if 0 < b ≤ r/2 and r < h, then

J (b, r) 

∑

b/2<a<b

r2

b(b − a)
+

∑

b<a≤3b/2

r2

b(a − b)
+

∑

3b/2<a≤2r/3

r2

a2


 r2

b
log 2b. (31)

Here half the ranges of a have been omitted, since by symmetry they contribute the same
amount as the listed sums. Similarly, if 0 < b ≤ r/h and r ≥ h, then

J (b, r) 

∑

0<a≤2r/h

h2 +
∑

2r/h<a≤r/2

r2

a2 
 rh . (32)
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Finally, if r/h < b ≤ r/2 and r ≥ h, then

J (b, r) 

∑

b/2<a≤b−r/h

r2

b(b − a)
+

∑

b−r/h<a<b

rh

a
+

∑

b<a≤b+r/h

rh

a

+
∑

b+r/h<a≤4b/3

r2

b(a − b)
+

∑

4b/3<a≤2r/3

r2

a2


 r2

b
log(2bh/r). (33)

From (31) we see that if r < h, then
∑

0<b<r

J (b, r)2 
 r4,

and from (32) and (33) we see that if r ≥ h, then
∑

0<b<r

J (b, r)2 
 r3h.

Altogether,
∑

0<b<r

J (b, r)2 
 r3 min(r, h). (34)

On taking G0(r) = Chr2 in Lemma 2, we find that

∑

b1,... ,bj
0<bi<qi∑
bi/qi∈Z

j∏

i=1

J (bi, qi) 
 1

d

j∏

i=1

(
q2
i h

1/2),

and hence

Wj(q;h) 
 hj/2
∑

d|q

1

d

( ∑

r|d

µ(r)2r2

φ(r)2

)j

= hj/2
∏

p|q

(
1 + 1

p

(
1 + p2

(p − 1)2

)j) 
 hj/2
( q

φ(q)

)2j

.

To apply this in (29), we need also a bound for V2(q;h). To this end we note that

V2(q;h) ≤
∑

d|q

µ(d)2

φ(d)2

d−1∑

a=1

F(a/d)2 
 h
∑

d|q

µ(d)2d

φ(d)2

= h
∏

p|q

(
1 + p

(p − 1)2

)

 h

q

φ(q)
.

(By a different method it can be shown that V2(q;h) ≤ hq/φ(q). See Hausman & Shap-
iro [11] and (3) of Montgomery & Vaughan [16]). From (30) we see thatW1(q;h) = 0,
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since the inner sum is empty. On applying the above estimates for 2 ≤ j ≤ k/2, we see
that the expression (29) is

µkV2(q;h)k/2 +O
(
hk/2−1(q/φ(q))2

k/2)
.

Here the error term is majorized by that in (15), so the proof is complete.

2. Proof of Theorem 2

We begin with two lemmas.

Lemma 3. (Hardy–Littlewood) Let

A(q1, . . . , qk) =
∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

e
( k∑

i=1

diai

qi

)
.

If qi = q ′
iq

′′
i with (

∏
q ′
i ,

∏
q ′′
i ) = 1, then

A(q1, . . . , qk) = A(q ′
1, . . . , q

′
k)A(q

′′
1 , . . . , q

′′
k ). (35)

For any prime number p,

∑

q1,... ,qk
qi |p

k∏

i=1

µ(qi)

φ(qi)
A(q1, . . . , qk) =

(
1 − 1

p

)−k(
1 − νp(D)

p

)
, (36)

where νp(D) is the number of distinct residue classes modulo p found among the mem-
bers of D = {d1, . . . , dk}. Finally,

∑

q1,... ,qk
1≤qi<∞

k∏

i=1

µ(qi)
2

φ(qi)
|A(q1, . . . , qk)| < ∞. (37)

Proof. We follow the argument of Hardy & Littlewood [10, pp. 56–61], but with some
helpful amplifications. We write

ai

qi
≡ a′

i

q ′
i

+ a′′
i

q ′′
i

(mod 1).

By the Chinese Remainder Theorem, each reduced residue ai modulo qi corresponds to
a pair a′

i , a
′′
i of reduced residues modulo q ′

i and q ′′
i , respectively. Also,

∑
ai/qi ∈ Z if

and only if
∑
a′
i/q

′
i ∈ Z and

∑
a′′
i /q

′′
i ∈ Z. This gives (35).

If each qi is either 1 or p, then

p∑

r=1

e
( k∑

i=1

air

qi

)
=

{
p if

∑k
i=1 ai/qi ∈ Z,

0 otherwise.
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Thus the left-hand side of (36) is

= 1

p

p∑

r=1

∑

q1,... ,qk
qi |p

k∏

i=1

µ(qi)

φ(qi)

∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1

e
( k∑

i=1

ai(di − r)

qi

)

= 1

p

p∑

r=1

k∏

i=1

(
1 − 1

p − 1

∑

0<a<p

e
(a(di − r)

p

))
.

Here the innermost sum is p − 1 or −1, according as r ≡ di (mod p), or not. Thus if
r ≡ di (mod p), then this factor of the product is 0. There are νp(D) such values of r .
For the remaining p−νp(D) values of r , each factor of the product is p/(p−1). Hence
the above is

= p − νp(D)

p

( p

p − 1

)k
,

which gives (36).
From (35) we see that

∑

q1,... ,qk
qi |Q

k∏

i=1

µ(qi)
2

φ(qi)
|A(q1, . . . , qk)| =

∏

p|Q

( ∑

q1,... ,qk
qi |p

k∏

i=1

1

φ(qi)
|A(q1, . . . , qk)|

)
. (38)

Put D = ∏
i<j (dj − di). For primes p|D we make no attempt to simplify the above

expression. However, there are only finitely many such primes, and for p � D, the
di are distinct modulo p. For such primes we evaluate the factor more explicitly. Let
J ⊆ {1, . . . , k} with j = card J, suppose that qi = p for i ∈ J, qi = 1 for i /∈ J, and
that the di are distinct modulo p. Then

A(q1, . . . , qk) = 1

p

p∑

r=1

∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1

e
(ai(di − r)

qi

)

= 1

p

p∑

r=1

k∏

i=1

( ∑

1≤ai≤qi
(ai ,qi )=1

e
(ai(di − r)

qi

))
.

If i /∈ J, then the innermost sum is 1 for all r . If i ∈ J, then the innermost sum is p − 1
if r ≡ di (mod p), and −1 otherwise. Thus there are j values of r for which one factor
is p−1, j −1 factors are −1, and all other factors are 1. For the remaining p− j values
of r , there are j factors that are −1 and the remaining factors are 1. Thus the above is

= 1

p

(
j (p − 1)(−1)j−1 + (p − j)(−1)j

) = (−1)j−1(j − 1).

Hence |A(q1, . . . , qk)| = |j − 1|, so it follows that the expression (38) is

∏

p|Q
p|D

( ∑

q1,... ,qk
qi |p

k∏

i=1

1

φ(qi)
|A(q1, . . . , qk)|

)
×

∏

p|Q
p�D

(
1 +

k∑

j=2

(k
j

) j − 1

(p − 1)j

)
.



602 H.L. Montgomery, K. Soundararajan

Since this last product converges when extended over all primes, we have (37), and the
proof is complete. �

From (35) and (36) we see that

∑

q1,... ,qk
qi |Q

k∏

i=1

µ(qi)

φ(qi)
A(q1, . . . , qk) =

∏

p|Q

(
1 − 1

p

)−k(
1 − νp(D)

p

)
(39)

for any positive integer Q. By (37) it follows that

S(D) = lim
y→∞

∑

q1,... ,qk
p|qi⇒p≤y

k∏

i=1

µ(qi)

φ(qi)
A(q1, . . . , qk),

which by (39) is

= lim
y→∞

∏

p≤y

(
1 − 1

p

)−k(
1 − νp(D)

p

)
.

Thus the expressions (2) and (3) are equal.
Suppose that 1 ≤ di ≤ h for all i. Then νp(D) = k for all primes p > h, and thus if

y ≥ h, then

∏

p>y

(
1 − 1

p

)−k(
1 − νp(D)

p

)
=

∏

p>y

(
1 +Ok

( 1

p2

))
= 1 +Ok

( 1

y log y

)
. (40)

Since νp(D) ≥ 1 for all p, it is evident that

∏

p≤h

(
1 − 1

p

)−k(
1 − νp(D)

p

)

k (logh)k−1. (41)

On combining this with (40), we see that

S(D) 
 (logh)k−1. (42)

From (5) it follows additionally that

S0(D) 
 (logh)k−1. (43)

From (39)–(41) we see that if 1 ≤ di ≤ h for all i and y ≥ h, then

S(D) =
∑

q1,... ,qk
p|qi⇒p≤y

k∏

i=1

µ(qi)

φ(qi)
A(q1, . . . , qk) + Ok

( (log y)k−2

y

)
. (44)

By combining this with (5), we see also that

S0(D) =
∑

q1,... ,qk
qi>1

p|qi⇒p≤y

k∏

i=1

µ(qi)

φ(qi)
A(q1, . . . , qk) + Ok

( (log y)k−2

y

)
. (45)
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Lemma 4. Let E(α) be defined as in (14). If q is divisible by every prime number
p ≤ h2, then

∑

d|q

µ(d)2

φ(d)2

( d∑

a=1
(a,d)=1

|E(a/d)|2 − φ(d)h
)

= h2 − h logh+ Bh+O
(
h1/2+ε),

(46)

where B = 1 − C0 − log 2π and C0 denotes Euler’s constant.

Proof. Since |E(α)|2 = ∑
|m|≤h(h− |m|)e(mα), it follows that

d∑

a=1
(a,d)=1

|E(a/d)|2 =
∑

|m|≤h
(h− |m|)cd(m),

where cd(m) is Ramanujan’s sum. Now cd(0) = φ(d), and cd(−m) = cd(m), so the
above is

φ(d)h+ 2
h∑

m=1

(h−m)cd(m).

Hence the left-hand side of (46) is

= 2
h∑

m=1

(h−m)
∑

d|q

µ(d)2

φ(d)2
cd(m).

Here the sum over d is

∏

p|q

(
1 + cp(m)

(p − 1)2

)
=

∏

p|q
p|m

(
1 + 1

p − 1

) ∏

p|q
p�m

(
1 − 1

(p − 1)2

)
.

Since q is divisible by every prime p ≤ h2, the above is

=
∏

p|m

(
1 + 1

p − 1

) ∏

p�m

(
1 − 1

(p − 1)2

)
+O

(
1/h2).

Here the main term is

∏

p|m

(
1 − 1

p

)−2(
1 − 1

p

)
×

∏

p�m

(
1 − 1

p

)−2(
1 − 2

p

)
= S({0,m}).

Goldston [7] has shown that

2
h∑

m=1

(h−m)S({0,m}) = h2 − h logh+ Bh+O
(
h1/2+ε), (47)

so we have the stated estimate. �
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It is worth noting that (47) can also be written in the form

∑

d1,d2
1≤di≤h
d1 �=d2

S({d1, d2}) = h2 − h logh+ Bh+O
(
h1/2+ε). (48)

The term d = 1 contributes h2 − h to the left hand side of (46). Thus if q is divisible
by every prime not exceeding h2, then

∑

d|q
d>1

µ(d)2

φ(d)2

( d∑

a=1
(a,d)=1

|E(a/d)|2 − φ(d)h
)

= −h logh+ Ah+O
(
h1/2+ε), (49)

where A = 2 − C0 − log 2π .
We now begin the main body of the proof of Theorem 2. We apply (45) with y = hk+1,

and set Q = ∏
p≤y p. Thus

Rk(h) =
∑

q1,... ,qk
1<qi
qi |Q

k∏

i=1

µ(qi)

φ(qi)
S(q1, . . . , qk;h) + O(1), (50)

where

S(q1, . . . , qk;h) =
∑

d1,... ,dk
1≤di≤h
di distinct

∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

e
( k∑

i=1

aidi

qi

)
. (51)

By comparing (50) with (12) we find that if the condition that the di should be dis-
tinct were omitted, then the main term in (50) would be exactly Vk(Q;h). The bulk of
our argument is devoted to an effort to remove this condition. Put δi,j = 1 if di = dj ,
δi,j = 0 otherwise. Thus

∏

1≤i<j≤k
(1 − δi,j ) =

{
1 if the di are distinct;
0 otherwise.

When the left-hand side above is expanded, we obtain a linear combination of products
of the δ symbols. Let � denote such a product, and |�| the number of factors in the
product. We define an equivalence relation on these δ-products by setting �1 ∼ �2 if
�1 and �2 have the same value for all choices of d1, . . . , dk . For example, δ1,2δ1,3 ∼
δ1,2δ2,3 ∼ δ1,2δ1,3δ2,3. Given a partition P = {S1, . . . , SM} of the set {1, . . . , k}, let

�P =
M∏

m=1

∏

i<j
i∈Sm
j∈Sm

δi,j .
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We see easily that every equivalence class of δ-products contains a unique�P. Thus we
have a bijective correspondence between equivalence classes of δ-products and partitions
of {1, . . . , k}. For a partition P, put

w(P) =
∑

�∼�P

(−1)|�|.

Thus ∏

1≤i<j≤k
(1 − δi,j ) =

∑

P

w(P)�P,

and it follows that

S(q1, . . . , qk;h) =
∑

P

w(P)
∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

M∏

m=1

E
( ∑

i∈Sm

ai

qi

)
, (52)

where PP = {S1, . . . , SM}
If there is a prime p such that p|qi for exactly one i, then the condition∑
ai/qi ∈ Z cannot be fulfilled with (ai, qi) = 1, so the sum (52) is empty, and hence

S(q1, . . . , qk;h) = 0. We therefore assume that each prime dividing [q1, . . . , qk]
divides at least two of the qi .

To facilitate our discussion of various types of partitions, we introduce some notation.
Let M = {1, . . . ,M}. For a partition P = {S1, . . . , SM}, put

M1 = {m ∈ M : card Sm = 1}, m1 = card M1;
M2 = {m ∈ M : card Sm ≥ 2}, m2 = card M2;
N1 =

⋃

card Sm=1

Sm, n1 = card N1;

N2 =
⋃

card Sm≥2

Sm, n2 = card N2.

Of course, m1 +m2 = M , n1 + n2 = k, and m1 = n1. We first bound the contribution
made by those partitions such that card Sm ≥ 3 for somem. Form ∈ M1 we use (27) to
see that |E(ai/qi)| ≤ F(ai/qi). For m ∈ M2 we use the trivial bound

∣∣∣E
( ∑

i∈Sm

ai

qi

)∣∣∣ ≤ h.

Hence
∣∣∣∣

∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

M∏

m=1

E
( ∑

i∈Sm

ai

qi

)∣∣∣∣ ≤ hm2
∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

∏

i∈N1

F
(ai
qi

)
.
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For i ∈ N1 we take Gi(x) = F(x) for 0 < x < 1, and Gi(1) = 0. For i ∈ N2, we take
Gi(x) = 1 for all x. Thus by Lemma 1 we see that the above is

≤ hm2

[q1, . . . , qk]

∏

i∈N1

(
qi

qi−1∑

a=1

F
( a
qi

)2)1/2 ∏

i∈N2

(
qi

qi∑

a=1

1
)1/2

. (53)

If q ≤ h, then
q−1∑

a=1

F
(a
q

)2 

∑

0<a≤q/2

(q
a

)2 
 q2.

If q > h, then

q−1∑

a=1

F
(a
q

)2 

∑

0<a≤q/h
h2 +

∑

q/h<a≤q/2

(q
a

)2 
 qh .

Thus in any case,

q−1∑

a=1

F
(a
q

)2 
 q min(q, h) . (54)

Thus the expression (53) is


 q1 · · · qk
[q1, . . . , qk]

hn1/2+m2 .

The n2 members of N2 are partitioned into m2 sets, each one containing at least two
members, and at least one containing 3 or more numbers. Thus

n2 =
∑

m∈M2

card Sm ≥ 1 + 2
∑

m∈M2

1 = 1 + 2m2,

and hence
n1

2
+m2 ≤ n1 + n2 − 1

2
= k − 1

2
.

We also observe that

∑

q1,... ,qk
qi |Q

( k∏

i=1

µ(qi)
2

φ(qi)

)
q1 · · · qk

[q1, . . . , qk]
≤

∑

d|Q

1

d

( ∑

q|d

q

φ(q)

)k =
∑

d|Q

1

d

∏

p|d

(
1 + p

p − 1

)k

=
∏

p|Q

(
1 + 1

p

(
1 + p

p − 1

)k) 
k (logh)2
k

.

Thus we have shown that

Rk(h) =
∑

P
card Sm≤2

w(P)
∑

q1,... ,qk
1<qi |Q

k∏

i=1

µ(qi)

φ(qi)

∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

M∏

m=1

E
( ∑

i∈Sm

ai

qi

)

+ O
(
h(k−1)/2+ε). (55)
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Suppose that the partition P consists of j doubleton sets and k − 2j singleton sets.
Since no other δ-product is equivalent to �P, and |�P| = j , so w(P) = (−1)j . The
number of such partitions is

( k
2j

) (2j)!
j !2j

.

Since the qi are interchangeable, we multiply by the above factor, and restrict our atten-
tion to one such partition: doubletons {i, i + j} for 1 ≤ i ≤ j and singletons {i} for
2j + 1 ≤ i ≤ k. Thus the main term in (55) is

∑

0≤j≤k/2
(−1)j

( k
2j

) (2j)!
j !2j

∑

q1,... ,qk
1<qi |Q

k∏

i=1

µ(qi)

φ(qi)

×
∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

j∏

i=1

E
(ai
qi

+ ai+j
qi+j

) k∏

i=2j+1

E
(ai
qi

)
. (56)

For 1 ≤ i ≤ j , let bi and ri be defined by the relations

bi

ri
≡ ai

qi
+ ai+j
qi+j

(mod 1), 1 ≤ bi ≤ ri, (bi, ri) = 1,

and put

H
(b
r

)
= E

(b
r

) ∑

d1,d2
1<di |Q

µ(d1)µ(d2)

φ(d1)φ(d2)

∑

c1,c2
1≤ci≤di
(ci ,di )=1

c1
d1

+ c2
d2

≡ b
r

(mod 1)

1 . (57)

Then the sum over the qi in (56) is

∑

r1,... ,rj
ri |Q

∑

b1,... ,bj
1≤bi≤ri
(bi ,ri )=1

j∏

i=1

H
(bi
ri

) ∑

q2j+1,... ,qk
1<qi |Q

∑

a2j+1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

k∏

i=2j+1

µ(qi)

φ(qi)
E

(ai
qi

)
.

We now separate those i for which ri = 1 from those with ri > 1. Let � denote the
number of i for which ri > 1. Since there are

(
j
�

)
ways of choosing the � values of the

i from {1, . . . , j}, the above is

j∑

�=0

(j
�

)
H(1)j−�M(�), (58)
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where

M(�) =
∑

r1,... ,r�
1<ri |Q

∑

b1,... ,b�
1≤bi≤ri
(bi ,ri )=1

�∏

i=1

H
(bi
ri

) ∑

q2j+1,... ,qk
1<qi |Q

∑

a2j+1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑

ai/qi+
∑
bi/ri∈Z

k∏

i=2j+1

µ(qi)

φ(qi)
E

(ai
qi

)
.

We note that M(0) = V2k−j (Q;h).
Next we show that the contributions of � > 0 can be absorbed in the error term. If

there is a prime p that divides exactly one of the numbers r1, . . . , r�, q2j+1, . . . , qk ,
then the condition that

∑
ai/qi + ∑

bi/ri ∈ Z cannot be fulfilled with (ai, qi) =
(bi, ri) = 1, so the sum is empty, and the sum over the qi and ri vanishes. Thus we
may restrict our attention to those choices of qi and ri for which every prime divisor
of d = [q2j+1, . . . , qk, r1, . . . , r�] divides at least two of these numbers. Hence by
Lemma 1,

M(�) 

∑

r1,... ,r�
1<ri |Q

∑

q2j+1,... ,qk
1<qi |Q

1

d

�∏

i=1

(
ri

ri−1∑

b=1

∣∣∣H
( b
ri

)∣∣∣
2)1/2

×
k∏

i=2j+1

( qi

φ(qi)2

qi−1∑

a=1

F
( a
qi

)2)1/2
. (59)

In order to assess the above, we estimateH(b/r). We note thatH(b/r) = 0 if r � Q.
Thus we suppose that r|Q, and that r > 1. For i = 1, 2 we write di = si ti , where si |r ,
ti |Q/r . By the Chinese Remainder Theorem there exist unique ei (mod si) and fi (mod
ti) such that

ei

si
+ fi

ti
≡ ci

di
(mod 1), (ei, si) = (fi, ti) = 1.

From the conditions c1/d1 + c2/d2 ≡ b/r (mod 1), (b, r) = 1 it follows that

e1

s1
+ e2

s2
≡ b

r
(mod 1), [s1, s2] = r, t1 = t2, f1 + f2 ≡ 0 (mod t1).

Put t = t1 = t2. Hence

H
(b
r

)
= E

(b
r

) ∑

s1,s2
[s1,s2]=r

∑

e1,e2
1≤ei≤si
(ei ,si )=1

e1
s1

+ e2
s2

≡ b
r

(mod 1)

µ(s1)µ(s2)

φ(s1)φ(s2)

∑

t |Q/r

µ(t)2

φ(t)
.
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For given s1, s2, the number of pairs e1, e2 with the required properties is ≤ φ((s1, s2)) =
φ(s1)φ(s2)/φ(r). Hence

H
(b
r

)

 F

(b
r

) ∑

s1,s2
[s1,s2]=r

1

φ(r)

∏

p|Q/r

(
1 + 1

p − 1

)
= F

(b
r

)3ω(r)

r

∏

p|Q

(
1 + 1

p − 1

)


 F
(b
r

)3ω(r)

r
logh .

By (54) it follows that

r−1∑

b=1

∣∣∣H
(b
r

)∣∣∣
2 
 h

r
9ω(r)(logh)2 .

On inserting this and (54) in (59), we find that

M(�) 

∑

r1,... ,r�
ri |Q

∑

q2j+1... ,qk
qi |Q

1

d

�∏

i=1

(
h1/23ω(ri ) logh

) k∏

i=2j+1

h1/2qi

φ(qi)


 h(k−2j+�)/2(logh)�
∑

d|Q

1

d

( ∑

r|d
3ω(r)

)�( ∑

q|d

q

φ(q)

)k−2j

≤ h(k−2j+�)/2(logh)�
∏

p|Q

(
1 + 4k−2j+�

p

)


 h(k−2j+�)/2+ε.

From (57) we see that

H(1) = h
∑

d|Q
d>1

µ(q)2

φ(q)
.

Hence the expression (58) is

(
h

∑

d|Q
d>1

µ(q)2

φ(q)

)j
Vk−2j (Q;h) + O

(
h(k−1)/2+ε) .

On inserting this in (56), we find that

Rk(h) =
∑

0≤j≤k/2

( k
2j

) (2j)!
j !2j

(
− h

∑

d|Q
d>1

µ(d)2

φ(d)

)j
Vk−2j (Q;h) + (

h(k−1)/2+ε) . (60)
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We are at last prepared to make our appeal to Theorem 1. If k is odd then k − 2j is
odd, so there is no main term. Suppose that k is even. Then the main term is

∑

0≤j≤k/2

( k
2j

) (2j)!
j !2j

(
− h

∑

d|Q
d>1

µ(d)2

φ(d)

)j (k − 2j)!

(k/2 − j)!2k/2−j V2(Q;h)k/2−j

= k!

(k/2)!2k/2

k/2∑

j=0

(k/2
j

)
V2(Q;h)k/2−j

(
− h

∑

d|Q
d>1

µ(d)2

φ(d)

)j

= µk

(
V2(Q;h)− h

∑

d|Q
d>1

µ(d)2

φ(d)

)k/2

by the binomial theorem.
By (49) we see that the above is

µk(−h logh+ Ah)k/2 +O
(
h(k−1)/2+ε) .

This gives the stated result.

3. Proof of Theorem 3

Clearly M0(N;H) = N . Thus we have the case K = 0 of (21) unconditionally, and
with no error term. It is also convenient to dispose of the case K = 1 before proceed-
ing to the main argument. Since S({h}) = 1, it follows from our hypothesis (20) that∑N
n=1�(n+ h) = N +O

(
N1/2+ε). Hence

∑N
n=1�0(n+ h) 
 N1/2+ε, and thus by

(19) we see that M1(N;H) 
 HN1/2+ε, which suffices.
From now on we assume that K is fixed, K ≥ 2, and we ignore possible depen-

dence of implicit constants on K . Let D = {d1, . . . , dk} be a set of k distinct integers
with 1 ≤ di ≤ H for 1 ≤ i ≤ k. Suppose that the hi in (19) take the values di with
multiplicities Mi . Then the right-hand side of (19) is

=
K∑

k=1

∑

M1,... ,Mk
Mi≥1∑
Mi=K

( K

M1 · · · Mk

) 1

k!

∑

d1,... ,dk
1≤di≤H
di distinct

N∑

n=1

k∏

i=1

�0(n+ di)
Mi . (61)

Here the 1/k! is necessary because any permutation of d1, . . . , dk gives rise to the same
set D. For positive integers m we put �m(n) = �(n)m�0(n). If M ≥ 1, then by the
binomial theorem

�0(n)
M = �0(n)(�(n)− 1)M−1 =

M−1∑

m=0

(−1)M−m−1
(M − 1

m

)
�m(n).
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On inserting this in (61), we find that

MK(N;H) =
K∑

k=1

1

k!

∑

M1,... ,Mk
Mi≥1∑
Mi=K

( K

M1 · · ·Mk

)

×
∑

m1,... ,mk
0≤mi<Mi

k∏

i=1

(−1)Mi−1−mi
(Mi − 1

mi

)
Lk(m), (62)

where

Lk(m) =
∑

d1,... ,dk
1≤di≤H
di distinct

N∑

n=1

k∏

i=1

�mi (n+ di). (63)

To estimate the Lk(m), we must distinguish between those i for which mi = 0 and
those for which mi > 0. To this end we set K = {1, . . . k}, and introduce the following
notation:

H = {i ∈ K : mi ≥ 1}, h = card H;
I = {i ∈ K : mi = 0}, k − h = card I;
J ⊆ K, j = card J.

Thus
∏

i∈I

�0(n+ di)
∏

i∈H

�(n+ di) =
∏

i∈I

�0(n+ di)
∏

i∈H

(�0(n+ di)+ 1)

=
∑

J
I⊆J⊆K

∏

i∈J

�0(n+ di).

From our hypothesis (20) it follows that

∑

n≤x

∏

i∈I

�0(n+ di)
∏

i∈H

�(n+ di) = x
∑

J
I⊆J⊆K

S0(DJ)+O
(
N1/2+ε)

uniformly for 0 ≤ x ≤ N where DJ = {di : i ∈ J}. With m = (m1, . . . , mk) fixed for
the moment, write the above briefly as f (x) = cx +O

(
N1/2+ε). Then

N∑

n=1

( ∏

i∈I

�0(n+ di)
)( ∏

i∈H

�(n+ di)(log(n+ di))
mi−1(log(n+ di)− 1)

)

=
∫ N

1−

∏

i∈H

(log(x + di))
mi−1(log(x + di)− 1) df (x), (64)
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which by integration by parts is

= c

∫ N

1

∏

i∈H

(log(x + di))
mi−1(log(x + di)− 1) dx +O

(
N1/2+ε). (65)

For m > 0, �m(n) is nonzero only when n is a primepower, and

�m(n) = �(n)(log n)m−1(log n− 1)

if n is prime. Thus if n is an integer such that n + di is prime for all i ∈ H, then the
summand in (64) is

k∏

i=1

�mi (n+ di).

Those n for which n+ di is a higher power of a prime for one or more i ∈ H contribute
an amount 
 N1/2+ε to the sum (64). Thus the sum (64) is

=
N∑

n=1

k∏

i=1

�mi (n+ di) + O
(
N1/2+ε). (66)

Next we approximate the integral in (65) by a similar integral that is independent of the
di . First we note that if k = K , thenMi = 1 for all i, and hencemi = 0 for all i, so that
h = 0. Thus we may suppose that k < K . It is useful to note that

∑

i∈H

mi =
k∑

i=1

mi ≤
k∑

i=1

(Mi − 1) = K − k . (67)

If x ≥ 1 and 1 ≤ d ≤ H , then

log(x + d) = log x +O(d/x) = log x +O(H/x).

Thus the integrand is
∏

i∈H

(
(log x)mi−1(log x − 1)

) +O
(
Hx−1(logN)K−k−1),

and so the integral is Im(N)+O
(
H(logN)K−k), where

Im(N) =
∫ N

1

∏

i∈H

(
(log x)mi−1(log x − 1)

)
dx.

On assembling our estimates, we find that

N∑

n=1

k∏

i=1

�mi (n+ di)

=
( ∑

J
I⊆J⊆K

S0(DJ)

)(
Im(N)+O

(
H(logN)K−k)) +O

(
N1/2+ε).



Primes in Short Intervals 613

By (43) we see that the first error term is 
 H(logN)K 
 N1/K+ε 
 N1/2+ε, since
H ≤ N1/K and K ≥ 2.

On summing both sides of the above over all choices of distinct di , we find that

Lk(m) = Im(N)
∑

J
I⊆J⊆K

∑

d1,... ,dk
1≤di≤H
di distinct

S0(DJ)+O
(
HkN1/2+ ε).

Once the di have been chosen for i ∈ J, there are (H − j)(H − j − 1) · · · (H − k + 1)
ways of choosing the remaining di . Hence the above is

= Im(N)
∑

J
I⊆J⊆K

Rj (H)(H − j) · · · (H − k + 1) + O
(
HkN1/2+ε).

The product in the sum isHk−j +O(
Hk−j−1

)
. By Theorem 2 we know that Rj (H) 


(H logH)j/2, and using this we see that (isolating the term J = I)
∑

J
I⊆J⊆K

Rj (H)(H − j) · · · (H − k + 1)

= Rk−h(H)(Hh +O(Hh−1))+O
( ∑

k−h+1≤j≤k
(H logH)j/2Hk−j

)

= Rk−h(H)Hh +O
(
(H logH)(k−h+1)/2Hh−1).

Therefore

Lk(m) = Im(N)
(
Rk−h(H)Hh +O

(
(H logH)(k−h+1)/2Hh−1)) +O

(
HkN1/2+ε).

(68)

We insert the above in (62). In assessing the sizes of the various terms, it is useful to
note that

K =
k∑

i=1

Mi =
∑

i∈H

Mi +
∑

i∈I

Mi ≥ 2 card H + card I = 2h+ (k − h) = h+ k.

(69)

By (67) we see that

Im(N) ∼ N(logN)
∑
i∈Hmi 
 N(logN)K−k. (70)

First we show that terms for which h + k < K contribute a negligible amount to (62).
Since Rk−h(H) 
 (H logH)(k−h)/2 by Theorem 2, it follows from (68), (69), and (70)
that

Lk(m) 
 N(logN)K−k(H logH)(k−h)/2Hh +HkN1/2+ε


 N(logN)K
(

H

logN

)(k+h)/2( logH

logN

)(k−h)/2
+HKN1/2+ε.
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Thus the contribution of these terms to (62) is


 N(logN)K
( H

logN

)(K−1)/2 +HKN1/2+ε. (71)

Finally we consider those terms in (62) for which h+k = K . Since h ≤ k, it follows
that k ≥ K/2. We also have card H = h = K − k, and card I = k−h = 2k−K . Since
equality holds in (69), it follows thatMi = 2 for all i ∈ H and thatMi = 1 for all i ∈ I.
Thus mi = Mi − 1 for all i, and for such m we have

Im(N) =
∫ N

1
(log x − 1)K−k dx = IK−k(N),

say. Hence

Lk(m) = IK−k(N)R2k−K(H)HK−k +O
(
N(logN)K−k

×(H logH)(2k−K+1)/2HK−k−1)

+O(HkN1/2+ε)

= IK−k(N)R2k−K(H)HK−k +O
(
N(logN)K

( H

logN

)(K−1)/2)

+O(HKN1/2+ε).

Once k is selected, there are precisely
(

k
K−k

)
ways of choosing the set H, and hence

using (71) and the above,

MK(N;H) =
∑

K/2≤k≤K

K!

k!2K−k
( k

K − k

)
IK−k(N)R2k−K(H)HK−k

+O
(
N(logN)K

( H

logN

)(K−1)/2) +O
(
HKN1/2+ε). (72)

Suppose that K is odd. Then so also is 2k − K , and hence by Theorem 2 the main
terms in (72) are


 N(logN)K/2HK/2−1/(7K)+ε.
Thus in this case

MK(N;H) 
 N(logN)K/2HK/2−1/(7K)+ε +N(logN)K
( H

logN

)(K−1)/2

+HKN1/2+ε


 N(logN)K/2HK/2
( H

logN

)−1/(8K) +HKN1/2+ε.

Suppose that K is even. By Theorem 2 it follows that

MK(N;H) = HK/2
K∑

k=K/2

K!

k!2K−k

(
k

K − k

)
µ2k−KIK−k(N)(− logH + A)k−K/2

+O
(
N(logN)K/2HK/2

( H

logN

)−1/(8K) +HKN1/2+ε
)
.
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Since µk = k!/((k/2)!2k/2) when k is even, on writing k = K/2 + � we see that the
main term above is

µKH
K/2

K/2∑

�=0

(K/2
�

)
IK/2−�(N)(− logH + A)�.

On taking the sum inside the integral, we obtain the stated result by the binomial theorem.

4. Heuristics in the Manner of Hardy & Littlewood

The reasoning here is conducted in the manner that Hardy & Littlewood [10] used to
formulate their quantitative version of the prime k-tuple hypothesis. Let

S(α) =
N∑

n=1

�(n)e(nα).

By the prime number theorem for arithmetic progressions we know that if (a, q) = 1,
then S(a/q) ∼ µ(q)N/φ(q), provided that q is not too large as a function of N . By
partial summation it follows that S(α) ∼ µ(q)M(α−a/q)/φ(q) for α near a/q, where
M(β) = ∑N

n=1 e(nβ). Put E(α) = ∑h
m=1 e(mα), as in the proof of Theorem 1. If h is

small compared with N , then S(α)E(−α) is approximately

N∑

n=1

( h∑

m=1

�(m+ n)
)
e(nα) .

Moreover, when α is near a/q, E(−α) is approximately E(−a/q). Thus when α is a
number for which the expression above is large, we expect that

S(α)E(−α) �
∑

1≤q≤N

µ(q)

φ(q)

q∑

a=1
(a,q)=1

E(−a/q)M(α − a/q) ,

since for any particular α, at most one term on the right hand side contributes sub-
stantially. We subtract the contribution of the term a = q = 1 from both sides to see
that

N∑

n=1

( h∑

m=1

�(m+ n)− h
)
e(nα) �

∑

1<q≤N

µ(q)

φ(q)

q∑

a=1
(a,q)=1

E(a/q)M(α − a/q).

Let F(α) denote the left hand side above. The k-fold convolution of F with itself is

N∑

n=1

( h∑

m=1

�(m+ n) − h
)k
e(nα) =

∫
· · ·

∫

∑
αi=α (mod 1)

k∏

i=1

F(αi) dα1 · · · dαk .
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We set α = 0, and follow Hardy & Littlewood in assuming that the main term arises
by the alignment of the peaks in the multiple integral on the right hand side. Thus we
expect that

N∑

n=1

( h∑

m=1

�(m+ n)− h
)k ∼ N

∑

q1,... ,qk
1<qi≤N

( k∏

i=1

µ(qi)

φ(qi)

) ∑

a1,... ,ak
1≤ai≤qi
(ai ,qi )=1∑
ai/qi∈Z

k∏

i=1

E(ai/qi).

We note that |E(β)| � h if ‖β‖ ≤ 1/h, and that E(β) 
 1/‖β‖ if ‖β‖ ≥ 1/h. The
asymptotic size of the right-hand side above could be determined by using the techniques
used to prove Theorem 1. At this point we are content to argue more informally. If k
is odd then the terms do not make a very significant contribution. On the other hand,
when k is even, we find ‘diagonal terms’ in which the qi are equal in pairs, with the
corresponding ai being the negatives of each other. The pairings can be made in

(k − 1)(k − 3) · · · 3 · 1 = µk

ways, so the contribution of these terms is

µkN
∑

q1,... ,qk/2
1<qi≤N

k/2∏

i=1

(
µ(qi)

2

φ(qi)2

qi∑

ai=1
(ai ,qi )=1

|E(ai/qi)|2
)

= µkN

( ∑

1<q≤N

µ(q)2

φ(q)2

q∑

a=1
(a,q)=1

|E(a/q)|2
)k/2

.

If there are further equalities among the qi beyond this pairing, then the combinator-
ics must be adjusted, but such configurations contribute a lesser amount. Likewise,
that the non-diagonal terms contribute a lesser amount can be demonstrated by using
the techniques we used to prove Theorem 1. If q < h then the inner sum above is

 ∑

0<a<q ‖a/q‖−2 
 q2, but if q ≥ h then the inner sum is approximately hφ(q).
Since

∑

q≤y

µ(q)2

φ(q)
= log y +O(1),

it follows that the expression to be estimated is

∼ µkN
(
h log

N

h

)k/2
,

which supports the Conjecture.
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