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Abstract: We analyze the link between the occurrence of massless B-type D-branes for
specific values of moduli and monodromy around such points in the moduli space. This
allows us to propose a classification of all massless B-type D-branes at any point in the
moduli space of Calabi—Yau’s. This classification then justifies a previous conjecture
due to Horja for the general form of monodromy. Our analysis is based on using mo-
nodromies around points in moduli space where a single D-brane becomes massless to
generate monodromies around points where an infinite number become massless. We
discuss the various possibilities within the classification.

1. Introduction

The derived category approach to B-type D-Branes [1-5] appears to be extremely pow-
erful. It allows one to go beyond the picture of D-branes as vector bundles over sub-
manifolds so that «’-corrections can be correctly understood. For example, the fact that
B-type D-branes must undergo monodromy as one moves about the moduli space of
complexified Kihler forms can be expressed in the derived category language [6-8].

The main purpose of this paper is to try to classify which D-branes can become
massless at a given point in the moduli space. Again the language of derived categories
will be invaluable.

In order for an object in the bounded derived category of coherent sheaves to rep-
resent a D-brane it must be “Il-stable”. Criteria for I1-stability have been discussed
in [9-12] although it is not clear that we yet have a mathematically rigorous algorithm
for determining stability. Despite this, in simple examples such as in the above refer-
ences and [13] one can compute stability with a fair degree of confidence. In particular
if you have reason to believe that a certain set of a D-branes is stable at a given point
in the moduli space then one can move along a path in moduli space and see how the
spectrum of stable states changes. There is considerable evidence [12] that such changes
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in I1-stability depend only on the homotopy class of the path in the moduli space of
conformal field theories.

The fact that changes in IT-stability do depend on the homotopy class of such paths
was used in [12] to “derive” Kontsevich’s picture of monodromy at least in the case of
the quintic Calabi—Yau threefold.

The moduli space of conformal field theories may be compactified by including
the “discriminant locus” consisting of badly-behaved worldsheet theories. Typically one
expects such theories to be bad because some D-brane has become massless [14]. Indeed,
the monodromy seen in [2, 13] around parts of this discriminant locus was intimately
associated to massless D-branes.

It is this link between massless D-branes and monodromy that we wish to study more
deeply in this paper. In simple cases as one approaches a point in the discriminant locus,
a single D-brane becomes massless. Of more interest to us is the case where an infinite
number become massless.

In [7,8] one of the authors studied components of the discriminant locus correspond-
ing to what was called “EZ-transformations”. Namely if one has a Calabi—Yau threefold
X with some complex subspace E, there may be a point in K&hler moduli space where
E collapses to a complex subspace Z of lower dimension than E. We will see that it is
then the derived category of Z that describes the massless D-branes associated to this
transformation. A particular autoequivalence was naturally associated to a particular
EZ-transformation and it was conjectured in [7, 8] that such an autoequivalence resulted
from the associated monodromy. We will call this conjecture the “EZ-monodromy con-
jecture”. One purpose of this paper is to justify this conjecture.

Because of the nature of our understanding of D-branes and string theory it will
not be possible to rigorously prove any hard theorems about D-branes. Instead we will
have to play with a number of conjectures whose interdependence leads to considerable
evidence of the validity of the overall story. In particular, on the one hand we have the
EZ-monodromy conjecture and, on the other hand, we have our conjecture concerning
which D-branes become massless. These two conjectures are interlinked by IT-stability
as we discuss in Sect. 2. In particular, in Sect. 2.1 we discuss an older conjecture con-
cerning single massless D-branes. In Sect. 2.2 we then review a framework for the more
general case which is linked to the simpler case in Sect. 2.3 for a particular example.
The physical interpretation of the general case is then given in Sect. 2.4.

The link discussed in Sect. 2.3 between the simple case of a single D-brane becoming
massless and an infinite number becoming massless depends upon a mathematical result
which is derived in Sect. 3. This section is more technical than the other sections and may
be omitted by the reader if need be. That said, it shows how the sophisticated methods
of derived categories are directly relevant to the physics of D-branes.

In Sect. 4 we discuss a natural hierarchy of cases. The familiar “conifold”-like situa-
tion arises where Z is a point and only one soliton becomes massless. If Z has dimension
one then the derived category of Z has more structure. This case corresponds to the Sei-
berg—Witten theory of some nonabelian gauge group. We study an explicit example of
this elsewhere [15].

The case where Z has complex dimension two is more complicated as the derived
category now has arich structure. We show that it appears to be similar to the spectrum of
massless D-branes one gets from a decompactification. We also see that it demonstrates
how 2-branes wrapped around a 2-torus can become massless. At first sight this appears
to contradict T-duality but we will see that this is not actually the case.

Finally, for completeness, in Sect. 4.4 we discuss the case of an exoflop which is
awkward to fit into our general classification but still yields a simple result.
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2. Monodromy and Massless D-Branes

2.1. A single massless D-brane. B-type D-branes on X correspond to objects in the
bounded derived category of coherent sheaves on X [1-5]. A given object A is repre-
sented by a complex. We may then construct another object A[n] by shifting this complex
n places to the left. Such a shift or “translation” is a global symmetry of physics if it is
applied simultaneously to all objects [2]. Relative shifts are significant — an open string
stretched between A and B is not equivalent to an open string stretched between A[n]
and Bifn #£ 0.

We would like to consider the case of moving to a point in moduli space where a
single physical D-brane A becomes massless. Because of the global shift symmetry all of
its translates A[n] are equally massless. Thus an infinite number of objects in D(X) are
becoming massless even though only one D-brane counts towards any physical effects
of this masslessness as it would be computed by Strominger [14] for example.

The analysis of Il-stability in [12, 13] showed that monodromy is intimately asso-
ciated to massless D-branes. This should not be surprising since monodromy can only
occur around the discriminant and the discriminant is associated with singularities in the
conformal field theory associated with massless solitons [14].

Consider an oriented open string f stretched between two D-branes in a Calabi—Yau
threefold X. In the derived category language this is written as a morphism between two
objects in D(X),

f:A— B. (1)

These two objects may or may not form a bound state according to the mass of the open
string f. If f is tachyonic then we have a bound state a la Sen [16]. (As we emphasize
shortly A is really an anti-brane in such a bound state.)

A real number! (dubbed a “grade” in [2]) ¢ is associated to each stable D-brane. We
assume ¢ varies continuously over the moduli space and is defined mod 2 by the central
charge Z:

¢ = —% arg(Z) (mod 2). 2

The precise definition of ¢ is discussed at length in [12]. In [2] it was argued that the
mass squared of the open string in (1) is then proportional to ¢(B) — ¢(A) — 1 allowing
the stability of this bound state to be determined.

One of the key features of the derived category which makes it so useful for the study
of solitons is the way that bound states are described using distinguished triangles. The
open string f between A and B is best represented in the context of a distinguished

triangle
/ C
1
AT
A——B.

! 1t has been suggested that ¢ is defined modulo some integer such as 6 [2, 17]. Periodicity can also
appear, if desired, in Floer cohomology (see [18, 19] for example) which is supposedly mirror to the
structure we are considering. For simplicity we ignore such a possibility. To take such an effect into
account one should probably quotient the derived category by such translations.

3)
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The “[1]” represents the fact that one must shift one place left when performing the corre-
sponding map. The object C, which is equivalent to the “mapping cone” Cone(f : A —
B), is then potentially a bound state of A[1] and B. As explained in [2], A[odd] should
be thought of as an anti-A. The triangle also tells us that B is potentially a bound state
of A and C. Equally A is a bound state of B and C[—1]. The “[1]” could be interpreted
as keeping track of which brane should be treated as an anti-brane.

The fact that D(X) copes so well with anti-branes demonstrates its power to ana-
lyze D-branes. The other approach, namely K-theory, should be considered the derived
category’s weaker cousin since it only knows about D-brane charge!

Now suppose that A is stable and becomes massless at a particular point P in the
moduli space. Furthermore, let us assume that the only massless D-branes at P are of the
form A[m] for any m. Let us take a generic complex plane with polar coordinates (r, 6)
passing through P at the origin and assume that Z (A) behaves as cr exp(—i6) near P for
¢ some real and positive constant. That is, we assume that Z(A) has a simple zero at P.

Suppose B does not have vanishing mass. It follows that Z(B) and Z(C) are equal at
P and nonzero. In particular if we circle the point P by varying 6, these central charges
will be constant close to P. Furthermore, if C can be a marginally bound state of anti-A
and B near P, then, according to the rules of [12], we have ¢(B) = ¢(C) near P.

This allows us to rewrite (3) including the differences in the ¢’s for the open strings
(i.e., sides of the triangle) to give

1+afb+% C
I
f
B,

A———
b—a—%

“4)

where ¢(B) = b and ¢(A) = a at 6 = 0. The stability of a given vertex of this triangle
depends upon the number on the opposite side being less than 1. By “stability” we mean
relative to this triangle only. A given D-brane may decay by other channels.

It follows that C becomes stable for @ > 7 (b —a — 1) while B becomes unstable for
0 > (b — a). Note that A is always stable near P consistent with our assumptions.

Based on this idea that we “gain” C and “lose” B as 6 increases, we can try to for-
mulate a picture for monodromy around P. The meaning of monodromy is that after
traversing this loop in the moduli space we should be able to relabel the D-branes in
such a way as to restore the physics we had before we traversed the loop. It is important
to note that monodromy is not really the statement that a certain D-brane manifestly
“becomes” another D-brane explicitly as we move through the moduli space. It is much
more accurately described as a relabeling process.

Since stability is a physical quality, we are forced to relabel B since it has decayed.
The obvious candidate in the above case is to call it C. Thus monodromy would transform
B into C.

Life can be more complicated than this however. If we have an open string ' : A —
C, then, since ¢(B) = ¢(C) when B decays to C + A[1], C will immediately decay
further to D = Cone(f’ : A — C) plus another A[1].

Suppose A is “spherical” in the sense of [20] which means Hom (A, A[m]) = C for
m = 0 or 3, and Hom(A, A[m]) = 0 otherwise. This condition is always satisfied in
the context of this subsection — i.e., only A and its translates become massless. A long
exact sequence associated to (3) then implies

dim Hom(A, C) = dim Hom(A, B) — 1. 5)
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It follows that this second decay will occur if dim Hom(A, B) > 1. Iterating this process
one sees that B will decay splitting off an A[1] a total of dim Hom(A, B) times.

Finally we should also worry about homomorphisms between B and A[m] for other
values of m. We refer to the example in Sect. 4 of [13] for a detailed example of exactly
how this happens in a fairly nontrivial example. All said, allowing for all these decays,
C becomes a number of A’s (probably shifted) together with

Cone (( LA QA1 @ A2 @ .. ) - B) , (6)

where

b, = dim Hom(A[—n], B)
= dim Ext" (A, B). @)

The cone (6) may be written more compactly as
K (B) = Cone(hom(A, B) @ A — B), ®)

where hom(A, B) is the complex of C-vector spaces
0 0 0 | 0 5 0
...— Ext’(A,B) - Ext' (A,B) — Ext“*(A,B) — ... . 9)

We refer to [20] for further explanation of the notation.2 We can also write more heuris-

tically
As much massless stuff that can
Ka(B) = Cone bind to B as possible. I —BJ. (10)

Interpreted naively, we have shown that, upon increasing 6 from —oo to 400, an
object B will decay and a canonically associated object Ka (B) will become stable and
appear as one of the decay products of B. What is desired however is monodromy once
around P, i.e., 8 should only increase by 2w. We will indeed claim that monodromy
once around P replaces B by Ka (B).

For some objects, increasing 6 by only 27 (at the appropriate starting point) will
cause the complete decay of B into Ka (B). Thanks to its rather simple cohomology, this
always happens for O, the structure sheaf of a point x € X. Therefore the relabeling
process under monodromy should replace B by Ka(B). There are undoubtedly many
other objects B’ under which this increase in 8 by only 27t would not induce the entire
decay to Ka(B’). This doesn’t matter however, we can still leave physics invariant by
relabeling B’ by K (B'). For example in an extreme case, both B’ and Ka(B’) may be
stable with respect to the above triangle both before and after increasing 6 by 2x. It is
therefore harmless to relabel one of these states as the other.

WEell, it is fine saying that it is harmless to relabel B’ by Ka (B'), but why are we forced
to relabel like this? The reason is that we know that physics must be completely invariant
under monodromy which implies that the relabeling must amount to an autoequivalence

2 Note that since “left-derived” L’s or “right-derived” R’s should be added to every functor in this
paper, we may consistently omit them without introducing any ambiguities!
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of D(X). One can indeed show that K defines an autoequivalence3 of D(X) so long
as A is spherical [8,20]. What’s more, as argued in [12,21], it is pretty well the only
autoequivalence that works. To be more precise, once we have argued that the specific
objects 0y undergo monodromy given by Ka then all other objects must undergo the
same monodromy up to some possible multiplication by some fixed line bundle L.

Note that the central charge Z is also a physical quantity. Insisting that monodromy
acts correctly in this case amounts to insisting that the D-brane “charges” ch(B) trans-
form under monodromy. This is precisely the same monodromy on H " (X, Z) that one
deduces from mirror symmetry as in [22]. This determines that the above line bundle
L is trivial (in a considerably overdetermined way!). It is known (see [7] for example)
that K then induces the correct transformation on these charges — indeed this was the
reason why Ka was conjectured as the monodromy action in the first place [6]!

It is worth noting that in some special cases the transformation Ka has nothing to do
with decay. Consider how the spherical object A itself transforms:

Cone(hom(A,A) @ A > A)=Cone((C—->0—-0—->C) A — A)
=Cone(A—->0—-0—A)—> A
=Z=0—->0—>A (1D
= A[-2],

where we use the convention of [4] by underlining the zero position when necessary.
Such a transformation cannot be argued from I1-stability however. Clearly an open string
between A and itself (perhaps translated) cannot have a mass that depends upon some
angle as we orbit the conifold point as clearly the mass is constant. Instead one could
argue that the transform (11) occurs simply because Z (A) has a simple zero at the con-
ifold point and thus ¢(A) shifts by —2 as we loop around the conifold point. Then we
can apply the rule ¢(A[n]) = ¢(A) + n from [12].*

We must therefore view (8) as being motivated by Il-stability for most but not all
of the objects in D(X). Note that the fact that the obvious physical requirement that
monodromy be an autoequivalence of D(X) can force (8) to be the required transform
for all the objects in D(X) once I1-stability has established it for a few elements. This
was the basis of the proof in the case of the quintic in [12].

Anyway, all said we have motivated the following conjecture (which, in perhaps a
slightly different form, is due to Kontsevich [6], Horja [7] and Morrison [23]):

Conjecture 1. If we loop around a component of the discriminant locus associated with
a single D-brane A (and thus its translates) becoming massless then this results in a
relabeling of D-branes given by an autoequivalence of the derived category in which B
becomes Cone(hom(A, B) @ A — B).

This transformation was also motivated by its relation to mirror symmetry and studied
at length by Seidel and Thomas [20].

3 Pedants will object that the cone construction is only defined up to a non-canonical isomorphism
making the transformation on morphisms badly-defined. Fortunately, as is well-known and we discuss
at length in Sect. 3, this transformation can be written as a Fourier—Mukai transform removing this
objection.

4 In[17] it was suggested that the monodromy action on the derived category should be translated by
2 to undo this action on A. Since monodromy is a relabeling process, one is free to do this, but it looks
unnatural from the perspective of associating monodromy with I1-stability.
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2.2. General monodromies. 1t is then natural to ask what happens more generally, i.e.,
if more than just a single D-brane A becomes massless. In order to answer this we need
to set up a general description of how one might analyze monodromy in a multi-dimen-
sional moduli space.

There are two paradigms for monodromy — both of which are useful:

1. The discriminant locus decomposes into a sum of irreducible divisors. Pick some
base point in the moduli space and loop around a component of the discriminant
“close” to the base point.

2. Restrict attention to a special rational curve C in the moduli space. This rational curve
contains two “phase limit points”, in a sense to be described below, and a single point
in the discriminant. The loop in question is around this unique discriminant point.

In the case of the one parameter models, such as the quintic, these two paradigms coin-
cide. The moduli space is C = P! and the discriminant locus is a single point. If a
component of the discriminant intersects C transversely then we can again have agree-
ment between these two pictures of monodromy. In general the discriminant need not
intersect C transversely — a fact we use to our advantage in Sect. 2.3.

We now recall the relationship between the discriminant locus and phases as analyzed
in [24,25]. The following is a very rapid review. Please refer to the references for more
details.

To make the discussion easier we suffer a little loss of generality and assume we are
in the “Batyrev-like” [26] case X being a hypersurface in a toric variety. The data for X
is then presented in the form of a point set .27 which is the intersection of some convex
polytope with some lattice N. See [27], for example, for more details of this standard
construction. The conformal field theory associated to this data then has a phase struc-
ture where each “phase” is associated to a regular triangulation of .7 [28,29]. The real
vector space in which the Kéhler form lives is naturally divided into a “secondary fan”
of all possible phases. One cone of this fan is the Kihler cone for X where we have the
“Calabi—Yau” phase.

Mirror to X, Y is described as the zero-set of a polynomial W in many variables. The
points in ./ are associated one-to-one with each monomial in W. Thus the data <7 is
associated to deformations of complex structure of Y via the monomial-divisor mirror
map [30].

If we model the moduli space of complex structures on Y by the space of coefficients
in W, then the discriminant locus can be computed by the failure of W to be transversal.
This can be mapped back to the space of complexified Kihler forms on X. The result is
that part of the discriminant asymptotically lives in each wall dividing adjacent phases
in the space of Kéhler forms. That is to say, if we tune the B-field suitably we can always
hit a bad conformal field theory as we pass from one phase to another. Thus we may
associate singular conformal field theories with phase transitions.

The discriminant itself is generically reducible. The combinatorial structure of this
reduction has been studied in detail in [31]. In particular, any time an m-dimensional
face of the convex hull of the set ./ contains more than m + 1 points, the resulting
linear relationship between these points yields a component of A. One may then follow
an algorithm presented in [25] to compute the explicit form of each component. The
general picture then is of a discriminant with many components with each component
having “fingers” which separate the phases from each other. Each phase transition is
associated with fingers from one or more component of A.

Torically each maximal cone in the secondary fan is associated to a point in the
moduli space which gives the limit point in the “deep interior” of the associated phase.
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The real codimension-one wall between two maximal cones corresponds to a rational
curve C passing through two such limit points. The rational curve C will intersect the
discriminant locus in one point as promised earlier in this section.

One component of A is distinguished — it corresponds to the case of viewing the
full convex hull as a face of itself. This is called the “primary” component of A. Closely
tied in with Conjecture 1 (and at least partially attributed to the same authors) is the
following conjecture:

Conjecture 2. Az any point on the primary component of A (reached by a suitable path
from a suitable basepoint) the 6-brane associated with the structure sheaf Ox and its
translates become massless. At a generic point no other D-branes become massless.

This idea was perhaps first discussed in [32]. It is certainly a very natural conjecture
— the primary component of the discriminant is a universal feature for any Calabi—Yau
manifold and so must be associated with the masslessness of a very basic D-brane. The
fact that it works for the quintic was explicitly computed in [12], and presumably it is
possible to verify the conjecture in a much larger class of examples. We will assume this
conjecture to be true.

The Kéhler cone is a particular maximal cone in the secondary fan corresponding to
the “Calabi—Yau” phase. Let us concentrate on the walls of the Kéhler cone. A typical
situation as we approach the wall of the Kéhler cone is that an exceptional set E collapses
to some space Z. We depict this as

ECtsx (12)

iq

where i is an inclusion (which may well be the identity) and ¢ is a fibration with a strict
inequality dim(E) > dim(Z).

Associated with such a wall in the secondary fan we have a rational curve C in the
moduli space connecting the large radius limit point with some other limit point. We
wish to consider the monodromy associated to circling the point in the discriminant in
C. The resulting autoequivalence on the derived category has been studied in [8] where
it was dubbed an “EZ-transformation”.

The simplest example would be the case of the quintic Calabi—Yau threefold which
has only one deformation of the Kéhler form. This single component of the Kahler form
gives the overall size of the manifold. Thus the “wall” (i.e., the origin) corresponds to X
collapsing to a point. In this case i is the identity map and Z is a point. This is the case
discussed above in Sect. 2.1.

Indeed, it appears that in all cases where Z is a point, the resulting monodromy
amounts to a transform of the type studied in Sect. 2.1. It is precisely when Z is more
than just a point the case of interest to us.

2.3. New monodromies from old. The precise form of the “EZ-monodromy conjecture”
which associates an autoequivalence of D(X) with a given EZ-transform was given
in [8]. Rather than appealing this conjecture, let us derive the simplest example of a
more general case, by assuming the conjectures above, dealing with the case of a single
massless D-brane.
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We will look at the well-known example [33], where X is a degree 8 hypersurface in
the resolution of a weighted projective space ]P)?Z,Z,Z,l, 1y The mirror Y is then a quotient
of the same hypersurface with defining equation

402122232425 + a1z‘1‘ + azzé + a3z§1 + a4z§ + aszg + aszizi. (13)

The “algebraic” coordinates on the moduli space are then given by

ayaaszag asas
X=—7—, y=—%. (14)
a a
0 6

The primary component of A can be computed as
Ao = (1 —28x)% — 21852y, (15)

The edge of the convex hull containing the points labeled by a4, as, a¢ leads to another
component

Al =1—4y, (16)

with A = AgAj.
X can be viewed as a K3-fibration 7 : X — P!. In this case the component of the
Kiihler form given asymptotically (for x, y < 1) by 51 log(x) controls the size of the

2mi
K3 fibre. The component of the Kahler form given asymptotically by % log(y) gives
the size of the P! base.

The base P! is made very large by setting y — 0. In this case, we hit the primary
component Ag of the discriminant when x = 278 Let us refer to this point as Pj.
Increasing x beyond this value moves one out of the Calabi—Yau phase into the hybrid
“Pl_phase” where the model is best viewed as a fibration with base P! and a Landau—
Ginzburg orbifold as fibre [29]. Fixing y = 0 and varying x spans a rational curve C in
the moduli space shown in Fig. 1.

We would like to analyze the monodromy around the singularity P; in Fig. 1. Clearly
the transition associated with this monodromy consists of collapsing X onto the P! base.
In the language of (12), E = X, i.e., the inclusion map i is the identity, and Z = P!,
The map ¢ is given by the fibration map . In a way, we have constructed the simplest
possible example where Z is more than just a point.

Large Radius Limit (x=0)

Calabi-Yau
Singularity £ (x = 1/256)

Fig. 1. Moduli Space fory =0
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L
y

Hybrid Limit Large Radius Limit

Fig. 2. Full Moduli Space around P

Now the useful trick is that the monodromy around the singularity in Fig. 1 can be
written in terms of other monodromies that we already understand. This was originally
described in [33], while this feature was also exploited in [7,34].

The full moduli space near P; is shown in Fig. 2 (with complex dimensions shown as
real). The rational curve C given by y = 0 corresponds to an infinite radius limit and as
such we understand the monodromy around it (see for example [7,34]). (We will follow
closely the notation and analysis of [34]).

Let L refer to the autoequivalence of D(X) we apply upon looping this curve. It
follows that

L(B) =B® 0x(9), a7)

where S is the divisor class of a K3 fibre in X. Meanwhile let K refer to the autoequiva-
lence of D(X) we apply upon looping the primary component Ay = 0 (i.e., denote K¢,
of Sect. 2.1 by K). Then from Conjectures 1 and 2 we know that

K(B) = Cone(hom(Cx, B) ® Ox — B). (18)

It follows (see, for example Sect. 5.1 of [34] for an essentially identical computation)
that the autoequivalence for the desired loop shown in Fig. 1 around P; is given by

L 'KLK. (19)

The desired goal therefore is to find the autoequivalence of D(X) obtained by combining
the transforms in the above form.
The result is that

L 'KLK = H, (20)
where H is an autoequivalence that acts on D(X) by
H(B) = Cone(7*7,B — B). 21

Section 3 is devoted to the proof of this statement. Let us review briefly what is exactly
meant by the rather concise notation of (21). Given the map = : X — Z and a sheaf
& on X we may construct the “push-forward” sheaf 7.& on Z by associating 7.& (U)
with & (z ~'U) for any open set U C Z. The 7, appearing in (21) is the right-derived
functor of this push-forward map. This . “knows” about the cohomology of the fibre
of 7 (see, for example, Chapter III of [35]). The pull-back map 7 * is defined for sheaves
of 0'z-modules, and in particular for locally free sheaves, and thus for vector bundles.
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The map 7* appearing in (21) is the corresponding left-derived functor. It is a central
result of the theory of derived categories [36] that * is the left-adjoint of m,:

Homy (7*E, F) = Homy (E, n.F), (22)
for any E € D(Z) and F € D(X). It follows that
Homy (mw*mB, B) = Homz (7.B, 7.B). (23)

Thus the most natural morphism that would appear in (21) is the image of the identity
on the right-hand side of Eq. (23) under this natural isomorphism. One can show that
this is indeed the case.

2.4. Interpretation of monodromy. Let us interpret (21) in light of our discussion of
monodromy from IT-stability in Sect. 2.1. To aid our discussion consider how one might
rewrite the monodromy result (18) for the primary component of the discriminant. Let
¢ : X — x be the constant map of X to a single point. One can then show, using the
fact that sheaf cohomology is equivalent to ¢, which, in turn, is also given by the global
section functor Hom(&x, —) [35], that (18) is equivalent to

K(B) = Cone(c*c.B — B). (24)

Now, the only D-brane (up to translation in D(X)) which becomes massless in this case
is Ox, which is equal to ¢*C, where we denote the trivial (very trivial!) line bundle on the
point x as C. That is, massless D-branes for the primary component of the discriminant
are given by c*(something). The c, in (24) then gives a natural map to form a cone as
required.

The expression (10) immediately dictates that we may interpret Cone (7 *7.B — B)
in a similar way. The D-branes becoming massless at the point P in the moduli space
correspond to T*Z for some Z € D(Z). The push-forward map 7, can be viewed as the
natural ingredient required to form the cone from (23).

There is one technical subtlety here which needs to be mentioned. The set of objects of
the form 77*z for any z € D(Z) is not closed under composition by the cone construction.
If we write

C = Cone(f : m*a — 7*b), (25)
for two objects a, b € D(Z), then we may only write
C =n*Cone(f’ :a— b), (26)

when there is a relationship between the morphisms f = 7* f/. Unfortunately such an
f’ need not exist for arbitrary f. Thus we might more properly say that the set of mass-
less D-branes are generated by objects of the form 7%z, where we allow for composing
such states.

Flushed with success at interpreting the autoequivalence given by this example we
now write down the most obvious generalization for the more general EZ-transform
(12). First of all, we expect ¢*(something) to be a massless D-brane on E. E is mapped
into X by the inclusion map i. The push-forward map i, is then “extension by zero” of
a sheaf which is the obvious way of mapping D-branes on E into D-branes on X. Our
next conjecture is then
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Conjecture 3. Any D-Brane which becomes massless at a point on a component of the
discriminant associated with an EZ-transform is generated by objects of the form i,q*z
forz e D(Z).

This implies a corresponding autoequivalence for the monodromy from IT-stability:
B+ Cone(i,q*¢B — B), 27

for some “natural” map ¢ : D(X) — D(Z). To compute ¢ we use the same trick as (23).
Introduce the functor i as the right-adjoint of i:

Homy (i+E, F) = Homg(E, i'F), (28)

for any E € D(E) and F € D(X). The existence of i' is one of the most important
features of the derived category in algebraic geometry [36] and (28) may be regarded as
a generalization of Serre Duality. Now we have

Homy (i,i'B, B) = Homg (i'B, i'B). (29)

This leads to a natural map i,g*q4i'B — i4i'B — B. This implies

Conjecture 4. The monodromy around the discriminant in the wall associated to a phase
transition given by an EZ-transform leads to the following autoequivalence on D(X):

B — Cone(i.q*qsi'B — B). (30)

This is equivalent to the EZ-monodromy conjecture of [8]. In particular, it was proven
there that this is indeed an autoequivalence of D(X). We should perhaps emphasize that
we have not proven Conjectures 3 and 4. Rather we have used the known connection
between I1-stability and monodromy and generalized the example we considered in the
simplest and most obvious way.

Note that we may derive Conjecture 1 from Conjectures 3 and 4 as follows. Suppose
Z is a point, then i,¢*Z can only be one thing, so we have a single massless D-brane.
Furthermore, ¢, now becomes the cohomology functor giving

i+q*qsi'B = i (homg (O, i'B) ® OF)
= homy (i4+Og,B) ® i, OF. 31D

This also shows that the massless D-brane is i, O — i.e., the D-brane wrapping around
E as observed in [2, 10, 37].

For completeness we should also obtain the monodromy as one circles the discri-
minant in the opposite direction. Going back to the triangle (4) we see that decreasing
6 would result in C being replaced by B = Cone(C — A[1])[—1]. This implies we
modify the above monodromy arguments to consider the transformation under which

C + Cone(C — iwqg™nC)[—1], (32)

for some “natural” map n : D(X) — D(Z). That is, the massless objects bind “to the
right” of C in the mapping cone rather than to the left. The “[—1]" is needed because
of the asymmetrical definition of the mapping cone — we need to keep C in its original
position.



Massless D-Branes on Calabi—Yau Threefolds and Monodromy 57

The only nontrivial step in copying the above argument is that to construct  we need
a left-adjoint functor for ¢*. Given that ¢'F = ¢*F ® ¢'€z we can construct such a
functor from

Homg (E, ¢*F) = Homg (E® ¢' 07, ¢'F)
= Homz(¢«(E® ¢'07), F). (33)

Thus our desired transform is given by
C + Cone (C — iq*g((i"C ® q!ﬁz)) [—1]. (34)

It was shown in [8] that this is indeed the inverse of the transformation given in Conjec-
ture 4.

3. Composing Transforms

In this section we will prove (20). For completeness, we choose to adopt a more general
point of view and work with the class of Calabi—Yau fibrations over projective spaces.
Thus we cover examples such as elliptic fibrations over P? as discussed in Sect. 4.3, as
well as the case of K3 fibrations over P! as desired in Sect. 2.3.

Readers not familiar with manipulations in the derived category may well wish to
accept the result and skip this section. Having said that, some of the methods used in this
section are very powerful and may have many other applications to D-brane physics.

For the sake of brevity we use the formalism of kernels to describe the Fourier-Mu-
kai transforms. For the convenience of the reader we review some of the key notions
involved. The notations follow those of [8].

For X a non-singular projective variety, an object G € D(X x X) determines an exact
functor of triangulated categories ®¢g : D(X) — D(X) by the formula

®g(—) = p2,(G ® pi (), (35)

where p; : X x X — X is projection on the first factor, while p; is projection on the
second factor. The object G € D(X x X) is called the kernel.

The convenience in using kernels comes about because of the following natural iso-
morphism of functors:

q)g/*g = q)g/ o q)g (36)
The composition of the kernels G’, G € D(X x X) is defined as

G * G = p13,(p3(G) ® p1L (D), (37)

where p;; is the obvious projection from X x X x X to the relevant two factors. There is an
identity element for the composition of kernels: (Ax)«(Ox), where Ax : X — X x X
is the diagonal morphism.

In this section X is assumed to be a smooth Calabi—Yau fibration of dimension n
over Z = P4, with 7 : X — Z the fibration map. For us, the Calabi—Yau fibration
structure simply means that 7 : X — Z is a flat morphism (see Sect. II1.9 of [35]) with
the generic fibre a Calabi—Yau variety of dimension n — d. Further assumptions on the
Calabi—Yau fibration will be added shortly.
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In order to set the functors L, K and H of the previous section on firm mathematical
footing and to define them in the more general context of this section, we need to describe
the kernels that induce them as exact functors according to formula (35). The following
commutative diagram contains most of the maps that we use in the sequel:

X (38)

Z<—SIZXZT>Z.

The maps are mostly projections, that are obvious from the context, except for j :=
Ay : X < X x X the diagonal of X and = : X — Z the fibration map.

We now define the Fourier—Mukai functor L to be the autoequivalence of D(X)
induced by the kernel £ = j,(7*0z(1)). This functor acts on D(X) by (compare to
a7)

LB)=B®nrx"0z(1). (39

Note that the use of the notation L for this functor is consistent with the one used in
the previous section, since in the case when X is a K3 fibration over Z = P! we have
Ox(S) =n*0z(1).

We also define the exact functor K induced by the kernel K = Cone(Oxxx — On),
with Op = j,Ox and Ox«x — Op the natural restriction map. We can quote for
example Lemma 3.2 of [20] to conclude that the action of this functor on D(X) is indeed
given by (18). We make the assumption that the sheaf O is spherical (as defined in
Sect. 2.1). This ensures that the functor K is an autoequivalence of D(X).

Finally, we define the exact functor H to be the so-called fibrewise Fourier—
Mukai transform associated to the Calabi—Yau fibration 7 : X — Z (see, for exam-
ple, [20,38,39]). The functor H is induced by the kernel H = Cone(Oxx,x — Oa),
with Ox« ,x viewed as a sheaf on X x X (extension by zero), and Oxy,x — Oa the
restriction map.

To ensure that the functor H is indeed an autoequivalence (Fourier—Mukai functor),
we assume that the sheaf Oy is EZ-spherical. In the language of [8], this means that
there exists a distinguished triangle in D(Z) (Z = P?) of the form’

Oy — 1.0x — Oz(—d — D[—n+d] — Oz[1]. (40)

Note that the sphericity and EZ-sphericity conditions are both satisfied in the specific
example of a K3 fibration over P! analyzed in the previous section of this paper.

We now justify the use of the notation H to denote the fibrewise Fourier—Mukai
functor by showing that its action on D(X) is indeed, even in the higher dimensional
situation, given by the formula (21) of the previous section.

5 Lemma 3.12 in [20], as well as Example 3.3 of [8] provide sufficient conditions for (40) to hold.



Massless D-Branes on Calabi—Yau Threefolds and Monodromy 59

The fibre product X x z X fits in the fibre square diagram

Xx X 2oy 41)

qzl l

Xx——=7z,

and let k : X xz X — X x X denote the canonical embedding. Since 7 is of finite
type and flat, we can apply “cohomology commutes with the base change” (Prop. I119.3
of [35] or for a more general form Prop. II 5.12 of [36]):

7*7:B = ¢2.q;B, (42)
for some B in D(X). On the other hand, g; = p; ok, and g» = p; o k, so we can write

B = ¢24q1B
= pookok p'B 43)
= Pz*(k*ﬁszx ® [)TB)

Note that the last line in the previous formula represents the action on D(X) of the exact
functor <I>ﬁxXZ  induced as in (35) by the kernel Ox ., x (shorthand for k. Oxx , x).
This shows that H(B) = COHC(CD@’XXZX (B) — B) = Cone(r*n,.B — B) asdesired.
We are now ready to start discussing the main goal of this section which is to prove
the following relation between the defined Fourier—Mukai functors:

(LKLY ... (L"'KL)K = H. (44)
Equivalently, the same formula can be expressed using kernels as
(L Kx LY %« (LT Kx L) K =H, (45)

where, for any integer i, £! = j.(m*0(i)). Of course, the case d = 1 (Z = P') of
(44) is precisely formula (20) of the previous section.

Before we move on with the technicalities of the proof, a few remarks are in order.
Note that the parentheses in the two formulae are simply decorative: the composition
of functors, as well as the composition of kernels are associative (but, of course, not
commutative!). For a fixed object G in D(X x X), the functors G x — and — x G from
D(X x X) to D(X x X) are exact functors between triangulated categories (i.e. they
preserve the distinguished triangles). Therefore, for any integer i, we can start with the
distinguished triangle defining the kernel KC,

Oxxx = Opn — K = Oxxx[1], (46)

and apply to it the operations £~/ x — and — » £! from the left, and right, respectively.
But

L7 % Oxxx x L' Z=1507(—i) @ mFO7() = (m x 1) (O7(—i) ¥ O7(i)), (47)
and

L7 % Op % L1 = 0. (48)
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The notation &z (—i) X &z (i) (the exterior tensor product) will be used quite often in
what follows and simply designates s5 07z (—i) ® sTOz(i).
As a shorthand for later convenience we introduce the following objects in D(X x X) :

T = x 1) (Oz(=)) K Oz(i)) En507(—i) @Oz (i) (49)
and
Ci =L % K%L = Cone(T; — Op), (50)

for i € Z. To justify the definition of the kernel C;, we need to explain how to define the
morphism 7; — Oa. We start with the canonical pairing map on Z x Z,

O7(=i)R O7z(i) — On,, (51)

and liftitto X x X,
(m x 1) (Oz(=i) ® O7(i)) — (7 x )" (Oa,). (52)

We claim that

(m x 1) (Or,) = Oxxyx. (53)
Indeed, for the fibre square

XxzX ——>7Z (54)

r
xw

XxX———27ZxZ

witht : X xz X — Z the “diagonal map” of the fibre square (41), and = x 7 flat,
we can apply again “cohomology commutes with the base change” to obtain (& x
1) (Az)«O7 = kyt*O7 . Since t* 07 = Ox,x, the previous formula can be written
as (m x m)*(Az)«0z = Oxx,x, which is exactly (53).

The morphism 7; — O is then defined as the composition

T = (m x 1) (O02(=) K O7(i)) — (m x 1)"(On,) = Oxx,x — On. (55)

Note that Cy = K.
Therefore we have to show that

Cd*...*cli(:oEH. (56)

Note that the case d = 0 is immediate since in that case Z reduces to a point, and the
Fourier-Mukai transforms H and K coincide.

An important rdle in what follows will be played by Beilinson’s resolution of the
diagonal in Z x Z = P4 x P4 [40],

0— Oz(—d)RQL(d) — ... > O72(~)RQL(1) » Ozxz — O, — 0, (57)

where Q’Z is the sheaf of holomorphic i-forms on P,
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For any integeri, 0 < i < d, we define the complexes S{ on Z x Z to be the following
truncated versions of Beilinson’s resolution

0— O0z(—HK Qiz(i) - ...> 0z(-HK QIZ(I) — Ozxz — 0, (58)
arranged such that the sheaf 0z 7 is located at the 0’ h position. Define
Si = (m x 1)*(S)). (59)
We claim that there exists a natural map ©
Si = O, (60)

that can be defined at the level of complexes, where, as usual, &'a denotes the complex
on X x X with the only non-zero component located at the 0/ position. To see this,
we first make the remark that there exists a map of complexes S; — Oa,. Such a map
of complexes is well defined, since the complex S is a piece of Beilinson’s resolution.
We can now proceed as in (55) and define the desired morphism in D(X x X) as the
composition

Si =@ x1)(S) > (7 X 1) (Onr,) = Oxx,x = Oa. (61)

The key result to be proved in this section is the following:

Claim. For any integeri, 0 <i <d,
Cix...xCy xCo = Cone(S; — Oh). (62)

Before proving it, let us convince ourselves that the claim implies (56). The complex
S, is quasi-isomorphic to the sheaf &5, (more precisely, to the complex on Z x Z
having the sheaf 0, at the 0’ h position). Therefore, the i = d case of the claim states
that

Cax...xCixCo = Cone((r x m)*(Op,) — Oh). (63)

Since by (53) (7 x 7)*(Oa,) = Oxx,x, we see that the kernel Cg x ... * C; x Cp is
indeed isomorphic to H.

We now proceed with the inductive proof of the claim. The induction is performed
withrespecttoi. The casei = Oisclear, since S, = Ozxz and Sy = (7 x7)*(Ozxz) =
Oxxx.

To prove the inductive step i = (i + 1), we start with the natural maps S; — Oa
and 741 — Oa. Applying the functors — x S; and 7; 4| x — we get two more maps, and
we can form the commutative square

Tip1 xS —=§; (64)
Tit1 On.

6 In fact, by assuming that the sheaf &y is EZ—spherical, it can be shown that Homy » x (S;, Op) = C.
Therefore, the described nonzero morphism from S; to Oa is essentially unique.
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There is a nice result due to Verdier, guaranteeing that a commuting square

X —Y (65)

L

X —Y

extends to a “9—diagram” of the form

X’ Y’ z X'[1] (66)
i

X Y V4 X[1]
i

X" Y” z" X"[1]
i

X' — Y11l — Z'[1] — X'[2],

where all the rows and columns are distinguished triangles, every square commutes,
except for the last one (containing the shift operator [2]), which anticommutes (for more
details see p. 24 in [41]).

Applying Verdier’s “O—diagram” construction to (64) yields

Tiv1 xS S; Cir1 xS —————— T x Sl1]
Z-H ﬁA Ci+l 7:+1[1]

l l l i

T *x(Cix...xCp) —>=Ci*...xCo —>=Ciz1 x(Cix...xCo) —>T; 11 % (C; x...xCp)[1]

l | l i

Ti *Si[1] Si[1] Cip1 *Si[l] ———— T+ S[2].
(67)

We are interested in the term C; | *C; x ... x Cp.

To compute it, return for a moment to the commutative diagram (66), and consider
the “diagonal” map Y — Z”. The axioms of a triangulated category guarantee that the
morphism ¥ — Z” can be included in a distinguished triangle of the form

A—>Y—>Z" — A[ll (68)

A crucial piece of the proof of Verdier’s “O—diagram” (p. 24 in [41]) provides another
distinguished triangle that involves A, namely

A— X" = Y'[1] > A[l]. (69)
Returning to diagram (67), we obtain the distinguished triangles

X — Op —> Ciy1 xCi % ... xCy — X[1], (70)
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and
X > T *xCix...xCy — Si[1] = X[1], (71)

for some element X in D(X x X).

We plan on using the latter triangle to compute the object X, but for that we need to
first understand the term 7; 1 *C; % . . . xCp. The leftmost column of diagram (67) shows
that

Tir1 *xCi*...xCo = Cone(Tj11 *S; — Tiy1). (72)

By definition 7; 1| *S; = p13«(p537i+1 ® p},S;). After inspecting the definitions of the
kernels 7; 11 and S, it is not hard to see that computing 7; 1 *S; requires the calculation
of kernels of the type

P (Pi (T O2(—i = 1) @ 15 02(i + 1)) @ Pl O7(— ) @ QL)) =
= (r xm)*O7(—i — )R (Q,() @ Tx)(T* Oz + 1 — j))), (73)
with0 < j <i, and 'y : X — {pt} the projection to a point.
But (Tx)s(m*Oz(i+1—j) = T2)s(@Cx Q@ Oz(i + 1 — j)). Since Ox is EZ~

spherical, the long exact cohomology sequence induced by the distinguished triangle
(40) implies that

T2)«(mOx ® Oz(i +1— j)) =Homz(Oz, Oz(i +1—))). (74)
Summing up our work, we can conclude that
Cone(Tiy1 xS = Tiv1) = (1 x 1) (Oz(—i — ) WUy, (75)
where U; is the following complex in D(Z) :

0 — QL) ® Homz(Oz, O7(i + 1 — i)
— ... = QL(j) ® Homz(O7z, O7(i + 1 - j)) —
... = QL) ®Homz (07, Oz(i + 1 - 1))
— Oz Q Homyz (07, Oz(i + 1)) > Oz + 1) — 0, (76)
arranged such that the sheaf &7 (i + 1) is located at the 0/ position.
But what is the complex U; after all? Again the answer can be obtained by employ-

ing Beilinson’s resolution. Consider the following two quasi-isomorphic complexes
obtained by truncating (57) at the appropriate place:

0— QLR Oz(~d) - ... » QI+ )R Oz(=i —1) = 0,
0— QL) R Oz(—i) = ... = Ozx7 — Op, — 0, 7
arranged such that the sheaf &, in the second complex is located at the 0° " position

(and, as a result, the sheaf QiZJrl (i +1)X Oz (—i —1)is located at the (—i — 1) position
in the first complex). Call these complexes A; and B;, respectively.
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On one hand, the well known properties of the cohomology groups of the projective
space Z = P4, give that

52, Bi ®sTOz(i + 1) ZU; . (78)
On the other hand, the same cohomology properties give that
$2.(A @ 5702 + 1) = Q' + DI + 1. (79)
But B; and A; are quasi-isomorphic (i.e. isomorphic in D(Z x Z)), hence
U = QUG+ D+ 10, (80)
and

Tiz1%xCix...xCo = Cone(Tiy1 *S; — Tiy1)
> (7 x ) (O (=i — B + )i + 1. 81)

The distinguished triangle (71) and the definition (59) of the complexes S; show that
in fact our unknown complex X is nothing else but S; . The proof by induction of the
main claim of this section is then finished by invoking the distinguished triangle (70).

4. Applications

4.1. Z is a point. It was discussed above that the case of Z being a point amounts to

a single D-brane becoming massless. This is the case originally studied by Strominger

in [14] and yielding monodromy of the form studied in detail by Seidel and Thomas [20].
There are three possibilities:

1. E = X in which case we are looking at the primary component of the discriminant.
The quintic was studied at length in [12].

2. E is a complex surface of codimension one in X. This could arise from the blow-up
of an isolated quotient singularity. This was studied for example in [37].

3. E is arational curve. This is the flop case and was studied in [13].

4.2. Z is a curve. Now we have an infinite number of massless D-branes arising from
the derived category of an algebraic curve. There are two possibilities:

1. E = X in which case X is a K3-fibration and Z = P!. This is the case we studied in
Sect. 2.

2. E is aruled surface arising from blowing up a curve of quotient singularities in X.

In either case we are essentially looking at nonperturbatively enhanced gauge symme-
try [42,43].

Putting Z = &, for some point p € Z we obtain a soliton ¢*z = O which is the
structure sheaf of a single fibre F of the map ¢. These correspond to the charged vector
bosons responsible for the enhanced gauge symmetry. Clearly these bosons classically
have a moduli space given by Z since p may vary in Z. Upon including quantum effects
this leads to a number of massless hypermultiplets in the theory given by the genus of
Z [43,44].
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Putting z = O we obtain g*z = Cx which corresponds to one of the massless
monopoles.

In fact we may analyze the complete spectrum of solitons in Seiberg—Witten the-
ory [45] by using the “geometric engineering” approach of [46] to “zoom in” on the
point in the moduli space where the nonabelian gauge symmetry appears. We will explain
exactly what happens in detail in [15].

It is worth speculating that such analysis of Seiberg—Witten theory may shed some
light on the “local mirror symmetry” story of papers such as [47]. The massless B-type
D-branes associated with the derived category of Z may be related to the A-type D-brane
story of [48] by some kind of local homological mirror symmetry.

4.3. Z is a surface. There is only one possibility, namely X = E is an elliptic fibration
over Z. We will denote this fibration 7 : X — S. Let z € D(S) correspond to the
skyscraper sheaf of a point s € S. Then 7*z € D(X) corresponds to the structure sheaf
of an elliptic fibre e C X over s.

Let us consider the case where the size of S becomes infinite. According to our rules
then, the 2-brane wrapping e should become massless when we hit the discriminant
moving from the large radius phase to the phase where the elliptic fibres such as e
have collapsed. At first sight this looks peculiar. One does not usually expect a 2-brane
wrapped around a 2-torus to become massless for a particular radius of the torus!

Actually we will argue that this indeed happens and that it is when the 2-torus is zero
sized that the 2-brane becomes massless. Why T-duality doesn’t interfere with this will
become apparent.’

As a specific example let X be given by the following equation in ]P’?9’ 6111}

X7+ x5+ x38 +xi8+x518. (82)

This has a quotient singularity which may be resolved with an exceptional divisor P?.
One may regard [x3, x4, x5] as homogeneous coordinates on this § = P2, Fixing a point
on S one then has an elliptic fibre e given by a sextic in IP’{23’2’1}. See, for example, [49]
for more details about such fibrations.

The moduli space of interest to us regards the area of e. This area is infinite for the
Calabi—Yau limit point and shrinks down as we approach the other limit point. For a
more precise statement let us consider the mirror e of e given by the following equation
in ]P’{23’2’1 E

X% 4 x3 + x84 4326 Yrxxons. (83)

Varying the size of e is then mirror to varying the complex structure of ¢ by varying
Y. Going through the usual story of solving the Picard—Fuchs equation and using the
mirror map to map back to the B + i J plane for e we obtain the shaded region in Fig. 3.
The result is that for the Calabi—Yau limit point we have ¥ — oo and thus J — oo
as expected. For the other limit point ¢ = 0 and J = +/3/2. The discriminant is given
by ¥ = 1 and corresponds to J = 0, i.e., e has zero area. This is where the 2-branes
wrapping e (and all the other D-branes given by 7*z for z € D(S)) become massless.
So what about T-duality for e¢? Note that the moduli space in Fig. 3 corresponds to
two fundamental regions for the action of SL(2, Z) on the upper-half plane. T-duality

7 We are grateful to R. Plesser for an invaluable discussion on this point.
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v=1
Fig. 3. Moduli Space for Elliptic Curve

should map the point at ¥ = 1 to the point at ¥y = oo. It is important to remember
however that T-duality does not act only upon e — one must also shift the string dilaton
by an amount related to the resulting change in the area of the torus. As such, the point at
Y = lisrelated to yy = oo only with the string coupling shifted off to infinity, implying
again that the D-brane mass is zero.

Therefore if we fix the dilaton to be a finite value we cannot use T-duality to relate
Y = 1 to any large radius torus. This explains why we really do have a massless 2-brane
appearing wrapped around a zero-sized torus.

Note also that if we allow the base S = P2 to have finite size then the T-duality group
ceases to exist anyway as in [50].

The fact that there is a T-duality relating ¥ = oo to ¥ = 1 shows that their physics
must be similar. In particular ¥ = 1 must be an infinite distance away in the moduli
space. Indeed, in many respects the spectrum of stable D-branes at ¥ = 1, coming
from the derived category of P2, must be similar to the spectrum one would see upon
going to a large radius limit. It would be interesting to investigate this in more detail and
generality.

4.4. The Exoflop. Finally let us note that not all the walls of the Kihler cone correspond

directly to some subspace E collapsing to Z. Even so, it appears that we can still fit many,

if not all examples into the general EZ language. We illustrate this with an “exoflop”.
Let X be the degree 12 hypersurface in IP"{‘3’3’3’2’1}. Its mirror, Y, then has defining

equation
02122232425 + @12} + a2z + azzi + aazl + aszi? + as3zd + arzizd, (84)

and we may use the following algebraic coordinates on the moduli space of complex
structures of Y:

2

ajayasa, asae asaj
=——2 y=— I=—5. (85)
agyas as ag

We have chosen coordinates so that the Kihler cone of X appears naturally as a
positive octant in the secondary fan. In particular this means that the 3 rational curves
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in the moduli space connecting the large radius limit to each of the three neighbouring
phase limit points are given by settingx = y = 0,x = z = 0or y = z = O respectively.
The discriminant has two components given by

Ag=—1— 64x + 768x7 + 32768x7 — 196608x%z% — 4194304x°72 + 294912x% yz>
+16777216x3 (yz2 + 2°) — 75497472x3 yZ23 + 113246208x3 y2z* (86)

and
Ay = —1+4y +4z — 18yz + 27y*Z°. (87)

The phase transition of interest occurs for the rational curve C for which y = z = 0.
For small x we are in the Calabi—Yau phase. For large x the Calabi—Yau X undergoes
an “exoflop” [51]. That is X becomes reducible with one component consisting of a
threefold with a singularity. The other component consists of a fibration of a Landau—
Ginzburg orbifold theory over a P!. These components intersect at a point which is the
singularity in the threefold component.

This then is not an EZ transformation. Note however that the discriminant A inter-
sects C transversely at (x,y,z) = (—61—4, 0,0) and so the monodromy within C is
exactly given by monodromy around the primary component of the discriminant. There-
fore exactly one D-brane becomes massless at the transition point — the D6-brane
wrapping X. This exoflop transition is equivalent, as far as monodromy is concerned, to
an EZ transformation with X = E and Z given by a point.

This is not entirely surprising given the following. Classically one would describe the
exoflop wall of the Kéhler cone as a wall where [, J® = 0. Thus the classical volume
of X is going to zero, even though the volume of some surfaces and curves within X, as
measured by the Kéhler form, do not vanish. Since the volume of X vanishes, one should
expect the D6-brane to have vanishing mass. The fact that no other D-branes become
massless is not obvious.

It would be interesting to show that all phase transitions give rise to monodromies
that can be associated with EZ transformations.
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