THE U N I V E R S I T Y OF MICHIGAN COLLEGE OF ENGINEERING Department of Aeronautical and Astronautical Engineering High Altitude Engineering Laboratory Technical Report ATMOSPHERIC SLANT PATH TRANSMISSION IN THE 151 CO2 BAND S. Roland\ Drayson ORA Project 05863 under contract with: NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT NO. NASr-54(03) WASHINGTON, D. C. administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR November 1964

ACKNOWLEDGMENTS The author gratefully acknowledges the help and encouragement given by Dr. Charles Young; the mixed Doppler-Lorentz subroutine was written by him and he also supplied the card deck containing the line positions and strengths. In addition, Dr. Young gave valuable advice and took part in many discussions with the author. Thanks are also due to the Laboratory Director, Professor Leslie M. Jones, and the Project Supervisor, Mr. Fred L. Bartman, for their interest and advice. Mr. Maurice E. Graves read the manuscript and suggested some alterations. The National Centre for Atmospheric Research Computing Facility, Direltor Dr. Glen E. Lewis, m The work was performed. u Administration, Contract iii

tW i:, A, to,, -', C..;,.

TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS vii ABSTRACT ix 1. INTRODUCTION 1 2. LINE SHAPES 2 2.1 The Lorentz Line Shape 2 2.2 Mixed Line Shape 9 30 BAND MODELS 16 4. CALCULATION DETAILS 18 4.1 Strong Lines 18 4.2 Weak Lines 20 4.3 The Programs 21 4,3-1 Program SUBPROG 21 4.3.2 Program MAIN 22 5, DISCUSSION OF THE RESULTS 23 5.1 General 23 5.2 Comparison with Previous Results 23 5 3 Application to the Satellite Infrared Spectrometer (SIRS) 28 5.4 Accuracy of the Calculations 32 5.5 Comparison with Gates et al.15l6 36 60 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 37 7. REFERENCES 39 APPENDIX A: CDC 3600 FORTRAN PROGRAMS FOR COMPUTING THE TRANSMISSIVITIES 41 APPENDIX B: TRANSMISSIVITIES AVERAGED OVER 5.0 cm1l INTERVALS BETWEEN 502.0 and 857.0 cml1 61 APPENDIX C: TRANSMISSIVITIES AVERAGED OVER O,1 cm~l INTERVALS BETWEEN 665.5 and 670.5 cm'l 98

LIST OF ILLUSTRATIONS Table Page I, Integrated Absorption, I, for the 15p. C02 Band Vertical Path from the Indicated Altitudes 27 II4 Transmissivities for the SIRS Instrument Response Function Between 665 and 674 Wavenumrbers 31 III. Comparison Between Transmissivities Averaged Over 1.0 cm-1 Intervals 35 Figure 1. Maximum error in using Curtis-Godson approximation for paths between p and 1000 mb. 7 20 Error in Curtis-Godson approximation for paths between 10 and 100 mbo 8 3A Equivalent widths for homogeneous paths at 0.5 mb pressure, 2500K, and frequency 700 cm! 11 4, Maximum error in equivalent widths using Lorentz broadening at low pressures. 13 5 Regions of validity of line shape integration methods. 15 6o Transmissivity averaged over 5 cm-1 intervals. 24 7. High resolution atmospheric transmission at centre of 15j CO2 band4 25 86 Transmission for the vertical path from 15 km. 26 9, Transmission for the vertical path from 50 km. 28 10. Transmission for a vertical path starting outside the earth's atmosphere down to given pressure levels. SIRS response function (5 cm-1 resolution, triangular shape). 33 11. Vertical component of outgoing atmospheric radiation as seen by SIRS. U So Standard Atmosphere, 1962. 34 vii

1. INTRODUCTION In recent years there has been a growing interest in atmospheric infrared. radiative.,transfer, with applications to the earth and other planets. On the earth these applications include the investigation Qf radiative heating and cooling, and the interpretation of satellite instrument measurements, while the~ composition, surface pressure, temperature etc., of planetary atmospheres may be found from suitable remote radiometric observations. At the same time there have been increasing demands on the accuracy of calculations; broad band radiometers. are being supplemented and replaced by instruments of much higher spectral resolution and photometric accuracy. One of the chief problems stems from the difficulty in calculating atmospheric transmission functions due to molecular band absorptions. These funct ions.. are generally obtained in one of two ways: a. From laboratory absorption cell measurements. These are subject to experimental errors) which, in the case of low concentrations of the absorbing gas, may be severe. / Considerable extrapolation over temperature, pressure, and path length is required before application to atmospheric conditions can be made. In addition, such transmission functions have an instrument response function built in, and the spectral resolution is limited by the measuring instrument. b. By theoretical calculations using band models. These are generally unsatisfactory, for reasons which are discussed in detail in a later section. They cannot be applied to certain sections of the absorption bands, which are of extreme importance in the upper atmosphere. The procedure adopted here was to integrate directly across the band, using theoretically calculated line positions and strengths. The accuracy of the transmission function is governed by our knowledge of the absorption band structure. The 15k CO2 band was chosen because the line position and strengths are known fairly accurately, whereas those of the rotational water vapor band, ozone etc., are less well known~ However) it should be emphasised that the method is quite general and can be applied to any absorbing gas.

2. LINE SHAPES A The question of line shapes is extremely important in the calculation of atmospheric absorption and must be adequately known before calculations are made. The theory governing the shapes and half-widths is difficult to apply; furthermore experimental work is hampered by such factors as the overlapping of lines, the difficulty in obtaining suitable high-resolution instruments and the effect of instrument aperture functions on the spectra. However, there is good evidence to support the use of the Lorentz line shape where pressure broadening is the dominant feature and the mixed DopplerLorentz line shape at lower pressures~ 2.1 THE LORENTZ LINE SHAPE This has a very simple form and has the great advantage that it is easy to deal with analytically*, The absorption coefficient at frequency, v, for a single line strength, S, centered at frequency, vo, is given,by V l (v-v (1) where UL is the Lorentz half-width at temperature T, and.pressure p. The dependence of cL upon these parameters is given by UL Uo P. S (2) PO,' T ao being the half-width at temperature To, and pressure poo There are references in the literature to deviations from the Lorentz line shape in the far wings of CO2 lines. In a recently published article1 Winters et al., have given details of experimental measurements on the 4.35t CO2 band. Their results show that beyond about 5 cml1 from the line centers the absorption coefficient drops away much more sharply with frequency than is predicted by Eqo (1), and an empirical modification, which is almost exponential, is given. However, it should be noted that these experimental results were obtained for N2-CO2 and 02-C02 mixtures in which the proportion of CO2 was very high compared with the concentration in the earth's atmosphereo Moreoverg the empirical modification was dependent on these concentrations. It was decided that there was no justification in altering the

line shape until experimental data are available for lower concentrations. For other planetary atmospheres, where the CO2 concentration is much greater, the question must be reexamined. Much more important is the uncertainty in half-widtho In the present calculation all lines were assumed to have a half-width of 0.064 cm-1 at 2980K and a pressure of 1 atm (Kaplan and Eggers ). It is known that there are important variations in half-width from line to line (Madden3). but not enough is known to be taken into account in the present calculations. It is an area where a detailed theoretical and experimental investigation could be very useful. In calculating the transmissivity due to a single line in a thin atmospheric slab, where the temperature variation is so small that it may be considered isothermal, Young4 has shown that the Curtis-Godson approximation is capable of a simple interpretation: for an absorbing gas with a constant mixing ratio the value of [kj, is calculated by substituting the average pressure for the layer. It will be shown that the Curtis-Godson approximation may be entirely eliminated by integrating the line shape with respect to pressure Consider a plane parallel atmospheric slab bound by pressure levels P, and P2a The transmissivity of a path through this slab is given by YV = exp k, u P2 > P1 Pi where u is the optical mass at pressure p. Since the mixing ratio is constant du = c dp where c is constant. Thus P2 Yv = exp - c k3 dp) (3) Equation (3) is valid for any line shape~ For certain special cases the integral may be evaluated analytically~ In the isothermal slab Eq. (2) shows 5~~~

that cL depends directly on pressure, UL = cl p say. Equation (3) becomes =v exp ) 2(v-vo) 2+l p = exp - -cS n 12p22+(v-vo)2 (4) L' 2pi2+(v-v0) cf. Goody? page 233. The corresponding value using the Curtis-Godson approximation is 7V= exp - Sal P22 (5)1 v = exp 2; (v-vO)+al((pl+P2)/2) (5)) It is interesting to compare the two results. At the line center ( = vo), the latter gives 2c8 P2-P1 y = exp - P (6) whereas Eq. (4) yields cS Yvo = exp Cas n P1 (7) For thin slabs (i.e., where the value of P2/Pl is near unity) the approximation is fairly good, but not for thicker slabs. If P2 = 2pl the Curtis-Godson approximation gives 2 cS yvo = exp and the pressure integrated value is cS n 2 Tv~ = exp -an21 4 l /

while for P2 = 9 P1 the values are avo = exp (1.6 s and Yv = exp I ~n 9,~ respectively 0 "") Further out in the wings the difference again becomes less. As (v-vo) becomes large, we can expand Eq. (4) 2 4 Cs 2 2 C4 yv = exp 2. cS.... (p p2. ) -P (P2 -Pi ) + higher order terms 2_tao v- V0) 2(v-vo) (8) and Eqo (5) becomes y = exp F cS 0Ul(p2 p - cz1 ( 2 )( rP1+P2 2 + higher order terms. VK al (v-v)2 (V-Vo)4 j (9) The first terms in the expansions are equivalent, while the difference in the second terms is (p2 P )2 2 (V-v0)4 As v-vo becomes large this term becomes small,, so that the Curtis-Godson approximation becomes good. At the line center the exact pressure integration gives more absorption but away from the center the absorption due to the Curtis-Godson approximation is always greater. To compare the total absorption for a single isolated line the equivalent width, A, was calculated for a number of different values of Pi and P2o A is given by

A =S (l-y) dv (10) o and by substitution of Eqs. (4) and (5) the equivalent width for the pressure integration, ApI, and Curtis-Godson approximation ACG may be calculated. A slight modification was made by substituting u = c(p2-Pl) and calculating the equivalent widths for different values of Su from 10.0 to 1.0 x 10-cml. The numerical evaluation of ApI was accomplished by Gaussian quadrature over a fine mesh of subintervals, whose length depended on the distance from the line center. ACG was determined from the Landenberg-Reiche formula.6 To check the accuracy of the quadrature technique, ACG was also calculated numerically and the length of the subintervals adjusted until close agreement was obtained with the Landenberg-Reiche method. The results agree with those obtained by Kaplan, but have been extended to include paths between arbitrary pressure levels, using numerical integration techniques. The value of ACG is always greater than ApI but the difference becomes small for very large and very small values of Su and for values of P2/Pi near unity. Figure 1 shows the maximum error in using the Curtis-Godson approximation between pressure levels of p mb and 1000 mb. For p < 350 mb the maximum error is greater than 1%. Even for p = 800 mb (800 and 1000 mb were actually used as pressure limits of one slab in the final calculations) the error is as high as 0.05%, which is outside the limits of accuracy required. The maximum occurs for Su = 0.6 cm-l. For a vertical path in the earth's atmosphere between 800 and 1000 mb,u x 50 atm cm, giving the maximum error for S = 0.012 (atm cm)-l cm-l, a line of medium strength, important for radiative transfer in regions of the band away from the center. Figure 2 shows a typical distribution of error with values of Su, in this case for paths between 10 and 100 mb. The error is greater than half a percent for values of Su ranging over more than two orders of magnitude. Reasons for the success of the approximation in dealing with the Lorentz line shape are: a. In many cases the center of the line is completely blacked out. b. For a weak line the absorption is almost independent of the line

6.0 5.0 4.0 M o uJ 3.0 2.0 0 100 200 300 400 500 600 700 800 900 1000 p (MB.) Fig, 1. Maximum error in using Curtis-Godson approximation for paths between p and 1000 mb.

4.0 3.0 Cr W 2.0 00 1.0 0.0 -5 -4 -3 -2 -1 0 LOG,0(Su) (Su IN cm-') Fig. 2. Error in Curtis-Godson approximation for paths between 10 and 100 mb.

shape-it depends only on the line strength and the optical mass of the path. For intermediate cases, where strong absorption takes place near the center of the line, but complete absorption is not present, the pressure integration method supplies a much higher degree of precision. Be cause the present calculations were made with a high degree of accuracy, the Curtis-Godson approximation was excluded in favor of the pressure integration method. 2.2 MIXED LINE SHAPE As the atmospheric pressure decreases the Lorentz half-width becomes less and the influence of Doppler broadening becomes more marked. For the 15 p C02 band the Doppler'and Lorentz half-widths are equal at about 10 mb and at lower pressure the Doppler half-width is the greater. Thus, over a wide range of atmospheric pressures it is necessary to consider the mixed Doppler-Lorentz line shape. The absorption coefficient for mixed broadening is given by k e k dt (11) V - y2+(x_'t)2 where k~ / 1 ~1/2 x(v (in 2) 1/2 The Doppler half width, aDy depends linearly on frequency and linearly on the square root of the absolute temperature, Te =D 3 58 x 107( T) vo/ M = molecular weight

The Doppler absorption coefficient is given by kv = ko exp(-x2) (12) As the pressure becomes small, cL tends to zero and Eq. (11) reduces to the Doppler case. Similarly, for large pressures aL/aD becomes large and in the limit becomes Eq. (1). The integral (11) cannot be evaluated analytically and numerical method must be used. Although there is no difficulty in obtaining as accurate a. value as desired, it is not an easy task to find an efficient way to calculate its value, bearing in mind that this may have to be done many times for different values of x and y in the course of a single computer program. Young has summarized the methods available and has now improved his technique, resulting in an efficient subroutine (KNUMIX) over wide ranges of values of x and y which are encountered in the earthts atmosphere. Because of the analytical difficulties involved it has generally been assumed in the past that Doppler effects may be neglected in terrestial radiative transfer calculations. Plass and Fivel8 showed that for very weak or very strong, lines its influence was negligible up to altitudes of at least O50 km,i but were not able to reach any conclusion for lines of intermediate strength. Accordingly, an investigation was conducted to determine the values of pressure over which it is necessary to use the mixed line shape. In this analysis homogeneous paths of constant temperature and pressure were chosen, The equivalent width, A, of a line of strength. S, and path of optical mass u, was computed for a number of different pressures p, using both the Lorentz and mixed line shapes. In addition, the strong and weak line approximation were evaluated and compared with the equivalent widths, The result for p = 0,5 mb is illustrated in Fig~ 35 In general it agrees with Plass and Fivel 8 namely, that for very strong lines the strong line approximation, As, Lorentz equivalent width, AL, and mixed equivalent width, AM, are coincident, and that for very weak lines the weak-line approximation, AW, is equal to AL and AM. Between these two extremes the behavior is quite interesting. Firstly, AW is an upper bound for both the mixed and Lorentz equivalent width. In fact, it is easy to show that this result is true for an arbitrary line shape, Since kvu > O for all v and u 1 - e kv < k u Therefore LO

-2' E o~~~~~~~~~~~~~~~~~~~~~~~-4I~~~~~~~~~~~~~lo -2 ~ ~ ~ ~ ~~~,q0'~~~~~~z,00 _ -4 - 0 0.0 -5 -6 -7 - -7 -6 -5 -4 -3 -2 -I 0 +I LOGo(Su) (Su IN cm- ) Fig. 3. Equivalent widths for homogeneous paths at 0.5 mb pressure, 250~K, and frequency 700 cm-1.

A = f (l-ekvu)dv < I kvu dv Su = AW i.e., A < AW Secondly, AS is an upper bound for AL, but not for AM. For intermediate. values of Su the value of AM is almost three times the values of AL and AS. As Su increases AM approaches AS from above, while AL approaches AS from below. At higher pressures these characteristics are maintained, although the differences decrease in magnitude. Above 20 mb, however, the strong-line approximation is an upper bound for both the mixed and Lorentz absorption. To minimize computation time, it is important to know the pressures where pure Lorentz broadening may be used and where it is necessary to use the mixed Doppler-Lorentz. The maximum errors (over all Su) of the equivalent widths for a number of pressures have been plotted in Fig. 4. They vary from 60% to 0.5 mb to 0.05% at 100 mb. The criterion adopted was to use pure Lorentz broadening above 100 mb and mixed Doppler-Lorentz at lower pressures. It is possible to apply the Curtis-Godson approximation to the mixed line shape as well as pure pressure broadening. It will be shown that it can be eliminated in the same way, although the analysis is necessarily more complicated. Equation (3) is again the appropriate one to use and this necessitates the evaluation of the integral: kv dp =ko y et dp (13) Pi V Pi it y2+(X-t)2 There are two obvious approaches to its evaluation. a. Evaulation of Eq. (6) using the subroutine KNUMIX, and applying Gaussian quadrature to the pressure integral. b. The order of integration may be reversed: = exp -"0- P dp t (1) 12. y2+(x-t)2 12

io.o.50.0 10.0 w c) Cl) w cr 5.0 aI.0 0.5 0.05 0.1 0.5 1.0 5.0 10.0 50.0 MAXIMUM ERROR (%) Fig. 4. Maximum error in equivalent wiatb.~ using Iorentz broaaening at low pressures.

Again the assumption is made of an isothermal slab. y is the only pressure dependent term and may be written in the form Y = Yo P Substituting v( 0 P2 2 Yy = exp c]k ty0 etp y px- dt =0 2 2 e exp cko et n yo2P2+(x-t)2 dt (15) This integral shares many of the characteristics of Eq. (11). The integrand has a sharp maximum at t = x and any method of numerical integration must be capable of reproducing the effect of the peak in the neighborhood of t = x. Hermite-Gauss quadrature is the obvious method, but for values where Iv-vol <.003 cm1 and p < 10 mb, the integral does not converge as the number of points of quadrature approaches 20. It was found that two methods could be employed in this region. Firstly, the interval (-o,coo) was divided into subintervals whose length was dependent on the distance from t = x. By taking small intervals around this point and successively larger ones as the distance increased, the integral could be successfully evaluated by Gaussian quadrature. With the subdivisions used, the sixth significant figure was always the same for 10- and 16-point quadrature, over a wide range of x and p. Those regions of overlap with the 20-point Gauss-Hermite quadrature showed agreement between the two methods, with the discrepancy in the sixth significant figure never exceeding one. Whereas the Gauss-Hermite quadrature is fast and efficient, the method of subdivision is slow and tedious. A quicker solution was sought. As an efficient method of evaluating Eqo (11) was already available (subroutine KNUMIX), Gaussian quadrature of the mixed line shape integral with respect to pressure was investigated. Two-point Gaussian quadrature was found to give a high degree of accuracy, almost as good as the subdivision technique, with a much smaller execution time. For jv-vol > 0.2 cm'l or p > 100 mb pressure broadening was found to be sufficiently accurate and much faster.

To summarize, three different methods were employed to evaluate the appropriate pressure integrated line shape. They are illustrated in Fig. 5. 100 a:: DD 10 (V) 0.003 0.2 Iv-vol (cm-,) Fig. 5. Regions of validity of line shape integration methods. Region I. 2-point Gaussian quadrature of the mixed line shape integral. Region II.. 20-point Gauss-Hermite quadrature of Eq. (15). Region III. Pressure broadening only, using Eq. (4). Work continues to find better methods of particularly in Region I where execution time is greatest. 15

53. KBAND MODELS, Because of the/great complexity of molecular absorption bands it has become a widespreaa. practice to calculate atmospheric absorption with the help of band models. They assume that the line positions,'and strengths are distributed in a way that gives a.simple solution for fthe transmission function, averaged over some interval.,The most commonly used band models are: a. The Elsasser or regular model j assumes spectral lines of equal intensity, equally spaced and with identical half-widths. The transmission function is averaged over an interval equal to the spacing between the line centers. b. In the statistical or random model,9 originally developed for water vapor, the positions and strength of the lines are given by a probability function. c. The random-Elsasser models which assumes a random superposition of different elasser bands. / d' The quasi-random modelAO This is by far the best available model and is capable of fairly accurate representation of the band provided the averaging interval is made sufficiently small. There are fundamental objections to the use of band models in accurate transmission calculations. a. The spectral resolution with which the calculations can be made is limited in most models, e.g., for the Elsasser model it is a multiple of the line spacing. Where the resolution is not limited (e.g., quasi-random) the amount of calculation required for high resolution is large. b. The solutions lose their simple form. when mixed broadening is introduced in place of the less complicated pressure broadening. c. By their very nature the models are such that they can only simulate the actual line intensities and distributions. For instance, a cursory glance at the 1591 CO2 band will show that neither the random nor the regular band adequately describes the situation. This is particularly true for regions such as the main Q-branch at 667y4 cm-l, where the distribution is definitely not random or regular. This Q-branch is very important for radiative transfer, particularly in the upper atmosphere. 16

d. It is difficult-if not impossible-to avoid the use of the CurtisGodson approximation~ The quasi-random model has done much to remove the objections above; in fact, as the width, 6, of the averaging intervals tends to zero, the model distribution approaches the actual distribution. However, if 5 is small the advantage of using the model disappears and the calculations become increasingly lengthy. In extensive computations of C02 transmission, Stull et al.,12 have used 5 cm-1 for the value of 56, but this is too large in some of the regions of greatest interest. In the interval entered at 665 cml, for example, nearly all the very strong lines are concentrated at one end of the interval, between 667~4 and 667y5 cm-l1 Yet the model assumes them to be randomly distributed throughout the interval, seriously overestimating the absorption With increasingly sophisticated instruments coming into general use, it has become apparent that a more accurate approach must be mad.e. At the time when band models were introduced it was impossible- to make complicated calculations and hence the growth in popularity of the models, In recent years, with the advent of high-speed digital computers with large storage capacities, the situation has changed radically. With a suitably efficient program it is now possible to make transmission calculations by integrating directly with respect to frequency. Accordingly, calculations have been made without the use of a band model; they cover the entire 15t CO2 band, from 500 to 859 cml, and are averaged over Ool cml1 intervals, This high resolution has the additional advantage that the transmission function may be averaged over larger intervals, taking into account instrument response functions. An example of such an application is given in a later section. The calculations were made of the transmission from a point outside the earth's atmosphere down to a total of 34 pressure levels, ranging from 0,3 mb to 1013o25 mbo Slant paths for six zenith angles were used, 0, 15, 30, 45, 60, and 75 degrees. The atmosphere was assumed to be plane parallel, with a constant mixing ratio of 0o0314% by volume of C02o The atmospheric temperature structure used was the U. S. Standard Atmosphere 1962o13 Test calculations were made for differing temperature structures and their effect on the transmissivity will be discussed in a later section of this report. 17

4. CALCULATION DETAILS The position and strength of some 2000 lines in the 15p C02 band have been listed by Young,4 at six temperatures between 175~ and 3000K. Dr. Young kindly provided a duplicate card deck. This deck was modified in two ways: a. Where two or more lines had a coincident frequency} they were replaced by a single line whose intensity was the sum of the separate intensities. b. It was found from test calculations that only those lines whose intensities were greater than 1.0 x 10-4 cm-1 (atm cm)-1 at 2750K had any marked influence outside the 0ol cm'l interval within which they were contained. Therefore the deck was split into two parts, containing 982 strong lines and 1008 weak lines, respectively. These strong and weak lines were treated in rather different ways by the main program. 4.1 STRONG LINES Beyond 0.2 cm-1 from the line center the pressure broadening completely dominates the line shape, for all atmospheric temperatures and pressures, and hence the absorption coefficient) kv, for a line of strength, S, may be written = CIL (16) It (AV)2+aL 2 Whenever < 1 this may be expanded as S ~L F1 terms] = It (Av)2 L1 (Av)2 + higher order terms Now KL <.07 cm1, so that the error in neglecting the term (CL2/Av2) is less than 1 part in 10-4, provided that Avil > 7.0 cm-l (for most values of pressure the error 18

is much less than 1 part in 10-4). Hence for JAvi > 7.0 cmthe approximation kV S= (17) T Av2 was used. For each 1 cmr1 interval the sum SM(Tjvo) = E Si (18) was calculated. The sum was taken over all strong lines at a distance greater than 7~5 cm-l from the center of the interval, and was computed for three values of vo, the center and the two end points of the interval, as well as for six temperatures, Tj, 175~ to 5000K in 25~K steps. In order to find the value of SM(Tv) three-point Lagrange interpolation over both temperature and frequency was employed. The approximation (17) can be used for many values of lAvl < 7 cm-lo If jAvl <.009 p, where p is the pressure in mb, Av in cm-l, the error in using (17) is less than 1 part in 5 x 10-5 and this inequality was adopted as a criterion for the use of approximation (17). In addition, if the magnitude of the expression S/(Av)2 was sufficiently small (< 0.001) the Eq. (17) was employed. It should be emphasized that these approximations are an essential part of the calculations. Without them the expression in Eq. (4), involving a natural logarithm, would have to be evaluated for each strong line at each pressure level and each frequency, v, a procedure which would be prohibitively time consuming. The approximations were checked both theoretically and in actual calculations over small test portions of the band, with satisfactory results in all caseso Where the use of Eq, (4) could not be avoided it was found that the logarithm could be written in the form In(l+x) x > 0 where, in the majority of cases, x was small, For x K 0.2, a simple expanslion was used to evaluate the lbgarithm, it being both quicker and 19

frequently more accurate than the library subroutine. For x > 0.2 the library subroutine was used. This applies to all places in the program where the function ~n(l+x) had to be evaluated, for example the evaluation of Eq. (15) for the mixed line shape. Integration with respect to frequency was performed as follows: as previously mentioned, the transmission was averaged over 0.1 cm-1 intervals. If a strong line lay within the interval an especially fine subdivision for quadrature had to be developed up to a distance of 0.01 cm-1 from the line center' 4-point Gaussian quadrature was applied over the intervals formed by points distance 0o0, 0O001, 0.002, 0.003, 0.005, and 0.01 cm-l1 from the line center. Four-point Gaussian quadrature was also applied to the remaining subintervals, subject to this modification: where a subinterval had length greater than 0.05 cm-1 and was situated nearer than 01ol cm-1 from a line of strength greater than 0.1 (atm cm)-1 cm-'1 the subinterval was further subdivided into three smaller s-ubintervals. For a given frequency, v, determined by the Gaussian quadrature abscissae, the value of the expression Yv exp kv du (19) was calculated for each of the pressure levels, pi, i-=1...534, and for six slant paths. The integral was expressed in the form i du du (20) o j=i Pj-l The pressure slab between pressures Pi and Pi+l was considered isothermal, with the temperature the average of the values at the top and bottom. Since the difference was never more than a. few degrees, little error results in this assumption. The transmission function was determined by multiplying the values of Av by the appropriate quadrature weights and interval lengths. 4.2 W7EAK LINES The average transmission over the 0.1 cm1 interval due to the weak lines was calculated separately, using a quadrature technique similar to 20

that employed for the strong lines. Finally this transmission was multiplied by the transmission from the strong lines to obtain the correyt value of the transmissivity in the 01ol cm-1 interval~ 4.3 THE PROGRAMS Most of the preliminary work, testing approximations and producing a rough draft of the final programs, was done at The University of Michigan Computing Center, using the IBM 7090 computer. MAD language was employed because, while it produces a slightly less efficient object program, it complies much more quickly and has a greater flexability than FORTRAN. The rough MAD programs were then translated into FORTRAN II, and largely debugged at The University of Michigan. A block of free computer time was very kindly made available at the National Center for Atmospheric Research Computer Facility, in Boulder, Colorado; on the CDC 3600. Only slight modifications were needed to the FORTRAN II programs to convert them to CDC 3600 FORTRAN. These CDC programs appear in Appendix A. For comparison purposes the CDC 3600 is roughly twice as fast as the IBM 7090 Because of the large number of storage locations needed in the calculations, the program was written in two parts. 4.3.1 Program SUBPROG Together with its subroutine GRONK, this program determined: a. The number and position of the weak and strong lines within each 0.1 cm-1 interval. b. Produced a code giving information when the strong and weak lines were the end points of an interval. c. Gave the subintervals over which Gaussian quadrature was applied, d. Formed the sum (18) for the temperature and frequencies required. e. Gave a number of other details concerning the input of strong- and weak-line strengths and positions. These results were written on binary tape (tape 20) and were used as input by program MAIN. SUBPROG was somewhat complicated because of the many special cases that had to be tested for in the course of execution However, since it is largely integer arithmetic, it was very fast in execution~ The time taken for the entire band was approximately 5.3 minutes on the CDC 3600O 21

4.3.2 Program MAIN Together with its three subroutines, LOOIKAT, CENTRE, and KNUMIX, Program MAIN computed the transmission. Initially MAIN set up various constants and also arrays which were dependent on the pressure levels. Secondly, it calculated. kv du for an isolated line at various distances Ul Av from the line center, for values of ul, u2 corresponding to the pressure levels. Since the integral involves the mixed line shape, which varies slowly with frequency, it was recalculated every 10 cml.' In addition strong and weak lines were read in (from the binary tape) during this second section of the program. Thirdly, the actual transmission calculations were performed, in three stages: a. Transmission was calculated for the intervals between the strong lines, using subroutine LOOKAT. b. Transmission was calculatedin the neighborhood of the strong lines involving subroutines CENTRE and LOOKAT, c. Modification due to weak lines was made using subroutine CENTRE. The transmission functions were written on magnetic tape in BCD mode. The total execution time for the whole band (499,5-859.5 cml) was 109.4 minutes on the CDC 3600. A CDC 3600 FORTRAN listing for both programs and their subroutines is found in Appendix A. In order to reduce execution time all two-dimensional arrays were written with linear subscripts except in some I/O statements where it was difficult and inconvenient not to use two subscripts. The subroutine KNUMIX which evaluated the mixed line shape integral (Eq. (13)) was written in MAD by Dro Charles Young. The version of KNUMIX listed here is a translation into FORTRAN. 22

5o DISCUSSION OF THE RESULTS 5.1 GENERAL Because of the large amount of data obtained it is impossible to reproduce more than a small fraction in this report. The emphasis has been placed on supplying coefficients that may be useful in atmospheric radiation calculations, and in comparison with previously published results. In addition, an example of an application to an instrument function is presented. The complete results are available on magnetic tapes. In keeping with the first aim, the transmission coefficients have been averaged over 5 cm-1 intervals, for the vertical path only, with entries every 1 cm-l (Appendix B). The frequency at the top of each column is that of the center of the 5 cm1 interval No attempt has been made to smooth the data, as may be seen from Fig. 6, which is a- plot of transmission versus frequency for four of the pressure levels. The main Q-branch (667.4 cm-1) dominates the absorption at low pressures. It is composed of a large number of strong lines, neither regularly nor randomly distributed, which cannot be adequately represented by a band model. Accordingly, more detailed results are given in this region: Appendix C contains tables of transmission coefficients at 01ol cm-1 resolution between 665~5 and 670 5 cm-l, for the vertical path. Figure 7 illustrates some of these coefficients; the triangles at the top represent the line positions, the height indicating the intensity decade in which the line strength falls. 5,2 COMPARISON WITH PREVIOUS RESULTS It is somewhat difficult to compare the present calculation results with those obtained by other authors, due to the fact that atmospheric slant paths have been used in the computation, rather than. fixed temperature and pressure paths. However, Plassl4 has used his previously published resultsl2 to calculate atmospheric slant path transmission from four different altitudes (15, 25, 30, and 50 km) to the outer limits of the earth's atmosphere. Comparison shows considerable disagreement between the two calculations (Fig. 8), The differences are most severe in the Q-branch regions, both at the main Q-branch (667[4 cm1l) and those at approximately 620 cm-1 and 720 cm1. The integrated absorptions, I, I = Av dv 23

1.0 800 MB. 801 50M5B. 10MB.8 200MB..7. U) -~~ U) I.-.3.2 0.0 850 800 750 700 650 600 550 500 FREQUIENCY (cni~') F'ig. 4. Transtaissivity averaged. over 5 cxn71 intcervals.~

IMB I MB 1.0 IOMB~~~~~~~~~~~~~~~~~~~~~~~~'SBI~LJ~ I.9I1 _ —-—,M.st 5~~~~5.1, oI - - 1 ~ -'1r~~~~~~~~ -Ii L_' 1: rFRQUECY CM Fig. 7.High rsolutio atmosheric tansmision at entre ~Z 15p C ro.4 -r.2 ~ ~ ~ 1~50 B IOMB 66 _.5 668.0.5 FREQUENCY (CM-') Fig- 7. High resolution atmospheric transmission at centre of 1 C1t CO,2 bani,

1.0 L.. THIS CALCULATION.9 I PLASS ~~~~~~~~~~~~~~~I e4 z, I U I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ G.8 CnI ~I I-.7 I1 i~~~~~~~J a, -I ~~~~~~~~~ ~~~~~i I I --- ("3 I LI 0 E~~~~~~~~~~~~~~~~~~~~~~ Lo 5 Iw ~~~~~~~~~~~~~~~~~-I >I.5 (03 (n z 0.0 I I I I I I. 600 650 700 750 FREQUENCY (cm-') Fig. f.Transmission for the vertical path from 15 km.....v~, ~26 or z I- ~" ~~~~~,J I - - L I,,J~~~~~~~~~~~~~ t_ _,.j I -—,I o.o 600 650 700 750 FREQUENCY (cm-a) Fig. f. Transmission for the vertical path from 15 kin. 26

for the different altitudes have been calculated (Table I) and show large TABLE I. INTEGRATED-EABSORPTION, I, FOR THE 15p. C02 BAND VERTICAL PATH FROM THE INDICATED ALTITUDES Altitude (km) 15 25 30 50 I (this calc) 60..0 1749 9.38 1.28 I (Plass) 73-9 27.4. 13.0 1.05 divergences. There are many possible reasons for this, including the following: a- The pre.sent.calculation used 0,0314% CO2 by yolume cornpared,with 0o033% used by Plass; the effect on the calculations is small. b' Plass was forced to use the Curtis-Godson approximation which, as has been shown, tends to overestimate the absorption. c. The line strengths used were not in perfect agreement. d. Probably the greatest single cause is the use of the quasi-random band model. The generally unsatisfactory nature of this model in the region of the Q-branches has already been discussed and is fully borne out by comparison in Fig. 8. The present calculations indicate a marked minimum, of absorption between the main P- and Qbranches (665,0 cm-l), while the model exhibits a maximum at the same point (it should be pointed out that Plass' results have been considerably smoothed by the calculation technique). The path from 50 km (Fig, 9) deserves particular attention as it is quite different from the other three altitudes: the integrated absorption of this calculation is actually greater than that obtained by Plass, This phenomenon admits a very simple explanation, in terms of the mixed DopplerLorentz broadening. Near the center of the band where strong lines predominate in the absorption, the two calculations are in rough agreement (allowing for the data smoothing). But away from the center, particularly in the two Q-branches at 620 and 720 cm~., the predominant lines are of medium intensity* The value of u for the vertical path from 50 km is approximately 0.2 a.tm cm, and in these Q-branches there are many strong lines 27

. I.00 ___.., W 99 >-E,98F, I | 1 ~-.98 Lo VERTICAL PATH FROM 50KM. 0a.97 ZW LI THIS CALCULATION L A: 96 PLASS.96 w.95.1.94.94 I I I, I I I I I I. I I I. I I I 600 650 700 750 FREOUENCY(cm'I) Fig. 9. Transmission for the vertical path from 50 km. of strength between 0.2 and 0.02 (atm cm)1 cm-l. This corresponds to values of Su in the range 0.04 to 0.004 cm-1. Reference to Fig. 3 shows that these values are precisely the ones for which the difference between the pure Lorentz and mixed Doppler-Lorentz absorption is greatest. It must be concluded that mixed Doppler-Lorentz broadening is of critical importance at this altitude. On the other hand, a factor which operates at higher pressures is not of importance around.50 km. Because the band may very nearly be considered as a collection of isolated lines, the fact that the band model distributes them randomly, rather than leaving them in'clumps' has little influence. Summarizing, the main theoretical objections to the quasi-random model have been demonstrated to be of crucial importance in atmospheric transmission calculations and the use of the mixed Doppler-Lorentz broadening has been shown to be.mandatory a.t altitudes near 50 km. 5.3 APPLICATION TO THE SATELLITE INFRARED SPECTROMETER (SIRS) The SIRS was built to measure the vertical component of the outgoing radiation from the earth and its atmosphere, at several frequencies in the 15p CO2 band, as well as one at 899 cm-1 in the window region. In principle, these measurements can be used to infer the temperature structure of the atmosphere, by the inversion of an integral equation of the first kind. A simple error analysis is sufficient to show that, in order to produce reliable solutions, we must be able to calculate the outgoing radiation from a given atmospheric temperature structure with extreme accuracy. It was this problem that, in part, precipitated the investigations outlined in this report. 28

The SIRS has a resolution of 5 cm-1 and a response function which is nominally triangular in shape. The intensity of radiation measured by the instrument is - V'o(v)Iv dv / Vo(v) dv (21) where Iv is the intensity of radiation at frequency, v vo is the center of the instrument channel and VO(v) is the instrument response at frequency, v. For the SIRS $vO(V) = 1 -_I iv-vol < 5 (22) o Iv-vol > 5 and (v) dv = Now iv = Iv(7) = B(vp) dp + es v(ps)B(v,Ts) (23) where B = the Planck black body function at frequency, v, temperature, T = the emissivity of the earth's surface Ts = the temperature of the earth's surface s = the atmospheric surface pressure Yv(p) = the transmissivity for a vertical path down to pressure p at frequency, v. Substituting in Eq. (21) 29

, Vo(V)d V = v(v) B(v,p) z,-p+EsYv(Ps)B(vTs) d~v 0 V=0 0 o 9 p 00 00 = B( Vp) v (vo,7vt P diVdP+ B(VTs)Es(Ov (v)yv(ps))dv Now, if the spectral region und.e. consideration is narrow, we can replace B(vp) by B(vop), and also consider es to be constant. Hence (VV)d Iv = p B(vop) vo Yv dv d n00~~ 00 + B(voTs)ES vs Yv(ps)dv (24s) 0 = o where 00 vo Yv(P)dv Y= 0 00 (25) ( dv 0 This equation is quite general, and can be used for any response function, provided B(v,T) is a slowly varying function of frequency throughout the interval. With the transmissivity averaged over 0.1 cm-1 intervals, it is easy to evaluate Eq. (25) quite accurately, to obtain values of yvo(p) at any desired frequency, vo, and pressure, po Calculations have been made between 665 and 714 cm-l in 1 cm-l steps (Table II) and the results have been plotted for some 30

TABLE II. TRANSMISSIVITIES FOR THE SIRS INSTRUMENT RESPONSE FUNCTION BETWEEN 665 AND 674 WAVENUMBERS ZENITH ANGLE = 0 DEGREES 665.0 666.0 667.0 668~0 669.0 670~0 671.0 672.0 673.0 674~G PRESSCMB~!.9833.9674.9588.9595.9699.9755.9814.9874.9924.9933 ~ 30 1.9784 ~ 9705.9622.9560.96C5.9677.9752.9828 ~ 9894.99C6 ~ 60 2.9721.9621 ~9515.9436 ~9494 ~ 9581.9675.9770.9852.9868 1~ GO 3.9673.9558 09435.9343.94C5.9509.9618.9727.982G.9838 1. 30 4.9626.9495.9356.9253.9324.944U.9562.9685.9789.98C8 1.. 6 5.9565.9415.9254.913.7 ~9218.9351.9489 ~ 9629 ~ 9747.9767 2.r0 6.9491 ~9318,9133 ~8999.9094.9244.9402.9562.9695.9716 2.50 7.9427.9228.9019.8869.8976.9143.9319.9496.9643.9665 3.00 8 ~ 9289 ~9062.&813 ~ 8635.8762.8956.9161.9368.9538.9561 4~ 00 9 ~ 9171.8914 ~8632 ~ 8429.8573.~8786 ~9 1 5.9245.9435.9458 5.00 10. 90 1 1. 8 7 2C ~.8 3397.8162 ~8319.8557.8812.969 ~ 928 ~9302 6.9520 1 1.8868.8551 A 8195'.7934.8099.8352.8625.8900.9125.9147 8.00 12.8694.8352.7961.7672.7841.81C 5.8393.8684.8921.8941 IO~ CO 13.8463.8091.7662.7339.7503.7772.8070.8373.8618.8634 13.C0 }4.8245 ~.7861.7403.7C55.7206.747C.7769. 8.74.8318.8330 16..(30 15 ~.7979.7584.7099.6724.6851.7101.739-1.7690.7925.7931 20.00 16.~7664.7264.6756.6356.6450.6673.6944.7228.7447 ~ 7444 25~00 17.7361.6962.6437.602 ~60 82.6272 ~ 6521.6784 *~6983.6971 30~00 18.6776.6387.5845.5405 ~540J ~5531.5730.5952.6108 o6078 40.00 19.6214.5843.5293.4843 ~4783 ~48 57.501D.5191.5306.5262 50~00 20.5417 ~507'5 ~ 4530 ~4?w82.3958 ~ 3961.4C55.4185.4251.4190 65~ 00.4682.4363.3845.3411.3244.3196.3247.3338.3369.330 2 80.00.3806.3525.3053.2653.2457.2367.238.~2436.2438.2371 log. 0 23.2719.2492.2107.1777.1580.1469.1453.1479 ~1460.14CG 1313.02.1886.17? 8.1413.1157.0987 ~ u 88 C.0 G856.o 0 863.0839.0789 160~L 0.1107.0986.0795 ~'j625.050.~0416.0393.3388.0367.0333 200.62.C53;.O46 2'02 ~2270 ~0198.0144 o0129.0124.0112.0096 25C.G0..238.02;03.0155 ~ I1 Ou l,)973 ~ ~44 0C37 3034 0029 ~ 0V24 30'.00 28 ~ 0040.0 033.0025.00C17.0009.0003.0002.0002.C0001 C.001 400.00.0,05.0 0~'4. 0003.0002.Orl.(c, 0.?goD3.)000.0 C%.CC00 500.G3 0~.....,Cu.:.O- OO CC,. O "I. 0 00,.0000 650 n "00. r0 n n.) 00C 00.9 "d;A ).000.GOO.0 800.0 32.0..e O. O J 000 0. 00.Oo.C OCo. c C O 0. O o 0 *i_

of these values (Fig. 10). It can be seen that the curves representing the main R-branch of the 151 C02 band form a family, the members of which are similar in shape, only displaced downward as the distance from the center of the band increases. 678.0 cm-1 represents the maximum absorption in the Rbranch at atmospheric temperatures. At frequencies near the main Q-branch, the behavior is somewhat different. At low pressures the absorption is much greater than in the R-branch but does not increase as rapidly.with increasing pressure. This gives rise to a striking feature of the graph: below about 60 mb the absorption for a vertical path in the strongest part of the R-branch9 is greater than the strongest part of the Q-branch, for the SIRS instrument response function. This characteristic can also be observed in the transmissivities averaged over 5 cm-1 intervals, although it occurs at a higher pressure. The calculations also make it clear that in the upper atmosphere, for the SIRS instrument response function, the maximum absorption takes place at 668 cml1, rather than at 669 cml where the cm-1 interval transmissivities have an absorption maximum, On the basis of these figures, the present channel at 669 cm.l should be moved to 668 cm-l1 where absorption is greater at high altitude s The outgoing vertical intensity of radiation, as seen by the SIRS, has been determined for the Uo S. Standard Atmosphere, 1962, between 665 and 714 cm-1 and is presented in Fig. 11o Comparision of Table II with Appendix C show that it is important to calculate absorption for an instrument response function, rather than an average over an interval in the band corresponding to the instruments-s resolution. This is a persuasive argument against the use of a band model. 5.4 ACCURACY OF THE CALCULATIONS Throughout this report a number of assumptions have been made, which affect the accuracy of the calculations. The most critical of these are listed below and their influence discussed. a. In the author's view the most important factor is the Lorentz halfwidth, acL, which was taken to be 0,064 cm'l for all lines. Test:calculations showed that the effect of variations in aL depended on the pressure, line strength, and position relative to other lines, Its effect was least at low pressures. bo The accuracy of the line strengths and positions has been fully discussed by Young4

xI,t 3 -x/1 6 7x ox 8 z 9 x 5o 668 CM/ /+/X+ 10 *68GM/ 670 CM- / + 678 CM /x' +/ o 691 CM20, 697 CM-' o 703 CMm 30 v709 CM/ /+ g 40 Cr: 50W o.6090 100 200 300 400 600 700 800 900 1000" 00.1 2.3.4.5.6.7.8.9 1.0 TRANSMISSIVITY Fig. 10. Transmission for a vertical path starting outside the earth's atmosphere down to given pressure levels. SIRS response function (5 cm-1 resolution, triangular shape). 33

80 T Cd z 75 (/3 w 70 (n (n 65w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I03 Zn__ _J 55U II > 50 45 40 665.670 675 680 685 690 695 700 705 710 715 WAVELENGTH (CM'1) Fig. 11. Vertical component of outgoing atmospheric radiation as seen by SIRS. U. S. Standard Atmosphere. 1962.

c. Departures of temperatures from the U. S. Standard Atmhosphere are important in some parts of the band, where the line strengths are rapidly varying functions of the temperature. Calculations were made for small portions of the band with a temperature profile exactly 10~K less than the U. S. Standard Atmosphere (Table III). TABLE III. COMPARISON BETWEEN TRANSMISSIVITIES AVERAGED OVER 1.0 cm-1 INTERVALS. CALCULATED FOR U. S. STANDARD ATMOSPHERE, 1962, AND SAME ATMOSPHERE LESS 100K AT ALL LEVELS. 556 cmll 652 cml 661 cm- 669 cm-l p(mb) U.S.S. U.S. -10K U.S. U.S. pib) US -100K -100K -100K -10 Stand. Stand. Stand. Stand. 1 1.0000 1.0000.9832 9832.9871.9870.9525.9592 5. 9999 1.0000.9295.9302.9432.9416.8945.9019 20.9999.9999 -7403.7427.7714.7684.7525.7871 50.9997.9998.4341.4384.4785.4737 *5066.5584 200.9982.9984.0117.0120.0187.0183.0225.0316 1000.9601.9629.0000.0000.0000 Comparison shows that the higher temperature produces a greater absorption in most regions (up to 10% between 668.5 and 669.5 cm-1), although in other parts of the band where theabsorption is dominated by strong lines whose strength decreases with increasing temperature, the opposite effect may be observed (660.5 to 661.5 cm-1). As the temperature increases the shape of the absorption curve can be expected to change slowly and the total absorption for the band to increase slightly. The effect of temperature on line half-widths (Doppler and Lorentz) seems to be of secondary importance. d. Small variations in the C02 concentration, provided a constant mixing ratio is retained, have a negligible influence, but corrected transmissions may be obtained by interpolation over the zenith angle; in

creasing the zenith angle from G1G to 92 is equivalent to multiplyi the CO2 concentration by Cos Q1/Cos @2. All transmissivities have been given to four significant figures; the fourth figure should be correct in almost all cases. In view of these approximations, it is tempting to argue that there is no point in carrying out calculations to such a high degree of accuracy. This ignores two basic points. a. The present calculations should be regarded as preliminary: when more accurate data are available the techniques will be fully developed for their utilization. Until recently, the theoretical knowledge of the 15k CO2 band exceeded the capacity to put it to use; the situation is now reversed. bo For some problems, e.g., radiative cooling in the atmosphere, it is extremely important, with given initial assumptions, to be able to calculate radiative transfer precisely. It is not sufficient to be able to obtain a rough representation of most of a band with a band model if it cannot predict transfer in special regions (e.g., Qbranches in the 15t C02 band), which are particularly influential. 5.5 COMPARISON WITH GATES ET AL. 5i6 Shortly after the present calculations were initiated, a paper by Gates, et al,15 appeared in which transmission calculations for the 2.7, water vapor band were presented, made by integration across the band rather than by use of a band model. The approach is fundamentally the same but the emphasis here has been placed on atmospheric slant paths, rather than homogeneous paths. In addition the wide range of pressure has made it necessary to use mixed Doppler-Lorentz broadening. 36

6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK As a result of the calculations that have been made, it is possible to come to some significant conclusions regarding atmospheric radiative transfer in the 15p. C02 band. a. Band models can no longer be considered useful where accurate work is required. Even the best model falls far short especially for certain regions of fundamental importance. The models can be criticized on several grounds: (1) Most important, they do not adequately represent the line positions and strengths. (2) They force the use of the Curtis-Godson approximations. (3) Their simplicity is lost when the mixed line shape is introduced, (4) Instrument response functions cannot be built in. Variation of Lorentz half-widths are not easy to accommodate. Although the present calculations assume a fixed aL, it would be easy to modify the program for a variable half-width. b. The mixed Doppler-Lorentz line shape should be used at pressures lower than 100 mb. Below 10 mb the errors introduced bytheiuse of pure Lorentz broadening can become quite severe. c, The Curtis-Godson approximation, which has undeniable utility for rough calculations, should be abandoned for highly accurate work. A method for its elimination has been developed. d. Values of transmission for instruments should be obtained by integration of the instrument response function. These values can differ radically from the average transmission over a frequency interval equal to the instrument's resolution. It is now evident that a considerable amount of investigation should be carried out in the near future. a. A concerted effort should be made to determine the variation of cL from line to lineo 37

b. Calculations are now underway of ~the transmission for homogeneous paths, so that direct gomparison can be made with laboratory data (cf.o, Gates et al. v5 ) and other theoretical calculations. As a result of the comparisons it may be possible to arrive at some more accurate values of band intensities or half-widths. c. A renewed attempt will be made to find the cooling rate in the upper atmosphere due to the 15jt C02 band. It is hoped the tables presented will be useful for atmospheric infrared radiation calculations, particularly in those regions where reliable theoretical data were hitherto unobtainableo 38

7. oREFERENCES 1. Winters, B. H,, Silverman, S., and Benedict, W, S., "Line Shape in the Wing Beyond the Band Head of the 4*,35band of C02," J. Quant. Spectrosc. Radiat. Transfer, 4, 527 (1964)'. 24 Kaplan, L. D. and Eggers, D. F,, Jr., "Intensity and Line-Width of the l54-Micron CO2 Band., Determined by a Curve-of-Growth Method," J. Chemical Physics,, 876 (1956)'* 35 Madd~en, R. P,3'"!A High Resolution,Study of CO2 Absorption Spectra Between 15 and 18 Microns," J. Chemical Physics, ~, 2083 (1961). 4. Young, C., "A Study of the Influence of Carbon Dioxide on Infrared Radiative Transfer in the Stratosphere and Mesosphere," University of Michigan, Department of Meteorology and Oceanography, Technical Report 04682-1-T, March, 1964. 5. Goody, R. M,, Atmospheric Radiation. I. Theoretical Basis, Oxford, 1964. 6. Plass, G. No. "Models for Spectral Band Absorption:," Jo, O_, Society of America, 489 690 (1958)0 7- Kaplan, L. D., "A Method for Calculation of Infrared Flux for Use in Numerical Models of Atmospheric Motion," The Atmosphere and Sea in Motion, Rossby Memorial, Volume, 1959, po 1708. Plass, G. N. and Fivel, D. I.,, "Influence of Doppler Effects and Damping on Line.Absorption Coefficient and Atmospheric Radiation Transfer, Astrophys_,o J, 2 225 (1953) o 9. Elasser, W. M., "Mean Absorption and Equivalent Absorption Coefficient of a Band Spectrum," Physical Review, 34, 126 (1938). 10o Goody, R. M., "A Statistical Model for Water-Vapor Absorption," Q,*JRM.S,, 78 165 (1952). 11'. Wyatt, Po J,, Stull, Vo Ro, and Plass, Go N., "Quasi-Random Model of Band Absorption," J. Opto Soc. of America,,- 1209 (1962)* 124 Stull, Vo R,, Wyatt, Po J', and Plass, Go No., "Infrared Transmission Studies," Final Report, Volo III, The Infrared Absorption of Carbon Dioxide, Report No, SSD-TDR-62-127TVolume III (1963). 39

REFERENCES (Concluded) 13 Uo S. Standard Atmosphere, 1962, U, So Government Printing Office, Washington D. C. (1962). 14. Plass, G. N. "Transmittance Tables for Slant Paths in the Stratosphere, Infrared TransmisSion Studies," Final Report, Volume V, Report No. SSDTDR-62-127, Volume V (1963)o 15. Gates, D. M., Calfee, R. F. and Hansen, D. W., "Computed Transmission Spectra for 2o7 Micron H20 Band," Applied Optics, 2, 1117 (1963). 16. Gates, D. M, Calfee, R. F4, Hansen, D, W. and Benedict, W. S., "Line Parameters and Computed Spectra for Water Vapor Bands at 2.71,i" NBS Monograph 71, August, 1964. 40

APPE]NDIX A CDC 3600 FORTRAN PROGRAMS FOR COMPUTING THE TRANSMISSIVITIES

PROGRAM SUBPROG COMMON NOSTRG*L,NOINT.NO INNEND,IWARN DIMENSION NOSTRG(10 ),L100 ),NOINT(72),,NEND(144 ) IWARN( 10) DIMENSION ISTRGL( 100), IWEAKL( 100) ), IVST(300),BNUS( 1000 ) t INUS(1000), l IHORLO( 1 00 ) IBELOW( 100) BNUW( 10 10) I NUW( 1 010),NOWEAK( 10 ) MIWEAK( 1 0 10) D( 100) SM( 18).ISS( 1010) ST(6,982),WT(6,10lO) DIMENSION ENDPT( 144) HIORLO(1.OO) BELOW( 100) 200 FORMAT (F6.2 6E10*.4) 201 FORMAT (F6,2915) 281 FORMAT (6X.7I59F7.1) 250 FORMAT (lHlF62',.11229142I4111210I1/(6X,6E10.4)) 251 FORMAT (6X914(I1,I4)) 252 FORMAT (6X,14(2Il1I3)) 253 FORMAT ((6X,24(I3))) 260 FORMAT (24HO TOTAL EXECUTION TIME = F6.2, 8H, MINUTES) TIMA=TIMEF(O) REWIND 20 READ INPUT TAPE 5, 200,(BNUS( I), (ST (J9 I) J=1,6), I=1,982) 9 (BNUW( I) 9 1(WT(J,I) )J=196), I-1,1008) DO 301 I=19982 301 ISS( I )=( I-1)*6 I 11 I 2=l IONE= ITWO=O 13=1 KID=-1 INUS( 983 )=100000 INUW( 1009 ) =100000 ISTO - 1 IO = 1 DO 302 I=11008 302 INUW( l)=(BNUW(I)+ 001 )*lO0 JJ = 1 JJJ=4 DO 303 1=19982 IF ( ST(JJJ) —1) 304,304,305 305 IVST(JJ) = I JJ = JJ+1 304 JJJ = JJJ+6 303 INUS ( I )=(BNUS ( I )+001)*100 JJ = JJ-1 300 READ INPUT TAPE 5,201.ANUZNUMBER ICOUNT=O 802 NUZ=ANUZ+.001 NUZZ (NUZ/1O)*10 AVNU=NUZZ AVNU=4.5+AVNU NUZY=NUZZ*100 NUZX = NUZY-750 I S= IONE DO 600 I=IS.982 IF (NUZX-INUS(I)) 6019601.600 601 IONE I GO TO 602 600 CONTINUE IONE=983 ITW01L982 GO TO 607

602 NUZV = NUZY+1650 I-S=XMAXOF ( ITWO, 1 ) DO 603 I=I5,982 IF (NUZV-INUS(I)) 604.6039603 604 I TWO1=I-1 GO TO 607 603 CONTINUE I TW015982 607 CONTINUE IOUT = XMAXOF (ITWO+1.IONE) I TWOITWO1 NUZY=NUZY-50 IS=I3 -DO 620 I=IS,1008 IF (INUW(I)-NUZY) 620,6219621 621 I3-I GO TO 622 620 CONTINUE I3=1009 622 I S=I3 NUZY=NUZY+ 1000 DO 623 I=IS1008 IF (INUW(I)-NUZY) 623.623,624 624 I4:I-1 GO. TO 630 623 CONTINUE 14=1008 O 630 IMAXW=I4-I3+1 IK-I3-1 WRITE OUTPUT TAPE 6,281 IONE ITWO IOUT, I MAXW. IK1 3 I 4AVNU WRITE TAPE 20fIONE.ITWOIMAXW.IKAVNU IF (IOUT-ITWO) 611*611.610 611 WRITE TAPE 20.(BNUS(I) (ST(J.I ),J=:1,6).I=IOUTITWO) 610 CONTINUE IF (IMAXW) 627,627.626 626 WRITE TAPE 20,(BNUW(I)( WT(J9I),J-1,6)sI=I3,I4) 627 CONTINUE 801 NUZ=(ANUZ-.499) *100 DO 307 K=IO,1008 IF (INUW(K)-NUZ) 30893099309 309 I=K GO TO 310 308 CONTINUE 307 CONTINUE I =1009 310 CONTINUE DO 311 K: ISTO0982 IF (INUS(K)-NUZ) 311,313.313 313 IST = K GO TO 312 311 CONTINUE I ST=983 312 NUZ = ANUZ+.001 NUZM=NUZ* 1 00-60 DO 320 K = KIDTJJ KK = IVST(K) KD = K IF ( I NUS(KK) -NUZM) 320 320,322 320 CONTINUE 43

KD-JJ+1 322 KID = KD-1 II = 1 I TOTAL = 0 IIS = 1 JTOTAL = 0 DO 351 J1,10 INUZM = NUZM + 10*J MIDNU = INUZM+5 331 IF (982-KID) 445,446,446 445 IWARN(J)=1 GO TO 336 446 KAD=IVST(KID) IF (MIDNU-INUS(KAD)-10) 332,3329333 333 KID = KID+1 GO TO 331 332 IWARN(J) = 1 IF(XABSF(MIDNU-INUS(KAD))-10) 33593369336 335 IWARN(J) = 0 336 NOWEAK(J) = 0 NOSTRG(J) = 0 340 IF (1009-I) 342,342,440 440 IALFA=INUW(I)-INUZM IF (IALFA-10) 3419341,342 341 NOWEAK(J) = NOWEAK(J)+1 ITOTAL = ITOTAL +1 IWEAKL( I.I )I MTWEAK(II )=1 IF (IALFA-10) 343,344,343 344 MTWEAK(II) = 2 II = II+1 GO TO 342 343 IF (IALFA) 346,3469345 346 MTWEAK(II) = 2' 345 II - I+1 I: I+1 GO TO 340 342 CONTINUE 10 = I 400 IF (IST-983) 410,3519351 410 JALFA=INUS( IST)-INUZM IF (JALFA-10) 350,350,351 350 L(IIS) = JALFA NOSTRG(J) = NOSTRG(J)+1 JTOTAL = JTOTAL+L ISTRGL( I IS)IST IF (JALFA-10) 352,353 352 353 IHORLO(IIS) = 1 IBELOW(IIS) = 1 IF (INUS(IST)-INUS(IST-1)-l) 354,354,355 354 IBELOW(IIS) = 0 355 IIS = IIS+1 GO TO 351 352 IF (JALFA) 356,356,357 356 IHORLO(IIS) = 1 IBELOW(IIS) = 1 IF ( INUS( IST+1)-INUS(IST)-1) 358,358,3539 358 IBELOW(IIS) = O 359 GO TO 360 44

357 IHORLO(IIS) = 2 IBELOW(IIS) = 2 IF (INUS(IST+1)-INUS(IST)-1) 361,3619362 361 IBELOW(IIS) = 1 362 IF (INUS(IST)-INUS(IST-1)-1) 363,363,364 363 IBELOW(IIS) = IBELOW(IIS)-i 364 CONTINUE 360 IIS = IIS+1'IST = IST+1 GO TO 400 351 CONTINUE ISTO= IST BNU = ANUZ-7,.5 I S=XMAXOF( 1, I 1) DO 460 I=IS.982 IF (BNU-8NUS(I)' 461,460,460 461 I1 = I-1 GO TO 462 460 CONT I NUE I 1982 462 BNU - ANUZ +7.5 IS5I2 DO 463 I=IS,982 IF (BNU-BNUS(I)) 464,464,463 464 12 = I GO TO 465 463 CONTINUE 12=983 465 IFIRST = 11+1 ILAST' I2-1 KK = 0 DO 370 M1=0,2 Y = Mi-1 BNU = ANUZ+Y/2. IF (11)4019401,402 402 DO 371 I=1I1 371 D(I) = (BNUS( I-BNU)*(BNUS( I)-BNU) IF(982-I2) 403,401 401 401 DO 372 I=12,982 372 D(I) = (BNUS.(I)-BNU)*(BNUS(I )-BNU) 403 DO 370 K1I,6 S = 0. KK = KK+1' IF (.I1) 405,405.406 406 DO 373 I=1I11 ISU8 = ISS(I)+K 373 S = S+ST(ISUB)/D(I) IF (982-12) 370,405,405 405 DO 374 I=I2,982 ISUB = ISS(I)+K 374 S = S+ST(ISUB)/D(I) 370 SM(KK) = S CALL GRONK WRITE OUTPUT TAPE 6,250,ANUZ,ITOTAL,(NOWEAK(I) I=1,1O),JTI 1 IFI RST, ILAST, (NOSTRG( I ), I1= 10) 1 NOI No (NOINT( I) I =l1,10) (5SI 218) WRITE TAPE 20,ANUZ,ITOTAL,(NOWEAK(I)*I5l10),OJTOTALgIFIRS 1 (NOSTRG( I), I1, 10),NOIN,(NOINT( I ), I-110),(SM( I ), I1.18) IF ( ITOTAL) 3809380,381

381 WRITE OUTPUT TAPE 6,2519(MTWEAK(I),IWEAKL(I),I1l, ITOTAL) WRITE TAPE 20.(MTWEAK(I),IWEAKL ( I),I ) I ITOTAL) 380 IF (JTOTAL) 383,383,382 382 WRITE OUTPUT TAPE6,252,(IBELOW(I),IHORLO(I),ISTRGL(I) I=1,JTOTAL) DO 900 I=1,JTOTAL BELOW(I) = IBELOW( I ) 900 HIORLO(I)=IHORLO(I) WRITE TAPE 20,(BELOW(I),HIORLO(I)tISTRGL(I),I=lJTOTAL) 383 IF (NOIN) 385,385,384 384 NON = NOIN*2 WRITE OUTPUT TAPE 6,253,(NEND(I),I=1,NON) DO 901 I=1,NON 901 ENDPT(I)=NEND(I)*.01 WRITE TAPE 209(ENDPT(I),I=lN-ON) 385 CONTINUE ICOUNT= ICOUNT+1 IF (NUMBER-ICOUNT) 300,3009306 306 ANUZ = ANUZ +1l NUZ=ANUZ+o001 IF (NUZ-(NUZ/10)*10) 801802,801 300 TIMB=TIMEF(O) TOTTIM= ( TIMB-TIMA)*.001/60o WRITE OUTPUT TAPE 6,260.TOTTIM END FILE 20 REWIND 20 END 46

SUBROUTINE GRONK COMMON NOSTRG.L.NOINT,NOIN.NEND IWARN DIMENSION NOSTRG(I 10 ),L(100 ),NOINT(72 ) NEND( 144) WARN(10 ) KK = 1 M1 = 1 DO 300 I = 1.10 MINIT = M1 M 0 J = NOSTRG(I') IF.(J) 301.301,302 301 NEND(M1)' = 0 NEND(Ml+l) = 10 M1 -'M1+2 M = 1 GO TO 320 302 K = 1 IF (L(KK)-2) 330.3003303 303 NEND(M1) = 0 NEND(M1+1) = L(KK)-1 Ml - M1+2 M = M+1 330 IF(K-J) 304.340,304 304 IF (L(KK+1 )-L(KK ) -2) 305 305 306 306 NEND(M1) = L(KK)+1 NEND ( M+1) L(KK+1 ) -1 M1 = M1+2 M.= M+1 305 K = K+1 KK = KK+1IF(K-J) 330,340,330 340 IF (L(KK) —8) 307.307,350 307 NEND(MI) L(KK)+1 NEND(M'1+1) =- 10 M = M+1 M1 = M1+2 350 KK = KK+l 320 CONTINU.E IF ('IWARN(I)) 311.311.312 311 MZERO = M JJ=- 1 201 IF (JJ-MZERO) 321,321,380 321 IF (NEND(MINIT+1 )-NEND(MINIT)-3) 360.360,3.23 323 M:M+2 IX=NEND(MINIT+l )-NEND (MINI T) I 1=( IX+1)/3 12( 2*IX+1)/3 MALL = M1 - MINIT -1 DO 370 II=1,MALL MSUB = M'1-II 370 NEND(MSUB+4)=NEND(MSUB) NEND(MINIT+1 )NEND(MINIT)+I1 NEND ( M N I T+2 ) =NEND (MINIT+1 ) NEND(MINIT+3 )NEND(MINIT)+I2 NEND(MINIT+4) NEND(MINIT+3) M1=Ml+4 MINIT=MINIT+4 360 MINIT = MINIT+2 JJ=JJ+1 GO TO 201

380 CONTINUE 312 NOINTII) = M 300 CONTINUE M1 = M1-1 NOIN = M1/2 RETURN END $DATA DATA IS9-82 STRONG LINE POSITION AND STRENGTH CARDS 1008 WEAK LINE POSITION AND STRENGTH CARDS STARTING FREQUENCY(=500.0) AND NUMBER(=360) OF INTERVALS 48

PROGRAM MAIN COMMON AKNU,ALFA ANUANUZ BETACNR,CO02P I 2,GGAMAPZtPZA SEC SN, 1SQTA,SRZSRZA,SSLST,TRAN# TRANC, TRANS' WAI TWWA *I I IST.JMAXpKADD, 2KMAX,KSLA,M,KMESSKSTOP DIMENSION AKNU(1260),ANU(225),ALFA(35),BETA(35) CNR(35) G(36), 1GAMA(35),PZ(35), SEC(6) ~SSL(6,225),SN(150),SRZ(36),ST(7875). 2'TRANC(210),TRANS(210),WAIT (36), IST (225),PZA( 35) SRZA 3 35),SQTA(35),TRAN(10*210) DIMENSION AL (35 ),BELOW(100),ENDPT( 100), ENGTH(36),ENG(9) PI(36), 1P(.35),PDI (35), SM( 18),SQT(35),TI (36),T(35) *TM(35),W(36)'WWL(6,120) 2WT (35 ) WAB(4 ), ISTRGL t 100) i IWEAKL ( 100), IA (225), I TN( 35),MTWEAK(100), 3NOINT (10),NOSTRG (10),NOWEAK(10),HIORLO(100),IZEN(6) DIMENSION PDIG(35),ADOP(35),PAV(35),ZA(20),ZW(20),GNU(36),JUMP(35) TIMA=TIMEF(O ) CALL TRAP TIMEON' = TIMA REWIND 20 REWIND 21 MAXNU=8 59 G(1):1 SRZ(- 1 )=0* CALL KNUMIX(XY,OUT*1) READ INPUT TAPE 5,800,KMAXK'SLAPCO2,Y1Y2,(W'(I),I-=1,4),(ZA(1I)I=1 1,10), (ZW(I ), I' 1t0 ) J ( ENDP T( I ) I -1,0 * (ENG( I ), I1,9) ( IZEN( I ), 2SEC(-I ),I1KSLA) DO 530 I=110 ZA( I+10)=-ZAM I 530 ZW(I+10):ZW(I)) DO 531 I=1, 9 WBA=(ENDPT( 1+1)-ENDPT( I.)/2WBB = WBA+ENDPT (.I ) WAA1:WBA*Y1 WAA2=WBA*Y2 G.NU( 4*I-3 )=WBB-WAA1 GNU( 4* I-2 )=WBB-WAA2 GNU(4* I1 ) =WBB+WAA2 531 GNU(4*I ) =WBB+WAA1 AAA= *064 PPP= 1013.25 TTT=298.0 DOP=5.974E-4/ (700**SQRTF (2 50 ) ELOG2=LOGF (2.) P ILOG=SQRTF(ELOG2/3. 1415927) ELOG2SQRTF ( ELOGSQRTF (2) DOPA=DOP/ELOG2 ROOTPI=SQRTF ( 31415927 ) ALLAIR=7600./1.2250*1 35951/288.15*273.15 ALLC02ALLAI R*PC02 C02PMB=ALLCO2 /PPPCO2P'I =CO2PMB/3. 1415927 C02PI2=CO2PI /2 DO 510 K='5,36 510 W(K)=W(K-4) DO 511 J=1s 36 L= (J+3)/4 511 ENGTH(J).=W( J)'*ENG (L) KMESS=1 0'* ( KMAX*KSL'A-1 ) KO= KMAX*KSLA KLOT=KO*10 49

KNU = KMAX*36 AAA=AAA /PPP ALPHA=AAA*AAA*TT-T DO 500 I=1,225 JA = I-1 IST(I) = KMAX*JA 500 IA(I)=6*JA KADD = KMAX*10 ISWCH = 1 KPLUS=KMAX+1 READ INPUT TAPE 5. 801,(PI(K)pTI(K),K=!1KPLUS) I 1=-i PLOOK=10. DO 100 K=1.KMAX KPLUS=K+1 P(K)=PI(KPLUS) T (K)=TI (KPLUS) TA=(TI(K)+T(K))/2. SQT(K) =SQRTF( TA) SRZ(KPLUS) = P(K)*P(K) PZA(K) = *009*P(K) SRZA(K) = SRZ(KPLUS) - SRZ-(K) PZ(K) *= 00025*P(K) ALFA(K..) = ALPHA/TA SQTA( K) =SQRTF ALFA (K) ) CNR (K)=C02PI2/SQTA(K) BETA (K)=ALFA (K)*SRZA (K) GAMA(K) = ALFA(K)*SRZ(K) AL(K)=SQTA(K)*(PI(K)+P(K))/2* PDI(K)=(P(K)-PI(K))*CO2PMB ADOP(K)=DOPA*SQT(K) PAV(K)=(PI(K)+P(K))/2. PDIG(K) = (P(K)-PI (K) )/2* IF (P(K)-PLOOK) 970.970,971 971 I1=I1+l PLOOK=PLOOK* 11. 970 JUMP(K)'=I TAA = TA - 325. DO 101 N = 1,6 TAA AA TAA + 25* IF (TAA) 101.101,102 102 ITN(K) = N GO TO 103 101 CONTINUE 103 TN = ITN(K) TP = 325* - 25.*TN 100 TM(K) = (TA-TP)/25, TIMB=TIMEF ( 0) TIM = (TIMB-TIMA)*00 1 WRITE OUTPUT TAPE 6*860.TIM T IMA=TIM 110 READ TAPE 20,IFIRST.ILAST9IMAXW,IK,AVNU ISUB= 1 DO 900 I=1.36 DELNUGNU ( I) IF (DELNU-.003) 901,902,902 901 I1=-1 GO TO 903 902 IF (DELNU-*2) 904,905.905 5o

904 I1=0 GO TO 903 905 I 1=1 903 CONTINUE.DO 909 Kz1,KMAX IF (JUMP(K)) 910911.940 910 IF (I1) 92.0,930940 911 IF ( Ii) 930,930,940 94'0 Y.B=BETA(K)/(GAMA(K)+DELNU*DELNU) YB=YB / (YB+2, ) YC=YB*YB OUT=CO2P I /SQTA. K *YB* 1. 1+YC* ( ~333333333+ 2*YC ) ) GO TO 950 930 OUT=O DOPLER-AVNU*ADOP ( K ) DO 931 J=1,20 YB=BETA ( K ) / (GAMA (K) + (DELNU-ZA (J) *DOPLER) * (DELNU-ZA ( J )*DOPLER) ) IF (YB-,2) 9329932,933 932. YBYB/=Y YB+2. ) YC=YB*YB OUT=OUT+YB*(1.+YC* ( 333333333+2*YC )) *ZW(J)*2,e GO TO 931 933 OUT=OUT+LOGF (J 1.+YB ) *ZW ( J ) 931 CONTINUE OUT=-OUT/ROOTP I*CNR ( K ) GO TO 950 920 DOPLER'= AVNU*ADOP(K) YY=SQTA (K) /DOPLER X=DELNU/DOPLER Y=YY* (PAV(K)-o57735027*PDIG (K)) CALL KNUMIX X Y,OUT1 2) Y=YY*(PAV(K)+.57735027*PDIG(K)) CALL KNUMIX(X~Y*OUT,2) OUT= (OUT+OUTI )*PDIG( K /DOPLER*CO2PMB/ROOTPI 950 AKNU( ISUB) =OUT 909 ISUB=ISUB+1 900 CONTINUE IJ = IFIRST-1 IMAX = ILAST-IJ GO' TO (401,402) ISWCH. 401 IJKL=1 GO TO 403 402 IJK=I LASTA-IFIRST+1 IF ( IJK) 401, 401.404 404 ISHIFT I MAXA-IJK IF (ISHIFT) 410,410,411 411 DO 405 I=1,IJK J = I+ISHIFT 405 ANU( I )=ANU(J) ISHI FT = ISHIFT*KMAX IJKJ = I JK*KMAX DO 406 I.=,IJKJ J= I+ I SHIFT 40'6 ST ( I ) =ST (J) 410 IJKL = IJK+1 403 IF (IMAX-IJKL) 412,413413 413 READ TAPE 20,(ANU( I),( SSL(J, I ),J=1,6),I=IJKL, IMAX) ISUB IST(IJKL) DO 450 I=IJKL,IMAX 51

DO 450 K=1,KMAX' ISUB= ISUB+1 JA IA(I)+I'TN(K) SSL1 = SSL(JA-1) SSL2 = SSL(JA) SSL3 = SSL(JA+1) 450 ST(ISUB) = SSL2+((SSL1+SSL3-SSL2-SSL2)*TM(K)+SSL1-SSL3)*TM(K)/2. 412 ILASTA = ILAST IMAXA = IMAX ISWCH = 2 IF (IMAXW) 420.4209421 421 READ TAPE 209(DUMMY(.WWL(JI),J=196),I-1'IMAXW) 420 CONTINUE T IMB=TIMEF(O) TIM = (TIMB-TIMA)*e001 WRITE OUTPUT TAPE 6,861,TIM TIMA=TIMB 120 READ TAPE 20, ANUZITOTAL,(NOWEAK(I),I=1,10),JTOTAL,IltI2 1,(NOSTRG(I),I=1.10),NOIN,(NOINT( I), I1.10), (M( I),I=1,18) IF (ITOTAL) 380.380.381 381 READ TAPE 20. (MTWEAK(I),IWEAKL(I),I=1,ITOTAL) 380 IF (JTOTAL) 383,383.382 382 READ TAPE 20, (BELOW(I),tlIORLO(I)tISTRGL(I)*I=ilJTOTAL) 383 IF (NOIN) 385,385.384 384 NON NOIN*2 READ TAPE 20. (ENDPT(I),I=1,NON) 385 CONTINUE I1 = I1 - IJ I2 = I2-IJ DO 130 K=1.KMAX DO 130 N=-13 JA = IA(N)+ITN(K) SUM1 = SM(JA-1) SUM2 = SM(JA) SUM3 = SM(JA+1) ISUB = IST(N) + K 130 SN(ISUB)=SUM2+((SUM3+SUM1-SUM2-SUM2)*TM(K)+SUM1-SUM3)*TM(K)/2M1 = 1 M2 = 1 M3 = 1 DO 303 M = 1.10 ANUO = M-6 ANUO = ANUZ + ANUO*.1 IF (NOINT(M)) 304.3049305 304 DO 1304 I=1.KO 1304 TRAN(M.I)=0. GO TO 2304 305 NOIN = NOINT(M) DO 999 I=1.-KO 999 TRANS(I)=O0 DO 306 MM = 1,NOIN WA = ENDPT(M1) WB = ENDPT(M1+1) KSTOP = KMAX+1 WBA= ( WB-WA)/2 WBAA=WBA*10e WBB=WBA+WA WAA1=WBA*Y 1 WAA2=WBA*Y2

WAB(1) = WBB - WAA1 WAB(2) = WBB - WAA2 WAB(3) = WBB + WAA2 WAB(4) = WBB + WAA1 DO 200 III 1P.4 II = I I-I BAD = WAB(.II) + ANUO WWA = W(II)*WBAA CALL LOOKAT(BAD,I112,1) 200 CONTINUE 306 M1 M1+2 2304 CONTINUE IF (NOSTRG(M)) 307,307,308 308 NOST - NOSTRG(M) DO 309 MM = 1*NOST LS = ISTRGL(M2)-IJ FACTER -= HIORLO(M2)*, 05 FACTOR = BELOW(M2)*e05 DO 211 K=1',KO 211 TRANC(K) = 0. DO 212 J = 112 212 WAIT(J) - W(J)/10.*FACTER DO 213 J=13b16 213 WAIT(J) W(J)/5.*FACTER DO 214; J=-l7,20 214 WAIT(J) = W('J)/2.*FACTOR JMAX = 20 ISUBIST(LS)+1 CALL CENTRE(ST( ISUB)) IF (LS-II) 203,203.202 202 CALL LOOKAT(ANU(LS)I 1.LS-l i2) 203 CALL LOOKAT(ANU(LS),LS+1:,I2,3) 309 M2 M2+1 307 CONTINUE IF (NOWEAK(M)) 303,3039311 311 NOWE = NOWEAK(M) IWSCH=O DO 312 MM = 1.NOWE ISUB = IWEAKL(M3)-IK DO 600 K=1,KMAX JA = IA(ISUB)+ITN(K) SSL1 = WWL(JA-1) SSL2 = WWL(JA) SSL3 = WWL(JA+1.) 600 WT(K) = SSL2+((SSLl+SSL3-SSL2-SSL2) *TM(K)+SSL1-SSL3) *TM(K IF (MTWEAK(M3)-1) 601.601.602 601 DO 603 K=1,KO 603 TRANC(K)'-19, IF (' IWSCH-1) 650Q605*650 650 IWSCH=1 DO 604 J=1.36 604 WAIT(J) =10.*ENGTH(J) GO TO 605 602 DO 606 K=1,KO 60'6 TRANC(K) = -9.. IF (IWSCH-2) 651,605.651i 651 IWSCH=2 DO 607 J = 1.36 607 WAIT(J)= 5.*ENGTH(J)

605 JMAX = 36 CALL CENTRE(WT) KSUB = M DO 620 K=1,KO TRAN( KSUB) =TRAN(KSUB)*TRANC(K) 620 KSUB = KSUB+10 312 M3 = M3+1 303 CONTINUE WRITE OUTPUT TAPE 6,850,ANUZ.IZEN(I),((TRAN(JK),J=l,lO)P(K),K, IK=1,KMAX) WRITE OUTPUT TAPE 21,851,ANUZ-.(TRAN(K),K=19KLOT) TIMB=TIMEF(O) TIM = (TIMB-TIMA)*.01 WRITE OUTPUT TAPE 6,8629TIM TIMA=TIMB NUZ=ANUZ+I.1 IF(MAXNU-NUZ) 1000 1001.1001 1001 IF(NUZ-(NUZ/10)*10) 110.1109120 1000 TIMB=TIMEF-(O) TIM=(TIMB-TIMEON) *.001/60WRITE OUTPUT TAPE 6,863,TIM REWIND 20 END FILE 21 REWIND 21 800 FORMAT (213.F6.492FlO.8/4F12.10/5F14.8/5F1 4.8/5E14.8/5E14.8/ 110F6.3/9F6.3/(5(I3#FlO.7))) 801 FORMAT (F7.29F6*1) 850 FORMAT (56H1 TRANSMISSION IN THE ONE INVERSE CM INTERVAL CENTRED A 1T F6.1,51H INVERSE CM, AVERAGED OVER.1 INVERSE CM INTERVALS. / 216HO ZENITH ANGLE - I398H DEGREES/'HO,10F8.4,FlO.215/(1H 1OF8.4, 3F10.2,I5)) 86C FORMAT (43HO TIME FOR FIRST SECTION OF THE PROGRAM = F6.1,8H SECO 1NDS) 861 FORMAT (43HO TIME FOR MIDDLE SECTION OF THE PROGRAM = F6.1.8H SECO iNDS). 862 FORMAT (43HO TIME FOR CALCULATION IN THIS INTERVAL = F6.1,8H SECO INDS) 863 FORMAT (43H0O TOTAL EXECUTION TIME FOR THE PROGRAM = F6*1,8H MINU lTES) 851 FORMAT (1HlF6.1/(1H H 17F7.4)) END 54

SUBROUTINE LOOKAT (FREQUE~IIl1I12,II4) COMMON -AKNUALFA,ANUANUZ BETA C NR, C 2P 2 G,GAMA PZ.PZA,SEC SN., 1SQTA.SRZ SRZA,SSL,ST, TRAN, TRANCTRANSWAIT,WWA1. I1 } IST~JMAXKADD, 2KMAX, KSLA,M,KMESS, KSTOP DIMENSION AKNU(1260) ANU(225),ALFA(35),BETA(35) CNR(35),G(36) 1GAMA(35),PZ(35) SEC(6) *SSL(6~225),SN(150) ~SRZ(36) ~:ST(7875), 2 TRANC(210).TRANS(210),WAIT(36), I'ST(225) tPZA(35),SRZA(3 35).SQTA(35) P.TRAN(10,210) DIMENSION ANY(225),ANZ(225),KN(225),GI(6) II1 = I11 II2 = III2 FREQ = FREQUE KSLANT=0 JSLANT' M+KMESS F 0. DO 200 I=I111II2 ANZ(I) = ANU(I)-FREQ. ANY( I) = ANZ(I) ANZ(I) KN(I) =2 ISUB = IST(I) +1 IF ( ST(ISUB)'/(ANY(I)'*ANY(I))-001 200.o200.201 2-01 KN(I) = 1 200 CONTINUE ANUN FREQ-ANUZ DO 202 K=1,KMAX SRE O. KP = K+1 SNNU 0 O IF ( 6(K)-.00005 ) 300,3009203 2'03 IF ( K-KSTOP ) 204,300,300 204 GO TO (303,304,303)'II4 303 SN1 = SN(.K) JA = K+KMAX SN2 = SN(JA) JA z JA+KMAX SN3 = SN(JA) SNNU (SN3+SN1-SN2-SN2 ) *ANUN*2*+SN3-SN 1 ) *ANUN+SN2 304 CONTINUE DO 214 I=1I11,12 KK = KN(I) GO TO (.20'6.'207), KK 206 IF (ABSF(ANZ(I))-PZA(K) ) 208.208,207 208 ISUB=IST(I)+K YB=BETA(K)/(ANY( I )+GAMA(K)) IF (YB-,2) 210,210o209 209 SNNUA=LOGF( 1 +YB) GO TO 501 210 YB=YB/(2.+YB) YC=YB*YB SNNUA=2 **YB*'( 1.+YC'(.33333333+ 2*YC)) 501 SRE=SRE-SNNUA*ST (ISUB)'*CNR(K) GO. TO 214 207 ISUB = IST(I)+K SNNU = SNNU + ST(ISUB)/ANY(.I) 214 CONTINUE FF+SRE-SNNU*SRZA (K) *SQTA (K) *CO2PI 2 DO 310 ISLANT =. I.KSLA 3 1 0 G I I SLAT)EXPF(FSEC(SLANT) EXP ( FSEC (-SLANT)) G(KP)=I (1)

GO TO 215 300 G(KP) = O DO 311 ISLANT=1,KSLA 311 GI(ISLANT) = 0. 215 CONTINUE JSLANT=JSLANT-KMESS GO TO (220,217,218),II4 220 DO 340 ISLANT=1,KSLA KSLANT = KSLANT+1 TRANS(KSLANT)=TRANS(KSLANT)+WWA*GI( ISLANT) TRAN (JSLANT) =TRANS ( KSLANT) 340 JSLANT=JSLANT+KADD GO TO 202 217 KSLANT=K DO 321 ISLANT=1,KSLA TRANC(KSLANT) =TRANC { KSLANT )*GI( ISLANT ) 321 KSLANT=KSLANT+KMAX GO TO 202 218 KSLANT=K DO 322 ISLANT = 1.KSLA TRAN(JSLANT) = TRAN(JSLANT) + TRANC(KSLANT)*GI(ISLANT) KSLANT=KSLANT+KMAX 322 JSLANT = JSLANT+KADD 202 CONTINUE RETURN END 56

SUBROUTINE CENTRE(WT) COMMON AKNU ALFA ANU, ANUZ,BETA CNR 9CO2P I 2,GGAMA,PZt PZA *SEC tSN, 1SQTASRZSRZSRZASSLST,TRAN, TRANC TRANSWAIT,WWA, I I I ST.JMAX.KADD, 2KMAX KSLA 9MKMESS KSTOP DIMENSION AKNU(1260 ),ANU(225 ),ALFA(35 ),BETA(35),CNR(35 ),G(36 ), 1GAMA(35).,PZ(35) SEC(6) SSL(6,225) SN(!50) SRZ(36) ST(7875) 2 TRANC (210),TRANS(210) tWAIT (36 ), IST(225),PZA(35) SRZA 3 35),SQTA(35),TRAN(10210) DIMENSION WT(40) DO 200 J =1.JMAX EXPIT = 0. ISUB = IST(J) DO 201 K = 1,KMAX IF (EXPIT+9.25) 2009200,211 211 ISUB = ISUB+1 EXPIT = EXPIT-AKNU(ISUB)*WT(K) KSUB a K DO 202 ISLANT - 19KSLA TRANC(KSUB)=TRKSANC (KSUB)+WAIT ( J)EXPF(EXPI T*SEC(ISLANT) ) 20.2 KSUB = KSUB+KMAX 201 CONTINUE 200 CONTINUE RETURN END

SUBROUTINE KNUMIX(XINYIN.OUTI1) DIMENSION A(42),HH(10),XX(10) DIMENSION RA(32) tCA(32),RB(32),CB(32),B(44),AK(5),AM(5),DY(4) GO TO (400,401),I1 400 READ INPUT TAPE 5,710, (HH(I),I=1 iO),(XX(I)I =,1IO).* (A( I). I.1.42) RETURN 710 FORMAT ( 5E148/5E148/ 5Fi148/5F14.8 /(5E14.8)) 401 X=XIN Y = YIN X2: X*X Y2 = Y*Y IF (X-10.) 200,2019201 200 IF (Y-l ) 202 9202,203 203 RA(1) = 0. CA(l) = 0.RB(1) = 1. CB(1) 0, RA(2) t X CA(2) =Y RB(2) a *5-X2+Y2 CB(2) = -2.*X*Y CB1 = CB(2) UV1=Oo DO 250 J=2931 JMINUS = J-1 JPLUS = J+1 FLOATJ m JMINUS RB1 = 2.*FLOATJ+RB(2) RA1 = -FLOATJ*(2.*FLOATJ-l-.)/2 RA (JPLUS) =RB1*RA(J)-C B1*CA(J)+RA1*RA(JMINUS) CA (JPLUS) =RB 1*CA ( J)+CB1*RA (J)+RA1*CA (JMI NUS) RB(JPLUS)=RB1*RB (J)-CB1*CB (J)+RAI*RB(JMINUS) CB( JPLUS) =RB1*CB (J) +CB1*RB J)+RAI*CB ( JMINUS) UVc (CA(JPLUS) *RB(JPLUS) -RA(JPLUS) *CB (JPLUS) /(RB(JPLUS) *RB (JPLUS)+ 1CB(JPLUS)*CB (JPLUS)) IF (ABSF(UV-UV1)-1.E-6) 251,250,250 250 UV1=UV 251 OUT.= UV/1.772454 RETURN 202 IF. (X-2.) 301 301.302 301 AINT -le. MAX = 12*+5**X2 KMAX = MAX-1 DO 303 KsOKMAX AJ = MAX-K 303 AINT = AINT*(-2**X2)/t(2*AJ+1o)+1o U = -2.*X*AINT GO TO 304 302 IF (X-4*5) 3059306.306 305 B(43)=0. B(44) = Oo J' - 42 DO 307 K = 1,42 B(J) = *4*X*B(J+1)-B(J+2)+A(J) 307 J = J-1 U I B(3)-B(1) GO TO 304 306 AINTT = 1.O MAX " 2.+40./X 58

AMAX = MAX DO 308 K=1,MAX AINT - AINT*(2*AMAX-1. )/(2.*X2)+1 308 AMAX a AMAX -1. U = -AIN.T/X 304 V=1. 772454*EXPF( -X2 ) H = 02 JM =: Y/H IF (JM) 310311.310 311 HzY 310 Z = O0 L O0 DY(1) = 0O 312 DY(2) = H/2. DY(3) = DY(2) DY(4) =H 318 AK(1) = O. AM(1) = O DO 313 J=1,4 YY = Z+DY(-J) UU = U+.5*AK(J) VV = V+.5*AM(J) AK(J+l) 2.* (YY*UU+X*VV)*H AM(J+1) = -2* ( 1+X*UU-YY*VV ) *H IF (J-3) 313.314.313 314 AK(4)=2.*eAK(4) AM(4) = AM(4)+AM(4) 313 CONTINUE Z=Z+H L = L+1 U = U+*1666667*(AK(2)+2.*AK(3)+AK(4)+AK(5)) V = V+*1666667*(AM(2)+AM(3)+AM(3)+AM(4)+AM(5)) IF(JM) 315,320.31'5 315 IF (L-JM) 318.317.320 317 AJM = JM H = Y-AJM*H GO TO 312 320 OUT = V/1.772454 RETURN 201 F1 = O0 DO 330 J=1,10 330 F1=Fl+HH(J)/(Y2+(X-XX(J) )*(X-XX(J) ) )+HH(J)/(Y2+(X+XXJ) ):*(X+XX(J)) 1) OUT = Y*F1/3014.15927 RETURN END

$DATA *46224367E 0 *28667551E 0 *10901721E 0 *24810521E-1 *32437733E-2.22833864E-3 *78025565E-5 *10860694E-6 *43993410E-9 *22939360E-12 *24534071.73747373 1.2340762 1*7385377 2*254974 2.7888061 3*3478546 3.944764 4.6036824 5*3874809 O00000000E 0 *19999999E 0 *OOOOOOOOE 0-0.18400000E 0 *00000000-E 0 *15583999E 0.00000000E 0-0.12166400E 0 *OOOOOOOOE 0 *87708159E —1 *OOOOOOOOE 0-0.58514124E-1.00000000E 0 *36215730E-1 *OOOOOOOOE 0 -0.20849765E-1 *00000000E-O.11196011E-1 00000000E 0-0'056231896E-2.OOOOOOOOE 0 *26487634E-2.00000000E 0-011732670E-2.00000000E 0 *48995199E-3.00000000E 0-0.19336308E-3 *00000000E 0 *72287745E-4 *OOOOOOOOE00-0.25655512E-4.OOOOOOOOE 0.86620736E-5.00000000E 0 -0.27876379E-5.OOOOOOOOE 0.85668736E-6. 0.OOOOOEOO0-0O25184337E-6.00000000E 0.70936022E-.7 34 6.0314.86113631.33998104.3478548451.6521451549 *6521451549.3478548451 *24534071 *73747373 1*2340762 1.7385377 2*254974 2.7888061 3*3478546 3.944764 4.6036824 5*3874809.46224367E 0.28667551E 0 *10901721E 0.24810521E-1 *32437733E-2.22833864E-3 *78025565E-5 *10860694E-6 *43993410E-9 *22939360E-12.000.001.002.003.005 0010.040.100.500 1.000.001 0001.001.002.005 0030 0060.400.500 0 1.0000000 15 1.0352762 30 1.1547005 45 1.4142136 60 2.0000000 75 3.8637033 00000000 270.7 0000.30 270.7 9000060 270.7 0001.00 270.7 0001.30 267.10 0001.60 262.6 0002.00 257o9 0002.50 253.2 0003.00 249.4 0004.00 243.6 0005.00 239.2 0006.50 2341ol 0008o00 230o1 0010o00 227.7 0013.00 22600 0016.00 224.6 0020.00 223*1 0025.00 22107 0030.00 220.5 0040.00 218.6 0050.00 217.2 0065.00 216.7 0080.00 216.7 0100.00 216.7 0130.00 216.7 0160.00 216.7 0200.00 216.7 0250.00 220.7 0300.00 228.5 0400.00 241.5 0500.00 251.9 0650.00 264.8 0800.00 275.5 1000.00 287.5 1013.25 288.2 60

APPENDIX B TRANSMISSIVITIES AVERAGED OVER 5.0 cm-1 INTERVALS BETWEEN 502,0 AND 857.0 cm-1

TRANSMISSIVITIES AVERAGED OVER FIVE WAVE-NUMBER INTREVALSp BETWEEN 5.02.0 AND 511.0 WAVENUMBER ZENITH ANGLE: JDEGREES 502.0 5 03.0 504.0 505.0 506.0' 507. C, 508.C 509.0 5 10. 511.0 PRS{B 1.CO0?1.OC 1 ~0C 1.0COCw0 I1. 000 1.O g01 1. C0 00 1 ~OOO0 1 0 1 co 1.CG0 CO C, i o. 30 co 00' 1.OC, 00 ~0 0 1. 0000 1.00 1 ~GG 10000 1.0000 I.OCO 1.-0'603. 60 iCOO.00 ol.co 100, 0' o 10-U I.0r0 v~O 1. Q-CO C,00 ~~~~~~~~~~~~~~ 10C 00CO 1.1ClOO 1.OC.00nO 1.'"0)0 0 1 0G 1. C 0 r.Cool).0C0~O11 1.00G 1.CO0 I1. 0'210c 1.0000 1.00 100.OO.OG13.C000 031IC,.01 b 1.OCOo 1.01000 1.000C.1 1.0000 1.000C 1.0000 1.(56C0 1.C OG 1.60j 1.COO0 1.00CO 1~005~~~~'Dw0 1.00CO 1.CO 1. 0001.GO 1.!}O 1.0-00 I. 00 2.0 6 1.0000 ~~~'1i CO0 1~ 00 C, ~CO 1.03 1.CO~ 1.O n 1.00 1.cooO 1. 0 C25.OJO 1.00 1.0 1.0G.00GO 1.0C.00 1.,900 1.0000 1.000G4.0 1.COWO 1.0, OC 1.0000.1.COO0 1. 000z 1.6G00 1.OC0CO 1.0000 1.3~0~ 1~.CO0 5 ~ 01 1.0000 l~0,000 1.0000 1.0000u 1.0000 I1.000 1.0000 1.0000 1OC.0;.01 1.00 1. OO 1. CO0 1. 00 GO l. OO0.000 1. cooO0 1.00 Q.CO0 1-.000 I0 8.00 123 1.0000 1.C0 1. 000 1.000 01~ 1.0000. 1. 0001C.' 1. 0000 I,00001. O0 1.0C0 I000c 1.C~ 13 k" 1. 0000 13 I.OC, Co 1.0000 1.0000 10000 C'', I.C,0000 1.0000 1.0000 1.0000 1.000013 001 1.CO001 1~.C0000 1.00gO 1.C,( O1000 1 I. CCOO1 0 C). OOO0 I.C(tOOC 0 1"0 1. OOOO 1.C0000 1. 05 I 000C 1. C C, 1.00~j0 1.000JO 1.0 000 Q 1.0000 1.0000 1.0000 1.0000 1.00G.O0 2.01 1. C00:3 1. OO1~,0 1. 00 00 1. O"(u I000%G'1 1.CO 0 000 1.000 0 1.0SO.0 00 I.OCO C.0 1 10900. 1.0oO 1 ~ OOC.'4O I. 0 OO 1.000(O0 1 ~.0 0G 1 ~OC0 1.OOOO1 1.000 1. OO 0c.C01 1.0O 11- ~ GOSO 1 ~CO0 1.000i 1.0CGO 1.0000 1.00JO, 1.000""0 1.C00,00 1. n 5 0.0 20 ~~~~~~~~~~~~~~~~~~~~' 999.999 ~999.gggg.9.99.9g.999.99 1.999 6.C.9999.9999 ~ 9999 ~ 9999 ~ 9999.9999.9999.9999.99'99.9999 8. O 0 2 ~ 9999.9999.9999.9999.9999.9999.9999.9999.9999.9999 10.02 ~9999.9999 ~ 9999.9999.9999.9999.9999.9999.9999.9999 3.02 ~ 9998.9998.9998.9998.9996.9998.9998.09998.9998 ~ 9998 6.~0.9997.9997.9997.9997 ~ 9996. 9996.9996. 9996.9996. 9996 C.02.9992. 9992.9992.9991.9991.9991 ~ 9991.9991.9991.9991 25. 0 7.9988.9988.9988.9988.9988. 9987.9987.9987.9987.9987 30~08.9\979.9979.9979. 9978..9978.9978.99 77.9977.9977.9977 40.09 ~9968.9967.99.67.9966.9966.9965.9965.9964.9964.9963 50 03.9945.9945.9944.9943.9943. 9942.9941. 9940.9939.9938 6 5.03.9918i.9917.9916. 9915.9913.9912.9911..9909.'9908.99078 0.02.9872.9870.9869.9867 ~ 9865. 9863.9861.9859.9856.9855 100. 0 3.9869.9 867.9865.9863.9861.9859. 9857.9855.9852.985-1 10 1.53

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 512.50 AND 521.0 WAVENUMER ZENITH ANGLE:0 DEGREES 512.0 513.0 514.0 515.c 516.0 517.0 518.0 519.0 52U0. 521.0PRSMB) 1.OC 0 1. PI0 1.000-0 1.G0000 1.eOO00 1.00CO 1.COO0 1. 0 0GO l 0 1.C0 1.So~CDC! 3 1.Ot~C C 1. 0 0 1.-0 0 09( 1.0000. 1 O0O..00 v0G 1.000 L.OC 1.0000 1. 000 1.0OCOO.0 1.000G 1.00CO"1 1.0000 1.*10000 1. O00C 1.0000 1.000O0 1.0000 I.C%00.ooG 1.GO0~-.00C 1.100C0 1.0000 1.0030 1. GO0i 1.C "O CO.0 1.0000 1.0~000 1.0030G. 3 1.COO0c 1.0000 I C1.GOGO I. 003 0 1.nO OOC 1. 00 O I.GCCO 1.0OOO 1.O0 co1.CO0 1.6 1~~~~~1.CO O k.0 1.0000 1.OO 1OCO0 1.0 000 1.00CO 1.900 l.COO I.C0 1.00 2.0 6 OD loc 1.0000 1.COO1 00 1.0000 1.OCOOIV.0 i-0 00 i) 1.00CO 1.0000 1.0000 1.00,00 1.0000 25 I.01".OOOO~I 1.OOO? C0 1.0000 1.COO00 1. 0:0 0 I 1[0,0 0 1.GC)O O I.0-300 1.cDOD0 1. O CO3.0 1.COO0 1.006~O 1.Of, 0Ill.0 1.0 000 1.0000 1.0000 1.0000 1.0 0G 1.cOO 1.00CO 40 I1.0COO 1.OO( —O I.OC30 1.0000 1.3000C 1.0Oco 1.0C000 1.0GOD 1.C000 1.00GO 5. 01 l. CO00 I.COO00 1.00010 1.0c00 I1. OOO0,[i 1. f$OcC I 1l.OCOO 1.9COO 1.OcO110 1.0 6.0 1 1.00GO 1.OC 1. 0 0 00 1.OOO 1.000:0 l1.0000 1.0000 1.0000 1.CCO0 1.00008.02 1.c, 000 U0 1.00CO 1.0 0C 1.000. 1.3000S 1.0 0-00 1.00 00 1.00 1.00".Oo0 10.0 13o 1.0O0O0 1.000c,0 1.0000 1.00CO 1.OcO00 1.00CO 1.0000 1.000D 1.COO0 1.0000 1.00 1.COO1)0 C 1.0CCO 1.0000 1.00SO 1.000.0- 1.GO ~oO 1.000G 1.0000 1.COO0j 1.030001.05 k. o 1. -00 1.00 1.0t C.OO 1. 0000, 1.OCO0 1.0OOO 1.0000 I.COOD I.OC02.00 1 1.000 1.~000 1.CCOC I 10 -<00 1. 00 00C 1.-0000 1.0000 1.0000 1.00GO1000 25.G0 1 1~~~~~~~.O OO.0C1 C. 0C I. Cle 1.000C 00 1.$000 1.0OOG 1.CD.OCCO 1.0006 G001 1.00C.OOO1 0 1. 00 00 1.0000 1.00 00 1.0 000 0 1. 0000 1. 0000 1.00j0 1. 00003 4.0G 19 1.0 0001" 1. LCOOO 1.0000 1.60000 1.00GO 1.OGOO 1.0OOOO.0 0 0 1.OO C. CC$O 5Z0 20. 9999. 9999. 9999. 9999. 9999. 9999. 9999. 9999. 9999. 9999 65O 0 2,99 99 99.9999.9 999 qq.9999,9999.9999.9999.9999.9998 8 J.02.9999.9998.9998.9998.9998.9998.9998.9998.9998.9997 10. 2.9997.9997.9997.9997.9997.9997.9997.9996.9996.9996 13.02,9996.9996.9996.9996.9996.9996.9996.9995.9995.9995 10002.999-4 09 994.9994.9994.9994.9993. 9993.9993.9993.999220.02.gggl ~.g9991.999~.9990.ggcm.999C,.9989.9989.9989.99882 5.02.9987.9986.9986.9986.9985.9985.9985.9984.9984.99-84 30. 2.9976.9976.9975.9975.9974.9974.9973.9972.9972.99714 0.02.9963.9962.9961.9961 ~ 996,.3..9959.9958.9957.9957.99555 0. 0 3,99 37.9936.993 5, 9933.9933.9931.9929.9927.9927.9924 65.01. 9905 9 99' 3.9-901. 9899. 9898. 9895 ~ 9892. 9889. 9889.9884 80~ O2.9852.9849.9846. 9842.984..9835.9831.9825.9826. 9817 10. O 3.9848, 9845.9842.9838.9836. 9831.9826. 9821, 9821.9813 11. 5 3

TRANSMISSIVITIES AVERAGED OV.ER.FIVE WAVENUMBER INTREVALS, BETWEEN 522.0r A ND 531.C WAVENUMBER ZENITH ANGLE = 0 DEGREE S 522.C 52 3.0 524.0 525.0 526.C4 527.G 528.CL 2. 5~. 531.0 PES(B CO0 1'~OC'.n I O00fo 1.0 0 00 I 000k, 1 CO0 10C O0' 1 6. co<'CO 1.090g1" 1.OCOO I.OO ~-O 1.0,)O0.00 1.0' 1.Ot 0?0 1.OOOO 1.000 l. OC0. 601.,OC 1.'C"C 1 OCO0" 1 I.O nu 1 ~]O 1 OoO 1 CC I C, C O0 1.0:~0 1 O~Co 1.00O0 1.10000 1.gOOO" 1.CGO0 1, 0C:00) 1.CO00 1.OC00 1.gO9CD0 1.'0000 1. C C O 1 1 cook) 1 GC(0 1 00 1C 0 100 1.'~6 1COCO; 1 000 10i J 1 wCC, %d O 1.0000 1.OO 1.OOC 1.00 I.n S 1.0~1 O0 1.000 1.0g 1.O' 2.50 7 1.COOO 1.COC:O 1 00.30 1.0000 1. COOC:' 1.OO~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~bO 1.OCO0 1.0000 l.OgO0 1.00gO 4.00 9.I-r O 100 0 1.00 1.JC 1. 000G: 1. CIO 1 0 0 0 1.00001 1.00': I., 0 1.O CO.00 1.COO 1.C$ 6.5 co11' I.C, 000 1. C~C'3g 1.00CO 1.0000 1.0000 1.0900 1.OCCO 1.0000 1.OCO0 l. OOO0 8.00 12~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U1 1.0009.,CO 1.00('1.CgO 1.000 1.COO9'~ 1.bO0b 1.50 l OC C99.C9, EL.0 C 1.000 1. 00'* 1.00'3 O0 1.00C, 1.0003.O01".O.I9 99 9991.01 1.0.9~~~~~~~~~~~~~~~~~~~~~~~~~00. 1.1.0009 Do C, OC 1. OC,. C99 39 9 9 9 99 9 16.00 15 -r' 100 1.C. ~ID.:? 100,01.0 I99.999I.9999Ur 1C ~' 1.999.9999.9999 2.01 1.000C:! 1. 0,:O3, 1.00gO).99.9999.9999 0 1.999j.9999.9999.9999 2.01 1. f0000!. 0. 3 1 —. 1.t'.O.9999. 99.~C~C0 1-O 9999.9999.9999.9999.9999. O01 1.O,300.9999.9999.9999I.CO.9999.9999.9999.9999.9999.9999.,01.9999 010 I.99.9999IO.9999.9999.9999.9999.9999.9999.9999 5..'02 ~ 99 1.999 8.998~9999 ~ 9999.9999 ~ 9999 ~ 9999 ~ 9999.9999 5C02 ~ 999 ~ 7 ( 9998.9999.9999.9999.9999 ~ 9999.9999.9999.999890~ 92.9999.9999 ~ 9999 ~ 9999.9999.9999 ~ 9999 ~ 9999 ~ 9999,9999 0..02.9998.9998.9998.9998.9998 ~ 9998.9998. 9998 ~ 9998 ~ 99 98 3>.0 ~ 9998.9998.9993 ~ 9998.9998 ~ 9998 ~ 9998 ~ 9998 ~ 9997.9998 6~~02 ~9997 ~ 9992 7 ~9997 ~ 9997. 9991 7~ 9997 ~ 9997.99896 ~ 99896 ~ 9997 0~02.9996.9996 ~ 99968 ~ 9996 ~ 9996.9995 ~ 9996.9995.9995 ~ 9995 2.~02.99983.19985 9995 ~ 9994.9993 ~ 99932 ~ 9993 ~ 9993.9992 ~ 99793 0~02.9992.9992.9992 ~ 9991.9991 ~ 9995 ~99965 ~ 9969 ~ 9989.9963 4C0 9.:9983 8 9987 0992.9987.9986.9985.9986 994 18 99841 99835 0' ~9 992 1.9918.9919 ~ 9914,.9911, 908.99 1 L" 9 99i.;i4.9901i.99",4 65.03.9 8 80.D 9 875.9976.9869.9864.9860.9863.9854 9 98 5C. 9 85 5 8C,.52.9811.9804. 9 8016.9794.97 87.9 7 8".9770.9764.97 72 lg0003 ~ 9806.9799. 9 8 01.9788.9781.9774.9 78I.9764.9 758.9766 101. 5 3

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 532.0 AND 541.C WAVENUMiERS ZENITH ANGLE:' DEGREES 532.v 533.0 534.C 535. 536.0 537.0 538.0 539.0 540.0 541.0 PRE SSIMB ) ~ ~ 0~,,; ~. ~. ~. ~.~~. L Poor 1.00C, O 10COOC 1 3 <C0Q 1 0000r CiO0~ 10CO? I. O0 I 01 COC 1.OOuc.33 1.C000 1.0000 1.000?0 1.0000 1.0O00 1.0000 1.000g lf 1.0000 1.0o0u 1.0000.60 1.0C00 1.0 0C 1.Oc)0 i.oo 1. 0000 1.0000 1.0000 1.iOOD 1.,:C$0 1.000 l.vO 1.0003 1. 000o 10 000 1. CO0 u 10000 1.0000 1.0c0.0 1.0C 0D 1 C.~0 1.600Q'4 1.0000 1.00:75 1.0C, 00 1.,:0o0 1.C OC0 1. OO 1.3O -o 1. MO0 1.!0,0o 1.OO.60 1.0000C 1.0O."CO0 1.00005 1.0000 1.50 ~Co.",G0 1. 0gD 1.00G0 1.CC200 1.C 2,00 6 1.C0(00 0 1. 00 1. 0000 1.0co I 0C0 1.0C? 0! 1.0000 1.0000 1.CCfOO 1.00oo 1.0000 2.5Q 7 1.efOOo 1..0c I.OCuO 1. oc. co 1. ooC,.- 1. 00'l 1.0'c:0 I.0000 1. C, GO 1.J0 0 3.00 8 1.0. 1. 000.O 1.0 00 1.O 10C00 1.0000 1.00OG 1.0003 4. 00 9 1.000C1. O 1.0000 1.gOD0O 1. 0 000.C$C; 1.0O lg 1. 00DO 1.0C00 1.G05. CC,~~~~~~~~ Ot,~ 1 ~" " 0 C, Dd 1CiO0 1. LlU.0o.rj.10.0.....3-.1.,0 1.'IOC0 1. 1. 0 1O0GO 100CO0 1 gCOO 1. 000 1.OC.0 6.50 11 1.0999 1.99CO.9999.99 1.00D0 1.30G 1.C o 1.00 00 C, 1.0000 8.01. 9999.9999 ~99 99.999 9.9999 1. 000 00GCOG 1.0000 1.0CO 1.C0000 10,00 13 9999:9999.9999.9999 9999.9999 1*0C000 100000 1 14.0, 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1\.9999.9999.9999.9999.9999.9999 1.O9OO l.O999 1.COO0 1.COO I6.C0,9999.9999, 9999, 9999, 9999.9999, 9999, 9999 1,O0 1,OCO 2 C; 0 16 ~ 9 999,9999 99 99 9,9999,9999, 9999,9999 1 C00 1 coO0 25I c 17,9999 ~ 9999.9999.9999 09999.9999.9999.9999 1.9O9 1.0O' 3C 0. 0 18.9999.9998.9998 ~ 9998.9998.99998.9998.9998.9998,9999 5 40.O0.9998,9997.9998.9998.9998.9998, 9998.9998,9998.9999 50.21 ~ 9998.9997.9998,9998,9997.9998.9998,9998.9998.9998 65.00 22.9991 7 9996.9997 ~ 9997.9996.9997.9997.9997.9997.9998.999G8023.9995. 9994.9995 ~ 9995.9994.9994.9995.9994.9995.9995 130.G2.9993, 9992.9993, 9993.9992, 9992,9993, 9992.9993,9993 16v,G2. 999-.9989 ~ 9990O.9989, 9989, 9989.9989, 9989, 9989 999C 2,00 9 98 5.998 3.9984.9984.998 3.9984.9984.998-3, 9984.9984 25 O0.9978. 9977 ~ 9978.9978. 9976.9977.9977.9977.9977, 9978 300.D2.9962.9960, 9961.9961.9959.9960,9961.9959.9961.9961 400.v0.9942.9938.994J5.9940.9937.9939.9939,9937,9939,9940 5C. cQ.990?2.9896.99'.9899.9894.9897.9898.9894.9897,9899 650.31.9852.9842. 9848.9847.9839.9845.9846.9841,9845.9848 8C0.G3. 9768.9753.9763.9761.9749.9758.9760. 9752. 9759.9762 1GO0.00 33.9762.9747.9756,9755.9742.9752.9753,9745.9752. 9756 1'013.25

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 542.0 AND 551.0 WAVENUMBERS ZENITH ANGLE = 0 DEGREES 542.0 543.0 544.0 545.0 546.0 547.0 548.0 5-49.0 550.O 551.0 PRESS(MB.) 1.0000 1.3000 1.00CC 1.0000 1.000C 1.0300 1.0300 1.3U00 1.0000 l.O~O.30 1 1.0000 1. 0000 1.0 0 I L0 1. 0 0 0 1.0000 1.0000 1.0c00 1.0000 1.OCOG 0 1.0000.60 2 1.0000 1.0 000 1.00CC 1.0000Q 1.00CC:. 1.0003 1.0030 1.0030i~O l,@D 1.Q000 C3 1.0001. 3 1.0003 1.03C03 1.0030 l.Ccoo 1.0000 1-1 1.-00 1. 0 0 1.0000 1.C00 1.0000 130 4 1.0003 1. 000C 0: "VI 1.00000.CCo 1. 000 1.Co0 1.0030 1.0000 1.0000 1.0000 1.60 1.0000 1I tQ3 1.0030 1.0000 1.000Cc 1.-c0 1.0000 1.0000 1.0000 I.00. 0 2.30 6 1.0000 1.3003 1.0033 1.0300 1.30CC 1.000 1.0000 1.0000 1.0000 1.00 2.50 7 1.0000 1.0000 1.0033 1.G000 1.0000 1.0000 1.0030 1.000 1.0000 1.0030 3.00 8 1.0000 1C.00 1.0000w 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 4.00 9 1.0003 1.000 00 0 1.0303 1.Q0'~ 1.0000 1.0000 1.coO 13C00 5.00 10 1.0000 1.00CC 1.0000 1.0003 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 6.50 11 1C00O 1.000 1.CO 1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.CCO 8.00 12 1.0000 1.0000 1.0000 1.-000 1.0 00 0 1.00000 100 00 1.0000 1.300c3 9999 10.0 0 13 1.0003 1t300 0 I.00030 1.0000.9999 1.0030 1.0030 O9999.9999.9999 13.00 14 1.0000 1.0000 1.0009 1i.CCO.9999 1.0000 l.CO I0.9999.9999.9999 16.00 15 1C0.000 1.0000 1.0003 1.3008.9999 1.0000 1.0000.9999.9999.9999 20.00 16 1.0000 1.0000 1.00000.9999.9999.9999.9999.9999 09999.9999 25.00 17 1.0000 1.00c0 1.00000.1(c99 9999 9.9999.9999.9999 09999.9999 30.00 18.9999.9999.9999.9999.9999.9999.9999.9999.9999.9999 40.'0 19.9998.9998.9098.9998.9998 09998.9998.9998.9998.9998 59.00 20.9998.9998.9998.9998.9998.9998.9998.9998 09998.9998 65.00 21.9998.9997.9997.9997.9996.9997.9997.9997.9997.9997 80.00 22.9997.9997 o9997.9996.9996.9996.9996.9995.9996.9995 10000 23.9995.9994.9994.9994.9993.9'994.9994.9994.9994.9993 130.00 24.9992.9992.9992.9991 09991 09991.9991.9991.9991.9991 160.00 25.9988.9988.9988.9987.9986.9987.9987.9986.9987.9986 200.00 26.9983.9982.9982.9981.9980.9982.9981.9980.9980.9979 253.CO 27.9976.9975.9975.9974.9972.9974.9973.9972.9972.9971 300.0 28.9958.9956.9956.9954.9952.9954.9954.9951.9951.9950 400.00 29.9935.9932.9932.9929.9926.9929.9928.9924.9925.9922 500.00 30 09891.9886.9886.9881.9876.9881.9879.9872.9873.9868 653.00 31.9835.9828.9827.9820.98-12.9819.9817.9806.9807.9799 800.30 32.9743.9731.9729.9718.9706.9716.9714.9697.9698.9685 1300.00 33.9736.9724.9722.9711.9698.970-9.9706.9688.9690.9677 1013.25 34

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 552.0 AND 561.C. WAVENUMBR ZENITH ANGLE:0 DEGREES 552,.0 553~0 554.0 555.0 55.D 557.0 55.8.0 559.0~ 5 60'~ 0 561.C RS( B 1ocb I. 0 0 1.0 0.1. 0oreo 1.C I 0 1 ~0000 1. 0 C,00 l.(MO 1.00S 1. 0 00 1 ~CO.30 1 l~OC03 1 ~0 0,bO 1.~00GO 1.0~}00 1.0000 1.0000 l.OOO0 1.00 0D 1.0 1-,00O 1.OOO ~002 1~.0 000 1. COO J0 I~C0O0 1. S00V 1. COO 1.GO"CO 1 0,OOO0' 1.0000 I.OGDO"I I~CC l.O 3; 1COO ~00 10, 1.00CO I.CCCO 1.GO d3 1.CO0 C1,.OOO0 1.00.00 1.clO I~O 1.0 C 1.:0000 I ~00<; 0 1 ~000,9 1 ~OOOO 1.0001 1.C ClO 1.O CO0 I.OJ 1.OO 1.0 1.60 5 1 ~CO 1r.) C} 1. 0 9 1.D CO 1.UI C 03 1 ~C~ 1.0 0 1.O0 ~j3 1.-OILO0 1.COW02. 0 I.C0O0 1 ~00~,qO 1.0OCO 1.C~0 l~0000 1.COC 1.O 0 1cl.nl0000~99 V J j~ ~~~~~~~~99.9999 2.07 C)00 1. 0, 1.000i2 1I:OO 1. OO0;D 1.00CO 1. C000' 1.9OD 999. 99 99 ~0' 1 ~ OOO0 1C I. 00",0 1 ~0000 1 ~CO Og 09999 1.9999 1.9999.9999.9999).9999. 09,1 I OCOo l~O 1.999O9O9.9 99 9.9 999.99 99 ~ 9 999. 999. 9.9 999 5.00999 I.9999 1~9999 ~ 9999.9999.9999.9999.9999 ~ 9999 ~ 9999.99996.01 1.9999 ~ 9999 ~ 9999.9999.9999.9999 09999.9999 ~ 9999.9999 8.01 ~ 9 999 ~ 9999 ~ 9999 ~ 9999 ~ 9999.9999.9999 ~ 9999 ~ 9999.9999 1~0.9999.999.9999.999.9199 09999 9999.999.999.999 0 9999. 9999 ~.9999. 9999. 9999. 9999. 9999. 9999.9999. 9999 1..9999 9 999.9999..9.999 ~.9999.9999.9999.9999.9998.9998 ~9999. ~9999.9999 ~ 9999.9999.9999.9998.9998 ~ 9998.9999860 0 1 -d.9999. 9998. 9999t. 9997. 9997 ~ 99979. 9997. 9997. 9997. 999970.C ~ 9997 ~ 9997. 9996. 9996 ~ 9996. 99996. 19996. 9996. 9995 ~ 999955.G ~ 9995. 9995. 9999. 9995. 9995. 9994. 9994 ~ 9995. 9994. 99.94 8~0 ~ 9999. 9993. 9993. 9992. 9992 ~ 9992. 9992. 9998. 9991. 9991 ~ 9991. 99981. 9998 ~ 9989.99989 ~ 9989.9988.99989 ~ 9987 ~ 9987 5.O.9986.99985.9985.9984.9984.9984.9983.9984.9982.9982.99797 ~ 99978.9977.9977.9976.9976.9975.9976.9974.9973.9995.99695.9969.9968.9967.9966. 9966.9966.9964.99963 O.C.9949.9947.9946.9944.9943.9941.9942.9940.9936.9935 10.02.9991).9918.99 90. 99138 09.998.99C8 9.9 #6 98.998 6 9.9987C.98987 1.0.985 9 86.9985.998 53.9984 8 99844.9984 0.9983.998.99828.99823 26'0.99795.99788. 97 31.9775.99767.99761.99753.99752.9734.99732550.9678.9669.9654.9644.99 673-.9696.99606.9966).9572.996 5 0 C!.7 09669.9657.9645.9634.9694.9691. 99595 09590.9563.995440.0

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 562.0 AND 571.; WAVENUMBERS ZENITH ANGLE = 0 DEGREES 562.0 563.0 564,0 565.0 56660 3.567.0 568.0 569.0 57C,. 571.0 PRESS(MB.) 1.Co00 1. C!.0 1.0000 1.0000 1.000i 1.000o 1.0I00 1.COD 1.00D 1.OCO0.30 1 1.C000 1.C0,30 1.0000 I 1.00,0 1.0000 10 1.0cou 1.0000 1.C00.9999.602 1.0-00C 1.00nO I. 000.0000, 1 OO0 lcOcO.9999.9999.9999.9999! 3 1.000C 1.0000 1.0000 1.0000 1.0005 09999. 9999.99 99.9998 1-.3.0 1. 0 00G 1. 00O i.9999.9999.9999.9999.9999.9999.9999.9998 1.60,9999.9999.9999.9999.9999.9999.9999.9999.9999.9998 2.00 6.9999.9999.9999.9999.9999.9999.9999.9999.9998.9998 2.50.9999.9999.9999.9999.9999.9999.9999 09999.9998.9998 3. O0 8.9999.9999.9999.9999.9999.9999.9998.9998.9998.9997 4.C0 8.9999.9999.9999.9999.9999.9999.9998.9998.9998.9997 4.00 9.9999.9999.9999.9999.9999.9999.9998.9998.9998.9996 5.00 11.9999.9999.9999.9999.9998.9998.9997.9997.9997.9996 8.50.9999.9999.9999.9999.9998.9998.9997.9997.9997.9996 8.00.9999.9999.9998.9998. S998.9998.9997.9997.9996.9995 13.OO 14.9999.9998.9998.9998.9998.9998.9997.9997.9996.9994 16.O1 co3.9998.9998.9998.9998.9998.9997.9996.9996.9996.9994 26.C31.9998.9998.9998.9998.9997.9997.9996.9995.9995.9993 25.01.9998.9998.9998.9997.9997.9997.9995.9995.9995.9992 3p.01.9997.9997.9997.9996.9996.9995.9994.9993.9993.9990.9997.9997.9996.9995.9995.9995.9993.9992.9992.:D99O.9996.9996.9995.9994.9994.9993.9991.9991.9990.9986 50,21. 9995.9994.9994.9993.9993.9992.9990.9989.9988.9983 8v.C0 ~~~21.9993.9993.9992.9991.9993w.9992.9990.99S6.9985.998 lCG.$002.999G.9989.9989.9997.9997.9996.9987.9981.9979.9973 13;-.^002.9986.9986.9985.9983.9983.9981.9977.9975.9973.9966 13C.C0.9983.998C.9979.9976.9976.9974.9969.9967.9964.9955 2C.C2.9971.9970.9969.9966.9965.9963.9957.9954.9951.9939 250.02.996C,.9959.9957.9954.9952.9949.9941.9938.9934.9919 30.0'0.9931.9929.9926.9920.9917.9912.9899.9893.9886.9863 4G.02.9891.9888.9883.9873.9869.986r.9840.9830.9819.9784 50~.00.9811 98v5.9795.9778.9769.9752.9716.9699.9679.9617 659 O3.97C5.9694.9677.9649.9634.9607.9548.9523.9489.9393 8CO. 3.~9522.95 C2.9473.9427.9399.9353.9256.9215.9158.9Cv9 1000.03.9508.9488.9458.9410.9382.9334.9234.9192.9133,8980) 1CI3.25

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 572.0 AND 581.1 WAVENUMBERS ZENITH ANGLE = 0 OEGREES 572.0 573.0 574.0 575.0 576.' 577.0 578. 0 579.0 580.0 581.0 pRESS(MB.) 1.CoCO 1.cIl 000.9999.9999.9999 9.9999.9999.9999.9999.9999.30 1.9999.9999.9999.9999.9999.9998.9998.9998.9997.9997.60 2.9999.9999.9998.9998.9998.9997.9997.9997.9995.9995 1.00 3.9998.9998.9998.9998.9997.9996.9996.995.9994.9994 1.30 4.9998.9998.9997.9997.9997.9995.9996.9995.9993.9993 1.60 5. 9 9983.99918.9997.9997.9996 9.49 5.9995.9994.9992.9992 2.00 6.9998.9997.9996.999.6.9996.9994.9994.9993.9991.9990 2.50 7.9997.9997.9996.9996.9995.9993.9993.9992.9990.9990 3.00 8.9997.9997.9995.9995.9995.9992.9992.9991.9988.9988 4.uO 9.9996.999.6.9995.9994.9994.9991.9991.9989.9986.9986 5.00 10.9996.9996.9994.9994.9993.999C.9990.9988.9985.9984 6.50 1.9995.9995.9993.9993.9992.9989.9989.9987.9983.9982 8.00 12.9995.9995.9993.9992.9991.9988.9988.9985.9981.9980 10.00 13.9995.9994.9992.9991.9990.9986.9986.9983.9978.9977 13.00 14.9994.9993.9990.9990.9989.9984.9984.9981.9976.9975 16.0 15 \10.9993.9993.9989.9989.9988.9982.9982.9979.9972.9971 20.00 16.9992.9992.9988.9987.9986.9980.9980.9976.9968.9967 25.00 17.9992.9991.9986.9986.9984.9977.9977.9973.9964.9963 30.00 18.9989.998.8.9983.9983.9981.9972.9972.9967.9956.9955 4 19.9987.9986.9981.9980.9977.9968.9967.9961.9949.9947 50.00 2G.9985.9984.9977.9976.9973.09961.9961.9953.9938.9936 65.00 2.9982.99 83?.9972.9971.9967.9954.9953.9944.9927.9924 80.00 22.9978 6.9966.9965.9960.9944.9943.9932.9911.99C7 100.00 23.9971.9968.9956.9954.9949.9929.9927.9913.9887.9882 12.9963.9960.9946.9944.9937.9913.9911.9894.9861.9855 160.00 25.9952.9948.9931.9928.9919.989U.9887.9866.9826.9818 200.00 26.9935.9930.9909.9904.9893.9858.9853.9827.9777.9766 250.00 27.9914.9908.9882.9876.9862.9817.9811.9778.9715.97G2 300.00 28.9855.9844.9803.9793.9773.9702.9691.9638.9539.9520 400.00 29.9771.9754.969'.9675.9640.9538.9521.9439.9293.9265 50O.0 30.9595.9565.9457.9430.937'.92C:4.9173.9037.8800.8758 650.(0 31.9358.9312.9147.9106.9015.8771.8723.8520.8180.8122 800.00. 32.8954.8882.8629.8564.8426.80710.7996.7698.7216.7135 1 00.C 0 33.8923.8850.8591.8524.8383.8020.7943.7639.7148.7C65 1o13.25 34

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 582.0 AND 591.0 WAVENUMBERS ZENITH ANGLE = 0 DEGREES 582.0 583.0 584~4 585.0 586~0 587.0 588~u 589~0 590. 591~<3 PRESS{MB~) ~ 9998.9998.9998.9997.9996.9997.9996.9994.9995.9994 3G ~9996 ~ 9995.9996 ~ 9995 ~ 9993 ~ 9994 99993 ~9' 991 ~9992.9991. 60 ~9995.9993.9993 ~ 9992 ~9999 0.9991 ~9989 ~ 9987.9989 ~9988 1~ 00 ~ 9993 999 1. 9992.9990.9988. 9989. 9988.9985 ~ 9987.9986 1.30 o 9992,999C- ~ 9990 ~ 9989 ~ 9986. 9988.9986. 9983. 9986.9985 1~60.9991 09988 ~ 9989 ~ 9988 ~ 9985 ~ 9986 ~9985.9981. 9984.9983 2. 00 6 o.9989. 9986 ~ 9987.9986 ~9982 09984. 9983.9979.9982.998! 2,50 7.9988 ~ 9985 ~ 9986 ~9.985 ~ 9981.9983 ~ 9981. 9977 ~ 9981.9979 3. 00 8 o 9986 o9983 ~ 9984 *9982 ~ 9978 ~ 9980.9978.9973 ~ 9978. 9975 4.00 9 9984 ~9980 ~ 9982 ~9989 ~9975 ~9978.9976.9970 ~ 9975 ~ 9972 5~ 00 10.9983 ~ 9978 ~9979.9977 ~9972 ~9974. 9972.9965.9971 09968 6. 50 11.9981 ~ 9975 ~ 9977.9975 ~ 9969 ~ 9972 ~ 9969.9961 ~ 9967.9963 8. 3 12 ~9979. 9973.9974 ~ 9972 ~ 9965 ~9968. 9964. 9956 ~9963 ~ 9958 lru~00 13 o9975 o9968 ~ 9971..9967 ~ 9959.9962.9958. 9947.9956 ~ 9949 13.00 14 9972 ~ 9965 ~ 9967 ~ 9962. 9953. 9957 09952. 9939. 9948 ~ 9941 16~ 60 15 9969 ~ 9959 ~9962.9957 ~ 9946.9950 ~ 9943.9928 ~ 9939 ~ 9929 20.C0 16.9963 ~ 9952 ~ 9955 ~ 9949 ~ 9936 ~9941 ~ 9933.9914.9927 ~ 9916 25.00 17.9959 ~ 9946 ~ 9949 ~ 9941 ~ 9926.9932 ~ 9922 ~ 9900.9915.9961 3O 18 ~ 9949 9934.9937 ~ 9927 ~ 9907 ~ 9915 ~ 9902.9874.9892 ~ 987,4 4. 0 19 ~994' 9 9922 ~9925 ~ 9913 ~ 9889 ~ 9897 ~ 9882.9847 ~ 9869. 9847 50.. 00 20.9927 ~ 99;4. 990;8 ~ 9892 ~ 9862 ~ 9872.9852 09807 o9835.9807 65.C0 21 ~ 9913 ~ 9885. 9890.9871.9834 ~ 9846.9821 ~ 9767.980G.9766 85. 5 22.9894 o986~- 9866.9841 0 9796 09811.9779 9713 9752 9711 lGC.GO 23.9865. 9821. 9828.9796. 9737 ~ 9756.9716. 9630.9679.9627 13I.' 0 24 ~9834. 9781.9788. 9750 ~9677 ~97l0.9659 ~ 9546. 9604.9542 160~C0 25.9791. 9726. 9734. 9686. 9596 ~ 9623.9561. 9432. 9502. 9426 210.00 26 9732. 9650.9659.9599. 9486.9518.9441. 9280. 9364. 9272 25~.G0 27 o 9658. 9557. 9568.9494.9355.9393.9299.91C3. 9202. 9094 3Ob.0C 28.9453.93<1.9316.9212.90O9.9063.8934.8661.8792 8656 4G}.u 29.9171. 8957.8981.8845.8571. 8641..8481.8129.8292. 8133 596.60 30 ~ 8623. 83v8.8349,8176. 7798. 7886.7692. 7241. 7432.7255 65C, 31 ~.795r0.7534.759.7403.6937. 7032.6822. 6302. 6494.6312 8~)C.~0 32.6927.6396.6494. 6298. 5754.5838. 5631. 5S65. 5224.5G43 10(C.i30 33 ~6855.6318.6419. 6223 ~ 5675. 5759.5552 4985. 5141.4960 1013.25 34

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 592.i) AND 6Gl.(g WAVENUMBERS ZENITH ANGLE = 0 DEGREES 592.0 593 3~ ) 594.0 595.0 596.0 597.0 598.8 599.0' 60.0 601.0 PRESS('MB ~ ).9992.9'9994.9993.9988.9988.9987.9984.9987.9989.9988.30.9988.9990.9990.9981 ~9986se.9979.9976.9979.9984.9984.b3.9984.9987.9987.9974.9972.9971 ~.9967.9971.9979.9980 1~ 03.9982.9986.9985.9969.9967.9966.9961.9965 ~.9976.9978 1.30.9981.9984.9984.9965.9962.9961.9955 ~ 9960.9973.9976 1~ 60.9978.9983.9982.9961.9956 ~ 9955.9949 09955.9969.9973 2~ C0 6.9976.9981.99808.9955 ~9950.9949.9942.9948 ~ 9965.9969 2~ 5C 7.9973.9978.9977.995J.9944.9943.9935.9942.9961.9966 3~ GO 8.9969 ~ 9975.9974.9942.9934.9933.9923.9932.9954.9959 4.00 9.9965.9972.9970.9934.9925.9923 ~ 9912.9922.9947.9952 5~ 00 ll) 09959.9967.9964.9922.9913.991;i.9897.9908.9937 9942 6.50 11.9954.9962.9959.9912.9902.9899.9883.9896.9927 ~ 9932 8~00 12.9946.9956.9952.9898.9888.9884.9865.9880.9915.9918 10.00 13.9935.9947.9942.9878.9867.9861.9838.9857.9896.9897 13.'0 14.9924.9937.9931.9858.9847.984G.9813.9835.9879.9878 16.00 15.9909.9925.9917.9832.982....9813.9779.9806.9854.985C 23.'0 16.9891.99'J 9.9900.9800.9788.9778.9737.9769.9825.9817 25.00 17.9872.9894.9882.9768.9757.9745.9696.9734.9795.9783 30.00 18.9836.9863.9848.97'7.9695.9680.9616.9665.9738.9717 4G.00 19.980".9833.9814.9647.9636.9617.9539.9599.9681.9651 5~.,(0 2v.9746.9788.9764.9559.9549.9525.9425.95L0.9597.9553 65.00 21.9693.9743.97 13.9472.9463.9433.9312.9402.9512.9455 8,?.00 22.9621.9682.9645.9358.935C,.9313.9164.9273.9398.9325 lO~.00 23.9512.9589.9542.9192.9185.9135.8946.9C82.9225 ~9130 13f3. CO 24.9403.9495.9439 ~9031.90, 23.8962.8733.8894.90 51.8934 I6C'.'' 25 9 9256.9366.9,~')9.8822.8813.8736.8458.8649.8818.8673 200.00 26.90161.9193.9112 ~ 8558.8543.8450.8111.8337.8515.8339 25:. C' 27.884'?, ~8995.8900.~8272.8247.8137.7737.7997.8177.7980 300.DO 28.8309.8511.8393.7643 ~7565.7428.6914 ~7231.7398 ~719'6 400.C0 29.7697.7936.7801.6975.6819.6665.6059.6413.6537.6372 50,.00 30.6710.6973.6823.5954.5667.55C2.4821.5171.5228.5158 65:.60 31.5698.5944.579n,..4933.4543.4382.3697.3997.4006.4i33 8GO.GO 32.4403.4583.4433.3653.32"'4.3'65.2469.2658.2641.2752 l2'CO.60 33.4322.4496.4346.3573.3124.2987.2389.2580.2563.2677 1;13,25 34

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 602.0 AND 611.4c0 WAVENUMBR:-ENITH ANGLE 0 DEGREES 6C2.0.603.0 6 04.0, 6C05.0 606.0 6 07. 608.0 609. 6 10. 0 611.0 PESM..9990.999, 9.9987.9990~.9989.9986.9989. 9990.9990U.9990.31.9987.998 7.'998 3.9987.9986.9982.9986.9986..998b.9986.62.998.~.9984.9979.9983.998.3.9978.9983.9983'.9982.9983 10.9983.9982.97.9982.9981.9976.9981. 998 1.9980.9980 13.9981.9981.9974.9980.979.9973.9979.9979.9978.9978 16.9979.9978.9971.9977.9976.997.0.9976.9976.9975.9975 2&.9976.9975.9967.9974.9973.9966.9973.9973.9972.9972 25.9973.9972.9963.9971.9970'l.9961.9969.9970 09968.99693C-8.9968.9966.9955.9964.9963 953.9962.993 9961.9962 40.9962.9960.9947.9958.9957.9944.9956.9956.9954.99555.01.9954.9951.99 35.9949,.9947.9932.9946.9947.9945.99466.01.9945.9943.9923.9939.9937.9919.9936.9937.9935.99378.01.9935 09931.9908.9927.9924 999c'3.9923.9925.9922.9925 1.01.9918.9913.9884.9909.9 905.9878. 9 9%04.9906.9903.9906 1.01.990,2.9897.9862.9891.9886.9854.9885.9887.9883.9888 1.01 0 9880-.9873.9832.;.9866.9861.9821.9860 96C95 96. 2.01. 98 53.9845.9792.9836.9829.9781.9828.9830.9826.9833 2.01.9826.9816.9754.98`6.9798.9742.9797.979'9.9795.9 8 3.0 18.9772.9759.9679.9746.9736.9664.9734.97'37.9731.9743 4.01.9719 99762.965..9686.9674.9587.9672 09675.9668.9683 5.02.9639.9617'.9494.959 7.9581.9474.9579.9581.9572.9593 6.02.9558.9 531.9383.9506.9488.9362.9485.9487 946.9 503 8.02.9451.9417.9237.9386.9362.9213.9359.9359.9345.9382 10.02.9287.9244.9018.9204.9171.8992.9168 -.9166.9147.9198 13.02. 9 12.9067. 8800.9019.8977.8772.8974.8968.8945.9011 16.02.8895.8829.8511.8769.8717.8483.8715.8700.8669.8757 2C.06 8 6''I2. 8 520. 814 5.8445.8379.8114.8378.8350.8311.8429 25.07.8279.8183.77 56. 8!9 3. 801),i1.7720.8014.7970v.7923.8073 30. 2.7554.7429.6920.7312.7195.6863.7209.7127.7C66.7281 40.02.676'0.6609.6054.6469.6316.5967.6346.6222.6154.6421 50.03.5 536.5358.4796. 519 3.4994.4657.5f045.4872.4804.5105 65.03.4 354.416 7. 3653.3994.37 73.3479.3832.3638.3572.3857 80.03.2968.2797.2396.2637..2428,.2211.2478.2294.2230.2444 IC.03.2886.2716.232.4.2559.2352.2140-.2 4. " 2218.2154.2363 11.53

RANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 612.~3 AND 621~5 WAVENUMBERS ZENITH ANGLE: 0 DEGREES 612.0 613~0 614.0 615~0 616~6 617.~ 618.0 619~0 620~D 621.C PRESS(MB. ) ~ 99..91.999G.9991 ~9.'991 ~9936 ~9920 ~9920 ~9.9,19 ~9918 ~9973.30 ~ 9987 ~9987.9987 ~9986.9918.9894 9893.9891 ~989C ~9958 ~60.9983 ~9983.9982 ~9981.990,].9868 9866 ~9864 ~9861 ~9943 1.C~O ~ 9981. 998!] ~ 9980 ~ 9978 ~ 9888 ~ 9851 ~ 9848 ~ 9846 ~ 9843 ~ 9934 I ~ 30 ~ 9979 ~9978.9978.9976 ~9875 ~9835 ~983.2 ~9829 ~9826.9927 1.60 ~ 9.97'! ~99'75 ~9975.9972 ~9859 ~9814 ~981C~ ~98~8 ~98D4 ~9919 2~0.-0 6 ~ 9973 ~9972.9971 ~9969 ~9839 ~9789 ~9785 ~97'82,9778 ~9910 2~50 7.9971 ~9969 ~9968 ~9966 ~9819 ~9764 ~ 976C: ~9757 ~9753.9901 3~~0 8 ~ 9964.9963.9963.9960 ~9779.9717 ~9712 ~9708 ~9704.9886 4.'.00 9 ~ 9958 ~9957 ~9957 ~9953.9741 ~.9671 ~9665 ~9661 ~9657 ~9872 5~C0 10 ~ 9950 ~9948.9948 ~9944.9685.96C6 ~9599 ~9595 ~959~ ~9851 6~50 11 ~ 99,41 ~9939 ~9940 ~9936 ~9633.9544.9537 ~9532 ~9527 ~98'32 8~QO 12 ~ 9932i ~9928.9930 ~9924 ~9569 ~9,468 ~9459 ~9454 ~9448.98C~7 lC~&O 13 ~ 9913 ~9911 ~9914.9907. 948C: ~936D ~935C ~9344.9338.9769 13~60 14 ~ 9895 ~9893 ~"9898.9889 ~9399 ~9261 ~9249 ~9242.9237 ~9731 16.00 15 — q k_~.9873 ~9871 ~9877 ~9866.91304 ~9142.9126.9119.9113 ~9681 20.tJO 16.9844.9842 ~9851 ~983?.9199 ~90..08 ~8989 ~8980.8975 ~9618 25~00 17 ~ 9815 ~9814 ~9825.98C8.9169.8889 ~8867 ~8857 ~8852 ~9557 30~00 18 ~ 9757 ~9757 ~9?73 ~9749.8957 ~8682 ~8654 ~8640.8637.9436 4~~00 19.9699 ~97C1 ~9721 ~9691 ~883C ~85C~5 ~8469 ~8453 ~8452 ~9320 5~ ~00 2& ~ 9609 ~9616 ~9643 ~9602 ~8668 ~8271 ~8226.8205 ~82~8 ~9149 65~00 21 ~ 9518.953:3 ~9563 ~9511 ~8523 ~8061 ~8005.;'980.7988 ~8980 80.C0 22 ~ 9395 ~9414.9454 ~9386.8345 ~7804 ~77.34 ~7704 ~7720 ~8761 10~'~00 23 ~ 9205.9238 ~9287.9194 ~8095 ~7454.7363 ~7325.7355 ~8446 132,.00 24.92)09.9C58 ~9115 ~8996 ~7852.7133.7C21 ~6976 ~7023.8147 16G.00 25 ~ 8742 ~8812.288C ~8723 ~7531 ~6736 ~6596 ~6541 ~6615 ~?768 200.00 26 ~8393 849"~ ~.......,.8568 8360 ~ 7123 6259 6Q84 6016 6128 7297 25C~ 0 27 ~8'~13 ~8139.8222 ~7957 ~6692.5773.5560 ~5479 ~5632 ~6794 300.00 28 ~o~ ~ 7189 ~7347 ~7421 ~7035 ~5773.4786.4492.4380.4607 ~5686 405.00 29 ~630D 6472 652 ] 6024 4842 3866 3495 3357 3633 4555 50C' GO 3"' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~.4959.5114 ~ 51,S3.4514.3544.27<~3.2250.2C'98.2383.3018 65~.00 31.37~5.3815.3753.3169 ~244Q.1797.I326 ~1192.1426.1B~6 80C.00 32.2~07.2348.2261 ~ 1793. 1348.0950.~)551 ~0471.0614.$771 I~C.~.OO 33 ~2228 2264 2177 1719 1291 n9C7:516 0439 0577 C723 IC13 25 34 ~ ~ ~ ~ ~,-. ~qu; ~ ~ ~. ~

TRAN'SMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 622.0 AND 631.0 WAVENUMBERS ZENITH ANGLE = 0 OEGREES 622~0 623~0 624.0 625~0 626.C 62.7.0 628.0 629.0 630.0 631~0 PRESS{ MB. ) ~ 9985 ~9983 ~9980.9979.9976.9974 ~9975 ~9973 ~9966.9967.30 1 ~ 9977 ~9974 ~9971.9969 ~9966.9964.9965.9962.9953.9954.60 2 ~'9'969 ~9965 ~9962 ~.9960 ~9956.9954.9955.9951.9940.9941 1.00 3 ~ 9964 ~9960 ~9957 ~9955 ~9950 ~9947.9948.9944 ~9932 ~9932 1.30 4 ~ 9960 ~9955 ~9952.9950 ~9944.9941 ~9942.9938.9924.9925 1~60 5 ~ 9955 ~9950 ~9947 ~9944 ~9938.9934.9935.9930 ~9914.9915 2.00 6 ~ 9950.9945 ~9940.9937 ~993j ~9926.9927.9921.9903.9904 2.50 7 ~ 9945 ~9939 ~9935 ~9931 ~9923 ~9918.9920 ~9912 ~9892.9894 3~00 8 ~ 9936.9930 ~9923 ~9919 ~ 99f~9 ~9903 ~9905 ~9895 ~9870.9873 4.00 9 ~ 9928 ~9921 ~9913 ~9908 ~9896.9888 ~9890.9878 ~9848.9854 5.00 10 ~ 9916 ~9907 ~9897.9891 ~9876 ~9865 ~9869 ~9854 ~9817 ~9825 6.50 11 ~ 9904 ~9895 ~9882 ~9875.9858 ~9845 ~9848 ~9830 ~9786.9797 8.00 12 ~ 9889 ~9878 ~9863 ~985'4 ~9833 ~9816.9821.9799 ~9746 ~'9760 10.00 13.9866.9854.9833 ~9822 ~9795 ~9774 ~9780.9752 ~9686.9706 13~00 14 ~ 9843 ~9829 ~9804 ~9790 ~9757 ~9731 ~9738 ~9,704 ~9624.9651 16.C0 15 — q ~- ~9812 ~9795 ~9764 ~9747 ~9706 ~9673 ~9682 ~9641 ~9544.9579 2~,~bO 16 ~ 9773 ~9754 ~9716 ~9695 ~9644 ~9602 ~9613 ~9562 ~9444.9489 25~00 17 ~ 9735 ~9712 ~9667 ~96-42 ~9582 ~9532 ~9544 ~9484 ~9346 ~9399 3C~00 18 ~ 9658.963C ~9571 ~95'38 ~9462 ~9396 ~9410 ~9332 ~9156.9223 40~00 19 ~ 9582 ~955G ~9476 ~9435 ~9347.9264 ~9280 ~9184 ~8974 ~9052 50~C0 20 9468 9428,9334 9282 9175 9068 9086 8965 8709 88G0 65 ~0 21 ~ 9351.93C3.9191.9128.9001.8871.8890.8744.8450.8553 80. L~O 22 ~ 9193 ~9135 ~8999 ~8920 ~8766 ~86['9 ~8628.8449 ~8111 ~8227 106.0-9 23 8952 8878 8709 8604 841" 8214 8229 8005 7615 7746 13C.00 24 ~ 8706.8616.8418 ~8285.8053.7820.7828.7566.7134.7272 160.C0 25.8374.8263.8028.7859.7579.7365.7299.6999.6522.6659 2CO'.00 26 ~ 7938 ~7800 ~7527 ~7309 ~6976 ~6663 ~6632 ~6299.5783 ~5905 250.C0 27.7454.7284.6981.6713.6327.5991.5928.5575. 5C'36.5132 30[.;. O0 28 ~ 6336.6094.5759.5395.4915.4586.4452.4094.3564.3597 4~0. ~,0 29 ~ 5123.4820.4491. 4',;58.3535.3265.3082.2760.2303.2291 50C.C0 30.3393. 3('59.2792.2339.1871.1708.1528.13~9.1~16.0989 650.00 31 ~ 2OOC.1718.1538.1158.0829.C, 745.C. 627.~;511.0365.C348 80~.00 32.0828.0672.0588.[;363.0213.r, 185.0142.0108.0061.0G63 1000.00 33 0775 F, 62B C549 r, 333.. 019.3 0167,.,'~128.,.Oh 96 G'~59 0C. 55 1013 25 34 ~ ~ ~ %,, ~ ~

TRANSMISSIVITIES AVERAGSED OVER FIVE WAVENJUMBER 1INTREVALS, BETWEEN 632.0 AND 641.40'WAVENUMBER ZENITH ANGLE 0 DEGREES 632.C 63~~~3.3O 634.0.635.0 63 6. 639 6 38.0 639.0 640.0 641. PRESM..9965. 99 55.9959.9958.9952.9952.9951.9945 -.9946.9945.31.9)951.,994:0'.9943.9942.9935.9934.9933.9926.9927.9926.62.9 937.992 3.9927.9925.9916.9915.9914.9904.990 5.9 9C,03 1C..99.28.9912.9916.9914.i9903. 9 92.3.9901.9888.9890 9.8 87 13 9 9 2.9 90,~2.996.9904.80.9891..9888.9872..9875.9871' 16.9909.9889.9894. 98.91.9874.9876 971.81 956.985C.0.9897.9873.98 82.9-087 5 09854.9857.9851 09825.983 2.9824 25.9 885.9857.986'6.9860I..9835..9838.9830.979.9.9808 097983.08.9 862. 98 27.9838'.9833.9796.98C03.9791.9749.9762.9747 40 4.984!).9797.~9812.9 8.9759.9768.9753.9700.9717.96975.01.9 807.9754.97 73 9 7 57.9704.9717. 9696.9628.965 1.96246.01.9776.9712.9 735.97 15.9651.9667.9640.9557.9586.95518cO1.9 735.965 7.9686.9661.9581.960 1.9567.9465.95%O.9456 1.01.9674.9576.9613.9579.9477.95)2.9457.9326.9371..9313 1.01.9612.9495 9 53~9.9497.9373.9403.9346.9188.9242.917 C 1.01.9532.9388.9441. 9388'.9236.9272.9199,9.9005 9,C75.8980 o001.943 3.9258.9,32 1.9254. 90 67.9 18.9016-.8780.8857.8744 2.01.9 336.9132.9204.9122. 89 0,,1.8946.8834.8559.8645.8511 3.31.9148.8887.9976.8865.8 5 80.8626.8475..8127.8227.8C52 4.O1. 8968.865 5.8756.8616 8 272.8313.8123.7711. 78.18.7604 5.02.8707 8 322.'843~8.8254.7827. 785 3.760,7..7111.72 1 7.6952 6.02.84 50,. 8 CCl00-.8127.7898.7397. 740;2.7104.6 538.6633.6325 8.02.8111. 7 585. 7 72 C.7434.6847.68224. 6460.5 82 1.5889.5536 1C.02.7609.6989. 7 125.6767.6076.6 f201L,'. 55 62.4853.4866.4474 13.02.7114. 6 42''4. 6 552.6136.5373..5250.4756. 4 i.1 5.3972.3568 16.02.6475. 5719. 582 3.5355.4535.~4358.3827. 30 88.2982.2594 2020 6.568 8.4886.4947.4448.3611. 3388.2864.2176.2022,.1687 25.32 04P,85.4069.4081.3 585.2784.2542.2073.1477.1309.1043 30.02.3311.2569.2503.2087.1471.1261.0967.5 97.3"472.3 40 40.02.2009.1435.1346.10'",5 3.6 66.5 27.384 C.2201.C140.009 50.03,.0783 (.d485.3425.0292.0-152 is103'.00C69.027.0016.0%0 08 65.03.0240 ~~.0 12 5.00 *59.0224.01 3.008."l 00J2.030Ou 800.0 3.3034 01 3.0 01 C.0 0 04.000C)1 C000 C.030CC,0 0{0.Ol0 C03.0C,00 10.03.0029.2~~~01.00C033.00 0C2OC.0300.000.000 Lu13253

TRANSMISSIVITIE-S AVERAGED OVER FIVE WAVENUMBER INTREVALSt BETWEEN 642.0 AND 651.0, WAVENUBR ZENITH ANGLE 0 DEGREES 642.C 643.0 644.0 645.0 646.3' 647.0 6 4 8.0, 649.0 650.0 6 51.0 PESM..9941 *9943.9942.9935.9935.9936.9932.99'36.9936.9931.31.9919.9922.9921.9 9319.990.9.9910.99012.9908.9913. 9 902.62.9893.9897.9895.9874.9876.9876.9862.9872.9a75.9860 10.9872.9879.9875.9848.9852.9851.9831.9844.9848.9828 13.9852.9863).9856.9822. 982'8.9825.9 8:01.9817.9822.9796 16.9826.9836 933.. 9788.9796.9792.9761..9782.9787.9754 20.9793.9807.9798.9746.9758.9752.9711.9738.9743.97 2 25.9761.9778.9766.9704.9719.9711.9662.9695.9699.9650 30.9697.9720.9704.9621.9644.9631.9565.96019.9612.9547 40.9634.9663.9642.9541.9 57.) 9553 9 4 7 2.09525.9526.94455.01.9542.95 79.9550..9423.9463.9438..9331.94:)2.9397.92956.01.9451.9497.9459. 9 3 -09.9359.9327.9196.9282.9269.91478.02.9332.9389.93430.9161.9222.9180.9019.9124.9099.95 1.31.9154.9226.9161.8938.9017.8961.8758.8887.8847.8673 1.01.8978.9 -"6 3.8983.8719.8813.8741.850C,1.8651.8595.8397 1.01 0\.8746.8848.81747.8430.8542.8451.8167.8340.8-263.8037 2.0l.8461.8580.8454.8079.82 10.8095.7763.7956.7854.7599 2.01.8181.8315.8166.7738.7883.7745.7373.7582.07453.7173 3.01.7639.779 5.76n01.7087.72 51.7068.6638.6860.6681.6362 4.01.7122.7291.7056.6479.6649.6427.5959.6180.5956.56 105.02.63 87.6 561.6275.5639.5802.553 3.5036.5244.4967.4600 5.02.5699.5867 *.51543.4881.5025.4725.4224.4411.41C2.3733 8.02.4860.508.4652.3994.4105.3790.3 3U3'8.3462.3141.2787 10.02.3773.~~388-.3 51.2910.2973 264.2256.2356.2 C 36.1755 13.02.2885.295 3.2599.2084.2105.1852.1510.1561.1317.1071 16.02.1975.233.1695.13(X).1281.1099.085C.0)856.0688.0520 20.06.1181.1178.0941. 3-46 79.0637.0532.0379.0365.2 73.0 185 25.07.C663.6 47.0480. 4332 3.0284.0231.0149.0136.X9 4.CC56 3C.02.0169.0156.0092 C5 1.00338.(030.0015 01 3.C 0 0 3 3 40.32.033.3 2 8. 0011 *.X)35.03)C3 * C2.0 C01.0301.0 CGc 5C&033..030'G2.301 0 I.00 00.(M) 0 000 0.00 Jo30.0 650.0 3.3003 ~~.oo0on I.;Q 0oo.o0C, D.0Guo )OCJOo.03.00 10.03 r0000G.03 00 33 00. Q r).t 00.O I;.030.000 101.2 3

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 652.#J. AND 661.0 WAVENUMBER ZENITH ANGLE: DEGREES 652~0 653~0 6.54.0, 655~0) 6 56.0 657,.0 658.0 659.0 66D.00 661.~; PRS(BF ~ 9938 ~ 9934 ~ 9936 ~ 9937.9934'.9934. 9938'.9932 0.9938.9944 ~ 3 ~ 9 9 12 ~ 99C,7 ~ 9908 ~ 9909 -.9906.9907. 9912. 9903. 9913, ~ 9923,0 ~9.87 5 ~ 9869 ~ 9871. 9871. 9868 ~ 9870 ~ 8 6.9862 ~ 98863. 9893 1 0 ~ 9848.9 840 ~3 9842 ~ 9843.9839. 9842.9850. 9831.9855.9871 1. 3. 98 21 ~ 9812 ~ 9814 ~ 9814 ~98 1{ 6. 981 3.9822. 980D ~ 09829 ~ 9848 1 6 ~9785 ~ 9774 ~ 9775 ~ 9776.9771 ~ 977.5 ~ 9786. 9757.9794 o9818 2 0.9749 ~ 9726.9727 ~ 9729 ~ 9722.9727 ~ 9740.9705.9751.9779 25.9695.9678 ~ 9679 ~ 9682.9673 09679. 9695 ~.9652 09707. 9740 30 ~ 9607 ~ 9583 ~ 9582 ~ 9588.9573 ~ 9582.9603.9546 ~9618.9661. 0 ~09518 o9488 ~ 9484 ~ 9494 ~ 9473. 9485 ~ 95.11.9441 ~ 9528. 9582 5 ~ 0l ~9386. 934 5.9335 ~ 9354 o9321. 9338. 9373 ~ 92 85. 9394. 9461 6. 01.92 54+ ~ 9 204 ~ 9186. 9214.9169 ~ 9193.9235 9.9132.9259 ~ 94 8. 0 1 ~ 9081.9015 ~ 8986. 90'29.8964. 8998 ~95'5I. 8930. 90q80. 9179 1 ~ 0 1 ~8821. 8733 ~ 8685 ~ 8753 ~ 8657.8707. 8777.8633.8811. 8938 1. 0 1 ~ 8564 ~ 8451.8386 ~ 8479 ~83 50.'" 8417 ~ 8505 ~ 8340. 8544. 8697 1~01 ~8224 ~ 8079.7993 ~8118.794-5 ~ -8D32.8146 ~ 7958.8192.8378 2 j~O01.7807.7619. 7512. 7675.745C-. 7557 ~ 7705.7490 ~ 7758.7983 2.0I ~ 7398 ~ 7169 ~ 7046 ~ 7243.6971-' o7092 ~ 7274'. 70,36 ~ 7332. 7594 3.01 ~ 6614 ~6 30(6 ~ 6163 ~ 641 6 ~ 6065.6201 ~ 6448 ~ 6173 ~ 6514 ~ 6838 4C.09 ~ 5879 ~ 55.7 ~53 53 ~ 5646 ~ 5242.5376 ~ 5680 ~ 5 378 ~ 5747 ~ 6' 119 5.0.4 8 8) ~ 4443.4284.4611 ~ 4165.4283.4645. 4325.4711.5129 6.02 4~. 4007 ~ 3546 ~ 3 3 87.3719.3271. 3367. 375 5.3439.3816.4252 B.02.30 35.2 599.7' 2436.2745. 23 37.240-4 o278D.2495.2838.3260 1C.C2 ~1938.1574. 1440.1676.i137'. 14""5.17C7.1498. 1767. 1 2 I3 002 11~~~~~~~~~~185' 9 ~84.,.968.0766 0 " 7 84 ~1994 ~8 6 1G5 8 1330 162O05,.567 0 4 14 o347.0419.0318 C327 0 C436:3376,' 49 7.06.68 2 O2 ~0195~~~~~~~~~~~~~~~~~~.f~130 01' 011 08tg1 013' 13 " 17f 025 25 275 *.C057. 0,?~'4 On02 3.09 28.0919.,21.COg32. 2 9.oO'51.0087 30' 0 2.3003.)0. 0001.0000I. 0'Do1.Cogl C.hOG1.091. JC03. 0008 40.09.::~~~~I 6O rc0O,S C. ~;]0. OC 0 0.:CO'CCl.LiO. ~~.,OS5.,0 r 0 0,G C.r o~~~ S 0', O OD (OC. ~ " O C, O",'0 C, nOC CO~l rO O3 COOr;~~:,OO G0r ":0C iO,CC0 C'' ~"0 C O COC' ( 53

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 662~) AND 671.~ WAVENUMBER ZENITH ANGLE:0 DEGREES 662~0 ~~~663~0- 664.0r 665 ~ 666~0 667~0 66. C 6 ~ 79671~0 PRS{B ~9939 ~ 9948 ~ 9955.9 2.9685 ~ 9650 09642 ~ 9.634 ~ 9668.9-899. 3 ~ 9915 ~ 9928 ~ 9939 ~ 9894 ~ 96'01 ~ 9546 ~ 9536 ~ 9523 ~ 9567 ~ 9854.0 ~ 9882 ~ 990^2 ~ 9919.9'858 ~ 9493 ~ 9'420.9404 ~ 9385 ~ 9444.9801 1 0 ~ 98 57 ~98 83.9904.9830.9410 ~ 9326 ~ 9307 ~ 9282.9354 ~ 9763 1 3.9831.9863 ~ 9889 ~ 980.1 ~ 9327 ~ 923,6 ~ 9211 ~ 9182 ~ 9266.9727 16 9 797.9 837 09868.9763 q9219.9120.9;389.9753 ~ 9154 ~ 9682 2 0.9 753 ~9 86C4.9843.9717.90-89.8984.8944. 89!01. 90i2 0.9627 2 5.9708 ~ 9769 ~.9816.9673 ~ 8967. 88.56. 88C:9.8 757,.8892.-9574 3C.96 19 ~9 7C'2.9762 ~ 9593.8748.8629.8564.8497.8656..9469 40.95 28.9632. 97'5~8. 9519.8557.8431.8349.8267.8443.9366 5 ~01.09392.9 527 ~ 962 5.9414 ~ 8311 ~ 8179.8 072.7967.8161.92136.01.9257.9421. 9.5 40.9314.8104.7968.7835.7709. 7915.90638.O1.9 0,77.92 8,-'.9428.9183 7 787Z~.;.7730~.7565.741G.7628.8864 1.01.8810;.9?69.92 57.8989. 7582.7435. 7221.7 W2 6.7260.8568 1.01 8.8548 ~885 7.9085.8795'7342.7188 06928.6695.6943 08274 1.01 CC).8206 ~ 8 576.8854.8535.7071 ~ 69('7.6589.63~8.6575.7889 2.O1 ~779k'.82 28.8564.8-212.6775.6599.6213.5879.6167.7418 2~ 0 1.7388.7883.8273.7891. 6505.6319.587C.5490.5795.6961 C. 0I.662 5 ~ 7211.769 3.726 3. 60C C3.5 8(.1 ~ 5243.49 5119.6099 4.01 ~ 5917.6567 ~ 7119.6657. 5528.5314.4671.4172.4510.5310 5.O2 ~4959.5665 ~ 6284. 5801.4854.4627 ~ 3898.3367.3697.4266 6.02 ~ 4122 ~ 4849 ~ 5493. 5017.4225 ~ 3989. 3219.2-690.2996.3388 8.02.3186 ~ 3901 ~ 4523. 46;87.3463.3226.2455.1963.2226. 2458 10.02 ~ 2115 ~276 1 ~ 3278.2934.2497.2278.1581.'I186.1379 ~ 114811 3.02 ~1363.1912 ~2293.2 C46.1743.1560.0977.3691.C0821. 8 6 6 1.02.~719 ~~~.1129. 1351 12.I20 7.1028 ~ 9(2.048.35.82.0,3962 0.O6 q02 95 1/.549 oG643 Q 5 8 J 01496. 43u 00175 106281125 CO2 I C 16.r,249.0283. 026,.C224. t;194 C.C'5 56.'"030. u'','37.GC37 3S."02.CC~~~~12.C04 3 ~ 0046. 004 4. 0039. 00t34. 0004. "t0 002. ~!02.0 C, 4G.SO29.O~C 1.OG06.0?0~~0:"6. 016.0C5. C5. O0i.!Cg., 000.O0', O~.O ~,~OD ~ ~~~~~~~ "] O OC CC'C. C C, 0 C (30 C,(~ G C O0. C CO CG.O,. ~" C).),.;.) ~300:o~ 0C "00,:~~~(1,3GO0 000'." - 3 C.j:'"<O':;.' C,. C' 9 0t, 0 O.30O13 25

.TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS., BETWEEN 672~C` AN[) 681~~- WAVENUMBER ZENITH ANGLE =0 DEGREES 672.0 673.0 674~0) 675.0 676~0) 677.0 6 7 8.01C 679.0 680.0O 681.0 PRSM.).09931.9937.9931.9935.9934.89933 ~ 9928.9933 09924 ~ 9933~3 ~ 9904.9912.9 903.99()9 ~ 9907.99C, ~ 99 9905 9 89.90 4. 6.9865 ~ 9877 ~ 9864.9871.9867 09862.9 856.98 6 3 9 8 40' 09862 1 C.9835. 9 85C:l.9834.9842.9836 09829.9823.9831.9801.9830 1.3.9804.9822.9 83.9812,.9806.9797.9790.9 800. 9763.9798 16.9763.9785.9762 ~ 9772.9764.9752.9745 ~ 97'56.9710.9755 2 C.9712.~~9738.9710.9721. 9711.9696.9689.9703.9646.9762 25 ~ 9660J.9691.9658.9670". 9658.9639.9632 ~ 9648. 958~.9648 30 ~9 9558.9596.9 552.9567.95 52.925.519.9539..9451.95414.;9.945:6.9501. 9447.9464.9446.94j~9.9406,-9431.9322.9433 5. 01 ~ 9306.9 358. 9288. 93018.9287.9233.9237.928 9131..92736.01 ~ 9157.9214 ~91.3'0.9152.9128.9 056.9068.91 6.8943. g i8.90113. 8961.9 C.24.8919.8943.8917.8822.8845.8891. 8698.896;3 I.O.8669.8739.86C5.8630. 86C3.8472.85 13.8571.8339.8588 1.,01 ~ 838.C 845 7.8294.8319.8292.8129.8184.8~254.7991.8278 1.01 ~1 8 003 k. 8085.78 86.7906.7885.768.7754.789.545.7870 2. 001.7535.7628.7'388.7399.73:88,74 ~ 7231.33. 05. 3 4 2.91.738 3.7182.69t.4.6903. 69038.6626.6727.6843.6512.6895 3.91 ~ 62 25.6 333.59q2.5960'.600 3 ~ 5668 ~ 5780.5920.5 588.5991 4.01 ~ 54.315.5546.5160.5Cu9 6.5179.4 81 3.4925 ~55080.4766.5167 5.02.43,89.4495.4074.39 7 (.4103.3726.3823.3985.3715.4092 6.02 3 351,!3".36C2.3184.30-55.3215.2857. 2930.3084.2864.3203 8.O2 2 257 5. 2 64~. 2268.2123 ~22 88 ~ 1979.2[C20.2150.1993.2274 G.O2.15 83 ~ 1 6:]j4.13 32.1194.1321.11C,2.IIII.119 5.1113.1 35"9 3.02.' 941.0929.0750.,63 6.07 14.0575.0571.]6 1.582.0707i 6.02.0436 4.C407.0316. 6245. 027?7.0211.0205.0222.0214 ~ 02752C.02 ~ ~144. 1 2'3. G g) 9 CaC6 0 ~ 0068. 0048.0045.9049.0049.0G68 2[.02.~0041~~~~~~~~~~~~~~~~~~k.C3.(02.01.C01.O 8.08. 08 ~ 09.0013 30.02 ~ 9302.rO~~~l.00,~ l. OC'?O.CC~~~013.COO.038. aO C0 0,5 40.0 2 09.0'00.4O 0.0032.Ott 2CO.1C.0012.O0.OCO.OCO 5O., 3.%C 0.2 ~4,390).00CD.t, 3'3.CC.'.:C C.CG.?.C a &0.OO 65.0 3 1 0.000~~~~~~~~~~~,0.90.00C.,D.,)COOO.C O.003.00.OO, C COC8C.C 3.0000.,00.0n.0000. O(;,'.S;C.0600.0000. 630. O Io.0 33I~.OOOO. OO.OC):.'7;,o0.000. a.OO.OO.0C.OGOC 1:1.53

.TRAN-4sm isISSV IT I ES AVERAGED OVER FIVE WAVENUMBER INTREVALS,9 BETWEEN 682.0 AND 691.0, WAVENUMBER ZENITH ANGLE =0 DEGR'EES 682.01 683~0 640 65060 687~0 688. 0.689."" 69C.& 691~0 PRSSMB ~ 9928. 9933.9934.9934 ~ 9930.9936.9929. 9938 ~ 9935.09941 ~9898.9 9~5 ~9906 ~ 990'6.9903.99 10Z.9901.9915~91~99.98 56.9864.9867.9868.9864.9875.9861.9882.9881.9894u ~ 0.9824.83 ~ 9837.9838.9834.9847.9830.9857 ~ 9857.9867 13.9791.98012 ~ 980J7 ~ 9809 ~ 98C5..9821.9799. 9832.9834.9845 16 ~ 9747 ~ 976C ~ 9766 ~ 9769.9765.9784.9758.9799.9802.9815 2C ~ 9693 09708.9716.9720 ~ 9716.9 74 ~ 9708.9757.9763.9779 25.9638.965 5 ~ 9665.9671.9666.9695 ~ 9657.9 717.9724.9742. 0 ~ 9,529.9551 ~ 9565 ~ 9573.9568 ~ 96G-6 ~ 9558.9635.9646.9669 40 ~9 9429 ~ 9447 ~ 9466. 9476.9471 ~ 9519 ~ 9461.9555.9569.9597 50 ~ 925?.9292.9317. 9 3 3G ~ 9327.9388.9318 ~ 9436..9456 09491 65 ~ 90'96 ~ 9137 ~ 917C.9184.9184 ~ 9259.9179 ~9318.9344.9386 80 ~ 8883.8932.8976 ~ 8990 ~ 8996.90,8 8.8998.9163 ~ 9197.92481.0. 8 565.8626.8686. 8699 ~ 87,16.8834.8731.8932 ~ 8976.90421.0 ~ 8251.8322 ~8400 ~849'17.84 39 ~ 8582.8471.8702.8757.88371.0 CC) 0. 7 837.7922 8-02 3 ~820.8074.8249.8131. 8401.8469.85682 ~:01.7 334 ~ 7433 ~ 7563 ~ 7546. 7 6 35.' 7841. 772 ~ 8r,03C,. 8114.8238 2.01 ~6846 ~ 6958.7116.7084.7lq9..7442 ~ 7325.7668. 7767.7915 3~O1.592 5 ~ 6056.6270 ~6 2 13.68 ~6679 ~ 658C.6974.7097.7291 4.0 ~0 586 ~ 52 32.5491.5420. 5631 ~ 5965.5896.06322.6-461~ 6 9 5.D.3992.4151 ~ 4457 ~ 4378.4631.4988 ~ 4971.5420.5568 ~ 5865 6~02 ~3'093.3259.358 2.350-8.3779 ~ 4128 ~ 4160.4614. 4754. 5101 8.0.216 7.2 3 33.2643. 25 83.2857. 3161.3248.3688. 3804.4195 10.02.12 29. 1 376. 16283.1596 ~ 1846.206C,.2196 ~ 2595.2667 ~ 3083 13.02.DO6 63. 776 ~ 0958.0949 ~ 1159.1295.1448.1793.1832 ~ 2234 16~O2 2 5 27.03 27 ~ 043:3 ~ 0436 C6583. 96 52. 7 91. l057.1074.1420 200.0064. C0 )9 2.0 13 3.0140.0215.0242.0334. 50C`4 ~ D512.0762 20,02 ~~~~~~~~~~~~~~~~'`617.~2.GI3.03 706.76. 0123 ~ 0214 ~ 2 18. C374 30[02.00013. CCklI.0031. 02.C4.005.C'1. 02 02.0340.02... O'l. ~ O~ 00".... 0 O' 0 ~,.3 O7 C2 C6 C0 0':,,, 0 C'OC ~:C.,,,,O< C.:0~" OCC 2 C, 002 0,; 8 50.03 ~"C0 O0. 1 C, 0G.0000 ~ OO OC C:O. ~ O~.00~ OL'- 000 60.0 ~0 ['C,(:.0 09) C;.0000i. i,,JO -1.., GC, t0.0C 0060(. L)OC. O.CO0.0C o~: 0.990 0.gO.0D. OL:,)'. 300 C.':O~.O0.O'0.OtO.OO 101.53

TRANSMISSIVITIES AVE RAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 692~0 AND 701.0 WAVENUMBS.ZENITH ANGLE =0 DEGREES 692~5) 693.0 694.0 695~0. 696~-0 697.C 6 98.0C 699~0 7 C 0~O0 701.0PRSM~) ~ 9941 ~ 9943, 9941 ~ 9943.~ 9944 ~ 99.46, 948 9946 ~ 95 9953 ~0 ~ 9921 09924 ~9 922 ~ 9925 ~ 9926 ~ 92 9932 ~92.9936 ~ 9937 ~ 6 09894 ~98L99 ~ 9897.9902 ~990-4.9908.9914.9910 ~99 20 ~ 9921 1.0 ~ 9873 ~ ~9879 ~9878 ~9885 ~ 9887 ~ 9893 ~ 9900 ~9896 ~ 9908 ~ 9909 13 ~ 98 53 ~ 9860 ~ 9859. 9869.9871 ~ 9878 ~9 887,9883 ~ 9896 ~ 9898 16 ~ 982 5 ~ 9834 ~ 9834 ~ 9846 ~ 9849 ~ 9859 ~ 9870.9865.9882.9884 20 ~ 9792 ~9 8 02 ~9,804 ~ 9819 ~ 9822 ~9.8 A5~ ~ 9848~.9844 ~69863 ~ 9865 25 ~ 9758 ~ 9770 ~ 9773 ~97.92 ~ 9796.9811 ~9827. 9822 ~ 9844 09847 30 ~ 96.91 ~ 9705 ~ 9713 ~ 9738 ~ 974 3 ~ 9763 ~ 9785 ~ 9780 ~9808 L.9812 4~0 ~ 9'625.9641 ~ 9653 ~ 9684 ~ 9691 ~ 9717 ~ 9744 ~9-73'8 ~ 9773 ~97775.01 9 9528 ~ 9545 ~9565 ~ 9606.91 ~ 9648.9683 ~ 9677 ~ 9721 ~.97266~01 ~ 9432 ~94'49 ~ 9479 ~ 9529 ~ 9539 ~ 9580n 09623 ~ 9618 ~ 9671 ~ 96778~01 ~ 9305 ~ 9322 ~ 9366 ~ 9427 ~ 9440).9492 ~ 9544 ~ 9539 ~ 9604 ~ 9612 1.O1.9117 ~99132 ~ 9196 ~ 9274 ~ 9292 ~ 9359 ~ 9425.9422 ~ 9505.9515 1 ~ 0 1 ~ 8929.8941.9-028~.9121.9145.92.26 ~ 9307 ~9306 ~9407.9418 1.01 o0 ~8681 ~ 8691 ~ 8806 ~ 8919 ~ 895.0.90550.9149 ~ 9152 ~ 9'2.77 ~ 9291 2.91 ~ 8376 ~ 8384 ~ 8 532 ~ 8668 -879 ~ 8.3 8952 ~ 8963 ~9 117 ~9134 2~01 ~ 8077 ~80.85 ~ 82.64 ~ 8420 ~ 8472 ~ 8619 ~ 8 5 87 8959. 8980,.O8 ~ 7496 ~ 75039.7744 ~ 7932 ~ 8009.8199.8372.8411.8649.8678 4.01 ~ 6942 ~ 6963 ~ 7246 ~ 7460 ~ 7565 ~ 7794 ~ 7995 ~ 8058 ~ 8346.8385 5~02 ~6156 ~ 6197 ~ 6540.- ~ 6780 ~ 6928 ~ 72.07 ~ 7442 ~ 7545 ~ 7898 ~ 7957 6.02 ~5428 ~549 2 ~ 598].6135 ~ 6329.6646 ~ 69C5 ~ 7050.7457 ~ 7 54 C 8~0 ~ 455 3.4649 ~ 5077 ~ 53 38 ~ 5591 ~ 5945 ~ 6224 ~ 6423 ~ 6884.7005 lo~02 ~ 3444. 3579 ~ 4049! ~ 4284.4617 ~ 5002 ~ 5292 ~ 5562 ~ 6065 ~ 6250 1~CO2 ~ 2564 ~ 272 3.3191 ~ 3396.3 79 0 ~ 4185 ~ 4473 ~ 48D0 ~ 53 0 4 ~ 5552 16~02 ~1688.18-55 ~ 2305 ~ 2451 ~ 2888 ~3275 ~ 3548 ~ 3928 ~439a ~4711 20.06 9 94 9 ~1C99.1492.157 5 ~ 2008 ~ 2365 ~ 2606 ~ 3021 ~ 3393 ~ 3778 20~02 ~ C492.O6' 6 6. 0915.C955 ~ 1334 ~ 1644 ~ 1843.2262.2528 ~ 2945 30002.0 10).0142.0278.9)285. 0496 ~0690 ~ 0805 I1 145.1246 ~ 1623 4 0. 0 2.0014.CIC23.0062. 0.9;6 3.0144. 0 2)37.0289.D496. 5 23.07855 0.0B.~~~~~ fl1.`,, O~4 14. 0r33. G~;4`42. vi01.0104.02U4 6C. 0 3 ~0000 OO~G 0009" c 000a3 OOl COO:~3.0004. JO 4.0014 00C378 0GO3 ~-) ~ ~; ~ ~ ~ n, ~ ~. C..O0:3;50 90, 0C 0, nC 0C'V'0 co 01000) ~0 /o0 0 C. O0 0 -CC2 lO.03 C~~~ ~ C).1 ~%2. C ~ 0,,~.CC06 ~~~~r 0:'0. 00r'O.C 0. OCCc., 0 00.COCO. aO0. O?0 g02 11.53

TRANSMISSIVIT[ES AVERAGEO OVER FIVE WAVENUMBER INTREVALS, BETWEEN 702.0 AND 711.C WAVENUMBERS ZENITH ANGLE: 0 DEGREES 702. 73'3.0 704 0 75. 0 7 06 7J7.3 708.0 739.O 71^, 711' PRESSCMB.) 09954.9957 99:59.9962.9959.9966.9964.9970.9971.9973 31.994'.9943.9946.9951.9947.9955.9953.9961.9961.9964.60.9925.9929.99A2.9939.9934.9944.9942.9951.9952.9955 I.SO.9914.992'.9923.9931.9925.9937.9935.9945.9946.9949 1.30.9904.9911.99!4.9923..9917.993G.9928.9939.994D.9944 1.60.9891.99.9 90 3.9913.990`6.9921.9919.9931.9933.9938 2.00 6.9875.9886.9889.9901.9894.99111.9909.9922.9925.9930 2.50 7.9859 ~9872.9875.9889.9881.99 1.9899.9914.9917.9923 3.00 8.9828.9845.q849.9866.9856.9880.9879.9896.99Q1.99C8 4.00 9.9797.9818.9822.9843.9831.9860.986C.9879.9885.9895 5.00 1G.9753.9779.9784.9810.9796.9831.9831.9854.9863.9874 6. 50 11.97C9.9741.9747.9777.9762.9803.9804.9830.9842.9854 8.00 12.9652.9692.9699.9735.9718.9767.9768.9798.9813.9828 lO.OO 13 ~ 9567.9618.96Z7.9671.9652.9711.9714.9751.977u.9788 13.C0 14.9483.9544.9555.9607.9587.9656.9661.9704.9728.9749 16.00 15 co Do.9372.9448.9460.9522.95C'2.9583.9591.9641.9671.9696 20.00 16.9236.9328.9344.9418.9399. 9492.9505.9563.9601.9629 25.00 17.9101.9211.9229.9314.9299.9403.9420.9486.9531.9562 BO.CO 18.8838.898f0l.9004.9111.9105.9226 253.9332.9391.9429 44.C:0 19.8581.8753.8784.8912.8918.9051.90C.9181.9252.9296 50.C0 20.8199.8414.8457.8617.8644.8793.8849.8955.9C045.9099 65.90 21.7819.8C073.8133.8321.8373.8536. 860J9.8731.8840,89C4 88. i 22 ~.732.'.7618.770 3.7926.8C:11.8192.8289.8433.8567.8646 IGO.30 23.659 5. 6947./ I0 7 1.734C.7474. 76 78.7811.7988..8159.8262 13G.00 24.5 9 1 C. 6298.6462.6768.6949.7174.7 3 40.7 5 50.77 53.7882 166. 0 25.5707,.5483.5o99.60 37.6277.6524.6731.6983.7224.7389 200.CO 26 ~4123.4536.48C^9.5161.5468.5733.5986.6285.6565.6775 250.00 27.3265.3647.3967.4334.4667.4942.5232.5573.5882.6140 300 00 28.1885.2155.2_514.2758.3181.3449.3768.4173.45CO.485C 4u@.OG 29.[)984.1144.1469.1604.2004.2245.2532.2959.3250.3664 50C. 30.r304.6363.C561.0598.6867.1053.1235.1608.1795.2212 656.00 31.C371.0087.0169.0176.0308.C424.0511.0767.C,857.1184 8CO.00 32 IC 0 6.$038.2023.C,:323.0G56. 9 8. 12.C.,23C.C253.0423 1600.00 33.CO05.t"O7.O20.G020.0049.0088.[108.0210.10231. 3392 1013.25 34

TRNMSIJIS VRGDOE FIVE WAVENUMBER IN TREVALSP BETWEEN 712.C AND 721.WAEUBR ZENITH ANGLE:0 D EGR-EE S.7 12.0 7 13.0O 714.0 715.5~0 716.9 717.0 7 1 8~.~ 7.19.0, 72C:~O71. RESMB ~ 9974 09977.,9978.. 9981.9978.9969.992. 894.9898..9903. 3 ~ 9965.::968.09 97 0.9972 ~'9,9 68,.9953.9908 ~ 98&62, 9867.9876 ~ 6.9957.99 6C".9962 ~ 9965.9958. 9938. 9884.9831. 9836.94 1.:.9951.99 55. 99.57.9960 ~ 9951.993'.9869 ~ 9809.9815.8013.99,46 ~ 9951 ~ 9953.9956 ~ 9946, 99 2 98 55.9789. 9796.9812 1.6.9 94~. 9945 ~ 9948.9951.9940,-.9914.9839.9764.9771.9790.: 09933 ~ 9939 ~ 9942.9946 ~ 9933.99rC5"1.9819 -973:3.9741 ~ 9761,2 5.9926 09932..9936.9940.992]7 9 98:.9,7 9 98,/C0.9702. ~9711 ~ 9733.08.9912. 09923- ~9'24.9930.9914.9881.9763 ~ 9642 ~ 9652.9678 4G.9899.992:9. 91913.9920 ~990 3.9867 ~ 9727. 98 9593. 9622 5 ~ C.9879.9891.9896.9905.9885 ~ 9845.9675. 9495. 950 9 ~ 95426.01.9861.9874.98801.9891 ~ 9869 ~ 9825 ~ 9624..9412.9428.94'64 8.9836.98 52.9859.9873 ~ 9848.9799.9558.9304 ~ 9322.93.64l.0.9798.9817.9827 ~ 9845.9816.9759 ~9 4 6C.9146.9169.921813$'9 761 ~ -9783.9794.9817.9784.9718. 9362.8994. 921.9077 1. G,m ~97.11.9736.9752.977'9.9741 ~ 9664- ~ 9234.88:2;l.8833.88992.0 ~ 9649 ~ 9678.969 93 688.9597 ~ 9078.8576.8615.869225r3.9587 ~ 9619.9644.9686.9636.9531. 8927.8369.8414.85?':2 3. 6 9463 9 5 a'"- 9 53j8.9593.9531.9399.8645 8 1K59.8168 ~ ~ 9341.938'1 ~ 9432.950 1 ~ 9428 ~ 9269.83 91 ~' 7685.7755.7883 5 0 ~9158. 9 204 ~ 9274.9363.9275.9077 8.8648.7278.7364'. 752C 6.~ ~ 8976.92.91!8.9226.9125.88 86.7744.6925.7025.7207 8. 0.87 35.8797.8910.9,C44.8926.8634.7389.6512.6628.6842 lOC.837 5.8454.8598. 87 72.8633.8265.6937.5979.611 3.6369 1'.. ~8C11 9.8114. 8287. 8 5.8342.79C5.6551. 5518. 5662.5957 10,.7 554./7672.7881.8142.7964.7445. 613.4981.5 130. 54 70 C~.6974. 7 1 23.7 375.7689.7489.6882.5593.4378.4524.4916 2 5.0 ~ 6 372.6555.6849. 72)7. 6984.6298. 5_:9 2.3 85f5. 39 37.43'83 30.) ~ 5 13 5. 53 83.57 52.6152.5879.5 E9 8.4099.2 7 55. 28 38.34D0 40.0. 39 74. 42 55.4674.5048.4734.3976.3186 19. t96. 193D.2589 5C. J.2 519-.2 77 2.32rl1.3467.3145.2554.2[;41. 1D14. 09 77.1681 6~0.1429 116 26. lq 96..2147.1887 1 4 9.1189. 4 77.0)429.1C45 86C.91574 126 15.0914. 6d965.01822. 0624. PV".136. 12.J566 IO'~ ~,357.93. 082.99.0774.S,58.6.046. 012 24. 9lO.547 9(324

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 722.3 AND 731.0 wAVENUMBER ZENITH ANGLE = 0 DEGREES 72 2 O 7 2 30 724 <) 725.0 726.b 727.0 7 28.C 729.0 7 3"U 71. ~ 9914.9 953 ~ 9,901 ~ 9989 ~ 9989 ~ 9988 ~ 9987 ~ 9987 ~ 9986 ~ 9982.3. 9892.994.1.9987.9985 ~ 9985.9984.9983 ~ 9983 ~ 9983.9977 ~ 6.9869.9928.9982 9 9 8 998L,.998!.99719.9979.9979.9972!~ ~ 98 53. 9919. 9980. 9978. 9978. 9977. 9976.99 76. 9976. 9969 1~3.9838.9 91. 99 77.9976.9976.9975.9974. 9974.9974.9966 16.9817. 9899. 9 9 75.9973.9973. 9972.9971.9971.997C.9962 2 0.9791.9884. 99 71.9969. 9969.9968.9967.9967.9966. 9957 25.9765.9869.9969.9966.9966.9964.9963.9963.9962.9951 3 0.9713.9840_.9963. 9960.9959.9957. 9955 o9955.9954.914C ~09662.98 11 ~ 9958.9953.99 53.995/;.9947 ~ 9947.9946.99305.01.9 587.9769.99 50ll. 9944.9944.9940. 9936. 9935.9934.99156.01.9515.9729.9943.9935.9934.9929.9924.9924.9922.9899 8. 0 1 0.9421.9677.99 33.9923.9922.9915. 99,)9.9 99.990,7.9879 l.O1.9286. 9 64.9918.9 9C15. 99C4. 9895.9886.9887.9884.9849 1.01 109156. 95 35. 99C3. 9886.9885.9874. 9863.9864.9861.981916 01 Co 4=-.8992.9452.98 8 3.9862.986r'. 9847.9831.9 8 34.983-j..9779 2..01.8804.9360.9858. 98 32. 9829.9813.9792.9796.9791.9730 2. 0 1.86 32.92 1. 833. 9 802.9799.9780.975.3.9759.9753.9681 U~ 18.8335. 9 1 5~. 9732.9741.9736.9712.9673.9684.9677.9585 4).01.8`86.9044. 9730'.9680.9672.9645.9 594. 9610.9602.9491 5.O2.7776.~~~8910. 9650,.9589.9576.9543. 9474.98.949-`.3265;02.7517.8788. 9568.9496.9477.9442.9354.9384.9377.9214 8.O2 ~ 7 223. 629. 9455 ~ 93'71.9342.933~5.9192.9230-.9224.90311 0.02 ~ 6853.8386.9 277.9179. 9134.99 8948.8992.8993. 8760 13. 0 2 6 6536.8137.90~39. 8981.8919.8887. 8704.8751.876D.8494 1 6.05 ~ 6161. 7 8,.8825.8711.8625.8 60~-2.8377.8425.8449.8144 20.02 ~ 5 72 7 7 7365.8468.83 56. 824'3.8233. 7959..853.8048.7 702 25.O *5 2 98.6899 t$064 Z7968.782).7836.7515. 7548 76'18.723 5.443.'. 58 91. 72.79691,8. 6 9 60 06560.~6562.6681. 62 37 4C.02.3 58. 4865.6071.6128. 59 52 0'.602 6.5578.5545.570J.52-21 5OC ~ 245S- 0.3461.40. 4667.4533.4642.418r.4133.4283. 3798 60G ~ 1 56.9.2 321 3 140-.33 27. 326 7.3389. 2973.2865 ~.3028 ~.25968 Gj.O3.C 7 87. 12 5'. 1 319114.1942. 2C49. 1743. 01625 ~ 1741.1-419 C.O.0748.~1195.17018.1838.187].1975. 1677 5 60.1672. 35 8

TRANSMISSIVITIES, AVERAGED OVER FIVE WAVENUMBER INTREVALS,, BETWEEN 732.~0 AND 74100 WAVENUMBR ZENITH ANGLE:0 DEGREES 732~0 733~0 ~ ~~~734 ~ 15.0 7 3 6~0 73~ 738~0 739.0 74'0.0 741 ~'PRS0 B ~ 9986. 9986. 9982. 9986 ~ 9986 ~ 9982. 99.82.9984.9979.9980 ~ 3.9983.9982.9977 ~ 9983 ~ 9983.9977.9977.99977.9969.9970 6 ~ 9978.9978 ~ 9972 ~ 9979..9979 ~ 9973.,9971'.9969 ~ 9958..9959 10 ~ 9976.9975.9969 ~ 9976.9976 ~ 9969 ~ 9968.9964.9951.9952 13 ~ 9973.9973.9966..9974.99,74.9966.9964 ~ -9960 ~ 9945.9946 16.9970, ~ 9969 ~ 9.96'2 ~ 9971 ~ 9971 ~ 9962 ~9960 ~ 9954 ~ 9937.9939 20.9966. ~ 9965. 9957.9966 ~ 9'967. 9957 ~ 9955 9.994 8.99-28.993C 25 ~ 9962 ~9961.9952.9962 ~ 9963 ~ 9953.9950-.9942 ~ 9920.9923 30 ~ 9954 ~ 9953 ~ 9941 ~ 9954.9955.9942.9940 ~.9930 ~ 9905. 99018 46.9945.9944.9.931 ~ 9946.9948 ~.9933.993G.9920.9891 ~'98955.91 ~ 9933.9932.9915.9934 ~ 9936 ~ 9918.9916 ~ 9,9 06 ~98 7 1.98776~01 ~ 9921. 9920.9900 ~ 9922.9925. 99G4.990 2.9892.9853.9860. 012.9~~~~~90 9 99~54.987 9.9937 ~ 9 91i.9885. 9884 9.9875.9830. 9838 1.01.9881. 98 8. 9849 ~ 9883.9888.9857.9857.9849.9796.98C6 1.01.98 57. 98 56 ~ 98.19 ~ 9860 ~9866. ~9829. 983C0.9824.9763.9774 1.01.9825.9824.9779.9828.9836 ~ 9791 ~ 9794.9791.9719 ~09733 2~.O1.9785 ~ 9785. 9730.9789.9799.9746 ~9750.9749 ~9664.968125'01.9746.9746.9681 ~ 9751.9763.97G0.9706.9708 ~9613 ~ 9630 3~01.9667 09668 ~ 9584. 9673. 9 690":. 9610.9619 ~9627. 9506. 9530 4.01.9588.9592 9 4 9;'.9595 o9619.9523 o9535.9548.9406.94.3 50 302. 947.3.9478. 935:1 ~ 9479. 95 13.9392.9412..9432 o9260.92 92 6.02 9 3 5. 93 63 ~9212.9361 9'40 6 ~9264 ~ 9293.9318 09118 ~9154 8.02 ~ 9188. 920.9. 9rd28.9200.9262 o9094. 9135.9165. 8931. 8970 10.~O2 ~ 894:). 89 77. 8756.8956.9044.8842. 8899. 8934. 8656. 8696 lB.O2.8689.8744.8488. 870,9 o8824.8593. 8663.87/J1. 8384.8424 1 6.02. 83 5 C.8432. 8137. 8378. 8529.8265.8350.8389 o80-29.80,67 20.06.71912. 8 C3C!.7696.79 52. 8149. 7851. 7950. 7985. 7579. 7615 25.07 ~ 7441 ~ 7595. 7 229 ~ 7493. 7733 ~ 7 418.75 15. 7539 ~ 7089.7125 30,.02 ~ 6422 ~6643 ~ 6231 ~ 6498 ~ 6812 ~6443 ~6550 ~ 6514 ~ 5994 o6035 40.02.5374. 5639.5208. 5464.5829.5435.5529.5412 ~ 4872.49275 0.03.3897. 4177. 3763. 3988.4377.398-9 4~. 4' 50.3849.3372.3459 65.03 ~ 2640. 2888. 253 3 ~ 2716 o3073 ~ 2737. 2762.2 5 57. 2198.2311 8O.O3.1409. 1578. 13 33.1455. 1718 ~ 14 9C,. 148D.1347 o1138.1263 IO.03 ~ 1346.15C9g.1271 01389.1645.1425.1413. 1286. 85.10 1"13.2 85 34~

TRANSMISSIVITIES AVERAGED. OVER FIVE-WAVENUMBER INTREVALS? BETWEEN 74.2~D AND 751.0 WAVENUMBR ZENITH ANGLE:0 DEGREES 74 2. 743.0 7 44.01 75.06746~C'.747.0 748.0 7.49.0 750.0O 751.0 PRS{.).9984.998 5.9985.9991.9992.9989 ~ 9991.9993.9992 ~ 9993 ~ 3.9975.99 77 ~ 9979.9987 ~09988.9984.9986.9989 ~9987.9989.6.9966.96 97 998'4 ~ 9985 ~98 9.998990.998.841.0 ~ 996,0.9964.9969.9982.9983.9978.9979.9984.9981.9982 13 -.9955.9959. 9966.99 81 ~ 9981. 9976. 9977. 9983.9979 ~ 99801.6.9.948.09953.9962.9979.9983 ~ 9974 ~ 9975. 9981.9976. 9978 20 ~ 9941.9947 ~99 57 ~ 9977.9978. 9971.997.3.9979.9974-..9976 25.9934.9941. 9953.9975. 9976 ~ 9969. 9970. 9977.997.2 ~09973 30.992 2.9930.9944. 9970.9972.9964. 9966. 9974 ~ 9968.9970 40.9911. 9921.99?7.9967. -9969 ~ 9959 ~ 9962 ~ 9971 ~ 9965. 99665.01.9896.9907,.9925.9960.9963. 9952.9956. 9967. 99603.99626~01 ~. 9882. 9895 ~ 99'14. 9954.9957. 9946.995). 9963.9955.9958 8. 02.98 65.987.9. 99010.9946.9951.9937 ~ 9943 ~9458.9948.9952 1.,01.9839. 9856. 9879.9934. 994!0. 9924 ~ 9931.9949. 9938 ~ 9944 1.01.09814. 9833.9858. 9922.9929.9910 4~9920 ~ 9941. 9929. 9935 1.01 978 o8! 8~ 9936 o9915 o9893.99C,5.9930.9915. 9924 2 01.9739. 9765.9795.9885. 9896 o987U.9885.9916.9899. 9910J 5 C01.9698.9728. 9761. 9864. 9878.9848.9866.990,2.9882.9895 3.01.9619. 96 55.9694.9824. 9842. 98 C,4.9828.9875.9850. 9868 4.O1.9542. 9 583. 9628. 9 7 85. 980,7. 976t. 9792. 9848.9818. 9840 5.02.9430. 9476. o9 53 1.972 5. 9753. 9697. 9736.98[3 7.9770. 9799 6.02.9319. 9367. q,,J3.9663. 9699.9631.9681.9766.73.78 8. 02 ~ 9171. 92 2C:.9 32.9 581.9624.9543. 96016. 9710. 9657. 9702 lO. 2.895] 08999. 9137.9456. 9511. 941C. 9493. 9624.9558. 9616 1 3.02.872:). 8777 o8914.9328.9395.9276. 9379. 9536.9457.9529 16.]02.8437. 84 83. ~6 59. 9156.9237.9('97.9226. 9417.9322. 9412 20 fO2.8062. 8 IC"',6.8331. 8927. 90124. 8 8605.9025.9256. 9143. 9254 25.02.7648. 7690. 79 72. 8666.8779.8591.8795.9068. 8935 o9C70 3~~CO2.6699.6748. 7 167. 8SC45. 8183.79 52. 8238.8596.8423. 8 62 40'~~ 29.5699. 5769. 6322.7325. 748'.7221.7585. 8021. 7817. 8033 50.O3. 43,3!.4422. 5 C97. 6154. 6327.. 6058.6 5 12.7037 ~ o682G- ~.7068 65.01. 3 135.3295. 3962. 4954.5143. 4896.54C, C. 59 72.5780. 6C358 0. 3. 1939'..2131.2654. 346 5. 36 72. 3483. 398-7.4556. 4435. 467310,.' 3. 1874.2'566.25f7.3374. 3582.3397. 3899.4465.4349.4585 11. 5 3

TRAINSM IS SI VI TIES AVERAGED OVER FIVE WAVENUMBER INTREVALS, BETWEEN 752~':- AND 761~0 WAVENUMBR ZENITH-ANGLE: C DEGREES752~04 7 53. 0 754.0 7550.0 7 56 ~ 75'7~0 7 58. C. 759~'0 7 6!2~ 0 761.CP ES(B ~9995 ~ 9996 ~ 9996 ~.9996 ~ 9997.999/.9998 ~'9998 ~ 999.9 ~ 99'99 ~ 3 ~ 9992 ~9 993..99 92 ~ 9993 ~ 9995 09995 ~ 9996 ~ 9997 ~ 9997.9997.6 ~ 9989.9990 ~ 9988 ~ 99'90 ~ 9992 ~.999 1 ~ 9993. 99 9996 ~ 9996 1D ~9 9987 ~ 9988 ~ 9986 ~ 9987 ~ 9991 ~ 9990 ~999 1 ~ 9993 ~ 9 9.9995 13 ~998 5 ~987 9984 ~ 99'8'6 ~ 99.89 ~ 9988.*999' ~9992 ~9994 ~ 9994 16 9 998'3 ~9985 ~99:1 ~ 9'983 ~ 9987..9986.9988..9991 ~ 9993 ~ 99942~]6 ~ 99.8.2 ~ 9983 ~ 9979 ~ 9981 ~.9986 ~ 9984 ~ 9.986 ~ 9989 ~ 9992 ~ 9992 25 9 998S ~ 9982 ~~,9 978 ~ 9.98,0.9985 ~ 9983~.9985 ~9989.9992 ~ 9992 3C 9 97 7 9979 ~ 9974.9977.9982.9980.9983.9986.9990 9 9 9'0 ~, 997 5 ~99 77 ~ 9971 ~ 9974 9 998(J ~'9.78~ 9'9 8. 99 8.9989 ~' 9 9 5.01 ~ 9'97 1 ~ 9974 ~ 9968 ~ 9970, ~ 9977 ~ 9975 ~9'978.9983 ~ 9987 ~ 998 86.01 ~ 9968. ~ 9971 ~ 9964 ~ 9968 ~ 9975 ~ 9972. 9976. 998 1 ~ 9986 ~.998 78~O1.9964 ~ 9968.9960 ~ 9964 ~ 997.2.9969. 9974 ~ 9979 ~ 9985 ~95 1 ~ 01 ~9 9958 ~9963 ~ 9934 ~ 9959 ~ 9968. 9965. 9970.9976. 9982.998 3 1~0 ~ 9952 ~ 9958 09948 ~ 9954 ~ 9964 ~ 9961 ~ 9967. 9974.9981.9981 1.01 -4.9944 ~ 9951.9940.9947 ~ 996Q ~ 9956 ~ 9962 ~ 9970. 9978.9979 2~01 ~ 9934 ~ 9942.9930 ~ 9939.9953 ~99.49.9957 ~ 9966.97o9976 2.~ 0 ~ 9924.9934. 997;~ ~9931 ~ 9947.9942 ~.9952 ~ 9962 ~ 9972 09973 3.01 ~ 9904 ~ 9917 ~ 9f 9"l. 9915 ~ 9935 ~ 9930 ~9941.9954.9966 ~ 9967 4.01 9 98 85 9 991C0.9882 ~ 9900.9924 ~ 9918.9932. 9947 ~ 9960 ~.99625'. 0 2 9 985 5.98f5 ~ 9854.9876 ~ 990.7. 9899.9917 ~ 9935 ~ 9952.9954 6~02 ~ 9826.9849.9825 ~ 98 53 ~ 9 889 ~ 9880 ~ 9'902.9924 ~ 9943 ~ 9946 8~02.9 785. 9813 ~ 9786 ~ 982 1 ~ 9865. 9855.9881. 9908 ~ 9931 ~ 9934 10.02 ~ 972 3 ~ 9 7 57 ~ 9726 ~ 9771 ~ 9828 ~ 9815 ~ 9850. 9883 ~ 99 12 ~ 9916 1 3. 0 2 ~ 9659 ~ 9-699 ~ 966 5 ~ 9721 ~ 9789 ~ 9774 ~ 9817. 9857 ~ 9892 ~ 9898 1~0 9 9572 ~ 9619 ~ 9 5 82 ~ 9653 ~ 9736 ~ 9718 ~ 977 1 ~ 9821 ~ 9863 ~ 98..71 20J.94 55.95,,8 ~ 9470).9 559 ~ 9663 ~ 9641 ~ 9708 ~ 917 71 ~ 9824.98~33 2060 ~ 9315 ~ 9 374. 93]15 ~ 9445 ~95 72 ~ 9547 9 96 3, ~ 9 7f) 8 ~ 9774 ~ 9786 30C ~ 8949 ~ 9)17 ~ 8976 ~ 9 133 ~ 9.319 09283 ~ 940`6 ~ 9527 ~ 9633 ~ 9647 400 ~8489 08562.8515.8719.8974 o8925.9C95 09271.9425.945C 0}n3q.767~ 3. 7 7 57. 76'-4. 7954. 8317. 8250). 8486. 8761.9008.9047 65.' ~ 6752-. 6 8 54.6;71. 7Gb"6. 7527.7453 ~ 7741.8124.8474.8530 O.j.54 57.5594.5485 a~5795 ~ 63'57.6295 ~6626.7143 ~ 7628 ~ 7710 I.OG ).53 7t.5510'. 540. 57r. 9 ~ 6276.6216 ~ 6550. 7.]75. 7561 7. 7651 1 1.53

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER'INTREVALS, BETWEEN 762~0 AND 771~'0 WAVENUMBER ZENITH ANGLE = 0 DEGRE-ES 762.0 763.0 7 64.0l 765.0 766.0, 767.G 768.07 769.0 7 70Ci. 0, 771.0 RSSM. ).9999.9999 1.0000 1CC. (0.0 1. 0000 1.ocG$o 1.0000 1.9000 1.(>COO 1.0C;$.9998.9998.9999.9999 ~ 9999.9999.9999. 9999 l~OO103 I~O, LC'., ~ 9997.9998.9998. 9998.9998.9999.9999.9999.9999 ~ 9999 1 0 ~ 9996 ~ 9997.9998.9998.9998.9998 ~ 9998.9999.9999.9999 13.9995.9996.9997.9997.9998.9998.9998.9999.9999.9999 16 ~ 9995. 9996. 9997. 9997. 9997. 9998. 9998. 9998. 9999. 9999 2. 06.9994.9995.9996 ~ 9996.9997.9997.9997.9998.9998 ~ 9998 2 5.9993.9994. 99 95.9995 ~ 9996.9997 -.9997.9998.9998.9998 30.9991.9993.9994.9995.9996.9996.9997.9997.9998.9998 40 ~ 999 1. 9992. 9994. 9994. 9995. 9996. 9997. 9997. 9998. 99985~O01 09989.9991.9993.9993.9994.9995.9996.9997.9997.99976.01.9988.9991.9993.9993.9994.9995.9996.9996.9997.9997 8. 01.9987.9989.9992.9992.9993.9995.9995. 9996.9996.9997 1. 0 1.9985.9988.9991.9991.9992.9994.9994.9995.9996.9996 1.01.9984.9987.9990.9990.9992.9993.9994.9995.9995.9996 1.01 co CO.99 82.998 5.9989.9989.9991.9993.9993. 9994.9995.9995 2.O1.9979.9983.9987.9987.9989.9991.9993.9994.9994.999'5 2.0.9977.9981.9985. 9986.9988.9991"-. 9992.999i.9993..9994 f.[O8.9972.9977.9982.9983.9986.9988.9990. 9991.9992.9992 4.'01.9 96B8.9 973.99.9980.9983.9986.9988.9990'.9991.9991 5.02.996 1. 996 8.9975.9976 ~ 9980;.9984..9985.9987.9988.9989 6.02.9954. 9962'.9971.9972.9976.9 9 80 lo9982.9985.9986.9987 8.02.9945.9954.9964.9965.9971.9976.9978.998 1.9983.99810.02.99 29.9942.9954.9956.9962.9969.9972.9975.9977.9979 1C.02.9914.9929.994B ~.9 943.9953.9961. 9964.9968.9970 97 60I02.98,91.99"79. 992 7. 99.3 0. 994:; 09949.9953.9958.9961.9964 2O.06.9859.9882. 9 9;I4. 990 7. 992:J.993 1.9936.9943.9946.9950 50002. 9818.9847. 98 75.9879.9895.9 9(-'9.9916. 9924.9929.9934 0.08. 9 7.974.6.9789.9797 09823.9845.9858..9870.9878.98864 C.09, 9 531.9 6 ~0.9666.9678. 9718.975B3.9774.9792.9 86 9 98 2' 50.C,.918C.929 7.94C4.9426..9498.9559.9598.9629.9656.9681 5.03.87 2). 8891.90 50.9"85.9198.9293.93 58.9404.9452.9492 8C. 2.797 3.B216,.8445.85 03. 8681.8832.8941.9"I" 1 3.9096.9164 1005.{0B.791B 816. 89.8460.8642.87 97.8909.8983. 9C.6.9138 101.53

TRANSMISSIVITIES AVERAGED O VER FIVE WAVENUMBER INTREVALS, BETWEEN 772.0 AND 781.0 WAVENUMBERS ZENITH ANGLE: 0 DExREES 772.0 773.G 774.0 775.0 776.0 777.0- 778.0 779.0 78D.D 781.0 PRESS MB.}7 1.Cooo 1.eO0o 1.000 1.0C00 1.0000 1.0.000 I. 010 0 1 1.0 0 G 1.e000 1.Q0000 1.000 1.000D 1,0000 1.0000 1.0000 1.0U00 1.0000 1.00o0. 60 2.9999.9999.9999.9999.9999.9999.9999.9999.9999.9999 1.~0 3.9999.9999.9999.9999.9999.9999.9999.9999.9999.9999 1.30.9999 09999.9999.9999.9999.9999.49999.9999.9999.9999.9999.9999.9999.9999.9999.9999.9999.9999.9999.9999 1.6 0 6.9998.9998.9999.9999.9999.9999.9999.9999.9999.9999 2.00.9998.9998.9999.9999.9999.9999.9999.9999.9999.9999 3.00 8.9998.9998.9998.9998.9999.9999.9999.9999.9999.9999 2.50 9. 9998.9998.9998.9998.9998..999.8 999 9.9999.OO 13.9998.9998.9998.9998.9998.9999.9998.9999.9999 9999. 9.9998.9998.9998.9998.9998.9998.9998.9998.9999.9998 6.50 11.~9997.9997.9998.9998.9998.9998.9998.9998.9998.9998 6.0.9997.9997.9998.9998.9998.9998.9998.9998.9998.9998 8.00 12.99.9996 9998.9998.9998.9998.9998.9998.9998 13.Q0 14.9996.9996.99 9 7.99 97.99 97.9997..9997.9997.9998.9998 i3,00 15 co \10.9996.9996.9996.9997.9997.9997.9997.9997.9997.9998 16.01 ~.9995.9995.9996.9996.9996.9996.9996 ~ 9997.9-997.9997 25.0G 17. 9995.9995.9996.9996.9996.9996.9996.9996.9996.9997 25. 00 18.9993.9993.9994.9994.9995.9995.9995.9995.9995.9995 40.00 19.9992.9992.9993.9993.9994.9994.9994.9995.9995.9995 5~.00 20.999U.9990.9991.9992.9992.9992.9992.9993.9993.9993 65.00 21 ~ 9989.99 89. 9999.99 90.9990.9993.9990.9991.9991.9991 80.00 22.9985.9986.9987.9987.9988.9988.9988.9989.9989.9989 lOC.OG 23.9981.9981.9983.9983.9983.9984.9984.9984.9985.9985 13C.00 24.9975.9975.9977.9977.9978.9979.9979.99998.9983.9980 16C,00 25.9966.9967.9969.9969,9970.9971.9971.9972.9973.9973 2.C0 26.9953.9954.9957.9958.9959.9960.9960.9961.9962.9963 Z50.G0 27.9938.9939.9943.9943.9945.9946.9946.9948.9949.995^ 30".0 2.9893.9895.99ri2.9903.9906.9909.9909.9913.9914.9916 40,0 29 ~.9831.9835.9846.9849.9854.9858.9859.9865.9868.9870 50.00 30.9702.9711.9731.9737.9746.9756.9758.9770.9775.978G 65n r'O 31.952.,9544.9575, 9588.9603.9621.9626.9646.9655.9663 800,03.9223.9254.9306.9331,9357.9391.9400.9436.9450.9465 1O..OO 33.9200.9231.9286.9312.9338.9374.9383.9421.9435.9451 1Q13.25 34

TRANSMISSIVITIES AVERAGED lIVER FIVE WAVENUMBER INTREVALS, BETWEEN 782~0 AND 791;,0 WAVENUMBERS ZENITH ANGLE: 0 DEGREES 782~'3 783.0 784~[) 785'~0 786.C 787~0 788.0 789~0 790~0 791~5 PRESS{MB. ) 1 0~00 1 ~O ~0 1 003n 1 0000 1 OOO0 l.OOOO 1.00GO 1 30"0 l~0000 1 OOo0 ~30 1 1.".~03 1~C002 1 ~00CO 1.cOO0 1.0000 l.CiOO0 l~COO0 1.hCO0 1.'dOOj 1.00JO ~60 2..,nOOC: 1 000'" 1 0020 1 c,,GOC, 1 0000 1 On('~C 10CC, O 1 3000 1'":003 1 OC,'C,,~3 1 0"' 3 ~,'.... ~ ~ ~ ~ ~ ~ ~,:, ~.9999 1.OC:SO 1.OOO0 1.0000 1.0000 1.0000 1.'0000 1.gOJO 1.JOOj 1.C-CO0 1.30 4. 9999 9999 9999 1 COO0 1 OOOg 1.COOO 1 Of:00 1 n'~00 1.00DO 1 "~0,,90 1 60 5 9999 9999.9999.9999.9999 1 ~ O0'"' ~' ~' 2 O0 6 ~.,..... 1.Oi$00.9999 1 C'000 100C,.,..9999.9999.9999.9999.9999 1.60C:0 1.OOO0.9999 1.0009 1.00C;O 2.50 7 ~ 9999.9999.9999.9999.9999 1.0000 1. 0000.9999.9999.9999 3,. C~O 8.9999.9999.9999.9999.9999.9999 1.0000.9999.9999.9999 /+.00 9.9999.9999.9999.9999.9999.9999 1.OUO0.9999.9999.9999 5.00 1~.9999.9999.9999.9999.9999.9999 1.OOt}g.9999.9999.9999 6.50 11 ~ 9999.9999 ~9999 ~9999 ~9999 ~9999 1.0000 ~9999 ~9999 ~9999 8~00 12 ~ 9998.9999.9999.9999.9999.9999.9999.9998.9998.9998 l~.oO 13 ~ 9998.9998. 0998. 9999. 9998 ~ 9999. 9999. 9998. 9998.9998 13. O0 1/+ ~ 9998. 9998. 99q8 ~ 9998. 9998. 9999. 9999. 9998. 9998. 9998 16.00 15',,0 0.9998.9998.9998.9998.9998.9999.9999.9997.9998.9998 2C, ~ CO 16.9997.9998.9998.9998.9998.9998.9999.9997.9997.9998 25.00 17.9997.9997.9997.9998.9997.9998.9999.9996.9997.9997 3[;. O0 18.9996.9996.9996.9997.9996.9998.9998.9995.9996.9996 4[..OO 19.9995.9995.9995.9996.9995.9997.9997.9994.9995.9995 50.00 20.9993.9994.9~94.9995.999/+,9996.9997.9993.999/+.9994 65.C0 21.9992.9992.9993.9993.9993.9994.9996.9991.9992.9992 8~.~0 22.999,~.999:.9991.9992.9991.9993.9994.9989.9989.999C 10U.00 23.9985.9986.9987.9988.9987.999C.9992.9985.9986.9987 13C.C0 2/+ ~ 9981.9982.9982 ~ 998/+.9983.9986.9989.9980.9982.9983 160. 0 25.9974.9976.99T6.9978.9977.9981.9984.997/+.9975.9977 200.CO 26 ~ 9964.9966.9966.9969.996Z.9973.9976.996/+.9966.9968 25C~.00 27.9952.9954.9955.9958.9956.9963.9967.9952.9955.9958 30'~,;UO 28.9919.9923.9924.9929.9927.9937.99/+4.9921.9925.993C /+CO. O0 29.9875.9881.9884.9891.9889.99i, 3.9913.9880.9886.9893 50C.60 30 ~ 9789.9800.98Cz+ ~9818 ~9815 ~9837 ~9853,9809 981j ~9821 65'0.00 31 9678 96-95 97~2 9723 972/' 9752 9776.9698 9713 973C 8Cg 0'~ 32.9492.9519.9~31.9566.9564.9613.9648.9531.9553.9580 1C!00.00 33.9478.9506.9518.9554.9552.96d2.9639.9519.9542.9568 1013.25 34

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER IN TREVALS, BETWEEN 792,0- AND 801~0 WAVENUMBER ZENITH A-N.GLE = DEGREES 792~0. 79300 794.0 795.C 7 96 ~C` 797~0 798.0 799~0 8 I $~$ P 1.~000vg C:',..O1 I~. -. C........... 1~000~~~~0 I O 0g 100 l'-00 10,G l~gr 1 C. CO C; OO CG6 1.C0\00 I~90 $. 1.0000 I.. C. o 1.000G 1.00 1.OO.9999.9999 ~ 99991.03 1. O;0 0 C) CCC~", 1000C, 1.000C 1. O0 i 1. Do0,O ~ 9999 ~9999 ~ 9999 ~ 99991.. 3 1.CcO0~'.9999 1.C000 1.000.9999.9999.9999.9999 09999.9999 20 ~ 9999 ~.9999 1 ~ OOOO.99990.9999.9999.9999.9999.9999.'9999: 2 0 7.9999 -.9999 1.0000.9999 ~ 9999.9999.9999.9999 ~ 9999 0.9999 B0.99 9999 1 0 0.9999.9999 ~999.999~99~999 99,C ~ 9999 ~.9999 1 ~ OOO~ 99 99.9999.9999,99 9999.99995.,O1 ~ 9999.9'9998.99990.9.999.99.99.9999.9999.9999 1.9999.99'99 65.9999 ~ 99998 ~9999 ~9999.9999.9999.9999.9998.9999.9999. 01 ~ 99998.999B -.99990.9.999.999'9.9999.9999.9998.999 99 9 01 ~9 99 98~:998~ 9C909.9999.9999.9999.9998..9998.9998.9998 1.00.9998.99987.9999.19999.9998. 9999.9998.9998.9998.9998 1.61.9998 989 09999.9999.9998 9 998.9998.9997.9998.99978. " O 1 099979.9997.9;999.9999. 9998.9998.9998. 9997.9997.999785001 ~ 9997. 9997. 9~98. 9998. 9997. 9998. 9997. 9996. 9997. 9996 5.C71.9997.9997.9999 09998.9997.9998.9997.9996.9997.9997',. O1.9994.9994.9997 -.9996.9994. 9995.9994. 9993.9994.9 99 4 5.g.9993. 99 92.99g6.9995.9993. 9994. 9994.9992.9199:3.9993 6.02.9991.999'w 09995 09994.9992.999B. 9992.99~89.9991.9991 -8.02 ~09989.9988.9994.9992.999_- 949.91 999-0' 9987 09989 9 )98 9 1'S ~ 9986.9984.9991.9989.9986. 9988.9986. 9983.9986.9985 1L 02 ~ 9981.9979.9988.9986.9982.9984. 9982.9'979.9981.9981 10.'0.997 5. 99 73.9983.99 80." 9975.9978.9976. 9972,.9975.9974 2[?~:06.9966.4996 3. 9976.99 72. 9967. 9970.9967.99~62.9966. 9966 5.[ 02 ~ 9 9 55. 9951. 9967.9963. 9956.996C. 9957. 995 I. 9956.99655 BO. 0.9 9 25.9 9 2. 9944. 99-38.9928.9933.9929. 9921. 9927. 9926 4O. 2.9886. 9879.9915. 9905. 9891.9.8 9'8.989 2.9881.989~;.9887 5{. 0 3 ~ 9811. 9 8C 9 8 57. 9843 ~9821 ~ 98 31 ~982,1.98 4 ~9816 09811 65.03.9715. 97,:0'O978.4. 9763. 973Z -.9745.973C. 9 70'6. 9,723. 9713 0.' 3. 9 557.9537.96'64.96 32. 9 5 87.9 62;"5.9-581.9547. 9571. 9554 ICSOO3. 954 6. 9-524 1.9655.96 22.9576.,959 5. 957-0. 95-35.9560.9542 11.53

TR A -,SNI ISSIV IT[ES ~'~SER AGE[' rIV- F IVE wAVENUMBER INT-REvALC', BET WEE"N 8",2o:': AND 8Ii~1 WAVENUMBER Z ENITH ANGLE:'9.,R~ 8'"'2 <~ 8:'3 -, 804;Z: 8 5 C 8'6 8:.~7 IT 8r8~~., 8:9 " 81r'' 811~(, PRESS(MB~~~~~~~~~~~~~~~~~~ 7 88 11.990. 9}9. 99 ~ 99. 9 9. 99 ~ 991~,::) I.C 7~ I.!2,t O I 1.S ~9-)991. 999.~9. 99.99. 99 ~ 9 9.9999. 9999.9999 1 ~ 30w ~ 9 999. -)q-)9. ~;99. 999 9. 99 99.9 999.9999.9999.9999 ~ 99991.5 ~ 9 999.9 9994.9999.9999. 99 99.9999. 9999.9999.9999.99992.,.9999')999 9 rl 1-3 9. 999. 999. 999. 999.999.999.999 ~ 9999. ~9 99. 99 99. 9999. 9999.9999. 99 99 ~ 9999.9999.9999 25 ~9 9999.19999. 99 99. 9998. 9999.9999.9999.9999 ~ 9999.99993.}.9998.- 999 9. 9999. 999.8. 9999.9999. 9998.9999.9999.99994.D..9 9 8.1 999.9 9 9 0 9998. 999.9999. 999.9999.99,9.999 ~ 9998.99}98.9998 ~ 9998.9999.9999,9998 ~ 9999.9999, 99995~ ~ 9998,9999. 9998.9998 ~ 9998, 9998 ~ 9998, 9999 ~ 9999, 99998 ~5 ~ 9997. 9998. 9998. 9997, 9998, 9998, 9998 o 9998, 9998, 99998,:01 ~~~~~~~.999 8.99 98,999 7, 999 8,9998, 999 7, 9998.999 8,99 9998 1.0l ~\ 9C9 99 97,99987.999 6, 9 997.9998.99 97.9998,9998, 99 98,981,OI ~ 9 6 9997. 999 7. 999 6. 9997, 9 997, 999 6, 9997, 9998 ~ 9997 981:01 FO,~6.9995.')997 6~ 99 96, 99 95 ~9997 ~ 9 99 7,9996,9997,9997 2099971.9994.9996.9996,9994,.9996,9996,9995,.9997,9997, 9996 5~['..9992. 9994 ~ 9 )94 ~ 9993.9994 ~ 9995.9994.9996 ~ 9996.9996,' ~ c991.9992 ~ 9992 - 9991.9993.9993.9992.9994.9995. 999465C'2,9983).9991, 9991, 9989, 9992, 9993, 9991, 9994, 9994, 99938, 2.9986. 9~~8 998 98 99[], 999;;' ~9989, 9992,9992,9991 lB.)02.9982.9~985.9985,9983.9980 -9987,9 985.9989,9990,9988 I3,12.9')?7 ~ w}{81.9981 ~ 9978.9983.9983, 9981, 9985, 9986, 9985 16[,'02.)9 }7'.975.9975 ~ 9972, 9977, 9977, 9975, 9980% 09982, 9980) 21C002 ~ 9961,.996, 9966,9962,9969,9969, 9967, 9973,9975,9972 250..O2.9949 ~ 9 95 —6. 9955.9951.9959 9959.9956,9964,9966 9964 3 1,' ~ 9918. ":}927 ~ 9925.99 2', ~ 9 9 32) 9932 ~9929.994+0.9943. 994,.e' 40.SO9.98717. 988'9.9886. 8B, 8!.-; 989~.9896.9891.9 99~-8.9911..99 -U7 50CU i.9 796. 81 5.'-, 8r, 8.986.926.9823.9816.9844.9848.9841 650.:33 ~ 969"4~92. 97:) 8."9698.9/735.9729.972CJ.9761.9766 ~ 9756 8,' 233 9 952/7.9 565.9544. 9 532.9585.9 573.9561.9623.9627.9613 il-,.DO3 ~ 9515.9 554.9532. 95 1 9.9574.9562.9549.9612.9617.96013 11.5

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALSI, BETWEEN 812.0' AND 821.0 WAVENUMBER ZENITH ANGLE:0 DEGREES 812-.. 813 r0 814.0 8815.0 816.C 817.0 818 0 819.0 82n.0 821.0 PRS(M) 0~~~~~~~~~~~~~~~~~~~,00 1.:C, 1 C00'"... 0001~ ~ ~~~..'1 00 O01 C'O0 1OO SO1.0000 1.00330 30 1.00~~~~~~ ~ O. ~-.. 0 100..',j 1 1.OO 1.OOOS 1.00. 00 11.0GO0 1.100.GO 1.-o.o UN 1.0000 1.3,C0000 1.G, OOa0 1.000. 60 999 1C I0000 1',n _ 1. -00.,l01 ~~,.9999.999 9 1~ 0 0 1,~13000r I.000:J) I.0000) 1.000_D 1CO., ~0000I.C'O 1.;O 1. 00.,99 999, 1.99991. 1.CO0 1-cc.000 1.C000G 1. C)00 1. 00 1.- 0 1.0600 1.30 c.9999 1.9999, 1.9999 1.,9999 1.OCOC 1 0CO 1.0 I. 00C~, 1.CO0' U.Ot6 1 0.9999.9999.99399 1 O 01.9999 1.000999C.009 1.9O99 1.O.00-.9999.9999 9099.9999 1.9999 1.9999 1.9999 1.00 1.G!01. 1.CCC 2.50 ~ 9999.9999.999 99.999.9999 1.00 1.CC 0 1.CO.O'0 1.OOO'0 C1 I.C0 3.00C.09999.999 999.99 99.9999.9999.99 99 1-O.o900 1.99909 1.001-00. 0.9999.9999.9999.9999.9999.9999.9999 1.9999 199 1.[?0 O0 5..9999.9999.9999.9999.9999.9999.9999 9999 1.9999 1.00C'. 5.9999.9999.9998.999-9 ~ 9999.9999.9999 1.9999 1.9999 1.99998..9998.9998.9998.9999.9999.9999.9999.9999.9999.9999 ~ 1.9998.9998 ~ 9998.9999.9999.9999.9999.9999.9999 1.90999.0 1.9997. 99998.9997.9998.9999. 9998 ~ 9999.9999. 9999 1.9999 1 3' ~ 9997.9997.9997.-9998.9998.9998.9998.9999..9999 1.99991.0..9995.9996.9995.9997.9997.9997.9997. 9998.9998.9999800 0 1.99958 9995.9995.9996 9997.9996.9997.9998.9997.9998 5'.9993 ~ 9994.9993.9995. 9996.9995.9996..9997. 9996.9997 00.9997 ~ 9998 2 ~9991.9993.9994.9993.9994.9995.9995.9995 00.9997.9939.9987 ~ 9991.9992.9991. 9992.9994.9993 09994 00.9984. 99896.9994..9997.9988.9988.9989 ~ 9998.9998.9998 25.0.9978 9995.99~8.9982.9983 9983.9984.99986 9986 9 9987 2e.9949.9953. 9993J.99958.99961.9959.99963.9997-.9966. 99697 4(..9921. 9992 7. 9923.9993,.99394.99937.99942..9 9.97. 9.9951 13.C.9865. 9894.9868.9887.98995.9891.9992,.9911.99-93.9915 16.0.97983. 9985. 9798.99825. 9837. 9831.9844.9862.9858.98691 20. ~ 99678".9698 7.9673. 9972. 9798.9728.97584.9798.9772.9797 25',0.96.9678.9 664.9719731.97 9742.99772.99766. 9783.91.91)982 3].'

'~)~~~~~~~~~ ~~~~~~ ~,~),.~" ")('t,~.~.) ~ Oc7~~,".~....r ] r. 00 c~ rV ~-~ P- rI~ r~ cc I~ ~ cn ~ ~ o ~ ~V ~V ~ ~ ~ ~n ~O ~o ~ ~ ~ ~ ~n ~ ~ ~ ~ ~ ~ ~ ~. ~ ~, ~. ~ IJ ~ 0 ~3 i; ~- ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~; ~t ~ 0~ P ~ ~ ~- ~C C ~ ~ ~C ~ ~ O~~~~a e,,,. ~... 0 C)3 C' OC,..C.. )C).) ~ ) C:~ (:D~") ) 5'~ iC:) (2,C~ (:7, c CO\ I' — u'~4 Ln CC (:7' ~ On - J~ e,~ 0 LLJ ~ ~ ~ r,,- -, -4, —, —, —,.~-4,-.,-,..~ ---, —, —, —I,-~,,-,-,t,rVC~ 0 Ce u6 x l_~~i T Tt ~a CO C", "3r.)-r.., ) k- r.. ~ t:~C"'~ ~L'"..''')2 C~ ~ ~~ O'':: O' 0"."r.n' 0"::7 r; 0" ~J E~ ~~~~~J C C)'";:)r:: ".::.'.:"~- ~;-~":'C':)-~ ~CJ''~ C ~ ~G'~'g....'3'-: ~<.(~ 4i ~C~ a:: P~ ~' ~, ~ 0\ -t CJ OO L~, c d P 20~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~'. —~ (:,I (7 O\ Cr, C7::"(' (7 O I. O C,,.:~,.. - V;, Z) C). ~' C D ":~'~-l'"' C~ C'; ":.;..-'7:". -.~''.3'L- " ) O" Cr, c~ G' " Cr'T CC ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~ C U",o' C F4 c~.:. ~'~; 2(.)r ~.':2 (_ ~,.. T (;. C~,~~ 7 "(7'C'C C' C',C t (7.T'C'~C t- ~ ~ o ~3 ~ ~ ~ ~. ~l. ~3 ~ ~ ~ ~ ~~ ~ ~O ~ ~ ~ ~f ~S ~ ~ ~ ~ ~S ~ ~ i,,..iC r L\ C\ O( C T \J3 - ~ C' ".") C'~, C''):'~''~ C'.")'~ 4..~...': j..~:,,.: 2)..:.'." G' (::7,"3 O" CL coI e':)f.- LP~.'.. CI'.. C.:':)~".)C.':'"):.",~'_.: r.':b',:'.?'::,, ):),'. C7" 0"( "O.7 {7'\ C' 0 "` (',O r-..C, LU,, ~~~:~~);.]..,.'):.') )''.,-:''::.]"~..)O.D C?C~C C': ",'' 3:7 ~).b" t1, c~ ~ ~ c -e ~c ~ ~ l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C~ c IJ. J~~~~~~~ crdc ~ c 4c (-''' " (,r.'.'r:::' ):-);: " ":,.'C ")e:,'' "''('.C~ C'o')r-. m r,,',+(", —,,0(cr", -:..:( -'2,,: ",', "}:.~'.'~,'),.:,,:j'~".."'C"~C' ~c O~ ~ cI~,.-4,-. i ~ ~~- tD.)O O C~7 C. D O ~ C ~ t: e~() ~.,:: ~.,? ~: C~ C) ~ X 0~ C7' O" O" ~,~<.,'".c uJ r'~l OC..C..2 e"2. O C,2. O 0 j.0 r~O Cr. O', Cr, ~-~,0 Cr. 0', O', fC. Cr,?Vc;C CLL II ~.: -..~~l~) C..('C;LJ~2 ~~,.C?[.~" " ~,~q~'C O~ ~'~.. J: — n" ~ I.-. ~'.' ~...' -') (2' -',, ",::,.~..'".}:'"~ - ~;,'.."- ~,"',."7::'C,:OC "-;"'".']..', -. ~- "1'-' - - C~ ~.H (~4'~: (.. I:~~ r (.~ - i~ C- ~ ~ ~ ~ ~ ~ ~ ~ ~ C ~. _- QC k ():C~..~.,:) Ch C~ C~ CP' (7 (:h C~ C ChC ~. ~,? I, — N 7 CI ~ ~~ ~ ~3 ~ ~h ~" ~ ~7 ~7 ~~L ~~ ~ ~ ~ ~ ~ i Z~~~~~~~~~~~,- e,-, e.-i e.,...,,,d -i,i,-,,I,-i,- -i,-e,- — i,-i,

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALSo BETWEEN 832.0 AND 841. WAVENUBR ZENITH ANGLE.= 0 DE-GREES 832,0 833.'0 834.0 850 836.3 837~0 838,0 839.0 845.D 84100 ~PRES(M 1.0000 1.00gO0 1.00,)0 1.COO0o 1.00 0 10; I6000c 1,OUO0 1.0000 -1.OOOO 1.OcGO.3 1.0000, 1.0000li 1.0000 1.0000 1'. 0 0-0 1.0OGO 1,0000 ~1.0000 1.0000 1.0000.6 1,0000 1.Mo~ 1.0000 1.0000 1.0000, 1.0000 1.CuOO 1.0000 1.00000 I 1.OO 1. D 1,0000 1.0000.1. U000 I1.000IOU 1.00100 1.00(00 1.0000 1.0L~00 1.0000 I..O0 1. 30 1.00010 1.000 01-o I. 00GO 1.0000 1.0000 1.00go 1.00cUG l.OO0 1,000 1.O~ogl 1.6 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.OOO0 I.Uoo 1.00,00 1.0000 2.'IO 1.COO0 1.OOOOI', 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000 1c. 0 000) 1.OO0 2.50 1,0000 1.COO0 1.0000 1.OOO0 1.0000 1,0000 1.0000 1,0050 1.000.0 1.0000 30 11,0000V 1.0000 1,0000 1.0000 1.0000 1.00003 1.00000 i U0 ooo,O0~ 1.0U000.09 1.0000 1.0,000 1.0000 1.0000 1.0000 1.00o0 1.GOO0 1.00.00 1.oCCo 1.00005.00 1.0000~~1' 1.AD 1.0000 1.0000 1.0000. 1.0000 1.0,000 1.00GO 1. CU000 1.0000 6. 01 1.CO i.00 00 1.000 0 I1. 00001,0 0 0 1,0000 1.0000 IUc 1,0 00 0 D 1. 0000 I."oO 1.0000 80 1.0000 1.0000 ico 1.0000 1,0000 1,00000,00 1.0000 1.OGO 10000 1. 0000, 1.00c 1.O01. 00 00 1.00 00 1.00 00 1.000 0 1,000 0 1. 0000 l-oo 1.0I000 1,000GO 1,00C1300 i 2 1.00 1000 U 1.00O.000G 1.0000 1.0000 i.0000 1.0000ll 1.0000 1.co LI000 0 16.000 1.0000 1.0000 1.0000 1.0000. 0000;, 1.0000 1C0300 1.0000 1.GOOD, 1.0000 2.0 1.*I)0000 1.0000 1.0000 1.G090 1,0000 1.000O 1.0000 1.0000 1.00001 1.0000 30C.9999,9999,9999.9999.9999.9999.9999.9999,9999, 9999 650.9999.9999:9999.9999.9999.9499.9999.9999.9999.99992a,9999,9999, 9999 09999.9999,9999.9999.9999.9999,9999 IC.G.9999, 9996, 9996.9997.9997.9997.9997.9997.9997.9997 1000,9994.9994.q9998, 9995,9995.9995,9995.9995,9995,9995 2~00 ~ 9991,9991.9991.9992,9992,9997.9992. 9992.9992,9992 25.0 ~ 9987.9987.9987.9988.9988.9988.9988.9988.99895 9989 3000 ~ 9977.9977.9978.9978.9978.99792 9979.9979 099792 9980 250.0 ~ 9967.9965.9965.9966.9966.9966.9967.9967.9967.99689 50..9977.9940.9941.9942.9943.9943.9944.9945.9946.9946 40.65 ~ 9908.9 965'.9911.9912.9913.9914.9915.99167.9918 09918 50.O.9985.9958. 9911.9961.9863.9866.9867.9868.98718.9987 8 0c.0.9852.9854.9857. 9858.9 86C.,9862.9863,9865.9867, 9868 10I13'25

TRANSMISSIVIIIES AVERAGED OVER FIVE WIAVENJUMBER INTREV ALS, BETWEEN 842.) AND 851.0 WAVrENUMBER ZENITH ANGLE = DEGREES 8 42..843. 844.3 845. 646.*, 84.; 8 4 8. 849.0 8 5 0 8 5 1.. ~L PRSMF. 1.%Q: 1 ~~~~~~C'% 1.OOY 1.120 1 ~~~~~~~~~~~ 1I. 00c I.Cu' 0 1. C0 l.CtX 1.02 6 1.Z>20 1 0 1.00.0 1.1>~~~~~~~~ ~~ 1.C9:J 1.00(~~~~~0 I. 0 1.~~~~iC2 1.00 I 1.00 3C, C i.~~~2> 1 ~~~'o ~~~.cc:; i.'~~~~~c~~; ~~ ~~ 1.SuOC ~~~~~ i~~ccoo l.0U. O 0,C r.C. " 4 1 C~~~'~~ 1'~~~ 1.C~~~0>.~~ 1 $~~~ 1&~~~0cC" ~ I l0C 1. e 1.fO19~. I 2 1 1 6. 01G 1 C.'3 0 10~ 1. I",D 1 0 i.G0o-tQ 1 CN) I ~~~~'~~u 1.~00: 1 1j 1.C1C 1L ~ 1.02.1 1 ~~~00 1 1 c 1 C~~~~~~~~~~'~~ 1 JOC I'"'C ~~~~~~~~~1.000O2 1 C2O 1 C.G0)6.ti 1 ~~~~ 1'~~~J 1 0' I D I 0C I.'u 1 0r5 1.0001 4'' 1I2.0 1C~ 132J1 1.009 1 ~~~~~~~' ~ I Go I 1>C 1. 1. 10 1.'9 1.Ci 1.,!1.- 1 1C0 1 u.00 ~.16.J 1 C.02 ->1.99.9) 9"9 999.I 9 1.C 0 0 1 2 101 65L02.9999 *9999.9999~r,-.99 99 99 99 99 99 99.r2.9997.9997.9997.9997~r 999.'99.999.997.9 I.9997 16C2.9968 * 9989.99u9 * 9972 *~~~~~~~~~~~ 997u,.97I97.9971.9972C!.972 5:27. 3. 9947.99489. 999 ~.949999.9999.9951.9951.9952. 995 65. 93. 991g ").9991. 9 921.9922.91)929.9999.9926.9927.9928.992 802293.95739. 9 976~.9877.997 9.a9)9 81. 998u.9983.9985.9988.99888 10.03. 9 7.'99P7~. 9 q 9.999 7.99977.9997.9997.9992.9983.9895 1:3253

TRANSMISSIVITIES AVERAGED OVER FIVE WAVENUMBER INTREVALSt BETWEEN 852.j AND 857.0 WAVENUMBERS ZENITH ANGLE = - DEGREES 852 853.0 854. C 855.0 856.C 857.0 PRESS(MB. ) 1.030: 1.C0000 1.0C0)O 1.C<030 1.COOS0 1.QCOO.30 1 1.000C 1.000 1.C30) 1. 000 1. G0.3 1.00 0.60 2 1.0000 l.; 0C 1.0300 1..)i000 1. 000C 1.00G 1.090 3 1.COO'GJ 1.0 1.0000 1.0G 1.000 1. 1.000 1.30 4 1. 0~000 1.000CIC 1.0003 1.030JC0 Iu 103033 1.60 5 1.0000 1 0 C 1.000 1. * 000 1.000 1. 0000 2.00 6 1.00030 1. 0000 1.0600 1.C0. 000 1.000 2. 50 7 1.00OO 1.0030 3O 00 1.01, 10.00 1.-O0 3.!00 8 1.C0000 i..030 1.000f 1.00)0 1.00000 1.3000 4.00 9 1.N 00 C 1. 003'0 1.00 1. 0000 1.0003 1.000C 5.00 13 1.o0000 1.0OC 1.0000 1.5O O~ 1.0 0:O 1.~0203 6.50 11 1.n)O00 1.OCOC 1.0000 1.0000 1. 000.0! 1.0000 8.00 12 1.O00;0 1.00 1.0000 1.0000 I.OC 0 1. 000 1C,0 10 13 1.93000 1.01 0 1.-00CC 1. 0003 1.0000 13.00 14 1.OC00 1.O00C l.OOOe 1.000 1.O0,0 1.C''COO 16.00 15 1.003 0 1.00C0 1.0600 1.0 30 1.O0:) 2Ui.0'"0 16 1. CQ000 1.000 1.0003 1C.000 0 1.000 0 1- C 0 25.00 17 1.C0 1.00 1.0000 1. 1.).000 1. o00 3,.00 18 1.C0OO0) I.0 1.00003 1.00 1.1300 1.C000 40.00 19 1.COCO 1.30 1.00000.O00 1.0S 1.COGO 50.00 20 1. C1 0 1..3 0 1.0000 1 1.0000 65.00 21. 9999.9999.9999.9999. 9999.9999 80. O0 22.9999.9999. 9999.9999.9999.9999 L;. O0 2 3.9998.9998.9998.9998. 9998.9998 130.00 24.9997.9997.9997. 9997. 9997.9997 160.00 25.9996.9996.9996.9996.9996.9996 200. 26 9993.9993.993.9993.9993.9993.9993 250.00 27. 9999 9. 999.999. 999.9991 303. 0 28.9982.9983.9983.9983.9983.9983 400.00 29.9973.9973.9973.9974.9974.9974 523.00 30.9953.9954.9955.9955.9956.9956 656.C C 31.9929.9930.9931.9932.9933.9934 800.0 C0 32.9889.9891.9892.9894.9895.9897 1000.00 33.9887.9888.9890.9891.9892.9894 1013.25 34

APPENDIX C TRANSMISSIVITIES AVERAGED OVER 0.1 cm r1 INTERVALS BETWEEN 665.5 and 670.5 cm -1

TRANSMISSIVITIES AVERAGED OVER 0.1 WAVENUMBER INTERVALS, BETWEEN 665.5 AND 666.5 WAVENUMBERSZENITH ANGLE:0 DEGREES 665.55,.65.75,85.95 666.05,1.5, 2 5.35 666.45 PRESMB) 1.OCO0.9999 1.0000.9714 1.0, (C 1.0000 1.0000 1,0000 1,0000 1,0000.3 1.0000.9999.9999.9649 1.00co0 1.0000 1,0000 1.0000 1o.0 0(])'C. 1.00.60 1.00 9998.9998.9552.9999 1,.'0000 1,000 1.0 000l 1.0000 1.0000 1.000.9999 ~ 9997.9997,40.98.9999.999.9999. 99. 9 9 13.9999.9996.9995.9379.9997.9999,9999.9999.9999.9999 16.9999 ~ 9995 ~ 9992.9249,9995.9998, 9999. 9999.9999,9998 20 ~ 9998.9993,9987 ~ 9077.'9992.9997.9998.9998.9998.9998 25.9997 ~ 9992 ~ 9981.8899.9988.9996.9997.9997.9997.9997 30.9995.9987.9964.8539.9978.9992.9994.9'995.9994.9994 40.9992.9982.9943.8179.9964.9987.9991 09991.9991.99905.01 09986.9972.9901.7649.9938.9978.9984.9985, 9985.99846.01.9979.9959.9846.7133.9903.9967.9976.9978.9977.997580 1.9966.9938.9754 ~ 6478.9846 ~9947.9962.9965 ~ 9964.9961 1,01 ~ 9943.9897 ~ 9580.5578 ~ 973-5.9909.9935.9940.9939.9933 1.01 ~ 9912. 9,846.9365.4775.9596.9861.9901 1.9909.9907.9899 1.01 ~) ~~~~9862.9761.90 21.3846.9369.9781.9844.98 58.9855.9842 2 01 \ ~~~~ 0 ~ 9784.9630.8516.2891 9 9"2 6,9657.9756.9778 ~9773.9753250;1.9689.9470.7951.2141 ~8623.9507,9649.9681,9674,9645 3.01.945C.9075.6732. 1126.7688.9132.9380).9436.9425.9374 4.01.9148.8587.5523.0561.6656,8668.9043.9129.9112.9037 5.02.859 5.77 23.3933.0180.5113.7841.8429.8566.8541.8421 6. 0 2.7945.6762.2696. 0 0 51,3746.6912..7713. 79C5.7871.7704 8.02.6977.5438.1548.0008.2333,.5615.6659.6921.6875. 6650 10.02 ~ 5440 ~ 3606.0602.0co ~ 10 29.3783.5026. 5365. 53U5.5015 13.02 ~ 3979.2174. 020O4,.COl'O.040`3.2312.3526.3892.3826.3514 16.C2.2376. 9 65 IC.003 9, -)0 0 0 C095, 1038,1964.2288,2228..1952 200002 1074 Q29 004.0OOc 0012 03 09.0794 1'003.0962 0 8 5 0 2.0419.0 74.CO,00.0 1.0076.0270.0373.0350.026030.02.0C,43.00C)3.00013 CGio0.0000. )0003.0019.00 32 C,002 8.0017 40.02 C~,'03 C' 0 0.3011...........),,C,, OC':000 0 00 00',3 O 000001 0oc1.00el.001 50 0 3 6.OOOCI.0 r..O0.CO30.0 0 C0.ccO.CO.0OO0.00GO.0000.C O85.03 C. 0000..00.OO0.O,8. OOO. CCiOO. 0900.0 000.gC 0.03 ~ 00.C 0.COO.OOO0.0:00.0000.000OO 0 o.,00g.00GO.0000 1 01.53

TRANSMISSIVITIES AVERAGED OVER 0~1 WAVENUMBER INTERVALS, BETWEEN 666~5 AND 667.5 WAVENUMBERS ZENITH ANGLE: 0 DEGREES 666~55 ~65 ~75 ~85 ~95 667.05.15 ~25 ~35 667~45 PRESS(MB~) 1 ~0000 ~9998 1,0000 1~0000 ~9949 I~GCOO 1,0000,9999 ~9827.7945.30 1,OOO0,9996 l~0000 1,0000 ~9910,9999,9999,9998,9761 ~7419,60 1,0000,9993.9999,9999 ~9872 ~9998,9997 ~9994.9645 ~6627 1~00,9999 ~9991,9999 ~9998,9850 ~9997,9996,9990 ~9543,5994 1,30 ~ 9999,9989.9998,9998 ~9832,9996 ~9993,9985 ~9430 ~5360 1,60,9998 ~9987 ~9997 ~9996,9813 ~9994 ~9989.9976 ~9269 ~4557 2.00 6 ~ 9997 ~9984,9996,9994 ~9793,9990,9983.9962 ~9056,3667 2,50 7 ~ 9996 ~9981 ~9994 ~9992,9776,9985 ~9976,9944,8837,2920 3,00 8 ~ 9993.9976,999C ~99.85 ~9743, 99~74,9956 ~9898 ~8390,1809 4,00 9 ~ 99'89 ~9969,9984 ~9977 ~971i,9959 ~9930 ~9838 ~7938 ~ 1083 5,00 1D,9981 ~9958 ~9973 ~9961,9662,9929 ~9879 ~9720 ~7257 ~0461 6~50 11,9971 ~9944.9958.9941 ~9610,9892,9815 ~9571 ~65?6.i~175 8,00 12,9955,9923,9934,9909 ~9535,9829 ~9708 ~9326 ~5700,0041 10,00 13,9924,9884 ~9888 ~9847 ~9407 ~9710,9504,8870 ~4511,0003 13,Or; 14.9884,9835,9831.9769,9259.9560 ~9252,8325,3497,0000 16~00 15 p J ~9819 9755 9736 9641 9035 9316 8848 7497 2415 OOO0 20 O0 16 0' ~ ~ ~ ~ ~' ~ ~ ~.9718.9632.9589.9444.8714.8947.8248.6371.1446.0000 25.00 17.9595.9485.9411,9209.8354.8513.7567.5234,0819.COO0 30.00 18.9289.912I.8973 ~8637 ~7540.7496.6076.3216.0221.0000 40.00 I9 ~ 8908.8674,8438,7953,6641,6362,4585,1766.0047,0000 50,00 29 ~ 8219.7878,7497.679!),5241.4647 ~2686.0602.0003.0000 65~00 21.7426.6979,6459.5567.3912.3133,1388.0171.0000.0000 80.00 22 ~ 6278,5712.5048.4013.2428 ~1642,0479.0024.0000.0000 100.00 23 ~ 4551.3895.3150.2154.0987.0485.0068.OOOl.00GO.0000 130.00 24 ~ 3935.2406, 1741.!)991 ~0322.f~108,0007.0009.0000.OOO0 160.00 25 ~ 1553.1086,0655,0279 ~0052.CC10.0000.GOOD,00GO.0000 200,00 26.0549.0317.0144.0040.0003.OGO0,0000,00CD.0000.COO0 250.00 27.0157.C072.~024 ~0004.OJCO.00GO.0000.0000.0000,0000 300.00 28 ~ 0007.OC02.000C,0030.OGO0.'uOO0.0000,0000.00GO.0000 400.00 29.0:]00.0000.~COC,.00GO ~ 0,~,:)0.0000.00DO.0009.00C:O.0000 500.00 30.0906.COCO..9000.0000.O~CO.OCO6.GOO0.0003.0000.COO0 650.00 31.0000.00CO.0000.00gO.00!,)O.COOO.OOO0.0003 ~00C, O.0000 800.00 32.0000.OOO0.OOO0.0000.OoO0.0000.OOO0.0000.00GO.0000 1000.00 33 ~ OCO0.0000.0000,0000.OCOC,6000.0000.0000.00CO.0000 1013.25 34

TRANSMISSIVITIES AVERAGED OVER 0.1 WAVENUMBER FNTERVALS, -BETWEEN 667~5 AND 668~5 WAVENUMBERS ZENITH ANGLE = DEGREES 667.55 ~ 65 ~ 75- ~ 85 ~95 6 6 8~105 ~ 15 ~ 25 ~ 35 668.45 PRSM~) ~ 9137 ~ 9469 ~ 85.38 ~ 7699 ~ 816.9 ~ 85.8895 ~ 9 8 8924 09218 ~3 ~ 8935 ~ 9352 ~.820'7 ~718 9 ~ 7758 ~ 8216 ~ 8603 ~ 8866 ~ 8543.8877 ~6 ~ 8633 ~ 9188 ~7766 ~ 6.468 ~ 7216 ~ 78C..4 ~ 8218 ~ 8615 ~ 8156 ~8544 lO.8375.9049.7422.5896.6789.7484.7914 8 43'0 7 9rJ18.834213'.8093 ~88917.7079.5331. 6360.7161.7606.8248' ~7690 ~ 8172 16.7693 ~ 8676.6636 ~ 4614.5 8:I")1.6735 ~ 1 -9 5.8 00%7.7428.7976 20 ~ 7173.837'9.6119 ~ 3805.5137.6215.6688.7708'.7129.7 1 2 5.6647.8:967.5648.3108.4525.5716 ~ 6197.7412.6850.7564 30 ~5617.7423.4845.2030.3464.4797 ~ 5?.68-31.63-31 ~ 7201 40.4654 ~~~6769.4196.1305.2617 ~ 3994.4452.6277.58 57 ~6867 5 0: ~~~~~~~ 388.83 ~ 3420 00660'. 1684.2995.03400.5501.5215.64026~0l ~ 2371 ~~~4885.280a ~ 0 2 16 2216 ~2'9.4797.4645 ~ 59778~02.1396 ~ 3778.2129. 024. 553'.1445,77. 97. 9 8.491.01 ~ 0578 ~ 2429. 1364 ~0024.01 89. 0711. C911.2892. 3'383.4705 i.01 ~ 0221. 1469 0.082 9. 00 4. 0%5 7.0322.0470.2060.2348.4024 1.01 0 ~0C55 ~~~~~~~0692.0387.OG3C. OG 09.0189~.1279 18 3212~01.0:307.0242 ~ 9128 ~ O~O 00.0019. ~0 5.0667.0920.2386 2 ~ 01 ~ ~~~~~~~~~000.33 7 ~06 1.30 P.00~ [.0C15 ~ 0339 ~0506.1727 3~01 ~ "I..00.('C6 ~ 0002.0000. OCGGO.00CC)0.00001.0081. 0131.-0845 4 0031.JI3. -'0. no.:.000..CGO0.O C). G ODO.00 7 ~.0028.0 3805.0 2, OO000. or)00 001)00.0000 -. CG OO 003' 0' 4.) 0''"'-U-2.09 ~ SO.,:0. 0000o;.00CO.O OO~ CO.COO0.0000.0300.0021 8.32...' ~,'~) 9O GG c~: 0. 0 0.C0.000G. O0. 0002 1000 2.03 CGO.02. CO0.OSO".00. 0,00.OOD Oo..uOO 0 1.00 24 ~ IO.,.,.Ob 000G.OO0.'-,oco.OCOO0.000.O0.,G 6.02 OC=C'Or,) rqc ] gr- ~~~~~~~~~~~~~~~~~~~~~..... ~..,.....,,,,.O O ~O Gr"~,O OO'~~0 0.000,9090000 GOco cl0" 2 9 C02.030 (,Jo9.(G0 OOO0.00. "00G.0000.0009. COO0. C00 C5.C2 t.,., ~ ~ ~~~~~~.. ~.~ J! U~ " 0.O;'OC.C3C, C COO0.3330.O~u.qOCO.CCO.0C.00C. 00 50.00 3,.0300~~~~~~~~~~~~~1 C.CO.00,. CO0 C; 0 0.CC. OO.00 OO.0000 600'3.~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0.:O.CO. OCO.CO.00CO M.OO0.OO O' COO. GO 830032' jr ]-O C-*'{, C03~::~0 ~ ~.9(;30.COCO.G,)00.,SGO0.0 9~~~~~~~~CC)..~CD.000.3003. 00GO.OG00 1 13253

TRANSMISSIVITIES AVERAGED OVER C~I WAVEIJUMBER INTERVALS, BE TWEEN 668. 5 AND 669. 5 WAVENUMBERS ZENITH ANGLE= 0. D[G"REES 6 6 8.5 5 ~ 65 ~ 75 ~ 85 ~ 95 6 6 9~5.15. 25. 35 669~45P ES(.} ~ 9407.9467.97,"77.9779.9815.98 98.9927.9953.9745 ~ 9979.3. 9 175.92,16.9 535.9629.9677.9816.9865.99 13.96 73.9959.6 ~ 8961 ~ 8997.9376. 9482 ~ 9536. 9727.9792.98 57. 9589.9932 1.8 833 08869.9282 -.9397. 9453.9673. 9746 -.9822.9527.9914 13 ~ 8717 ~ 8764.9 2 C6.933). 9 387.9631.97C8 ~ 9792 ~ 9468.9899 16 ~ 8586 ~ 8644.9 12 0 ~ 925'6.93 18.95 85.9669.9 7 6,.9392. 98-8 1 20 ~ 8437 ~ 8512 ~9W9.91C (9247 ~9540.9628.9727 ~ 9298 ~ 9863 25 ~ 8298. 83 9 3.8948.9115.9187. 9502.9595.9699.92t56.9848 30 ~ 8:]37 ~~.8172.8 80 C 9 0 2 9.? 85.99438 ~ 9540.965D ~ 93 26.9 826L. O. 7791 ~/968 ~ 8 61, ~8898.8996.9383 ~ 9493,9608.88 52.97955.01.7442.768:3.8487.8758 ~ 8 877,93103.9432.9549.86C 1.97586.CI.7115 ~ 7411.8317.8629.8770..9244.9377. 9494. 8360.9720 8. 01.6699 ~ 7068.81 o..8464.8635.9 160'. 9306.9419. 85 9667 ~ O:1.659[.6561.7772 ~ 8214 ~ 8432 ~ 9030.9198.9296. 7593.9574 1.o1. 550 7. 60,6 6 ~ 7442.795 9. 82 27. 8895. 9[ 85.9161.7148.9,465 1.01 po ~ 4 778. 543 7 ~7''r,2.7615. 7 9 5. 877.8925.8960 06579.9296 2. C1. 39 6 0". 4 7C8.6461.7181.76C:0.8458.8708.8677 ~ 59 2C".9046 2.; 1. 3249 ~ 4 49.5935.6749. 72 51.8197.8477.8364. 53 27.87573.0)1 ~ 2 13 2.2943.4946 ~ 59.'.' 8. 65 58.7648-.7973.7668.4361~. 8077 4..01. 136 2.2C97. 435 7.5113.5885.7071.72. 6913.3446.7291 5.02 ~ C661.12.9.2914.40 18.4914.6173.6547. 57 32.23 83. 67 6C, 71 ~ 30 1.6 661.2'3[l I. 30 58.4001-"5. 5265. 563 1.4591. 15 80.4714 8. u2.895. 2 75.1135.2024. 2 935.4104.4431.32 59.0863. 316610.(2 ~ 0)~~'14.:6 4.-'427 ~ 2:'.'9 89.17C1.2616. 82.71.'3l 1 8 3.)2 ~ O )01 ~,' 1 3 ~14; * 1.434. 8 99 ~ 1 523.1668 ~ ~859 ~ 0".96 0.1575 1 6. 2.0.. I:' 1.Ci26.61 24 ~ 0333 ~ ".'644 ~ C7:O]4 O.~r282. OJ16. C121 C. 2.O O'. ~3. 32. ~19.6-,74.ol/ 2.0186. C53. CC I 1.'J I.0 I7.C.]''.. )?'.C'j3.Ct:'32.~~~~~~~~~~~~(3 0C.. 1 C3. 36 ~. 5.OJ'. 0 1 3 C~08.O 3'.aS~~~~gO.~OC.COCO.~~C. C..~SCO. C:. O-0.O0.CO055:..33...... C.;.. 0f." LiC'~OJ - Cr'.~.~,' 6';~:3..':'~ "'~S C C " c.r —':::C'0' ~0 b3 0... C.'3 C C3 C,3 ~,.,,..,.'. ~., ~.,......,.. ~ ~ ~,, ~~~~~~~~~~~~~nj:-',) C.' 30. }'.:?'.'..:;.0.'''.'C "', 1 C 0.-,3 ~' ~ ~ v..,;~ C',. ~ o",, ~'C. ".~~~0 0 ~ 0~'3C ~ "; C' 2,?.'.,: C C': ~~~~.': OC ~ 3: 2.2C.C,?..'.-C.',.OOC Cl.53

TRANSMISSIVITIES AVERAGED OVER 0~1 WAVENUMBER INITERVALS, BETWEEN 669.5 AND 670~5 WAVENUMBE'RS ZENITH ANGLE:0 OEGRk'EES 669.55 ~ 65 ~ 75 ~85.95 67S~, ~ 05 ~15 ~2 5.35 670.45PRSIB) ~ 9987 ~.9991. ~9626 ~ 9996. ~9998 ~ 9998 ~92 ~1~100 1.COO ~3 ~ 9974 ~ 9982 ~ 94.84.9991 ~ 9996 ~ 9995 ~96'42 ~.9999.9999 l~OOO0. 6 ~ 9957 ~ 9968 ~ 9249 ~ 9983 ~ 9993.99901 ~9552 ~ 9998' ~9998. ~9999 lO ~ 9944 ~.9957 ~ 9057 ~ 9975 ~ 99901.9985 ~ 9489. 99 98 ~98 ~ 9 9 13 ~ 9934 ~ 9946.8856 ~ 9968 ~ 9988 ~ 9980 ~ 9430 ~ 9997 ~ 9997 ~'9998 16 ~ 9921.9931 ~8 582 ~99'56 ~099-84. 9973 ~9354.19996.9996 ~ 9998 20 ~ 99~8 ~ 91911 ~ 8238 ~ 9939. 998..' ~9963 ~ 9261 ~.9994 ~.9995 ~999-7 2 5.,9895 ~ 9888 ~ 7896 ~ 9919 ~ 9974.9952.9169 ~ 9992 ~ 9994 ~ 9996 30 ~ 9871 ~ 98 35 ~ 7228 ~ 98707 ~ 9961 ~ 9926 ~ 8991. 9988 ~ 9991.9340 ~ 9846.9768 ~6 587 ~ 9807 ~ -9945 ~9894.8819 ~ 998.3.9987 ~ 99905~C1 ~ 9806 ~ 9644 ~ 56.86 ~ 9686 ~ 9.915. ~9836 ~8576.9972 ~ 9980 ~99846.01 ~ 9760 ~9489 ~ 4863 ~ 9533.9-876.9767.8349 ~9960.9971,99768~01 ~ 9689 ~ 9237 ~ 3897 09283 ~9813.9659. 8C:63 ~ 9939 ~ 9956 ~ 9962 1 C,1 ~ 95'59 ~8776 ~2728 ~82.9692 ~ 9464 ~ 7663 ~ 9899 ~ 9927.9937 1.01 ~ 94031. 8235 ~18 5 2 ~ 8283 ~954i;. 9233 ~ 72 92,9849.9891 ~9904 1.01 0 ~ 9148 ~ 7431.1051 ~ 7478.9294 ~ 8884 ~ 6837 ~976'8 ~ 9832.9851 2~G1 \,A ~:877 1 ~ 6370.0476. 6413 ~.8919 ~8399 ~ 6316.9641 ~ 97.39 ~9768 2.01 ~ 8 3 33 ~ 5331 ~ (0195 ~ 5368,8481 ~7883 ~ 5836 ~ 9489 ~ 9627 ~ 9667 3~01.732ki ~ 3 53 1..~0024.3559 ~ 7457 ~ 6815 ~ 4967. 91 13.9346 ~ 41 3 4~6 ~ 62'33 ~ 2211 ~':~0 C2 ~2.231 ~ 6319 ~ 5760.4195.8652, ~8996.9094 5 ~ 02 ~ 4534 ~'1 ~7 1 O',1014 ~4614 ~4289 ~3198 ~ 7832. 836C ~8512650.1 ~ 3C80 ~ [',I40t)7 ~ C900 ~ 0414 ~ 3124 ~ 3033 ~ 2380 ~ 6911.7621 ~ 7830 8 ~ C2 ~ 165'5 I6104 ~~ I,:'3 ~16 ~ 1667 ~ 1760 ~ 1542 ~ 5623 ~6539 ~ 682010~O2 ~ 0531 C. C"G9' ~ l,0 ~ 2,19 ~ 0525 ~ 05 0732 ~ 3797 ~ 4877 ~2310~02 ~ 0137 ~ I'? 1 ).C ~ {00. 1 ~ G131 ~ 1 93 ~'3.08 ~2325 ~3371 ~374816. 2 ~0j 16 ]~"'' O0 OC..0, 15 JC27 00118C L" 1044.1831.2157 2 0 CO6.OjO1. 00.OqO30. 00001 C,:~.I:1.0011.'J307.07 11.0916 2'.02 -CC(Q C J (,J!) 0 0 tj.SOD ~000Cl-01 ~02.0228. 32832.08.000 C C iJ').C00. 00,g 0.0C.0000 o0002.0O 14. 0 2 40. 9.O']OC.,70,:,0.COCC. OCC:O. OC-'.:~O. dO~sC,.6000.COO0.00GO.OO1 50.0 3. O'C. OG.~~~~~~ 0,"C, 00.00:.O0..';0;;0. 00 50C.6 LO. ~0 C,.6 3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OqO ~ Ut" 0. ~'.,.."".t,,.,.0~00.C'OnO ~0,30.OCO0.6COO~~( C G (.0000.00CO,CO 8, 50..!)0. OO'C. CO('. g.0O,: 0. 0.COO0.coo o.D., 0'$00 C'C,."0000.03.93 00',,"0.C,)0.00';~0. 300.0 OnO OCG O D 1 1 53 ~~~~~~~~,, ~.....3 C.0 ~~

UNIVERSITY OF MICHIGAN 3111111111111 029111111199411111 3 9015 02229 1994

ENOGN. - TRANS. LIBRARY 312 UNDERGRADUATE LI BRARY 764-7494 OVERDUE FINE - 25~ PER DAY DATE DUE FEB 0 9 1983