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Abstract: We describe a formalism allowing a completely mathematical rigorous ap-
proach to closed and open conformal field theories with general anomaly. We also pro-
pose a way of formalizing modular functors with positive and negative parts, and outline
some connections with other topics, in particular elliptic cohomology.

1. Introduction

The main purpose of this paper is to give rigorous mathematical foundations for inves-
tigating closed and closed/open conformal field theories (CFT’s) and their anomalies.
In physics, the topic of closed/open CFT has been extensively discussed in the litera-
ture (see e.g. [8, 22, 23, 7]). Our investigation was originally inspired by two sources:
Edward Witten (cf. [41]) proposed a general program for using K -theory to classify sta-
ble D-branes in string theory. On the other hand, G. Moore and G. Segal [25] obtained a
mathematically rigorous approach to classifying D-branes in the case of 2-dimensional
topological quantum field theory (TQFT) (see also [26] for excellent detailed lectures
on this topic).

We attempted to consider a case in between, namely D-branes in conformal field
theory. We point out that G. Moore in [26] has also considered this direction, and Yi-Zhi
Huang and L. Kong [18] in parallel with our investigation developed a vertex operator
algebra approach to open CFT, so there is overlap with existing work. However, we will
end up exploring the topic in a somewhat different light, as will become apparent below.
In particular, our investigation will lead us to a new approach to anomaly in rational
CFT (RCFT), and D-brane categories, using 2- and 3-vector spaces. This will also lead
to constructions which relate to certain mathematical topics, such as foundation of ellip-
tic cohomology. Even in this direction, however, substantial inroads have already been
made in the literature, in particular [30, 12, 13]. The main contribution of the present
paper therefore is that we set out to proceed with complete mathematical rigor.

* The authors were supported by the NSE.
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There are many reasons for D-branes to be easier in CFT than in string theory. First of
all, one does not have to insist on anomaly cancellation, and can investigate the anomaly
instead. Here by anomaly we mean a certain indeterminacy (usually finite-dimensional),
allowed in the correlation functions of a CFT (much more precise discussion will be
given later: this is, in some sense, the main subject of the present paper). Another reason
is that CFT makes good sense even without supersymmetry, while string theory does not.
(In fact, in this paper, we restrict attention to non-supersymmetric CFT, although mostly
just in the interest of simplicity.) Most importantly, however, any CFT approach to string
theory amounts to looking at the complicated string moduli space only through the eyes
of one tangent space, which is a substantial simplification. We will make some comments
on this relationship between CFT and string theory in Sect. 3 below. We should point
out that in this paper, we restrict attention to CFT’s defined in oriented surfaces. This
is not a restriction on our formalism, which works in the unoriented case as well, but
it simplifies the discussion somewhat. However, interesting phenomena certainly arise
when considering CFT’s in the non-oriented worldsheet context, even for example in
the case of the critical Ising model [32, 13].

On the other hand, CFT is incomparably more complicated than 2-dimensional TQFT.
Because of this, in fact, a theorem classifying D-branes (as outlined in [25] for TQFT)
seems, at the present time, out of reach for CFT. However, an exact mathematical defi-
nition of the entire structure of closed/open CFT is a reasonable goal which we do
undertake here. To this end, we use our formalism of stacks of lax commutative monoids
with cancellation (SLCMC’s), developed in [16], and reviewed in the Appendix.

In Sect. 2 below, we shall also describe analogues of some of the concepts of [25] for
CFT’s, and observe some interesting new phenomena. For example, one may ask what
is the correct generalization of the category of modules over the algebra corresponding
to the closed sector of 2-dimensional TQFT in defining a D-brane category. We will see
fairly quickly how going in this direction leads to 2-vector spaces in the case of CFT.

In Sect. 4, we give a basic example, the free bosonic CFT (=linear o-model), and
show how to obtain the D-brane modules corresponding to Von Neumann and Dirich-
let boundary conditions for open strings. As we will see, however, even in this basic
case, a substantial complication is giving a mathematically rigorous treatment of the
convergence issues of the CFT.

Up to this point, we suppressed the discussion of anomaly, by assuming that anomaly
is 1-dimensional. However, there is an obvious suggestion: a parallel between the set of
D-branes of a closed/open CFT, and the set of labels of a modular functor of RCFT, see
[27-29, 35]. It therefore seems we should look for axioms for the most general possible
kind of anomaly for closed/open CFT, which would include sets of both D-branes and
modular functor labels.

There are, however, further clues which suggest that the notion of “sets” in this con-
text is too restrictive. Notably, the free C-vector space CS on the set of labels S of a
modular functor is the well known Verlinde algebra [40]. But the multiplication rule
of the Verlinde algebra uses only dimensions of vector spaces involved in the modular
functor, so it seems that if one wants to consider the spaces themselves, it is that one
should consider, instead of CS, the free 2-vector space on S). Is it possible to axiomatize
modular functors for RCFT’s in a way which uses 2-vector spaces in place of sets of
labels?

In Sect. 5, we answer this last question in the affirmative. This is rather interesting,
because it leads to other questions: the authors [16] previously proposed RCFT as a pos-
sible tool for geometrically modelling elliptic cohomology, while Baas-Dundas-Rognes
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[2] obtained a version of elliptic cohomology based on 2-vector spaces. Is there a con-
nection? Observations made in [2] show that the right environment of such discussion
would be a suitable group completion of the symmetric bimonoidal category C, of vector
spaces, while simultaneously noting the necessary difficulty of any such construction.
Nevertheless, we propose in Sect. 6, such group completion, despite major technical
difficulties. Our construction involves super-vector spaces, and thus suggests further
connections with P. Deligne’s observation [19] that the modulars functor of bc-systems
must be considered as super-vector spaces, and with the work of Stolz-Teichner [38],
who, in their approach to elliptic objects, also noticed the role of fermions and, in effect,
what amounts to 1-dimensional super-modular functors. In D-brane theory, this same
construction allows axiomatization of anti- D-branes with 1-dimensional anomaly.
However, let us return to D-branes. Is it possible to formulate axioms for general
anomalies of closed/open CFT’s analogous to the 2-vector space approach to modular
functors? We give, again, an affirmative answer, although another surprise awaits us here:
while the “set of labels” of a modular functor was naturally a 2-vector space, the “set of
D-branes” of a closed/open CFT must be a 3-vector space! We discuss this, and propose
axioms for a general anomaly of closed/open CFT in Sect. 7. An intriguing problem is
to extend the group completion approach of Sect. 6 to the case of general closed/open
CFT anomaly, which would give an axiomatization of anti- D-branes in that context.

2. Closed/Open CFT’s with 1-Dimensional Anomaly, D-Brane Modules
and D-Brane Cohomology

There is substantial physical literature on the subject of D-branes (see e.g. [8, 22, 23,
7]). In this paper, we shall discuss a mathematically rigorous approach to D-branes in
non-supersymmetric CFT’s. Moreover, in Sects. 2-4, we shall restrict attention to 1-
dimensional anomaly allowed both on the closed CFT and the D-brane. More advanced
settings will be left to the later sections.

We begin by defining the stack of lax commutative monoids with cancellation
(SLCMC) corresponding to oriented open/closed string (more precisely conformal field)
theory. SLCMC'’s were introduced in [16], but to make this paper self-contained, we re-
view all the relevant definitions in the Appendix. We consider a set L. This is not our set
of labels, it is the set of D-branes. Our set of labels consists of K’ = L x L which we
will call open labels and we will put K = K’ [ [{1}, where 1 is the closed label.

We will now define the SLCMC D of closed/open worldsheets, which we will need
for oriented closed/open CFT. We shall first define the LCMC of its sections over a
point. As usual (see [16]), the underlying lax commutative monoid is the category of
finite sets labelled by a certain set K, not necessarily finite. Before describing the exactly
correct analytic and conformal structure, we first specify that these are compact oriented
surfaces (2-manifolds) X together with homeomorphic embeddings ¢; : S' — 3X,
dj : I — 0X with disjoint images. Moreover, each c; is labelled with 1, and each d; is
labelled by one of the open labels K’. Moreover, each connected component of

0x —Jm(en = J 1md;)

(which we shall call D-brane components) is labelled with an element of L, and each
d;j is labelled with the pair (£1, £2) € L x L of D-branes which the beginning point and
endpoint of d; abut. The ¢;’s and d;’s are considered inbound or outbound depending
on the usual comparison of their orientation with the orientation of X.
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It is now time to describe the smoothness and conformal structure on X. To this end,
we simply say that X is a smooth complex 1-manifold with analytic (real) boundary and
corners; this means that the interior of X is acomplex 1-manifold, and the neighbourhood
of a boundary point x of X is modeled by a chart whose source is either an open subset
of the halfplane H = {z € C|Im(z) > 0}, where O maps to x or an open subset of the
quadrant K = {z € C|Im(z) > 0, Re(z) > 0}, where O maps to x; the transition maps
are (locally) holomorphic maps which extend biholomorphically to an open neighbour-
hood of 0 in C. The points of the boundary whose neighbourhoods are modelled by open
neighborhoods of 0 in K are called corners. Further, we specify exactly which points are
the corners of an open/closed string world sheet: we require that the corners be precisely
the endpoints of the images of open string boundary parametrizations. We also require
that open as well as closed string parametrizations be real-analytic diffeomorphisms
onto their image; this completes the definition of the objects.

An isomorphism X — Y is a diffeomorphism which preserves complex structure,
D-brane labels, is smooth on the interior, and commutes with the ¢;, d; (which we shall
call parametrization components - note that the set of parametrization components is not
ordered, so an automorphism may switch them).

Now to define the SLCMC D, the main issue is fixing the Grothendieck topology. We
use simply finite-dimensional smooth manifolds with open covers. As usual, the under-
lying stack of lax commutative monoids is the stack of covering spaces with locally
constant K -labels (analogously to [16]). Sections of D over M are smooth manifolds
fibered over M, where the fibers are elements of D, and the structure varies smoothly
in the obvious sense. It is important, however, to note that it does not seem possible to
define this stack over the Grothendieck topology of complex manifolds and open covers;
in other words, it does not appear possible to discuss chiral CFT’s with D-branes. To
see this, we consider the following

Example. The moduli space of elliptic curves E with an unparametrized hole (i.e. one
closed D-brane component with a given label). It is easily seen that the moduli space
of such worldsheets is the ray (0, 00), i.e. not a complex manifold. To see this, the key
point is to notice that the invariant /m(t) of the elliptic curve F obtained by attaching
a unit disk to E along the D-brane component does not depend on its parametrization.
Intuitively, this seems plausible since Im(7) is the “volume”. To rigorize the argument,
we first recall that if one cuts the elliptic curve along a non-separating curve, then /m(t)
can be characterized as the “thickness” of the resulting annulus (every annulus is con-
formally equivalent to a unique annulus of the form S' x [0, 7] for some boundary
parametrization; r is the thickness). But now any reparametrization of the D-brane com-
ponent ¢ of E is a composition of reparametrizations which are identity outside of a
certain small interval J C c. Thus, it suffices to show that the invariant /m(t) does not
change under such reparametrizations. However, we can find a smooth non-separating
curve d D J in F; then cutting F along d, the so-called change of parametrization of ¢
becomes simply a change of parametrization of one of the boundary components of F;
we already know that does not affect thickness.

By a K-labelled closed/open CFT with 1-dimensional anomaly (H;);cx we shall
mean a CFT with 1-dimensional modular functor on the SLCMC D over the stack of lax
monoids Sk, with target in the SLCMC H g . This means a lax morphism of SLCMC’s

D — (H,)ick

where D is a C*-central extension of D. These concepts were defined in [16] (see the
Appendix for a review). When K is not mentioned (i.e. we speak of just a closed/open



Closed/Open Conformal Field Theories 225

CFT), we shall assume that there is only one D-brane, i.e. K = {1, m}, where m is the
open label.

Now, however, we would like to ask a more fundamental question: what are D-
branes? The answer “elements of the set L associated with a K-labelled closed/open
CFT” is clearly not a satisfactory one. For one thing, D-branes should form an additive
category, not a set. Thus, let us look to Moore-Segal ([25], Sect. 3) for a guideline. There,
in the case of a 2-dimensional topological quantum field theory (TQFT), a candidate
for an additive category of D-branes is proposed (at least in the semisimple case): the
category of modules over the closed sector algebra.

Let us review these results of [25] in more detail: a (2-dimensional closed TQFT) is
a Poincaré algebra C, which is the same thing as a commutative Frobenius algebra. The
first theorem of [25], Sect. 3 is that a closed/open 2-dimensional TQFT is equivalent to
the following additional set of data: A (not necessary commutative) Frobenius algebra
O and a map of algebras

C—0

satisfying the Cardy condition, which asserts equality between the operations corre-
sponding to cutting an annulus which has one parametrization component and one D-
brane component on each boundary component in two ways: either by an open string
(curve) connecting the two D-brane components, or by a closed string (curve) separating
the two boundary components. The second theorem of [25], Sect. 3 states that when C
is semisimple, then

O = End¢(M)

for some C-module M. Therefore, the category of C-modules is the correct candidate
for a category of D-branes.

Which of these concepts have we extended to CFT so far? The algebra O is no prob-
lem: it corresponds simply to a closed/open CFT with one D-brane. However, what is
the analogue of a C-module M? We shall explain why we think it may be too naive to
simply search for some suitable concept of such a C-module (e.g. some modification of
VOA module) which would do the job. The key point is that even in the case of TQFT,
C-modules are only the right answer when C is semisimple. When C is not semisimple,
it is not obvious how to make, for a general C-module M, the algebra Endg(M) into
an open sector of a closed/open TQFT. It is the Cardy condition which causes trouble.
When C is semisimple, the simple summands themselves are open sectors of closed/open
TQFT’s, and moreover, they can be summed, because semisimplicity makes O the only
possible choice for mixed sectors.

Now for a (non-chiral) CFT, semisimplicity seems like a completely unnatural assump-
tion. For example, for a 1-dimensional free bosonic CFT (see Sect. 4 below), we have
different irreducible Dirichlet branes corresponding to points of spacetime, which cer-
tainly have non-trivial, and interesting, mixed sectors. In conclusion, therefore, for a
closed CFT H, there does not seem to be a satisfactory notion of “H-module” M which
would always make (H, M ® M*) (or some similar construction) into a closed/open
CFT: the reason is that it doesn’t quite work even for TQFT’s, in the general case.

On the other hand, there is something we can do. Suppose (H, R) is a closed/open
CFT (R is the open sector) and V is a finite-dimensional vector space over C. Then
there is a canonical way of making (H,V ® R ® V*) into a closed/open CFT with
one D-brane: in the open CFT operations, simply insert units and traces C — V @ V*,
V®@V* — C wherever suggested by the diagrams. This is like putting a | V|-dimensional
linear Chan-Paton charge on the ends of the open strings. Therefore, if we characterized
a D-brane D by the closed/open CFT (H, R), then (H, V ® R ® V*) should represent
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V ® D. This gives as an important clue: the category of D-branes should be a lax module
over the symmetric bimonoidal category C; of finite-dimensional complex vector spaces
(see the Appendix, and also, for more detail, [9]).

At the same time, however, this presents a puzzle, namely that there is no such obvi-
ous candidate for the sum: If the closed/open CFT (H, R) represents a D-brane D and
(H, S) represents E, what closed/open CFT represents D @ E? The problem is the same
as above: there doesn’t seem to be enough information to recover the mixed open sector
of strings stretched between the D-branes D and E.

It seems at this point that we have no choice but to axiomatize the whole structure
we wish to have, including a category of D-branes which is a lax module over C,.
However, even writing the axioms correctly is a challenge. We will give the answer in
full generality (not assuming that the anomaly is necessarily 1-dimensional) in Sect. 7
below. But since we already gave a substantial discussion of this topic in this section,
let us work out the solution here in the case of a 1-dimensional anomaly. This case is of
particular interest from the point of view of string quantization, and it is also a case in
which there is a substantial simplification.

So we already know that we want a “ D-brane category” A which is a lax module over
C,. For simplicity, let us further require that this be a finite-dimensional free module,
i.e. equivalent to a sum of finitely many copies of C,. Now the closed sector H is a
Hilbert space and the open sector R is an object of the category

A ®(Cz A* ®Cz (Cglilb.

Here (CSI b is the symmetric bimonoidal category of Hilbert spaces (see Sect. 5 below),
and ®c, denotes lax extension of scalars in the obvious sense (see [9] for reference).
From this data, we can construct an SLCMC, which we denote by C(A, H, R) and
which we will now describe.

As usual, there is no difficulty with extending the construction to families, so we will
limit ourselves to the LCMC, i.e. to sections over one point. Even before getting into
that, however, there is another wrinkle which we must mention (see also Sect. 7 below).
To keep track of which open parametrization components share a boundary component,
and in what order and orientation, one must introduce a separate SLCMC I" of all such
configurations, which we will call incidence graphs. Therefore, more precisely, an inci-
dence graph will encode (1) a set of closed parametrization components together with
their orientations, (2) a set of (unlabelled) closed D-brane boundary components, (3)
cyclically ordered sets of open parametrization components in the same boundary com-
ponent, together with their orientations. Now our construction will come with a map of
SLCMC’s,

C(A,H,R)—>T.

To use the same notation as in Sect. 7, we will decorate sets S of boundary components
with two indices, the first of which will specify closed or open label (1 or m), and the
second will specify inbound or outbound orientation (in or out). Then the set of sections
of C(A, H, R) (over a point) over a given configuration of I" is

treyaic | @ R*® @ R|® ® H'® ® H.
Sm,in Sm.nur Sl,in Sl,ouz

Here tr¢yciic denotes the tensor product over C, of copies of the canonical functor

tr: A*®c, A— Cy
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over all pairs of ends of open strings which share a D-brane in the given configuration
of I' (note that the orientations are arranged in such a way that one copy of .4* and one
copy of A always arise in such case).

In view of this discussion, we can define a closed/open CFT with D-brane category
A with 1-dimensional anomaly as a (lax) map of SLCMC’s over I'

I[j{l,m} - C(Av Hv R)v

where 15{1, m} is a C*-central extension of the SLCMC Dy ,,j. We will see that the case
of general anomaly (where different D-branes can have different anomalies, possibly
multidimensional) is still more complicated, by yet another level. However, we leave
this to Sect. 7 below.

3. Conformal Field Theory and String Theory

We will now consider the relationship between conformal field theory and string theory,
and the way it reflects on our investigation. As a standing reference on string concepts,
we recommend one of the standard textbooks on the subject, e.g. [14] or [31]. One added
feature of string theory is, of course, supersymmetry, but we shall soon see that this turns
out not to be the only complication.

We will, therefore, begin our discussion with bosonic string theory (superstrings will
enter later). The essential point of string quantization is that conformal field theory quan-
tizes parametrized strings, while physical strings should be unparametrized. Now to pass
from parametrized strings to unparametrized, one needs a way to quantize the complex
structure. This problem is analogous to gauge fixing in gauge theory. In fact, this is more
than just an analogy: from a strictly worldsheet point of view, conformal field theory
is indeed a 2-dimensional quantum field theory satisfying Schwinger axioms, and can
be viewed as a gauge theory in a certain sense; however, we do not need to pursue this
here. The important point is that in string theory, complex structure gauge is needed to
produce a consistent theory: conformal field theory is anomalous and, in Minkowski
space, contains states of negative norm.

The modern approach to gauge fixing in gauge theory, and to string quantization, is
through Fadeev-Popov ghosts and BRST cohomology. In the string theory case, we start
with a CFT H,,, the (matter CFT). In this case, BRST cohomology is essentially a semi-
infinite version of Lie algebra cohomology of the complexified Witt algebra (viewed as
a “Lie algebra of the semigroup of annuli””) with coefficients in H,,. To be precise about
this, we must describe the semi-infinite analogue of the complex A(g) for a Lie algebra
g where g is the Witt algebra. As it turns out, this semi-infinite Lie complex is also a
CFT which is denoted as Hgj, and called the Fadeev-Popov ghost CFT. A mathematical
description is outlined in [35], and given in more detail in [19]. In the chiral CFT case,
Hyy, is a Hilbert completion (with a chosen Hilbert structure) of

Abyln < 0) ® Alcy, n <0). (D)

In the physical case, both chiralities are present, and Hy, is a Hilbert completion of the
tensor product of (1) with its complex conjugate. To understand why this is a semi-infinite
Lie complex of the Witt algebra, we write the generators of (1) as

_..d
bn =2 n+l d_Z
cn =z "2 (d2)%. (2)

’
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So, the b,,’s are vector fields on S! (elements of the Witt algebra) and the ¢,,’s are dual to
the b_,’s. An ordinary Lie complex would be the exterior algebra on the duals ¢,, n € Z.
However, a special feature of CFT is a choice of vacuum which allows us, even before
gauge fixing, to define correlation functions which are finite, albeit anomalous: this is
the mathematical structure known as Segal-type CFT, which we have axiomatized in
[16] and here. However, this choice of vacuum of H,, is what prompts the “semi-infinite
approach”, where the exterior generators of Hy, are not all of the ¢,’s, but half of the
¢,,’s and half of the b,’s, as in (1). Now it turns out that for our further discussion, it
will be important to know explicitly one part of the Virasoro action on Hgj, namely the
conformal weights, or eigenvectors of Ly. One may guess that b,,, ¢, should be eigen-
vectors of conformal weight —n, but it turns out that one must decrease the conformal
weights of the entire complex (1) by 1, so the correct conformal weight of a monomial
in the b,,’s and ¢,,’s is —k — 1, where k is the sum of the subscripts of the b,,’s and ¢;,’s in
the monomial. In fact, it turns out that the vacuum of the ghost theory, i.e. the element
of Hgj, assigned to the unit disk, is

b_1C0. (3)

Now the ghost CFT has an anomaly which is described by a 1-dimensional modular
functor L which has central charge —26 in the chiral case (see [35, 19]) and (—26, —26)
in the physical case. (In the chiral case, there is an additional complication that L must
be considered a super-modular functor, see [19] and Sect. 5 below.) A CFT H,, is called
critical if it has anomaly described by the 1-dimensional modular functor L®~!. The
26" power of the 1-dimensional free bosonic CFT described (briefly) in the next section
is critical in the physical sense (with both chiralities).

Now for a critical CFT H,,, there is a certain differential Q (called the BRST differ-
ential) on the (non-anomalous) CFT

H = Hn®Hgh. )

In the chiral case, one has explicitly

1
0=> Lf’"c_, —5 S (r—s):c_rc_shris : —co (5)

reZ r,S€Z

(see [5], formula (4.59)). Here L!" are the Virasoro generators acting on H,,, and ¢, b,
n € Z are now understood as operators on Hyy, in the standard way (see [5]). In the
non-chiral case, one must add to (4) its complex conjugate. Q is a differential, which
means that

Q0 =0. (6)

The cohomological dimension is called the ghost number. The ¢,’s have ghost number
1, the b, have ghost number —1, so the ghost number degree of Q is +1. We shall fix
the ghost number as an algebra grading, so 1 has ghost number 0, but other conventions
also exist.

What is even more interesting than (6), however, is that Q turns H into a “differential
graded CFT”. If we use the usual notation where we write for a CFT, as a lax morphism
of SLCMC’s,

X — Uy,
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then we may define a differential graded CFT by the relation

Y (1®..901..1HUx =0, (7

with the correct sign convention. For simplicity, we assumed in (7) that all boundary
components of X are outbound, the adjoint operator Q* is used on inbound boundary
components. Physically, (7) is due to the fact that Q is a conserved charge corresponding
to the Noether current of a supersymmetry (called BRST symmetry) of the Lagrangian
of H (see [5]).

In any case, we now see that the BRST cohomology

H = H"(H, Q) (®)
is a non-anomalous CFT. Infinitesimally, this implies that

[Q.L,] =0,

where L, are the standard Virasoro algebra (in our case in fact Witt algebra) generators.
However, more is true. In fact, one has

L, = [Q» bn],
SO
Ox=0 = Lyx e Im(Q). )

Because of (9), L, actually act trivially on H, so H is in fact a TQFT (which means
that Uy only depends on the topological type of X). Therefore, our machinery would
certainly seem to apply to H, in fact so would that of Moore-Segal [25]. There are,
however, two difficulties.

First of all, H,, may not actually be a CFT as we defined it because of convergence
problems. For example, when H,, is the free bosonic CFT on the (25, 1)-dimensional
Minkowski space, the inner product on the space H,, is indefinite, so this space cannot
be Hilbert-completed with respect to its inner product. This is more than a technical
difficulty: in physical language, this is the cause of the 1-loop divergence of bosonic
string theory. In our language, this means that the state space of our would-be TQFT is
infinite-dimensional, so Ug for an elliptic curve E is infinity, or more precisely unde-
fined. So there isn’t, in fact, any variant of the (25, 1)-dimensional free bosonic CFT
for which the machinery outlined above would work mathematically and produce a true
TQFT.

In physics, this is an argument why the free bosonic string theory is not physical,
and one must consider superstring theory. Our definition of CFT works on the SLCMC
of superconformal surfaces, but the convergence problems persist, i.e. again, for the
free (9, 1)-dimensional super-CFT, the BRST cohomology would be TQFT is infinite-
dimensional. Physicists argue that the (infinite) even and odd parts of the TQFT are “of
equal dimension”, and thus the 1-loop amplitude vanishes (a part of the “non-renormal-
ization theorem”). However, we do not know how to make this precise mathematically.

There is another, more interesting caveat, namely that H is actually not exactly the
object one wants to consider as the physical spectrum of string theory. Working, for
simplicity, in the bosonic case, one usually restricts to states of ghost number 0, which,
at least in the free case, is isomorphic to the quotient Hy of the submodule Zg C H,,
of states x € H,, satistying L,x = 0 forn > 0 and Lox = x, by the submodule By
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of states of null norm (the Goddard-Thorn no ghost theorem). In bosonic string theory,
the vacuum of H,, is in Hp, but this is a tachyon, which is not the vacuum of H: the
vacuum in H is b_1, as remarked above, and has ghost number —1. In superstring the-
ory, the tachyon is factored out by the so-called GSO projection, while the vacuum of
course persists, and has also ghost number —1, but a different name, due to the different
structure of the theory, which we have no time to discuss here.

One may ask what mathematical structure there is on Hy itself. Here the answer
depends strongly on whether we work chirally or not. In the chiral case, Borcherds [4]
noticed that Hy is a Lie algebra. The Lie algebra structure comes from [u, v] = ugv
where u is the residue of the vertex operator Y (u, z). The Jacobi identity follows imme-
diately from the vertex operator algebra Jacobi identity. From CFT point of view, this
operation is analogous to the Lie bracket in Batalin-Vilikovisky algebras.

However, when both chiralities are present (which is the case we are interested in),
the rabbit hole goes deeper than that. First note that the CFT vertex operator is not
holomorphic, and curve integrals do not seem to be the right operations to consider.
Instead, elements of Z are operator-valued (1, 1)-forms, and therefore can be naturally
integrated over worldsheets. Indeed, one can see that integration of an element of Z
over worldsheets produces an infinitesimal deformation of CFT. Elements of By also
deform the CFT, but only by a gauge transformation, so elements of Hy give rise to
infinitesimal deformations of string theory. We may therefore (despite potentially seri-
ous convergence problems) wish to consider a moduli space M of string theories, to
which Hy is a tangent space at one point. In fact, points of the curved space M should
be the true states of string theory, while the points of the tangent space Hp are only
an approximation. In the physical theory, one conjectures that the space M contains all
of the 5 original superstring theories as states, and a continuum of states in between.
As seen even by studying the basic example of toroidal spacetime, some states in M
differ only by “boundary conditions on open strings”, and such conditions are called
D-branes. When there is a well defined spacetime manifold X, D-branes as a rule are
associated with submanifolds of X with some additional structure. These, however, are
classical and not quantum objects (cf. Polchinski [31]), so that approach also has its
drawbacks. While rigorous mathematical attempts to define and investigate D-branes
from the manifold point of view have (with some success) also been made in the litera-
ture exist, the “tangent” CFT approximation which we consider here is, in some sense,
complementary. Finding a mathematical theory which would unify both points of view
is an even much more complex task, which we do not undertake here.

4. An Example: The 1-Dimensional Free Scalar CFT

We shall now give the standard examples of D-branes in the free bosonic CFT in dimen-
sion 1 (which is the CFT description of the linear o-model). Unfortunately, even for
this most basic CFT, a mathematically rigorous description of its convergence issues is
nowhere to be found in the literature. The best outline we know of is given in [35].

A good first guess for the free (bosonic) field theory state space is, analogously with
the lattice theories (see [16])

H=L*R,C&Sym <7",7"n>0>. (10)

Here L2 (R, C) denotes L>-functions with respect to the Gaussian measure. The quantum
number associated with this space is the momentum.
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To be more precise, (10) should be a Heisenberg representation of a certain infinite-
dimensional Heisenberg group. To describe it, we start with the topological vector space
V of all harmonic functions on S! or, more precisely, harmonic functions on small open
sets in C which contain S! and, say, the topology of uniform convergence in an open set
containing S'. Thus, V is topologically generated by the functions

Zl‘l’zn’ ne Z

and
In||z]].

To define the Heisenberg group, we would like to find a C*-valued cocycle on V which
would be invariant under the action of Diff*(S'). However, similarly as in the case of
lattice theories, we do not know any such cocycle. Instead, one considers the space U
of harmonic C-valued functions on (an open domain containing) the unit interval /. The
point is that the harmonic functions on I break up into holomorphic and antiholomorphic
parts; a topological basis of the holomorphic part is given by the elements

",neZ, Inz),

and a topological basis of the antiholomorphic parts is given by their complex conju-
gates. Therefore, the holomorphic and antiholomorphic parts U, and U_ of U have well
defined winding numbers which can be added to a total winding number; let V' C U
be the set of functions of total winding number 0. Then the map exp(?) = >’ gives a
projection
V-V

whose kernel consists of the constant functions. Now to get the free field theory, one
proceeds analogously to lattice theories (see [16]), specifying a cocycle on U. We shall
specify separately cocycles on both U and U_. However, because the integrality condi-
tion is replaced by equality of winding numbers on U, and U_, we have more freedom
in choosing the cocycle. For example, we can put, on both Uy and U_,

1 1
C(f7g)=€xl7§</sl fdg—Afg(O)+§Ang>, 1D

(where Ay is the winding number). The effect of this is that if we apply the cocycle
to lifts of two harmonic functions f, g on a worldsheet to its universal cover, whose
restriction to boundary components are f;, g; (as is done in [16] for the lattice theories),
the Greene formula implies that

1 n
c(f.8) = exp( 2 (AfAg + Ay Ap)+ D AR A

i<j i=1
1 n n
:epo(ZAf,. Y Ag) =1 (12)
i=l =l

Thus, the situation is simpler than in the case of lattice theory. Now similarly as in the
case of lattice theory, the cocycle ¢ we have constructed, when restricted to V', is trivial
on the constant functions, so we get a canonical map

C—V (13)
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(where ? denotes the Heisenberg group with respect to a given cocycle). Similarly as
in the case of lattice theories, in fact, c(f, g) = O for f,g € V', f constant, so the
subgroup (13) is normal, so the desired Heisenberg group can be defined by

vV =V//C. (14)

Then H should be the Heisenberg representation of the right real form of (14). Note,
however, that the above construction comes with no obvious natural choice of real form.
Let us postpone the discussion of this issue, as we shall see it is related to the convergence
issues of the CFT. Now, conformal field theory structure is specified as usual: looking
at the Heisenberg representation Hyx of the central extension \73 x of the space Vyx of
harmonic functions on the boundary of a worldsheet X, we have already constructed a
canonical splitting of the pullback of the central extension to the subspace Vx of har-
monic functions on X; we would like to define the field theory operator associated with
X as the vector space of invariants of Hyx with respect to Vy.

A usual “density argument” (cf. [35, 16, 33]) shows that the invariant vector space
Hy is always at most 1-dimensional. In more detail, if we denote by Harm (X) the space
of harmonic functions on X and by Harm(dX) the space of harmonic functions on a
small neighborhood of dX, and also by D the unit disk, then, by restriction, we may
form the double coset space

Harm(X)\Harm(3X)/ | Harm(D) (15)
a

(the product is over boundary components of X). Then (15) is isomorphic to H'
(Y, Harm) = C, where Harm is the sheaf of harmonic functions and X is the world-
sheet obtained from X by gluing unit disks on the boundary components. Since H can
be interpreted as a (completed) space of functions on

Harm(3X)/ [ Harm(D), (16)
9

the identification of (15) shows that only functions on the orbits C have a chance to be
Harm(X)-fixed points. However, studying further the constant functions in Harm(X),
we see that only functions supported on {0} C C have a chance of being fixed points.

These observations also point to a difficulty with a Hilbert space model for H. What
kind of reasonable Hilbert space functions on R contain distributions supported on a
single point? Now recall the reason why the Hilbert space is not yet fixed: we haven’t
fixed the real structure on V. One clue for such real structure is that, from the desired
interpretation of H as functions on (16),

A=Harm(D)CV

should be our “Lagrangian subspace” so that H = Sm), (cf. [33], Section 9.5). Thus,
we can define the real structure on V by specifying the inner product on A. The choice
enjoying the desired invariances is

(f.g) = /7dg. (17)
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But then this is only a semidefinite Hermitian product on A, where constants have norm
0! The above discussion shows that this is more than a technical difficulty. To get the
field operator Uy to converge, we must take the inner product (17), which leads to

H=]] Sym(szn\m > 0)
keR

(JT is the Cartesian product). Physically, the quantum number k is the momentum.
Then the notion of “Hilbert product” of copies of H and “trace” must be adjusted.
For more details, see the Appendix. With these choices, convergence of Uy can be
proven similarly as in [16] for lattice theories (e.g. using boson-fermion correspon-
dence at 0 momentum), so the free bosonic CFT is rigorous. This convergence problem
does not arise if we consider the o-model on a compact torus instead of flat Euclidean
space.

For completeness, we note that we haven’t discussed inbound boundary components,
and closed worldsheets. The former topic offers no new phenomena and can be treated
simply by reversing the sign of the cocycle. Discussing closed worldsheets amounts
really to discussing in detail the anomaly, which is H'(X, Harm), analogously to the
fermionic case treated in [19].

Now we want to give examples of simple elementary D-branes in the free CFT. The
above discussion shows that we would have to work in compact spacetime (a torus) to
make the examples fit the scheme proposed in Sect. 2 literally. However, we elect instead
to stick to the flat spacetime R, where the situation seems more fundamental. It must
be then understood, however, that the notion of closed/open CFT in this situation must
also be generalized in a way analogous to closed CFT (as discussed in the Appendix),
to solve the convergence issue.

Consider the 1/2-disk B consisting of elements of D with non-negative imaginary
part. We consider B an open string worldsheet where the real boundary elements are
the D-brane component, and the open string component is parametrized by the map
e™'!. Then we can consider the space of all harmonic functions on the boundary of B
which obey a suitable boundary condition on the D-brane component. The boundary
conditions allowable first of all must be conformally invariant. The most obvious such
condition is that the derivative of the function in question be 0 in the direction of a certain
vectoru € SU, I m(u) > 0 oru = 1. A priori, all of those conditions are allowable.
However, if we want to follow the methods we used above to describe closed free CFT,
additional conditions are needed. Namely, we need the vector space of functions satisfy-
ing the condition to have a central extension which is a Heisenberg group. Moreover, to
get consistency of open and closed CFT, we need the Heisenberg group to be obtained
by restriction of the cocycle (11), and the real structure must also be induced from the
closed CFT real structure.

We will see however that the real structure is incompatible with the closed CFT real
structure unless # = 1 or u = i. In effect, let f be a holomorphic function which sends
R to R (e.g. a polynomial with real coefficients). Then uf — u f has zero derivative in
the direction u on R (as z — uf(z/u) — u f(z/u) has zero derivative in the direction
of u on the line z € uR). Here by ? we mean the usual complex conjugation. But now
recall that in the real structure involved in defining closed CFT, the complex conjugate
of z" is z7", so the complex conjugate of uz" — uz" is uz~" — uz ", which is not of
the form uf — u f for a holomorphic function f sending R to R, unless u = (£)1 or
u = (%)i.
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Now for u = i, the functions on B which we get are

'"+7", nez,

Inlz]]. (18)

(Note the singularities on the D-brane components of d B- those needn’t bother us.)
The cocycle is defined by the same formula as (11), although one integrates over the
parametrization component only (the resulting factor of 1/2 is related to the squaring
relation between the open and closed string couplings). The corresponding Heisenberg
representation (with the same discussion of convergence at momentum quantum num-
bers as in the closed case) is the von Neumann open string sector, or the 1-dimensional
“DO0-brane” of the 1-dimensional free bosonic CFT. Together with the closed sector,
this defines (up to the convergence-related modifications) a closed/open CFT with 1-
dimensional anomaly in the sense of Sect. 2 (the vacua are obtained completely analo-
gously as in the closed case).

When u = 1, the functions satisfying the boundary condition (which is the Dirichlet
condition) are

' =7, neZ— {0},

17

1.z
arg(z) = Eln—.

Although at first everything looks analogous as in the von Neumann case, there is an
important difference: if we define again the cocycle by (11) integrated over the param-
etrization component of B (which we must to get consistency), this time the cocycle is
degenerate with kernel

(I, arg(z)).

This is a case of spontaneous symmetry breaking: we get a 2-dimensional continuum of
irreducible representations, one for each weight of 1 and arg(z) (which are independent
real numbers).

To name these sectors, we must figure out what these quantum numbers mean. To
this end, in turn, we must review our recipe for defining a closed/open CFT from these
Heisenberg representations. To get consistency, the recipe must be the same as in the
closed case: for a closed/open worldsheet X, take the tensor product Hyx of state spaces
corresponding to the parametrization components of X (suitably completed, as above).
By the representations we constructed, the group Harm (X) of harmonic functions on X
acts on Hyx (the central extension given by our cocycle splits on Harm(X) canonically,
as above). The scalar multiples of the vacuum in Hyx now form the space of invariants
H;;“rm(x). The discussion is analogous to the closed case, and we omit the details.

However, the sector numbers we are interested in correspond to weights, on each
open parametrization component ¢ of X, of functions which have given values «,  on
the endpoints of ¢ (this is linear in «, B). Note that we can get any such pair of numbers
o, B by taking a linear combination of 1 and arg(z). Now consider, on X, harmonic
functions which are constant on the D-brane components of X: such functions must act
by identity (have weight 0). We see from this that the fixed point space will be 0 unless
weights corresponding to the two endpoints of each open D-brane component coincide.
Therefore, these weights can be interpreted as position coordinates of the two endpoints
of the open string, in other words position coordinates of the (instanton) D-branes. The
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2-dimensional continuum of state spaces we got describes all the possible mixed sectors
H,j of open strings ending on any two of these D-branes with positions a,b € R.
Convergence issues work out after a discussion analogous to the closed case.

To build a closed/open CFT with D-brane category in the sense of Sect. 2 from the
1-dimensional free boson, note that we have restricted attention to D-brane categories
which are finite-dimensional free lax C;-modules. Therefore, we must select finitely
many positions of instanton D-branes ay, ..., ay (and the DO-brane, if we wish). The
D-branes can then be summed using the mixed sectors in the obvious way. The mixed
sectors between the D0 and D(—1)-branes are 0. As in the closed case, the Hilbert tensor
product and trace must be modified to get proper convergence behavior. We have not
axiomatized anti- D-branes here, but that can be done using the formalism of Sect. 6, at
the cost of increasing technical difficulty substantially.

5. CFT Anomaly via 2-Vector Spaces and Elliptic Cohomology

In this section, we give a new definition of modular functor which generalizes the defini-
tion given in [16]. Consider a free finitely generated lax module M over the lax semiring
C; (the category of finite-dimensional C-vector spaces; it is convenient to let the mor-
phisms of C be all linear maps; thereby, C; is not a groupoid, and we have to use the
version of lax algebra theory which works over categories - see the appendix; of course,
itis possible to consider the subcategory C; of C; whose morphisms are isomorphisms).
Consider further (Cg ib the C,-algebra of Hilbert spaces with the Hilbert tensor product.
We put M0 = M ®¢, CHi> Now consider H €1 MV (the symbol €1 means a
map of lax Cp-modules C, — ?; in our case, this is the same thing as H € Obj (MHi1by),
We shall define two LCMC’s C(M) and C (M, H) (underlying LCM of sets) which
are, in standard ways, extended into SLCMC’s over the Grothendieck category of finite-
dimensional smooth complex manifolds.

The LCMC’s are constructed as follows: the objects of C (M) over the pair of finite
sets (S, T') are 1-elements of M®S @ M*®T; the morphisms are 2-isomorphisms. Here
M* is the dual lax C,-module of M, whose objects are (lax) morphisms of lax C,-mod-
ules M — C; and morphisms are natural isomorphisms compatible with the operations.
The gluing maps are given by trace over Ca, i.e. the evaluation morphism M & M* —
C,. An object of C(M, H) over (S, T) consists of an object M of C(M), and 2-

morphism u : M —, H®SQH*®T whose image consists of trace class elements:
(Choosing a basis of M, a 1-element of ./\/lH b becomes a collection of Hilbert spaces,
so ®-powers of H are collections of &-powers; an element is trace class if each of
its components is trace class. For generalizations beyond the trace class context, see
Remarks in the Appendix.) Here H* €; M* i is defined by putting, for V €; M,
H*(V) = Hom pquis(H, V). Morphisms are commutative diagrams of the obvious
sort. To define gluing operations, note that

w: M —> H®(S+U)®H*®(T+U)

induces a 2-morphism 1r(u) : (1 ® tr))M —, HOSQH*®T where tr; : M®V ®
M*®U . (C, is the evaluation morphism; it is defined by using the canonical mor-
phism try 2 tri(H @ H*) — C.

To define the corresponding SLCMC'’s, (which we denote by the same symbols), as
usual, it suffices to define sections over pairs of constant covering spaces (U x S, U x T)
of a complex manifold U. For defining C (M), we need a concept of a holomorphically
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varying 1-element of M. To this end, we denote by Hol(U, C,) the lax commutative
monoid of finite-dimensional holomorphic bundles on U. Then the concept we need is

My ey My == M Qc, Hol(U, Cy).

This determines the SLCMC C (M). To define C (M, H), note that H does not depend
on U, so in the case of the constant covering space described above, we simply need a

uy : My —o HYSQH;®T,

where Hy is the constant H-bundle on U, and the 2-morphism means a morphism of
holomorphic bundles.

Definition. A modular functor on an SLCMC C with labels M is a (lax) morphism of
SLCMC’s ¢ : C — C(M). A CFT on C with modular functor on labels M with state
space H is a (lax) morphism of SLCMC’s ® : C — C(M, H).

For a very detailed discussion of issues related to laxness, see [9]. Now note that
C(?) is a 2-functor from the 2-category C, — mod of lax Cy-modules (1-morphisms
are equivalences of Cp-modules, and 2-morphisms are natural isomorphisms compati-
ble with C,-module structure) into the 2-category of SLCMC'’s. Similarly, C(?, ?) is a
2-functor from the 2-category C, — mod, of pairs M, H, where M is a C,-module,
and H €; MH"_ Here 1-morphisms in Cy — mod, Co — mod, are equivalences of lax
C;-modules, 2-morphisms are natural isomorphisms compatible with C,-module struc-
ture. (In C, — mod,, 1-morphisms (M, H) — (N, K) are 1-morphisms ¢ : M — N
in C; — mod together with a 2-isomorphism A : ¢ (H) — K;a2-morphism ¢ — v isa
2-morphism in C, — mod which induces an isomorphism ¢ (H) — ¥ (H) commuting
with the A’s.)

We use this to build a 2-category I of C FT’s as a “comma 2-category”. The objects
are tuples M, H, ® where, ® is a CFT on C with labels M and state space H, 1-mor-
phisms are tuples ®, W, f, ¢, where @, W are CFT’s with labels M, A and state spaces
H,K, fisaCy—mody - 1-morphism (M, H) — (N, K) and ¢ is a natural isomorphism
f(Mx) =2 Nx, where Mx, Nx are the 1-elements of M, A assigned to X € ObjC
by ®, ¥ which commutes with SLCMC structure maps and the u’s assigned by ®, W
(we have used the notation of sections over a point, but we mean this in the stack sense
for sections over any complex manifold U). 2-morphisms &, ¥, f, 1 — ¥, ¥, g, « are
given by 2-isomorphisms f — g in C, — mod, which commute with ¢, « (hence the
u’s).

Next, we shall show that I is a symmetric monoidal 2-category. This means that we
have a lax 2-functor @ with the same coherence 1-isomorphisms as in a symmetric mo-
noidal category, but coherence diagrams commute up to 2-cells; the 2-cells, in turn, are
required to satisfy all commutations valid for the trivial 2-cells of coherence diagrams
in an ordinary symmetric monoidal category. Thus, the main point is to construct the
2-functor &. Suppose we have two objects M, H, ® and A/, K, ¥ of I". Then their sum
iSM@N, H® K, ®® V: The first component is the direct sum in C; —mod. H ® K
is the direct sum induced by that functor on 1-morphisms. The symbol ® & W, however,
has to be defined explicitly. For simplicity, we shall restrict to sections over a point.
Then, the data which remains to be defined, for an object X of the source SLCMC, is

M@®N, (19)
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and
u:MON —, (H® K)®S @ (H® K)*®T. (20)

Of this data, for X connected, (19) is, again, the direct sum induced by the direct sum
of C,-modules on 1-morphisms, composed with the canonical map

M®S @ M*®T g N®S @ N*@T
- MM @M aN)*®T, (21)

Analogously, (20) is given by the & of Cy-modules on 2-morphisms, composed with
(21). For X non-connected, note that we are forced to define all data by applying the
tensor product to the data on connected components. This definition extends to 1-
morphisms and 2-morphisms in a standard way to produce a symmetric monoidal 2-
category of CFT’s I'.

Note that we may not always wish to work with the whole I', but with some sym-
metric monoidal sub-2-category A; for example, we may take direct @-sums of copies
of a given CFT.

Now there is an infinite loop space machine for 2-categories: for example, Segal’s
machine. Segal’s machine is supposed to construct an F-space, which is a functor from
the category JF of finite sets with base point * and based maps into spaces (alternately,
one can think of this as a category of partial maps); it is also required that the functor
(called F-space) B be special, which means that the product map from B(n) to the
product of copies of B(1) by the maps which send all numbers in {1, ..., n} except i into
the basepoint be an equivalence.

Now to produce a special F-space from a symmetric monoidal category C, simply
consider the category C(n) which is a category of diagrams, whose objects are tuples
(x7) of objects of C indexed by non-empty subsets of S, together with isomorphisms

@ X{i} = XT. (22)
ieT

Morphisms are commutative diagrams of the obvious kind (see [37]). Now C(?) is a
functor from F into categories, so applying the classifying space gives the requisite
JF-space. It is special by basic theorems about the homotopy types of classifying spaces.

However, now note that the same definition (22) in the case of a symmetric monoidal
2-category C gives a 2-category C (n). The only difference is that on 1-morphisms, we
do not consider merely diagrams commutative on the nose, but up to 2-cells and 2-
morphisms are systems of 2-cells which further commute with the 2-cells thus intro-
duced. With that, however, C(?) becomes a (strict) functor from F into 2-categories.

So, we are done if we can produce a functorial classifying space construction B, on
2-categories, and show that the F-space B, C(?) is special. The latter is a straightforward
exercise which we omit. For the former, however, we remark that to define a classifying
space of a 2-category C, we can first form the bar construction By = B(Mor(C)), i.e.
the bar construction on 2-morphisms. However, if C is lax, then Bj is not a category,
but composition is defined with respect to a contractible operad (without permutations).
The operad D is as follows: the space D(n) is the standard (n — 1)-simplex and the
composition is given by joining:

D(k) x D(ny) x ... x D(ng) = D(ny) *...%* D(ng) = D(ny + ... + ng).
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Nevertheless, it is well known that such Ay-categories still have a classifying space
functor (for example, one can “rectify” them by push-forward change of operads to the
one point operad without permutations, which encodes associativity).

Thus, we have produced a symmetric monoidal 2-category of CFT’s, and an infinite
loop space machine for such a case. Therefore, we have an infinite loop space E. This
is related to the kind of construction used in [16] to give a candidate for an elliptic-like
cohomology theory and seems like an improvement in the sense that it gives a model
for the additive infinite loop structure (a “free” construction was used in [16]).

However, Baas-Dundas-Rognes [2] point out that this kind of construction is naive.
The problem is that there are not enough isomorphisms of free lax C,-modules: they are
essentially just permutation matrices composed with diagonal matrices of line bundles. In
[2], a solution to this problem is proposed, conjecturally calculating the algebraic K -the-
ory of C,. The point is to consider, instead of invertible matrices of finite-
dimensional vector spaces, numerically invertible matrices, which means that the
corresponding matrix of dimensions of the entry vector spaces is invertible.

Unfortunately, this approach does not seem satisfactory for the purposes of CFT:
along with aniso f : M — N, we need to consider also the inverse M* — N* of the
adjoint morphism N* — M?*; there is no candidate for such inverse when f is only
numerically invertible.

Another clue that something else is needed is the following example of bc-systems,
whose anomaly, it seems, can only be expressed by considering “modular functors with
positive and negative parts”.

Example. Consider the chiral bc-system of Q%-forms, o € Z (see also Sect. 3 above).
The bc-system was first considered mathematically by Segal [35], but the observation
that the super-modular functor formalism is needed to capture its properties is due to
P. Deligne ([19]). In the case, the state space of the bc-system is the “fermionic Fock
space”

Fo=AH: ®H-), (23)

where H =< 7"dz%|n € Z > and H. is, say, the subspace < z"dz%n > 0 >. We
select some real form to make this a positive definite Hilbert space (cf. [16], Chap. 2).
Then the modular functor is 1-dimensional, and is given by the determinant line of Q% X,
the space of holomorphic a-forms on a worldsheet X. The reason why a super-modular
functor is needed here is that we are dealing with Grassmannians, and signs must be
introduced when permuting odd-degree variables for the CFT to be consistent; no such
signs, however, occur in CFT’s with 1-dimensional anomaly as considered above (see
[19] for more details).

Thus, it seems that C, in our definition of modular functors and CFT’s should be
replaced by some sort of “group completion” which would involve Z/2-graded vector
spaces. A candidate for such a construction is given in the next section, although we will
see that this comes at the price of substantially increasing technical difficulty.

6. The Group Completion of C;
As argued above, it would be desirable to have a group completion C, of C, over

which we could do the analogues of all of our constructions as suggested by Baas-
Dundas-Rognes [2]: this would give approaches to axiomatizing CFT with positive and
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negative-dimensional modular functors, as well as anti-D-branes with 1-dimensional
anomaly. In this section, we propose such a construction. However, as also pointed out
in [2], any such construction is necessarily accompanied by substantial difficulties. The
first problem is to even define what we mean by “group completion”. It is easy to show
that for a lax commutative ring R, BR is always an Eilenberg-MacLane space (and
hence cannot be used for our purposes), but there is strong evidence that a large class
of weaker categorical notions of “weakly group-complete” lax commutative semirings
suffer from the same problem [39].

We take an alternate approach of introducing topology into the picture. This means we
construct a model of a topological lax commutative semiring C» where there is an object
—1sothat 1@ (—1) is in the same connected component of 0. While this approach does
seem to lead to a viable definition, one must overcome a variety of technical difficulties
caused by the additional topology.

The first issue is what is the appropriate 2-category T Cat of topological categories?
The point is that requiring functors to be continuous on objects appears to restrict too
much the notion of equivalence of topological categories, and consequently alter their
lax colimits. To remedy this situation, we define 1-morphisms C — D in T Cat to be of
the form

C/#D

Gl 24)
C

where F is a continuous functor and G is a partition which we define as follows: A
partition is given by a topological space X and a continuous map

f:X — 0bjC)

such that the topology on Obj(C) is induced by f (we work in the category of weakly
Hausdorff compactly generated topological spaces). Then we have Obj(C") = X,
Mor(C’) is a pullback of the form

Mor(C") ——— Mor(C)
l inT
Sxr . .
X x X —objc) x 0bj©).

Two functors Fi, F> as in (24) are considered equal if they coincide on a common
partition, i.e. we have a commutative diagram

G
oS
c c—Lt>p

\ \LHI
G Fi
i

where Hi, H; are partitions. Composition is defined by pullback in the usual way, using
the following
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Lemma 1. If we have a pullback

i
g

Y —X

in the category of compactly generated weakly Hausdorff spaces such that f induces
the (compactly generated) topology on X, then h induces the (compactly generated)
topology on Y.

Proof. Suppose V. C Y, v e (Y —V)NCI(V), h=1(V) closed. Then there exists K
compact where v is a limit point of K N V. So, we may replace V by K NV and assume
Cl(V) =K =Y. Next, let Z = g(K), so Z is compact.

Case 1. g(V) # Z. Then there exists T C X’ compact, T N f~!(g(V)) not closed.
Consider the pullback

7"—T

L

g f(T) —— f(T).

Then T is compact since g is proper. But then j (7' Nh~1(V)) = f~1(g(V)) N T, so
T’ N h~' (V) cannot be closed in T’ (since j|T" is closed, T’ being compact). This is a
contradiction.

Case 2. g(V) = Z. Then in particular, there exists 7’ € V, g(v) = g(z') =: z. Now we
may assume that

v is a limit point of V N g_1 {z]. (26)

Indeed, otherwise, since K = Y is compact weakly Hausdorff, it is normal, hence reg-
ular and there exist U, W openin K, UNW =@, v € U, CL(V N g '{z}) c W.
But then we may replace Y by Y — V (and X by g(¥Y — V)), and we are back to Case
1. So we may assume (26). But then we may replace X by {z} and ¥ by g~ ({z}). But
then (25) is a product, in which case the statement of the lemma is obviously true (a
product projection induces the topology on its target in the compactly generated weakly
Hausdorff category). Thus, we have a contradiction again. O

Now 2-morphisms in T Cat are defined as follows: we can assume we have two
1-morphisms F1, F> given as

Fi, P
¢ ——=D

!

where G is a partition. Then a 2-morphism is given by a partition

C// G > C/
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and a continuous natural transformation
FIG — FG.

Again, two 2-morphisms are identified if they coincide after pullback via a partition,
similarly as above.

This completes the definition of the 2-category T Cat. This 2-category is defined in
such a way that it has lax limits defined in the same way as in Cat [9]. (Lax limit is given
as the category whose objects and morphisms are lax cones from a point or an arrow to
a diagram with the topology induced from the product; by “lax”, we always mean “up
to coherences which are iso”.)

Next, one may discuss lax monads in 7' Cat, which, in our definition, are lax functors
C : TCat — T Cat with lax natural transformations

u:CC—-C, n:l1d—->C

which are associative and unital up to coherence isos with commutative coherence dia-
gram the same as for lax monoids. For a lax monad C in T Cat we then have a category
of lax C-algebras whose objects are objects M of T Cat together with a functor

0:CM— C

satisfying associativity and unitality up to coherence isos with commutative coherence
diagrams of the same form as those for categories with lax action of a lax monoid.
Then lax algebras over a lax monad in 7 Cat form a 2-category which has lax limits
created by the forgetful functor to T Cat. We may be interested in lax algebras over a
strict monad, for example the monad associated with a theory 7. One example of a lax
monad whose lax algebras we are interested in is gotten from a 2-theory (®, T') and
a lax T-algebra /. Then we can define a lax monad Cg_; not over T'Cat, but over the

category Tcat! * of strict functors I¥ — T Cat. In effect, Co.71(X) has

p

Co.1(X)i =[O (1, - v v) x TT XyiGrs s i),
i=1

where the coproduct is indexed over m, (ji, ..., jm) € I,y € T(m)k, Yy eees Jm) =
LY, - Vp € T(m)k. Then lax Cg j-algebras are precisely lax algebras over (®, T)
with underlying lax T-algebra 1.

We are now ready to describe a topological lax semiring (@2 with an object —1 such
that 1 & (—1) is in the same connected component as 0. First consider the lax semiring
sCy of pairs (Vy, V_), V4, V_ € Obj(Cy) with the lax Cy-module structure given by
C, @ C; and multiplication

Vi V)W, W)=V, W, @V QW_. VL, @W_®V_QW,).

Now in sC,, consider the full subcategory J on pairs (V4, V_), where dim(Vy) =
dim(V_). Then J is a lax sC,-module, and J & C; is a lax commutative C,-algebra
with a lax commutative Cy-algebra morphisms J & C» — C;, (an augmentation) and
J ® Cy — sC; (the inclusion). Thus, we have a lax simplicial commutative C;-algebra
(=lax functor A9? — lax commutative C,-algebras)

B, (Ca, J & Cp, 5Co). @7
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We propose C, to be the realization of (27). This needs some explaining, namely we
must define realization. We shall describe a lax realization functor

A — |A|

from lax simplicial commutative C,-algebras to topological commutative C,-algebras
(i.e. commutative Cj-algebras in 7' Cat). We want to mimic as closely as possible the
strict construction. This means that we will define (27) as the lax simplicial realization
in the 2-category of lax Cy-modules, which we must define. First, let, for a space X,
Cy X be the free lax Cy-module on X (objects and morphisms are finite formal linear
combinations with coefficients in objects and morphisms of C,, and the topology is
induced from the topologies of finite powers of X). We want the realization | 4] to be
the lax coequalizer of

O (C2An @ An) L ®(C2A, ® Ay) (28)

m,n n

(the arrows are the usual two arrows coming from lax simplicial structure, @, ® are over
C,). To construct the lax coequalizer (28), we can take the objects of

@ ((CZAm & An) @ b (CZAn ® An) (29)

m,n n

To get morphisms, we take the morphisms of (29), and adjoin isomorphisms between
all source and target objects of the arrows in (28). Take the free topological category
spanned by these morphisms, modulo the obvious commutative diagrams required. This
gives us a category with the lax C,-module (29) as a subcategory. The free construction
we must then perform is applying the strict left adjoint to the forgetful functor from the
category of lax C, modules with lax submodule (29) on the same set of objects (taking
only functors which are identity on objects) to the category of categories with subcate-
gory (29) on the same set of objects (taking only functors which are identity on objects).
As usual, the functors are strict because objects and coherences are already specified.

This completes the construction of the lax simplicial realization (27). One must still
prove that this is a lax C;-algebra, but this is accomplished analogously as in the strict
case, using the shuffle map (and the morphism definition (24) to assure continuity).

Now topological SLCMC’s C (M), C(M, H) for a finitely generated free topologi-
cal lax Cy-module M are defined analogously as over C,. (Since the underlying stack
of covering spaces I = Set does not change, LCMC'’s can be described as lax algebras
over a lax monad in T Cat as above, and therefore stacks over a Grothendieck topology
can be defined to be, as usual, contravariant functors which take Grothendieck covers to
lax limits.)

However, the topology would be of little use if we simply took for our definition of
modular functor a lax morphism of SLCMC'’s from C to C (M) (similarly for CFT’s).
Instead, the corresponding “derived notion” is appropriate. This means that we should
consider lax morphisms of topological SLCMC’s

B(Ce,s,Ceo,s,C) > C(M), (30)
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where ® denotes the 2-theory of LCMC'’s, and S the lax commutative monoid of finite
sets, as above. The left hand side is obtained by taking the bar construction section-
wise and then applying the lax left adjoint to the forgetful functor from SLCMC'’s to
pre-stacks of LCMC’s.

It still remains to define a realization functor from lax simplicial lax Cg_s-algebras
to topological lax Cg_ s-algebras. Analogously as in the case of Bc,, however, we may

simply lax-realize in the 2-category (T Cat)5¢ ? (where it is easy to construct lax colim-
its, cf. [9]), and use the lax analogue of Milnor’s map |A| x |B| — |A x B] to obtain
lax Cp,s-algebra structure on the realization. We omit the details.

7. The General Anomaly for Open-Closed CFT

In this section, we shall apply the principles of Sect. 5 to propose a general defini-
tion of open-closed CFT with both multiple D-branes and multi-dimensional conformal
anomaly (although without any group completion). We shall see, however, that this is
necessarily even much more complicated than what we have done in Sect. 5. We have
already argued that neither the “set of D-branes” nor the “set of labels” should be sets.
Rather, they should be higher vector spaces. However, on a boundary component of the
worldsheet where several open parametrization components are present, we need to take
traces of “sets of labels” over “sets of D-branes”. This suggests that our model of “set
of D-branes” must be one categorical level above our notion of “set of labels”.
Therefore, we propose that the “set of D-branes” be a 3-vector space A. When
dealing with 3-vector spaces, note that they are 2-categories. 3-vector spaces are, by
definition, 2-lax modules over the 2-lax commutative semiring C3. We must, of course,
define these notions. On generalizing from lax to 2-lax structures, we find it easiest to
follow the approach of [17]. Let T be a theory. Then let Th(T) be the free theory on
T, with the canonical projection of theories ¢ : Th(T) — T. Let G be a groupoid
with objects Th(T') and one isomorphism x — y for every x, y € Th(T) which satisfy
¢(x) = ¢(y). Then (Th(T), G) is a theory (strictly) enriched over categories and a lax
T -algebra is the same thing as a strict (Th(T), G)-algebra enriched over categories.
Now to go to the next level, consider the forgetful functor

U : Theories enriched over groupoids — P,

where P is the (strict) category of pairs (T, G) where T is a theory, G is a graph with
objects T'. Then let F be the left adjoint of U. Notice that F is the identity on objects
T, so we may write

F(T,G) = (T, F(G)).

Now we have a map of theories enriched over groupoids:
¥ (Th(T), F(G)) — (Th(T), G).

Therefore, we may create a 2-category (Th(T), F(G), H) by putting exactly one
2-isomorphism between every «, 8 € F(G) with {¥(a¢) = ¥(B). Then the 2-cate-
gory (Th(T), F(G), H) is naturally a theory (strictly) enriched over 2-categories, and
a2-lax T-algebra is a 2-category which is a strict (Th(T), F(G), H)-algebra enriched
over 2-categories. (Obviously, one may proceed further in the same way to define even
higher laxness, but we shall not need that here.)

One remark to be made is that theories, strictly speaking, do not model universal alge-
bras which are modelled on more than one set, such as a module over a ring (which is
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modelled over two sets). However, algebras modelled over k sets can be easily included
in the formalism by modifying the concept of theory to a category with objects N¥ (i.e.
k-tuples of natural numbers) with the axiom that foralla, b € N¥, a+bis the categorical
product of a, b. This is the concept of multisorted theories (see [9] for more details and
references). All of our constructions generalize to this context.

Now to identify the categorical levels with the levels we considered before, we will
denote objects of 3-vector spaces by €p and morphisms of 3-vector spaces by —¢. Thus,
a 0-morphism C3 — C3 (where C3 is the lax symmetric monoidal category of 2-vector
spaces) is a 2-vector space, and the notations —1, —7 of such 2-vector spaces will
coincide with the notations we used above.

Now given the 3-vector space A (“the set of D-branes”), we must introduce the “set
of labels” for anomalies. The “set of closed labels” will be, as before, a 2-vector space,
which we will denote by C. The “set of open labels” will be an object of the form

Oy A QcC, A*.

(We remark here that A* for a 3-vector space A is defined analogously as in the case of
2-vector spaces.) Now we would like to define an SLCMC C (A4; C, O). All our SLCMC’s
in this section shall have two labels, 1 and m (closed and open). However, note that there
is another subtlety we must provide for, namely that the set I" of all possible incidence
graphs whose vertices are open and closed parametrization and D-brane components
and edges describe their incidence relations with the obvious conditions (e.g. all vertices
have degree 2, etc.) is itself an SLCMC, and in order to correctly keep track of incidences
on the boundary, we must consider SLCMC’s over I" (see also the end of Sect. 2 above).

We shall only describe sections of C(A; C, O) over a given object G of T" over a
single point, over four given sets S1 in, S1,0ur> Sm.in> Sm,our Of inbound and outbound
closed and open “components”. Let P denote the set of closed D-brane components of
G. Before making the definition, note that we have canonical dual 0-morphisms

C3 —+ A®c, A* <= C;. 31

(If no further discussion is made, (31) requires a finiteness assumption about .A.) Their
composition is a 2-vector space which we shall denote by #ry.A. The set of sections of
C(A; C, O) are 1-elements

Me QC'® QC®
St.in S1,out (32)

®tr0-/4®tr0,cyclic( ® 0*® ® 0).
P

Sm.in Sm.out

Here the tensor products are over Cs, and trg ¢yclic denotes composition with the tensor
product of the appropriate number of €’s; note that although not explicitly written, the
definition of #r¢ ¢ycjic makes use of all of the structure of G. Now in order to give (32) a
structure of LCMC, one must show an appropriate gluing property, but this is analogous
to our discussion for closed CFT’s.

Now let, as above, D be the SLCMC of closed-open worldsheet with one closed
and one open label. Then an open-closed CFT anomaly (modular functor) is a map of
SLCMC’s over I'

D — C(A;C,O).
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Now to define open-closed CFT, we must add the “Hilbert spaces”. The “closed Hilbert
space” is, as above,
H € CHilb.

The “open Hilbert space” is a 1-morphism

where 7 is as in (31). We shall now define an SLCMC C(A; O,C; H, K) over I'. As
above, we shall specialize to sections over a single point and single object of I', with the
same notation as above. Then a section consists of a section (32) of C(A; C, ©®) and a
2-morphism

M —> ® H*® ® H®®ntro.A
S1,in S1,0ut P

Q111 eyelic( ® K*® ® K).
Sm.in Sm,aut

Here t71 cyclic 1s given by the structure of 2-category, and 7, 4 is the canonical “unit”
1-element of 7ry.A. To be more precise, write, in (31),

n(C2) = DV ®c, ¢i.

i=1

SO
n
troA = P ¢ V.
i=1
But then one can show )
¢V =8/ Ca,
so we have
n
tr()A = @ Cz,

i=1
and we can write
n n
Ntro A = @C €1 @CZ
i=1 i=1

Of course, such discussion reveals the weaknesses of the higher vector space formal-
ism, and the desirability to really work, again, in a suitable higher group completion.
However, we do not work out that approach here.

8. Appendix: Stacks of Lax Commutative Monoids with Cancellation

To make this paper self-contained, we review here the basic definitions [16] related to
stacks of lax commutative monoids with cancellation (SLCMC’s). We must begin by
defining lax algebras. The formalism we use is theories according to Lawvere, and their
extension which we call 2-theories. Recall first that a theory according to Lawvere [20]
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is a category T with objects N (the set of all natural numbers 0, 1, 2, ...) such that n is the
product of n copies of 1. Categories of algebraic structures given by a set of operations
and relations on one set X can be encoded by a theory, where T,, = Hom(n, 1) is the set
of all n-ary operations of the algebraic structure (including all possible compositions,
repetitions of one or more variables, etc.).

Definition. A 2-theory consists of a natural number k, a theory T and a (strict) contra-
variant functor ® from T to the category of categories (and functors) with the following
properties. Let T* be a category with the same objects as T, and Hom rk(m,n) =
Homr (m, n)** (obvious composition). Then

Obj(®(m)) = | [ Hompi(m, n),

n

on morphisms, © is given by precomposition on Obj(®(m)), andy € Homqr(m, n) is
the product, in ©(m), of the n-tuple y\, ..., vy, € Homyr(m, 1) with which it is identified
by the fact that T is a theory. We also speak of a 2-theory fibered over the theory T.

The example relevant to CFT is the 2-theory of commutative monoids with cancel-
lation. T is the theory of commutative monoids with an operation +, and k = 2. The
2-theory © has three generating operations, addition (or disjoint union) 4+ : X, . X
Xb.d = Xatb,c+d, unit 0 € Xp o and cancellation (or gluing) 9. Xatebte = Xab-
The axioms are commutativity, associativity and unitality for +, 0, transitivity for 7 and
distributivity of ? under +.

To get further, one needs to define algebras and lax algebras over theories and 2-
theories. An algebra over a theory T is a set / together with, for each y € T, a map
y : " — [, satisfying appropriate axioms. These axioms can be written out explicitly,
but a quick way to encode them is to notice that for a set 7, we have the endomorphism
theory End(I), where End(I)(n) = Map(I*", I), and we may simply say that a
structure of T-algebra on [ is given by a map of theories T — End(I).

To define an algebra over a 2-theory ® fibered over a theory 7', we must first have an
algebra I over the theory T (the ‘indexing theory’). This gives us, fory € Hompr(m, 1),
a k-tuple of maps 3 : 1™ — [.In an algebra over the 2-theory, we have, in addition, a
map

X : K = Sets. (33)
For a morphism in ¢ € Mor(®) from (y1,...,¥,) € Hompc(m,n) to y € Hompk
(m, 1), we have, for each choice iy, ..., i, of elements of I, maps

@ XL, e s im)) X o X XWe(is .. im)) = X@(31, ..., i), (34)

satisfying appropriate axioms. Once again, we can avoid writing them down explicitly
by defining the endomorphism 2-theory. Consider a set / and a map

X : 1 = Sers.
To such data there is assigned a 2-theory End(X) fibered over the theory End(I): let

O(w; wy, ..., wy)
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consist of the set of all possible simultaneous choices of maps
Xwi(in, .o ovim)) X oo X X(Wp(1s ooy im)) = X1, ... im)),  (35)

where i ; range over elements of /. A structure of an algebra over the 2-theory © fibered
over T is given by a morphism of 2-theories

©,T) — (End(X), End(I)).

A lax algebra over a theory is a category I, with maps  which are functors. We do
not, however, require that these maps define a strict morphism from 7 to the endomor-
phism theory of /. Instead, this is only true up to certain natural isomorphisms, which we
call coherence isomorphisms, which in turn are required to satisfy certain commutative
diagrams, which are called coherence diagrams. This is, of course, always the case when
defining lax algebras of any kind. But now the benefit of introducing theories is that the
coherences and coherence diagrams always have the same shape. To be more precise,
recall that the notion of theory itself is an algebraic structure which can be encoded
by the sequence of sets 7T'(n), and certain operations on these sets satisfying certain
identities. Denoting the set of operations defining theories by G (for ‘generators’), and
identities by R (for ‘relations’), we observe that the set of coherence isomorphisms we
must require for lax T -algebras is always in bijective correspondence with G, while the
set of coherence diagrams needed is in bijective correspondence with R!

The concept of lax algebra over a 2-theory is defined in a similar fashion, but one
important point is that one doesn’t want to consider the most general possible type of
laxness (since that would lead to a 3-category). Rather, one starts with a lax algebra /
over the indexing theory, and a strict functor

X: 1k Categories;

appropriate coherence isomorphisms and diagrams then follow in the same way as in the
case of lax algebras over a theory (are indexed by operations and identities of 2-theories
interpreted as a ‘universal algebras’ — see [16]).

The lax commutative monoid we most frequently consider is the groupoid § of finite
sets and isomorphisms (the operation is disjoint union). More generally, we often con-
sider a set of labels K and the lax commutative monoid of Sk of sets A labelled by
K,i.e. maps A — K. Again, the operation is disjoint union. The example of lax com-
mutative monoid with cancellation fibered over S considered in [16] is the groupoid
C of worldsheets or rigged surfaces. These are 2-dimensional smooth manifolds with
smooth boundary; further, each boundary component is parametrized by a smooth diffe-
omorphism with ', and the surface has a complex structure with respect to which the
boundary parametrization is analytic. Morphisms are biholomorphic diffeomorphisms
commuting with boundary parametrization. Addition is disjoint union, and cancellation
is gluing of boundary components. Similarly, again, one can consider the LCMC Cg of
worldsheets with K -labelled boundary components, which is an LCMC over Sk .

To complete the picture, one needs to consider stacks. We note that lax algebras over
a theory and lax algebras (in our sense) over a 2-theory form 2-categories which have
lax limits of strict diagrams (see Fiore [9]). For older references, which however work in
slightly different contexts (and with different terminology), see Borceux [3] or [9]. For
the 2-category structure, 1-morphisms are lax morphisms of lax algebras (functors such
that there is a natural coherence isomorphism for every element of G), and 2-morphisms
are natural isomorphisms which commute with the operations given by the theory (or
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2-theory). Now for any 2-category C with lax limits, and every Grothendieck topology
B, we can define B-stacks over C: they are simply contravariant functors B — C which
turn Grothendieck covers into lax limits. Note that such stacks then themselves form a
2-category with respect to stack versions of the same 1-morphisms and 2-morphisms.

Now to turn C into a stack of lax commutative monoids with cancellation, we must
first specify the Grothendieck topology. Note that there are two choices of the topology,
either just (finite-dimensional) smooth manifolds and open covers (non-chiral setting)
or finite-dimensional complex manifolds and open covers (chiral setting). As remarked
in Sect. 2 above, however, D-branes can only be considered in the non-chiral setting. To
define the stack, one must first define the underlying stack of lax commutative monoids;
the answer is simply the stack of covering spaces with finitely many sheets. Now one
must define smooth or holomorphic families of worldsheets. We shall only make the
definition in the holomorphic case, the smooth case is analogous. The most convenient
way to make this precise is to consider, for a worldsheet X, the complex manifold Y
obtained by gluing, locally, solid cylinders to the boundary components of X. Then, a
holomorphic family of rigged surfaces X over a finite dimensional complex manifold B
is a holomorphic map

q:Y—B

transverse to every point, such that dim(Y) = dim(B) + 1 and B is covered by open
sets U; for each of which there are given holomorphic regular inclusions

Sic : DxU;i =Y

with
qoSic= IdUl.,

where ¢ runs through some indexing set C;. Further, if U; N U; # @, we require that
there be a bijection ¢ : C; — C; such that

Si,clDxwinuj) = Sjue) | DxinU))-

Then we let

X=Y (U U sic((D—58" x U)).

i ceC;

Then the fiber of X over each b € B is arigged surface, which vary holomorphically in
b, in the sense we want. (Note that the reason the maps s. cannot be defined globally in B
is that it is possible for a non-trivial loop in 71 (B) to permute the boundary components
of X.) The treatment of Cg is analogous. As a rule, we shall use the same symbol for
the SLCMC’s C, Ck as for the corresponding LCMC'’s (their sections over a point).

We are done with the review of SLCMC'’s, but we shall still briefly cover CFT’s, as
defined in [16]. Although this definition is subsumed by Sect. 5 above, the reader might
still find the more elementary definition useful while reading the earlier sections. Let
‘Hi, ..., H, be complex (separable) Hilbert spaces. Then on H| ® - - - ® H,,, there is a
natural inner product

(a1 ® - ®an, b1 ® - ®by) = (a1, b1){az, ba) - - - (an. by).
The Hilbert completion of this inner product space is called the Hilbert tensor product

HI® - QHy. (36)



Closed/Open Conformal Field Theories 249

Now an element of (36) is called trace class if there exist unit vectors ¢;; € H, where
j =1,...,nand i runs through some countable indexing set / such that

x= > uilei1 ® - Qejn)

iel
and

> lpil < oo.

iel
The vector subspace of (36) of vectors of trace class will be denoted by
HI K- KH,. 37
Note that (37) is not a Hilbert space. We have, however, canonical maps
K:H X RH)Q Hpp1 X - K Hppgn) > HI X - K Hpgn
and, if H* denotes the dual Hilbert space to a complex Hilbert space H,
tr i HRH X H K- - XH, > HI XK H,.

This allows us to define a particular example of stack of LCMC’s based on H, which
we will call H. The underlying stack of lax commutative monoids (7 -algebras) is S.
Now let B € B. Let s, t be sections of the stack S over B, i.e. covering spaces of B with
finitely many sheets. Then we have an infinite-dimensional holomorphic bundle over B,

(H*BS = 1 (38)

What we mean by that is that there is a well defined sheaf of holomorphic sections of (38)
(note that it suffices to understand the case when s, ¢ are constant covering spaces, which
is obvious). Now a section of H over a pair of sections s, ¢t of S is a global section of
(38) over b; the only automorphisms of these sections covering /ds x Id; are identities.
The operation +, 7 are given by the operations X, tr (see above).

We can also define a variation of this LCMC for the case of labels indexed over a
finite set K. We need a collection of Hilbert spaces

Hg = {Hrlk € K}.

Then we shall define a stack of LCMC’s H g . The underlying stack of T-algebras (com-
mutative monoids) is Sk. Let s, ¢ be sections of Sk over B € B. The place of (38) is
taken by

(Hi)™ BHE (39)

By the sheaf of holomorphic section of (39) when B is a point we mean that X-powers
of Hy (or Hf) for each label k € K are taken according to the number of points of
['(r) (resp. I'(s)); when s and ¢ are constant covering spaces B, the space of sections
of (39) is simply the set of holomorphically varied elements of the spaces of sections
over points of B (which are identified). This is generalized to the case of general s, ¢
in the obvious way (using functoriality with respect to permutations of coordinates). As
above, the only automorphisms of these sections covering Id; x Id, are identities.
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Remark. For technical reasons (different types of convergence), the above setup involv-
ing Hilbert spaces and trace class elements is sometimes insufficient (see Example below
and Sect. 4 above). Because of that, it is beneficial to generalize to a context where H
simply means any SLCMC over S (resp. Sk in the labelled case) whose spaces of sec-

tions are vector spaces, the operation 7 is linear, and the operation + is bilinear. We
shall further assume that 7/ is a sheaf in the sense that the only endomorphisms over the
identity in S (resp. Sk) is the identity.

Example. Consider the free bosonic CFT (10) discussed in Sect. 4. As remarked above,
the description 10 is actually already not quite right: the vacuum state is to be an ei-
genstate of momentum 0, but there is no non-zero function in L?(R, C) with support in
the set {0}. For the same reason, we also find that the operator U 4 . associated with the
standard annulus A, is not trace class as defined (since, for example, 1 is a limit point of
the spectrum of Uy, ). This is the usual problem in quantum mechanics. In the present
setting, a solution along the lines of the Remark can be obtained as follows: Let F be
the bosonic Fock space, i.e.

F=Sym({", 7% n > 0).
Then the sections of H over (s, t) (over a point) are elements
f e ]_[ f®|t|®}—-*®|s|
keRIsI+I

(the product is a categorical product of vector spaces) which have the property that for
every pair of injections i : u — s, j : u — t and every map

ki(s—i@)] Jo—jw) —R,
we have

/ (@i jk(x)) < 00,
xeRu

where ¢ jx () = f(¥),y € R"H isdefinedby y(i(r) = y(j (1) = x(r), y(r) = k(r)
forr € (s —i(u)) | [(t — j(u)) and, for 7 € FOQF*s|,

p@ =inf() laillz=) ai ® ey llecll=1forallx},
xes| ]t

and gluing along i, j is defined by

fk) = / tr (i, j 1 (x)). (40)
xeRu

The expression (40) is always defined because of the condition imposed, and the condi-
tion is preserved by the gluing operation by Fubini’s theorem.

Now we can define an abstract CFT based on an SLCMC D with underlying stack of
lax commutative monoids (SLCM) S simply as a 1-morphism of SLCMC’s, over Idsg,

D — H.
A similar definition applies if D has underlying SLCM Sk, with H replaced by H .
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However, this notion still is not definitive in the sense that it does not capture anom-
aly. In Sect. 5 above, we give the most general definition of modular functor, but it is
useful to review a direct definition from [16] at least in one special case, namely the
1-dimensional anomaly. To this end, we give the definition of C* -central extension (or,
equivalently, 1-dimensional modular functor) on an LCMC D. This is a strict morphism
of stacks of LCMC'’s

v:D—>D (41)

over Id on the underlying stacks of LCM’s with the following additional structure (for
simplicity, let us just work in the holomorphic (chiral) setting): For each object B of 15,
and each pair of sections s, ¢ of S over B, and each section @ of D overs, ¢, B, B’ — B,

v Nalp) (42)

with varying B’ is the space of sections of a complex holomorphic line bundle over B.
Furthermore, functoriality maps supplied by the structure of a stack of LCMC’s on D are
linear maps on these holomorphic line bundles. Regarding the operation +, we require
that the map induced by +

v alp) x v Ble) = ¥ (@ + Bl 43)
be a bilinear map, which induces an isomorphism of holomorphic line bundles
v (alp) ®0, v (Bly) > ¥ (@ + B)lp) (44)

(Op is the holomorphic structure sheaf on B).

Regarding the operation 7, we simply require that if « is a section of D over s+u, t+u,
B, where u is another section of § over B, and « is the section over s, t, B which is
obtained by applying the operation ? to «, then the map of holomorphic line bundles
coming from LCMC structure

v Nalp) — v (@lp) (45)

(B’ — B) is an isomorphism of holomorphic line bundles.
By a CFT with 1-dimensional modular functor over D with underlying stack S we
shall mean a CFT

¢:D—>H (46)

(where D is a C*-central extension of D which has the property that ¢ is a linear map
on the spaces of sections (42). Similarly in case D has underlying stack Sk, we simply
replace S by Sk everywhere throughout the definition.

It is appropriate to comment on a weaker kind of morphism of lax algebras where we
do not require that the coherence maps be iso. By a pseudomorphism of lax T -algebras
(and similarly in the cases of lax &, T-algebra and their stacks) we shall mean a functor

f: X—>Y
together with morphisms (called cross-morphism, not necessarily iso)

v(fs /)= fv 47

which commute with all the coherences in the lax T-algebra sense (we shall refer to
these required commutative diagrams as cross-diagrams).
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Remark. Although the anomaly of the linear o -model considered in Sect. 4 is 1-dimen-
sional, in Sect. 5 we considered higher-dimensional anomalies. It is therefore appropriate
to reconcile the above remark concerning generalizing the SLCMC H to cases when
the Hibert/trace class model fails due to non-convergence with our discussion of higher-
dimensional modular functors via 2-vector spaces. In other words, what is the right
generalization of H € Obj (MHilby in C(M, H)? The main point is that the Hilbert

tensor powers H 81 & H*®s should be replaced by a “vector space 1ndexed over M”
which depends only on s, ¢ and have appropriate designated “trace maps”.

The category MY <! of vector spaces indexed over M is defined as
M ® (CVECZ

where (Cg €t is the lax commutative semiring of C-vector spaces (not necessarily finitely
dimensional).
Now H € Obj(M"¢"), we may consider a pseudomorphism of SLCMC’s over S
(see above)
hiS*— C(MVeh.

Here by C(M"¢“") we mean the analogous construction as C (M), but with the duals
taken over CY¢“!, so (MY!)* =4, (M*)V¢! . Then, an SLCMC C (M, h) is defined

as follows. Sections over a point over o € Obj(S)? consist of a section M of C (M)
over o and a 2-morphism
M — h(o).

Stacking, and the necessary verifications, are completed in the usual way.
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