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ABSTRACT

A method is developed for calculating long-wave radiative transfer in
a plane parallel atmosphere. Modern computing techniques are used to avoid
approximations commonly used in existing methods. Two applications in-
volving the 154 bands of COp» are given, the first to the earth's mesosphere
and lower thermosphere, taking vibrational relaxation into account and the
second to the Martian atmosphere, for use in a simple atmospheric circula-
tion model.

Although the basic equations of radlative transfer in a plane parallel
atmosphere are simple, their solution is a difficult task because of the com-
plicated nature of molecular absorption spectra and because planetary atmos-
pheres are inhomogeneous. In this study atmospheric radiative fluxes and
flux divergences are obtained by direct integration with respect to frequency
across the absorption bands. The atmosphere is divided into horizontal layers
which may be made arbitrarily thin. The direct integration method allows the
Curtis-Godson approximation to be applied over successive thin layers, rather
than thick atmospheric layers. Band models are not used, but instead the ac-
curate contribution of all lines in the absorption band is calculated at each
frequency quadrature point. Rather than using an approximation diffusivity
factor, angular integration is performed exactly and expressed in terms of
exponential integrals. Accurate, fast computing subroutines, using polynomial
approximations, were developed for exponential integrals of the second, third,
and fourth orders. Within each horizontal atmospheric layer the source func-
tion is assumed to be linear in pressure. This is shown to be more accurate
than the assumption of isothermal layers and less problematic than the use of
high order polynomials. To avold numerical difficulties when the atmospheric
layers are thin, flux divergences are calculated directly, rather than sub-
tracting fluxes at adjacent levels.

Iong-wave radiative transfer in the earth's atmosphere between about 60
and 100 km is dominated by the 15u COo bands. The radiative transfer equa-
tions are solved separately to obtain source functions for each of the bands
in this spectral region and hence obtain their contributions to the total
cooling rate., Values of vibrational relaxation time in the range 2 x ‘lO"6 to
2 x 107 sec at 1 atmosphere are used. Calculations are described for several
model atmospheres. In general small amounts of heating are obtained near the
mesopause corresponding to discontinuities in temperature gradients which
characterize most models., Vibrational relaxation affects the cooling rate
above about 75 km, although the less abundant isotopic molecules depart from
L. T.E. near 60 km. Measured, as opposed to mean, temperature soundings also
are used to calculate cooling rates. These show that the local temperature
structure largely determines the radiative transfer and produces a predominance
of cooling, rather than heating near the mesopause. The mean cooling is sig-
nificantly greater than the cooling calculated from the mean profiles, suggest-

ix



ing the presence of a mean heat sink for this part of the atmosphere, im-
portant for energy balance considerations.

Tn the Martian atmosphere, the 15u COo bands must also dominate the
long-wave radiative transfer. Flux divergences are calculated for a simple
model atmosphere, assuming pure COo and a surface pressure of 6 mb. Since
the results are for use in a general circulation model, the cooling rates
are expressed as a simple function of the temperature profile, so that rapid
computations can be made. The cooling rates for several temperature profiles

are presented.



CHAFTER 1

INTRODUCTION

Although the atmosphere, oceans and land masses of the earth con-
stitute an extremely complicated system for the transfer of energy, the
long time-scales of terrestrial climatic changes imply that for the system
viewed as a whole there must be a close balance between the solar energy
absorbed and the long-wave radiant energy lost to space. The radiative
and dynamic processes are not separate, but are related in a complex man-
ner. For example, the presence of clouds affects the amount and distribu-
tion of solar energy received and modifies the out-going long-wave radia-
tion. Some of the main features of the vertical atmospheric temperature
profile can be accounted for by radiative processes, but dynamic proces-
ses e.g., convection must be introduced to account for other features.

Similar processes occur in the atmospheres of other planets. In the
Martian atmosphere, radiative processes are simpler; the absence of oceans
on the surface, the virtual absence of water vapor and ozone in the at-
mosphere and the rarity of clouds provide a much less complicated environ-
ment than that of the earth. On the other hand, Venus is permanently
shrouded in clouds of an unknowncomposition, making the atmosphere the
object of considerable speculation, and the problem of radiative transfer
unsolvable at present.

In recent years, the development of meteorological satellites has

renewed interest in atmospheric radiative processes. By making suitable



measurements of the outgoing radiation field, it is possible to infer in-
formation on the vertical temperature structure of the atmosphere and on
the distribution of water vapor and ozone. A poiar orbiting satellite
can provide global coverage at regular intervals. In order to extract
the maximum amount of information from the measurements, a detailed
accurate knowledge of atmospheric radiative processes is required, so
that developments in this field have led to important theoretical ad-
vances.

Possible modification of the radiative regime by air pollution is
of considerable interest and importance, particularly that due to the
steady increase in the amount of carbon dibxide in the atmosphere formed
by the combustion of fogsil fuels. The long-term effect of this increase
ig difficult to gauge because of the complicated interaction of radiative
and dynamlc processes, but if the net result is to increase the surface
temperature of the earth by as little as 1°C it might be sufficient to
melt large emou. ts o7 Dz ice and cause flooding over low-lying regions
of the earth where much of the population is concentrated.

The development of electronic computers has made possible the theo-
retilcal study of the general circulation of the atmosphere by means of
numerical models and the development of numerical weather prediction.

In thege models radiative transfer 1s approximated in only a rather crude
manner., Refinements in this area are essentlal, particularly for long-—
range forecasting. When the roie which radiative transfer plays in the

general circulation is understood, problems such as the influence of the



carbon dioxide concentration in the atmosphere will be solvable.

The mathematical equations governing atmospheric long-wave radiative
transfer are comparatively simple. However the structure of atmospheric
absorption bands is exceedingly complicated and some aspects such as the
shapes of spectral absorption lines are not yet fully understood. The
variations of temperature, pressure and absorber concentration in the
atmosphere combine to make the solution of the transfer equation a task
of extreme difficulty. Many approximations were introduced before elec-
tronic digital computers were available.

It is now practicable to solve the equations more precisely. The
purpose of this Study is to develop a numerical method of solution of the
radiative transfer equations with as few approximations as possible, using
modern computing techniques. Direct integration with respect to frequency
has already been applied to the calculation of atmospheric slant path
transmissivities. In this study the technique 1is extended to the cal-
culation of radiative fluxes and flux divergences and is shown to be
flexible and accurate.

A critical discussion of many existing approximations is contained
in Chapter 2, where the method of solution of the equations of radiative
transfer is developed. The results are applied to two atmospheric
radlative problems. Chapter 3 is devoted to an analysis‘of the role
of the 15 p bands of carbon dioxide in the earth's upper atmosphere,
including the deviation from local thermodynamic equilibrium. Chapter k4
concludesg the study with a radiative transfer calculation for application

to a Martian atmospheric circulation model.



CHAPTER 2

THE NUMERICAL EVAILUATION OF THE EQUATIONS OF RADIATIVE TRANSFER

2.1 FEQUATIONS OF RADIATIVE TRANSFER
In deriving the equations of radiative transfer the following assump-
tiogs will be made.
(a) The atmosphere is plane-parallel and horizontally homogeneous .
(b) Atmospheric refraction can be neglected.
(¢) Scattering effects at the wavelengths under consideration may
be neglected.
(d) The source function J(v,T) is isotropic.

The differential equation may be written, as in Chandrasekhar 1960,

m gl&%ﬁlLHl = I(v,T,u)-d(v,T) (2.1.1)

where I(V,T,u) is the specific intensity at frequency v and zenith angle ©

V) = cos ©

Ty is the optical thickness, defined by dT = kvdu
u - 1s the optical mass of the absorbing gas

k., is the absorption coefficient

e, is the emission coefficient

J(v,T), the source function, is the ratio e, /ky,

For a gas in local thermodynamic equilibrium, the source function is

equal to the Planck black-body function. The form of the source function



for radiating gas which is not in local thermodynamic equilibrium will
be discussed in a later section.

The usual convention will be followed here, that T, is zero at the
top of the atmosphere and increases with increasing pressure.

A formal solution of Eq. (2.1.1) may be found in any text on radia-

tive transfer e.g., Goody (196L4).

m(TbnT)/p . LTb J(v,t)e-(tmT)/u %;
(2.1.2)

I(v,m,n) = I(v,mp,n)e
where Ty, is the value of © at the boundary. For values of p > O this
boundary is the lower boundary of the atmosphere (the planetary surface) .
It is convenient éo assume that I(v,Tp,u) is independent of p, although
this assumption is not strictly correct. Its applicability depends on
the angular distribution of specific intensity incident upon the surface,
as well as its diffuse reflectance properties, which may be complicated
functions of the incidence and reflection angles, and may vary also with
frequency. Adequate experimental studies have not been made, either for
the case where the lower boundary surface is a cloud layer, or where it
is the ground, consisting of soil, bare rock and vegetation. Except
within the planetary boundary layer, this assumption is probably not
important. It will also be convenient to assume that I(V,Tb) is given
by the black body source function B(V,Tg) at frequency v and the tempera-
ture Tg of the surface. Frequently Tg will be taken equal to the tempera-

ture of the atmosphere bounding the surface.



For u < O the boundary is the top of the atmosphere, and any radia-

tion incident upon it will be neglected, i.e.,
I(v,0,u) = O for u<oO

With these assumptions Eq. (2.1.2) may be rewritten

R T e A O LA S T)
(2.1.%a)
W) = [ TR icg) 2

The flux across any horizontal surface at pressure p is defined by

+1 21

F(p) = [, u£-1 ;é{ I(v,T,u) udg du av

Now the specific intensity I, is independent of the azimuth angle ¢, S0

that the equation may immediately be reduced to a double integral

R(p) = ox f, u[j T(v,7,0) 1 du dv (2.1.4)

To obtain the rate of loss of energy at any point, the flux divergence

must be evaluated

w=— du dv (2.1.5)
Substitution of Eq. (2.1.1) enables the flux divergence to be writ-

ten in the form

& o=@ 00T Ik, ardy (2.1.6)



If the source function J(v,T) is known at every level in the atmosphere,
the flux divergence can be found, in theory at least, by substituting the
values of I(v,T,u) evaluated from Eqgs. (2.1.3a) and (2.1.3b) into Eq.
(2.1.6) and integrating over p and v. In practice this procedure is very
complicated, since k, is a rapidly varying function of frequency, and is
also pressure and temperature sensitive. Much effort has been devoted

to the investigation of approximations which enable Eq. (2.1.6) to be
evaluated while maintaining a high degree of accuracy.

Equation (2.1.6) gives the flux divergence at a single level in the
atmosphere. In atmospheric energy balance studies it is frequently important
to know the rate of loss of energy averaged over a layer, rather than the
flux divergence at a point. The average value may be found by evaluating
Eq. (2.1.4) at the boundaries of the layer, and subtracting the fluxes.
This finite difference method is made difficult by the fact that at low
pressures small differences in flux at adjacent levels can result in large
cooling rates; it is essential to ensure that the noise introduced by the
numerical processes used in the calculations does not mask the true flux
difference.

In spite of these difficulties the last method is the one employed
in this study, with suitable precautions to ensure the suppression of such
noise. However, Eq. (2.1.6) provides a valuable physical insight into

the radiative transfer process and will be referred to frequently.



2.2 THE EVALUATION OF THE EQUATIONS OF TRANSFER
To evaluate the flux F(p) at the pressure level p, the values of I,

are subsituted from Egs. (2.1.3a) and (2.1.3b)

F(p) = 2n fv {f%[B(V,Tg)uePCTg-T)/“ + f:g J(v,t)u e_(t-T>/“ %P}du
+ [; [T 3(v,t)p etk %;]du} dv (2.2.1)

At this point the formulation can be simplified by the introduction of

the exponential integral En(x) defined by

1 x -
Efx) = [ e /b e l.%E n = 0,1,2..., x>0 (2.2.2)

The exponential integrals have a number of useful properties which are

readily proved. In particular the following will be employed

AE,(x)
gx = -E,1(x) n = 1,2..., x>0 (2.2.%a)
1.
En+1(x) =47 e X-XEn(X)] n = 0,l,..., x>0
(2.2.3p)

F(p) can then be expressed as
F(p) = Enfv{B(v,Tg)EB(Tg—T)—ng(v,t)Ez(T-t)dt+f:gJ(v,t)EE(t-T)dt}dv

The integral with respect to t may be transformed by integration by

parts using relation (2.2.3a), yielding



I

F(p) = 2nf,([B(v,7g)-3(v,7,) B (7,-7) + E35(7)I(v,0)

g

+

f;g %% Es( [£-7])dt}dv (2.2.4)

The expression for the flux divergence may be treated in a similar way,

Substituting Egs. (2.1.3a) and (2.1.%b) into Eq. (2.1.6), and integrating

by parts

ar d ) ad )4d gt -E 2.2
= = 2x S¢ k EE,(t-7)==dt- (1-t)ddt- v,0)}dv (2.2.5

The last two equations involve three integrations, over frequency, over
height, and over zenith angle (the latter being expressed as the exponential
integral). Each of the integrations presents some difficulty. Before
discussing techniques for performing the integrations, it is of interest

to examine the problem of calculating atmospheric transmissivities, and

the form of the absorption coefficient k, .

2.3 ATMOSPHERIC TRANSMISSIVITIES

The calculation of transmissivities along an atmospheric slant. path
is a complicated problem. Part of the complexity arises because the tem-
perature, pressure and concentration of the absorbing gas may vary along
the path. Even in the absence of such variations, i.e., for homogeneous
absorption paths, the difficulties are sufficiently great to have merited
a large number of both experimental and theoretical investigations during
the last twenty years. However, the comparative simplicity of the homogen-

ous path absorption has led to non-homogeneous path absorption being ex-
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pressed in an approximate way in terms of an 'equivalent' homogeneous
path. TFurthermore, homogeneous path theoretical calculations can easily
be compared with experimental laboratory absorption measurements. Thus,

it is of considerable interest to examine the simpler case in detail.

2.35.1 Homogeneous Path Absorption

The results of experimental determinations of absorption are used
in all methods of calculating transmissivities. The experimental values
may be used directly if measurements have been made over a wide range of
pressure, optical mass and temperature, and interpolated for the actual
conditions required. However, the method has some serious limitations.
Accurate absorption measurements are difficult to make at low pressure
and for short paths where the transmissivity is near unity. Few data
are available at temperatures below those normally encountered in the
laboratory, such as are found in the earth's mesosphere, for example.

In addition, very long paths, important for spectral regions where the
absorption is weak, are impossible to simulate in the laboratory, fre-
quently leading to extrapolation, rather than interpolation.

A typical infrared absorption band consists of a large number of
individual absorption lines, many of which may be resolved experimentally
under suitable physical conditions. The frequency at the centers of these
lines may be measured quite accurately, or calculated theoretically once
the values of the relevant parameters have been experimentally determined

(Hertzberg 1945). If the intensity of each line can be accurately measured,
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and the line shape and half-width are adequately known, it is possible

to calculate the transmissivity 2 at any frequency v by the relation
7, = exp(-7y) (2.3.1)

In general, 7, will be equal to the sum of optical thicknesses of -

the different absorbing gases. Where there is only one absorbing gas
T, = kyu (2.3.2)

where kv is the absorption coefficient and u the optical mass of the
absorption path. k), is the sum of the absorption coefficients of all the
spectral lines:

N

kv = i;l ikv (2 "3 '5)

The absorption coefficient of the ith 1line, center vy is given by

ik, = 85 bi(vi,v) (2.3.4)

where 84 is the intensity of the ith line, and bj is a line shape factor

for the ith line, normalized so that
00
Jobi(vi,v) av = 1 (2.3.5)

There are two classical line shapes which may be regarded as limit-
ing cases in the spectral region and under the physical conditions that
are considered here.

(a) Lorentz line shape, valid when the line broadening is due to
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molecular collisions of the excited molecules, thus perturbing the energy

level. In this case

a.
1

Al

a; is the Lorentz half-width (i.e., the half-width at half maximum).

(b) Doppler line shape, caused by the Doppler shift due to the ther-

mal motion of the molecules.

bi(vg,v) = kg exp( -x2) (2.3.7)
where

o1 @)1/2
kO - OﬁD Ll

Yo (in 2)1/2

and Op is the Doppler half-width

Natural broadening has a half-width Oy defined by

where
¢ is the velocity of light in vacuum
and
6 is the radiative life-time of the excited state

In all cases the natural half-width is much smaller than the Doppler half-
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width and, except at extremely low pressures, much less than the Lorentz
half-width and can be neglected.
The Lorentz half-width Qp is dependent on temperature and pressure;

for most gases the relation may be expressed by

- To
a = O‘o@% = (2.3.8)

where aL is the half-width at temperature T and pressure p and @, is the
half-width at temperature TO and pressure Py- It should be noted that O
does not normally have the same value for all lines in an absorption band.

On the other hand, Op is given by

o = 2O (2kT4nd 1/2
b = ¢ M

where k is the Boltzmann constant and M is the molecular weight. Thus
Op varies only slowly from line to line across an absorption band.

Over a wide range of afmospheric pressures it is found that both the
Dopplef and Lorentz broadening are important. The correct line shape for

the mixed Doppler-Lorentz broadening is given by a convolution of the line

shapes.
) 2
K~y -t
b v) = 2 e at 2.3,

where

Q. 1/2

L

YT g (4n2)
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The resulting integral cannot be evaluated analytically, but a number of
numerical methods have been developed. The method adopted here is that
of Young (1965), with two modifications (Drayson and Young, 1966).

(i) The range of Hermite-Gauss quadrature was extended to the region

(ii) L-point Hermite-Gauss quadrature was used over this entire
region.

Although the Lorentz line shape gives a good approximation when the
broadening process is due to molecular collisions, important deviations
have been observg@ for a number of molecules. For instance, Winters et al.,
(1964) have shown that beyond about 5 cm"'1 from the line center the absorp-
tion coefficients for lines in the 4.3 u COo band are less than those pre-
dicted by the Lorentz line shape. The deviations are dependent on the
bresdzning gas, being less pronounced for nitrogenbroadened C02 than for
pure COp. Burch et al., (1965) have verified these results and made similar
measurements in other CO2 absorption bands, where qualitatively the same
phenomena were observed, but with different magnitude of deviation. These
absorption measurements have been made in regions free from strong lines,
where the absorption is due to the wings of strong lines situated a few
wavenumbers away. The absorption coefficient under these conditions changes
only slowly with frequency, so that the instrumental response function does
not appreciably distort the absorption.curve.

It is more difficult to examine the shape near the line center, since
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the best spectrometers have a resolution in the infrared comparable to

the Lorentz half-width at about 1 atmosphere. Raising the pressure much
higher than this causes the lines to overlap appreciably in most absorp-
tion spectra. However, it is not unreasonable to expect deviations closer
to the line center. Indeed, Burch et al., (1965)have indirectly shown
this to be true for CO, by comparing the absorption of the self-broadened
and nitrogen-broadened gas. Burch et al., found that the line shapes

of the two samples were different, implying that one at least is non-
Lorentzian. Investigations using a laser as an essentially monochromatic
source may be able to yield information on line half-width and shape.

In a recent.report, Ray et al., (1966) have advanced the idea that
the non-Lorentzian effects may, in part at least, be due to the geometry
of the absorption cell, an effect that would not be present in a real
atmospheric slant path.

In this study the Lorentz line shape is assumed to be completely
valid. At the present time the deviations are neither sufficiently under-
stood on theoretical grounds, nor adequately measured experimentally, parti-
cularly at low concentrations such as the carbon dioxide mixing ratio in
the earth's atmosphere, to warrant modification of the line shape. This
is not a limitation of the methods developed and described here, since
any line shape can easily be incorporated into the calculations. In most
cases the effect of deviations from the Lorentz line shape on the radia-

tive cooling rates is probably small.
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It will now be assumed that the line shapes and half-widths are
adequately known, and that the line intensities have also been precisely
determined. Using Eq. (2.5.1), it is possible to calculate the trans-
missivity'VV,at any desired frequency v. In practice, however, it is us-
ually desirable to calculate the average value of 7, over some finite fre-

quency interval Av.
y o= = ] v & (2.3.10)

The interval Av may contain a large number of absorption lines, and there
may be many more lines outside the interval which contribute to the absorp-
tion within the interval. Thus 7, may be a rapidly fluctuating function
of v whose value 1s a complicated function dependent on the position, in-
tensity and line shape of many individual absorption lines. To overcome
some of these difficulties the concept of the band model was introduced.
Band models approximate the actual distribution of line positions and in-
tensities in such a way that a solution of integral (2.3.10) may be more
easily obtained, the solution often being expressed in terms of analytic
of semi-analytic functions.

The simplest case, a single isolated line with the Lorentz shape,
was solved by Ladenberg and Reiche (1913). The result can be extended
to any number of lines, provided that they do not overlap. The Regular
or Elsasser band (Elsasser, 1938) applies to an infinite array of Lorentzian
lines of equal half-width and intensity, equally spaced. It simulates

quite well the conditions encountered in the P and R branches of certain
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bands e.g., the fundamental in the 15 u CO, bands. This model has been
generalized to include a random superposition of different Elsasser bands
in the Random Elsasser model.

The Elsasser band and its derivatives are useful for some molecular
absorption bands, but for others such as water vapor and ozone there is
little suggestion of regularity. The lack of regularity prompted the
development of the Statistical or Random model, suggested independently
by Goody (1952) and Mayer (1947). The distribution and intensity of the
lines is defined by probability functions which may be varied to suit the
actual distributions.

In additio? to these important band models, numerous other models
are scattered throughout the radiative transfer literature, most being
‘modifications or refinements of those described above. Band modelg have
played an extremely important role in understanding radiative transfer
processes in the atmosphere, transforming what would otherwise have been
a problem of impossible complexity into one of manageable proportions.
But it is important to realize that band models do have limitations and
that alternative procedures are now available. The limitations include
the following:

(i) The spectral resolution of the transmittances is finite: for
the Elsasser model it is a multiple of the line spacings, while the sta-
tistical model must use an averaging interval sufficiently large to ensure
that the true distribution of the lines 1s adequately simulated by the

statistical distribution. The finite resolution introduces further compli-
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cations for atmospheric slant paths.

(i1)  Many band models do not allow for accurate contributions of
the wings of lines lying outside the spectral region under consideration.

(i11) The actual distribution of lines can only be approximated by
the band models. In some regions, e.g., near Q-branches, it is extremely
difficult, if not impossible, to accurately account for the complex dis-
tribution of lines. The development of the Quasi-Statistical or Quasi-
Random model by Kaplan (193) and Wyatt et al.. (1962) has done much to
overcome these objections. The resolution of the transmittances can be
made arbitrarily small, the wings are accurately allowed for and the actual
distribution of lines can be approached for sufficiently small averaging
interval. It shares one problem with the other models:

(iv) When the models permit accurate calculation of the absorption
due to a real absorption band, the complexity and length of calculation
is considerable, even for the Lorentz line shape. For other line shapes
including the mixed Doppler-Lorentz line shape, the complexities are even
greater.

Extensive tables using the Quasi-Random model have been prepared
(Stull et Elf’ 1963). In an effort to reduce computing time an averaging

1 was used; this violates a basic requirement of the

interval of 8 =5 em”
model, that & should be sufficiently small to allow the lines within each
d=-interval to be assumed randomly distributed. In the 15 p CO2 bands this

violation resulted in the Q-branches being considerably enhanced, over-

estimating the total absorption appreciably (Drayson 196k4).
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Modern computing techniques have made possible an alternative simpler
approach, using direct numerical integration of Eq. (2.3.1). At each fre-
quency quadrature point the contribution from all lines is evaluated ac-
curately. The numerical accuracy of the calculations can be increased
by making the quadrature intervals sufficiently small, especially in the
neighborhood of line centers. Five significant figures are eagily achieved.
Computation time can be reduced by careful programing and the use of inter-
polative procedures for more distant lines (Drayson & Young 1966).

This method of direct integration was first employed over a limited
range in the 9.6 u ozone bands by Hitchfeld and Houghton, (1961) and
has since been ?mployed by a number of authors in studies of several molecu-
lar absorption bands. The advantages of these methods are:

(1) The resolution is not limited; the transmissivities may be
weighted by an instrumental response function and compared with high resolu-
tion experimental spectra.

(ii)  There is considerably more flexibility in the calculations,
especially when extended to non-homogeneous paths as in Section (2.3.2).

(iii) The actual distribution of line positions and intensities is
used and all contributions from the wings of distant lines are accurately
included.

Comparisons between theoretical calculations using direct integration
techniques and experimental laboratory data do not always show good agree-
ment. Indeed, the application of these techniques has shown that previously

accepted values of band parameters are considerably in error. Part of the
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discrepancy is due to experimental error, but this is probably much small-
er than the error introduced in attempting to deduce the parameters from
the measurements. Measurements on the same band by different experimenters

produce widely differing estimates, often with mutually inconsistent error

estimates, as in for example, Drayson and Young (1966). There is a clear
need for accurate, well-designed experiments, coupled with a careful

analysis to yleld the desired band parameters.,

2.%.2 Atmospheric Slant Path Absorption

Calculations of absorption over atmospheric slant paths are more
complicated than the case discussed above, because of variations in the
pressure, tempefature and absorber concentration. Eq. (2.3.2) must now

be generalized to the form:
2 ikv du (2.3.11)

the integral being taken along the absorption path. Variations in the
three parameters affect the integral in the following ways:

(a) The Lorentz half-width varies directly with pressure and in-
versely with the square root of temperature. It is also a function of
absorber concentration.

(b) The Doppler half-width varies directly with the square root
of temperature.

(¢) The line intensities are complicated functions of temperature.

Typically the intensities of very strong lines decrease slowly with increasing
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temperature. Lineg belonging to weak bands increase in intensity very
rapidly with increasing temperature,as much as an order of magnitude for
a 25°K temperature rise, which has prompted the use of the term 'hot band'
to describe them.

Generally, the practical problem of calculating slant path absorption
has been restricted to average values of the transmissivity 7, defined in
Eq. (2.3.10). Of the several methods suggested, the one of most practical
importance is the Curtis-Godson approximation (Curtis, 1952 and Godson
1%3). This method seeks to find a mean pressure D, temperature T and
a optical mass U such that the transmission is approximated by a homogeneous
absorption path with these three physical parameters. The expressions
for p, T and T are required to satisfy the criterion that the limiting
cases of weak line and strong line absorption shall be accurately repre-
sented.

The expressions for U and P are simplest when the temperature is con-
stant along the absorption path, and has been most thoroughly investigated

to test its accuracy. Under these conditions

/ d

p - w2 ™ (2.3.12a)
fu du

T = fu du (2.3.12b)

The errors in the approximation have been investigated for a single
isolated line for the case of a uniformly mixed gas such as carbon dioxide

in the earth's atmosphere, by Kaplan (1959) and extended to more general
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pressure limits by Drayson (1966). The approximation was found to be quite
accuréte‘for most applications, although errors of up to about 6% can arise
. for certain combinations of pressure and line intensity. Similarly, Mayot
and Vigroux (1965) found that the Curtis-Godson approximation was not a
serious source of error in interpreting observations in the 9.6 p ozone
bands .

In radiative transfer calculations the computation of transmissivities
is only an incidental procedure, and an approximation should be regarded
as valid only if it produces accurate values of flux divergence. This
much more difficult task was attacked by Walshaw and Rodgers (1963), who
calculated the effect of the Curtis-Godson approximation on the accuracy
of radiative heating-rate calculations. They considered radiative transfer
in the earth's atmosphere in the 9.6 p ozone bands, the 15 p carbon dioxide
bands and the rotational water vapor band. The Lorentz line shape only
was used. Their conclusions were:

(a) For the 15 u COp bands the approximation 1s extremely accurate.

(b) In the rotational water vapor bands, the result for the band
as @ whole is acceptable, although the errors are sometimes larger over
small portions of the band.

(c) The approximation is not valid in the 9.6 u O5 bands. The
failure was attributed to the fact that the ozone mixing retio in the
earth's atmosphere increases with decreesing pressures, a condition for

which Curtis (1952) found the approximation to be less accurate.
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To simplify their calculations Walshaw and Rodgers did not consider
the complicated effect of variations of temperature on the transmissivity.
It is interesting to examine the influence of such variations in the earth's
atmosphere on a CO, line whose intensity increases rapidly with increasing
temperature. At the stratopause, where the temperature is a maximum, it
will be quite strong compared to the tropopause or mesopuase regions. Car-
bon dioxide is fairly uniformly mixed up to at least 70 km, but since the
transmissivity is a function of the product of the optical mass and the
line intensities, it can be seen that the same effect on the transmissivity
could be obtained by assuming that the line intensity remained constant
and that the 002 concentration increases rapidly at the stratopause, i.e.,
a situation simiiar to that of ozone where the higher concentration is
at the lower pressure, a circumstance which may lead to considerable error
in the Curtis-Godson approximation. Moreover, because of the large number
of moderately weak temperature-sensitive lines, they exert considerable
cooling influence at the stratopause level and must be accurately cal-
culated.

The Curtis-Godson approximation is designed to give an estimate of
the éberage transmission over a finite frequency interval. At pressures
where the Lorentz line shape 1s valid for homogeneous absorption paths,
the Curtis-Godson approximation still gives a Lorentz line shape for the
slant path, whereas the true line shape has more absorption at the line

center and less in the wings, tending to a common value in the far wings

(Goody, 1964).
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The methods developed in this paper are designed to be applied to
all gases of atmospheric interest, regardless of their distribution and
temperature dependence of line intensity. Fortunately, the direct integra-
tion technique provides the flexibility to avoid some of the difficulties
of the Curtis-Godson approximation, which are not easy to apply to band
models or empirical data. The solution lies in dividing the atmosphere
into horizontal layers over which variations in absorber concentrations
and in temperature are small. Two alternatives are then possible:

(a) The Curtis-Godson approximation may then be applied over each
of thege layers to obtain values of P, U, T. This method was used by
Gates et al., €1965), and Drayson and Young (1966).

(b) By assuming a value of T in each layer the absorption coefficient
may be integrated with respect to pressure, giving a slightly more accurate
solution than method a. For carbon dioxide, whose mixing ratio is as-
sumed constant, the solution has been given by Drayson (1966). However,
this variation is somewhat cumbersome and offers little advantage over
the first method.

To obtain the optical thickness for a path between two arbitrary
points in the atmosphere, the sum of the optical thicknesses of the inter-
vening layers is taken. It can éasily be seen that this method is equivalent
or nearly equivalent in case (b) to approximating the slant path by a
series of homogeneous paths; the limiting case where the number of homo-
geneous paths is reduced to one is the Curtis-Godson approximation in its

original form. The method of direct integration with respect to frequency
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has previously been applied to the calculation of fluxes and flux divergences
e.g., Hitchfeld and Houghton (1961), but the full potential of the method

has not been exploited. In previous studies integration with respect to
frequency was used to compute average transmissivities. Here it is used

to obtain fluxes and flux divergences directly.

The expressions for flux (Eq. (2.2.4)) and flux divergence (Eq. (2.2.5))
do not explicitly contain the transmission function, but rather the exponential
integral of the optical thickness. It will be recalled that the exponential
integrals were obtained by integration of the transmission function with
respect to angle and for this reason the exponential integral is frequently
called the diffuse transmission function.

One way to e;aluate the integral is to use numerical quadrature.

In this case the exponential integral En(T) is approximated by an expres-

sion of the form

(2.3.13)

where a5 and bi (i = 1,...,N) are constants. The advantage of this form

is that the diffuse transmission function is expressed in terms of normal
transmission functions, and since the source function J is usually a slowly
varying function of frequency, and can be considered as effectively con-
stant over a small frequency interval Av, the expressions for F(p) and

dF/dp may be readily integrated with respect to frequency and involve only
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the average transmissivity 7 over the frequency interval Av.

The most widely employed approximation for E5(T) is
1
EB(T) ~ 5 exp(-kT) (2.3.1h)

which is = special case of Eq. (2.3.13) with N = 1. The use of this form
is discussed by Coody (1964). Strictly speaking k is not a constant, but
varies as T varies from O to ». To maintain accuracy for small values
of T, k should be equal to 2.0, but this value is not a good approxima-
tion for larger values of T. Usually the diffusivity factor k is taken
to be 1.66, a value Elsasser (1S42) obtained for the strong line approxi-
mation of an Elsasser band.

Suppose that an approximation of this form is used in Eq. (2.2.4)
to evaluate the flux, The flux divergence is obtained by differentiating

Eq. (2.2.5). From Egs. (2.3.14) and (2.2.3%a) we have

~ k/2 exp(-kT)

As stated above, k = 2 must be used when T = O and this also gives a poor
approximation for EQ(T). In a later section an expression for F(p) which

involves EA(T) will be derived. This leads to an expression

1
Eu(T) ~ o exp(-kT)

Since EM(O> = 1/5, it is impossible simultaneously to obtain a good approxi-

mation for EQ(T), E5(T), EM<T)’ even at x = 0.
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Despite these inaccuracies, the diffusivity factor of 1.66 has been
almost universally applied. It is claimed that the errors in flux divergence
are small, although it has not really been thoroughly tested under adverse
conditions. Probably errors from one part of the absorption band are com-
pensated by cancellation from other parts of the band, reducing the inac-
curacies to acceptable levels.

In mosﬁ physical problems an approximation as crude as Eq. (2.3.14)
is not used. There are however two reasons for its use.

(a) The exponential integral is not as easy to evaluate as the
exponential function. This was particularly true before the development
of electronic computers.

(b) The more important reason is that evaluation of the exponential
integral precludes the use of band models. The diffusivity factor approxi-
mation used in conjunction with the Curtis-Godson approximation reduces
the complex problem of diffuse slant path transmission to a much simpler
"equivalent' homogeneous path over a finite frequency interval, where em-
pirical data or band model calculations may be used.

In the calculations made in this study, direct integration with re-
spect to frequency is employed, so that the reasoning in b does not apply.
A number of methods of evaluating the exponential integrals were examined,
but none was found suitable for use in the computer programs of flux di-
vergence because of thelr slownegs or inaccuracy. A series of subroutines
using polynomial approximations was developed and is fully described in

the appendix. The average execution time of these subroutines was less
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than that of the computing gystem exponential function subroutine. The
development of fast subroutines 1s critical since a large proportion of

the execution time of the programs is spent in these subroutines.

2.4 NUMERICAL FROCEDURES FOR EVALUATING RADIATIVE FLUX

For the purposes of this section it will be assumed that the problem
of calculating the diffuse transmission function has been overcome and
that the source function J(v,p) is known at every point in the atmosphere.
The flux F(p) given by Eq. (2.2.4) can be evaluated numerically in a straight-
forward manner, using standard quadrature techniques. However, because
of the approximate nature of quadrature evaluations, the calculated flux
differs from the krue flux by some small error €(p). The flux difference
between two adjacent pressure levels may be found provided it is not of
order €(p). The quantity €(p) can be reduced by careful gquadrature pro-
cedures, but will always be present because of round-off and other inac-
curacies introduced in computation, i.e., the well-known difficulties of

numerical differentiation are encountered.

2.4.1 The Isothermal Layer Approximation

A frequently used method of reducing the numerical noise is to as-
sume that the atmosphere ig divided into isothermal layers or, more pre=-
cisely, layers in which the source function is constant. Equation (2.2.4)
is no long valid, since its derivation depends on the continuity of the
source function as a function of pressure. Instead Eq. (2.2.1) may be

integrated to give
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where the atmosphere has been divided into N layers and the subscript j

refers to the value of the variables at the level j.

The isothermal assumption is, of course, a gross distortion of the
temperature profile expected in a planetary atmosphere and since radiative
transfer processes tend to smooth temperature profiles, such discontinuities
in the temperature field could not exist. The use of the isothermal as-
sumption can be justified only if it gives realistic values of the average
flux divergence in a layer.

Consider, as'an example, a part of an ebsorption band where the optical
thickness is very large, i.e., the atmosphere becomes opaque within a very
short distance. In this case the net flux is small and hence the true
flux divergence is small also and independent of the temperature profile.
This holds even if the temperature profile is similar to that in Fig. 1.

If the isothermal slab approximation is used, the flux can easily be evaluated

The assumption that the optical thickness is large implies

1}

E;\Ti-le

O N

Using this relation it is readily seen that
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LEVEL
J1-2
I-2
JI-1
A I-1
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Fig. 1. Diagram of the source function as a function of height.

i.e., the flux at any level is proportional to Ji+l - JI,
Thus
FI-E a JI—l - JI—Z = 0
FI—l o Jp -dpq = 0
F1 Q& Jr4q - JI > 0
Fiip a JI+2 - JI+l > 0 (2.6.2)

The heating at level 1 is proportional to AFi =F;-F;_ ;- Using these

equations

W, = O
WPy = Jp-Ip-dptdp = Jpe > 0
Py = UppIp )00 -9p)
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The model correctly predicts no heating in level I-1, but produces a strong
net heating in level I (the first layer in the isothermal region). The
sign of the flux divergence in the I+1lth depends on the relative sizes

of Jg, J and JI+1' By making layer I+l small compared to layer I+2,

I+1
the difference (JI+2'JI+1) can be made larger than (JI+1-J ), producing
a net heating in layer I+l. If however layer I+l is small compared with
layer I+2, the opposite effect can be produced and a net cooling is obtained.

This means that the isothermal layer assumption has two serious flaws.

(i) It tends to produce a greater amount of heating or cooling at
the bottom of an isothermal layer in the atmosphere below which the tempera-
ture increases or decreases. This effect also occurs when the temperature
gradient changes, not necessarily to an isothermal condition.

(ii) The sign of the flux divergence can be altered depending on the
thickness of the slabs chosen,

It should be noted that even if the atmosphere is not optically thick
in the region of the spectrum under consideration, these two errors still
have a tendency to occur, although their effect is not so extreme. There
are many regions of absorption spectra where the atmosphere ig optically
thick, at least near the line centers; an absorber in which this never
happens has to be weak, and hence has to have little influence on the
radiative transfer.

Clearly the isothermal layer approximation must not be used to study

radiative transfer in important regions where the atmospheric temperature

reaches a maximum or minimum (the tropopause, stratopause and mesopause ) ,
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and probably should not be used in other regions as well. A more realistic
approach must be used, one which takes into account more accurately the
structure of the atmosphere in the neighborhood of the point being investi-

gated.

2.4.2 Polynomial Representation of the Source Function

Since the simplest approximation, that of isothermal layers, leads
to serious errors in calculated flux divergences, a more sophisticated
technique must be used. Perhaps the most obvious method is to express
the source function at points within the individual layers as a polynomial
in pressure or height or some other vertical coordinate. The isothermal
layer approximation is really a limiting case, in which the degree of the
polynomial is zero.

Suppose that the atmosphere has been divided into N horizontal plane-
parallel layers, with the i-th layer bounded by pressure levels Pi_1» and

p; (1 =1,2...,N) with

0 = p,< Py < e+r <py] < Pjeer <Pyp <Py = Pg

It will also be assumed that these levels have been chosen so that the
atmosphere may, for the purpose of calculating atmospheric absorption,

be approximated by homogeneous paths within the layers, as discussed in
Section 2.3.2. For convenience, it will be assumed that B(v,Tg) = J(v,7g).
From Eq. (2.2.4) the expression for the net flux Fp at level m may be writ-

ten.
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F, = 2x fV{EB(Tm)J(V,O) + igl { * 5;-E3(It—7m[)dt}dv
i-1
(m = 0,1,...,N) (2.4.3)

The assumption that the layers are homogeneous implies that within each
layer t is a linear function of pressure, and that dJ/dt is a polynomial

in p. Thus, each integral in the sum in Eq. (2.4.3) may be written

T. p. n-1 .

[ 5 YE(fe-rp)at = [ 1 T & poE.(b +c.p) dp

Ty 9T 0 P11 JT0 T T 0TI 0T g
where aj’bj’cj are constants within the level 1, and the source function

is expressed as a polynomial of degree n in p, within level 1.

Equation (2.4.4) can be evaluated using the relation (see appendix)

X k r~ —
2 x (k)! k-j k-
= X ! E -x_ I
le X En(X> dx J:O W |Xl n+l+j X1> X2 n+l+j(x2)
(2.4.5)

This method is very similar to that proposed by Curtis (1956), in
which the source function is expressed in terms of a polynomial of degree
L, whose coefficients are chosen to give the source function exactly at
five adjacent levels. This representation is used only in the neighbor-
hood of the point at which the flux divergence is being calculated, a
lower order polynomial being used elsewhere. The higher order polynomial
was used in an attempt to accurately include the contributions from near-
by layers, which most influence the cooling rate in many parts of the

atmosphere. This method was also used by Rodgers and Walshaw (1966).
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The results of fitting such polynomials are shown in Fig..2. The
solid lines represent profiles typical of those encountered in standard
or mean atmospheric profiles, while the dashed lines indicate the polynomial
temperature distributions. Clearly the polynomials do not accurately repre-
sent the true profiles and may not give correct contributions to the cool-
ing rate from adjacent layers. The polynomial frequently gives a smoother
temperature profile, particularly where the temperature gradient is dis-
continuous and this property is sometimes desirable; the important modi-
fying effect of such smoothing will be shown in the next chapter. GSince
a new polynomial is used for each point at which the cooling rate is cal-
culated, no two'points have, in general, the same temperature profile as-
sociated with them.

A further disadvantage of the higher order polynomials, at least for
the method of calculation described here, is the difficulty in evaluating
the integrals of the type in Eq. (2.4.5). Not only are they time consum-
ing, but accuracy is difficult to maintain for some values of x, and xp
due to roundoff errors and inaccuracies in calculating the exponential
integrals.

The method applied here is to assume the source function 1s linear
with pressure between adjacent pressure layers, and to simulate rapid
temperature fluxuations by decreasing the thickness of the layers. The

linear assumption enables Eq. (2.4.3) to be evaluated simply.

N

J.
Ry = 20 [{Ey(rg)a(v,0) ¢ B ShIE(Irer DBy (rger ) Day
i

(2.4.6)
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Fig. 2. Typical polynomial fits to vertical temperature structures.

Circles mark pressure levels at which rate cooling is being determined;
crosses mark other pressure levels at which polynomial gives exact source

function. Solid line is temperature structure, dotted line is Lth degree
polynomial fitting temperature structure.
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where
A, = J.-J
and
AT, = Ti-Ti_l

In many molecular absorption hands, the source function Ji at level
i is a slowly varying function of frequency, and may be considered constant
over the band, or over some frequency subinterval of the band. For such

a frequency interval Eq. (2.4.6) may be written

. N
Fo = 20{3(v,0)[[ Bs(Ty)av] + % 8350), -A—%IEM( | 7=T4 1) -By (=75 1 1) [av])

i.e., the flux may be expressed as a linear combination of the source
functions at all points in the atmosphere (c.f., Curtis, 1956). It should
be noted that the coefficilents in the linear sum are functions of tempera-
ture and strictly speaking should be used only for the atmospheric tempera-
ture structure for which they are calculated. In some spectral regions
the coefficients are only weakly temperature dependent and may be used
to calculate fluxes for other temperature structures, provided they are
not radically different from the original.

As previously indicated, it is more difficult to compute flux di-
vergences than fluxes, particularly in regions of the upper atmosphere

where small flux differences cause large heating rates. For this reason
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it is frequently advantageous to compute the divergence directly. Using

Eq. (2.4.6) the flux difference at adjacent levels may be written

AFy = Fp-Fp1

= Eﬂfv{[E5(Tm)'E5(Tm_l)]Jo

m-1 AJ.

+ igl z% (B (=73 )-B) (=75 3 ))=(El Ty T3 ) -Byl Ty -T5 1)) ]
N .

* A [y (73 oy =) =B (i =7 ) = (B (75 =7y 1) =B (7 4-7p 1)) T}av

(2.4.7)

Suppose that AT; 1s small, for some i, and consider the errors which may
arise in evaluating the terms in the sums in this equation. These terms
involve differences of exponential integrals whose arguments differ by

Aty . I ATi is of the same order as the accuracy with which E), can be
calculated, then the accuracy of calculating the difference will be rela-
tively low. When the difference is divided by AT; the absolute error in
calculating the term becomes large, and test calculations showed that these
errors often led to meaningless results.

Fortunately, it is not difficult to evaluate such terms with a much

higher accuracy. The method is suggested by the mean value theorem

& Ferdn)F(x)] = B (xtt)

for some { in the range 0 < € < py
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Consider the errors involved in approximating F'(x+{) by F'(x+% Bx).

Expanding F(x) and F(x+8x) in a Taylor series

L

Bx.2
F(x+dx) = F(x+%?) + x+25X %— ;% ) F'( +%6x) + %1.'-(%;)5?'”(x+%6)_§)+0(6x))+
5xy 0% 1 1 0y 2 1 1 5%.3 1.
P = Rl - (QOP Gobon) + 3 T omon) - 2B P (o) o(5x)
Subtracting
— ! L 1 5 " 1 5
F(x+5x) - F(x) = BxF'(x+Dx) EE(SX) F (x+§ 8x) + 0(5x)

Neglecting the terms of O(5x)
l — 1 l l 2 e l
= F(x+8x)-F(x)] = F (x+§6x) + §H<6X) F (x+§5x) (2.4.8)

Applying this to the function EM(X>

[Eu(x)-Eu(x+6x)] = EB(x+ )+_2&_El(x+l6x)

2=

The values of ®x for which the approximation E5<X + %ﬁx) should be used
depends on the accuracy to which Eu(x) can be calculated. The subroutines
developed in the appendix give an absolute accuracy of approximately

1x 10-7. However, since adjacent values of the argument  tend to have
similar errors, the absolute error of the difference [EM<X) - Eh(x+%x)]

is usually somewhat smaller.. But for some x and x + &x, particularly
those that are computed from different polynomials, the error in the dif-

ference may be slightly more than 1O~7. It will therefore be assumed that

an error of lO"7 is a representative value. The errors from the two methods
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will becoile equal when

-7
10 (8%)
Sx op — B(x)

Except for very small values of x, El(x) is of order unity, so

Bx ~ 10

Using the approximation E5(x + % 8x) for dx < 10"2, the order of the
error in computing
1

= (Ey(x) - Ep(x + 8x)]

is 10_5, an acceptable value for the calculation of the flux divergences.
Using this approximation, the terms in the first sum of Eq. (2.4.7)

become

AJ s

i - E

E (7

nTi-1/2) Tu-1""1-1/2) )

where Ti_l/2 is defined as (Ti+Ti_l)/2-
Further error can arise when AT is small, and can be treated in exactly

the same way, reducing the term above to a still simpler form

435 bty Bl g T Ty )

Inspection of Eq. (2.4.7) shows that the contribution from layer i
to the flux differences in level m is the same, apart from a difference in
sign and the multiplying factor AJi/ATi’ as the contribution from layer
m to the flux differences in layer i. This duality is of great importance,

since the differences of the exponentials need be evaluated only once for
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each 1 and m, which halves the execution time of this important part of
the computer program.
It is also clear that the first term in Eq. (2.4.7) may, for small

ATm, be approximated by
EB(Tm) - EB(Tm-l) ~ - ATm Ea(Tm%)

If the flux divergence at a point is required, the polynomial or
linear approximation for the source function J may be substituted into
Eq. (2.2.5), and integration with respect to t carried out in a similar
manner.

Assuming that.the atmosphere has been divided into horizontal layers
in which the source function is a linear function of pressure, it is of
interest to know how the flux divergence varies at points within these
layers. Test calculations were made for layers as thin as 1 km. in the
mesosphere, for the 15 u 002 bands. It was found that the absolute value
of the flux divergence was greatest near the boundaries of the layers and
least near the center of the layers. The reason for this behavior is that
at interior points the source function gradient is constant in the immediate
neighborhood, whereas at the boundary it is usually discontinuous. The
same problem undoubtably arises when a higher order polynomial is used;
Fig. 2 shows that the source function gradient is not accurately re-
produced. For example, in profile (b) the polynomial gives a local tempera-
ture maximum, which will tend to overestimate the cooling rate at that

point. However, for temperature profiles which are smoother, the poly-
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nomial may be more realistic. Nevertheless, if the flux divergence is
calculated at a point, rather than an integrated value over a finite pres-
sure layer, two important points must be taken into consideration.

(1) The method of calculation may distort the local temperature
field and lead to inaccuracies.

(ii) The flux divergence at this point may not be representative
of the value at neighboring points, and cannot in general be used as the
average value in a finite pressure layer.

In the present study the thickness of layers was adjusted so that
when a layer was halved and the flux differences recalculated the same
values were obta%ned from the sum of the two sublayers, to within some
acceptable error limits. The thickness of the layeré depends on the ac-
curacy required and on the characteristics of the spectral region under
consideration. In the earth's mesosphere an accuracy of better than 1%
can be obtained in the 15 p CO, bands with layers several km thick.

The integrations with respect to frequency of equations such as Eq.
(2.4.7) can be carried out in much the same way as those developed for
calculating transmissivity (Drayson & Young 1966). The frequency interval
of integration is divided into many subintervals, whose length varies,
being smallest near line centers and largest away from lines, and L-point

Gaussian quadrature is applied over the intervals.

2.5 CONCLUSIONS

In deriving the equations of radiative transfer and manipulating
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them into a form suitable for numerical evaluation of flux divergences,
a concerted effort has beerf made to use as few approximations as possible.
As a result several approximations, almost universally employed, have
been avoided. This is not meant to imply that these approximations are
valueless, but that under some circumstances they may lead to errors and
must be used with caution. The more exact methods can provide a means
to check the approximations and define some conditions under which they
can be employed. Flux divergences are obtained by direct integration with
respect to frequency. The assumption that the source function is linear
in pressure within the atmospheric layer 1s shown to have advantages
over the use of isothermal layers and higher order polynomials, and also
allows the vertical integration to be accomplished simply, without the use
of a diffusivity approximation for angular integration.

The disadvantage of the present method is that the formulation is
rather complicated, and that quick simple solutions cannot be obtained.
A considerable amount of computing time is required to solve any realistic
problem. However, with computers of increasing speed, the time problem
should steadily decrease.

Apart from checking other methods, calculations of this type can be
justified only if they result in considerable improvement over faster,
simpler techniques. The next two chapters are devoted to two applications,

with emphasis on comparison with other calculations.



CHAPTER 3

~ APPLICATION TO THE EARTH'S MESOSPHERE AND MESOPAUSE

3.1 GENERAL SURVEY OF LONG-WAVE RADIATIVE TRANSFER IN THE EARTH'S

ATMOSPHERE

In the earth's atmogsphere the important gases for long-wave radiative
transfer are minor constituents (with the possible exception of atomic
oxygen in the thermosphere), comprising much less than 1% of its mass.

Of these, the most influential are:

(a) Carbon dioxide. COo is a linear symmetric molecule which has
no pure rotational spectrum. The important bands for infrared radiative
transfer are as follows.

(i) The 15 u bands, consisting of the vo fundamental and over-

tone bands. In addition to the normal molecule (120 16O 160),

160 160’ 124 16O 18O 12, 16O 17,

tm:mdwmcsmcmsl% ,
and 13¢ 160 180 are abundant enough to exert some influence.
The last three are asymmetric.
(ii) The Vs fundamental ‘at 1.3 u.
Although the V3 band intensity is much greater than the total intensity
of the bands near 15 p, it plays only a minor role in the earth's atmosphere
because the thermal energy is low near 4.3 u at atmospheric temperatures. .

~(b) Water vapor is a nonlinear molecule with two important atmospheric

absorption bands.

b3
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(i) The pure rotational band, with lines distributed from
the micro-wave region to 20 u. Between 10 and 20 u
the absorption is due partly to weak absorption lines
in the interval and partly due to fhe wings of diétant
Ilines.

(ii) The vp band near 6.3 u. Again the wings of lines in
this band‘gives considerable absorption at least out
to 10 .

"Lines of isotopip molecules are again important.

(c)» Ozone is also an asymmetric molecule with complicated band
structures. The Fwo important absorption regions are:

(1) The 9.6 u bands, which consist of two bands, the v and
V3 fundamentals, centered at 1110 cm"‘l and 1043 cm"l
respectively.

(ii) A vweaker 14 u band, identified as the vy band.

For each molecule there are many more molecular absorption bands in
the infrared but these are either too weak or occur at frequencies which
are too high to influence the long-wave radiative transfer. Similarly,
some of the even less abundant atmospheric constituents e.g., CHy, No0
have strong absorption bands, but their mixing ratio in the atmosphere
is so low that they do not contribute significantly to atmospheric radia-
tive transfer.

To apply the methods developed in the previous chapter it is essential
to know the frequency, intensity and Lorentz half=-width of the absorption

lines. As indicated eariler, a sound knowledge of the band structure is
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often lacking, even for the common atmospheric absorbing molecules. The
state of knowledge of these bands outlined above will now be examined.

(a) Carbon dioxide. The linearity of this molecule makes it com-
paritively easy to handle theoretically and the line positions and relative
intensities of the individual bands can be readily calculated.

(i) The 15 u bands. These important bands have been intensively
studied, both theoretically and experimentally. Although
the structure of the individual bands is simple, their
overlapping makes it difficult to determine the relative
intensities of the bands, and even the total band intensity.
Knowledge of variation of Lorentz half-width with rotational
guantum number is incomplete, particularly for air or
nitrogen broadening. Despite these difficulties theoretical
calculations show good agreement with laboratory spectra
(Drayson et al., 1967) and atmospheric radiances (Chaney
et al., 1967)

(ii) The 4.3 p bands. The somewhat simpler structure of these
bands make this region easier to investigate, and satisfactory
agreement between theoretical and experimental data exists
(Gray, 1965). Larger errors can be tolerated in this
spectral region, since the thermal energy is low at atmos-
pheric temperatures.

)

(b) Water vapor is a non-linear molecule which has been investigated

intensively in recent years.



(1)

(i)
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The pure rotational band. Line positions, intensities and
Lorentz half-widths have been calculated by Benedict and
Kaplan. Qualitative agreement with experimental data is
good, although the amount of absorption is not always identi-
cal. The use of modified line shapes, in particular the
Van VleckmWeisskopf line shape, may lead to improvement,
particularly in the region between 10 and 20 .

The 6.3 u band. This band has received comparatively little
theoretical investigation and results are inconclusive

at the present time.

(c) The theoretical and experimental difficulties of determing water

vapor absorption apply even more to ozone. The difficulties and dangers

of generating the gas have detered most investigators, and for many years

some of the bands were incorrectly identified. Quantitative measurements

have been made

(1)

by Walshaw (1957) and by McCaa & Shaw (1967).
The 9.6 u bands. Line positions and intensities in this
region have been calculated by Kaplan (1956) and by Clough
and Kneizys (1965); unfortunately neither gives agreement
with experimental spectra. More work is required on this
extremely difficult molecule.
The 14 p band has been measured quantitatively for the
first time by McCaa and Shaw (1967). No theoretical work

has been published.
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Thus, at the present time the 15 p bands of carbon dioxide are best
understood. The distribution of carbon dioxide with altitude has been
measured frequently and the results show that the mixing ratio is approxi-
mately constant, except close to the surface. (Bolin and Keeling 1963).
These. are small variations with latitude and nearness to land masses, as
well as a slow increase with time. This presumably holds true up to the
altitude where carbon dioxide begins to dissociate at about 100 km, al-
though no measurements are available to support this supposition. In the
stratosphere, mesosphere and mesopause regions, carbon dioxide is the
principal absorber of lone-wave radiation; in the troposphere its rela-
tive role gradug}ly decreases and is dwarfed by water vapor near the
surface (MSller, 1963%).

The distribution of water vapor is extremely variable and is not
known with any certainty above the tropopause (Newell, 1967). Whatever
its distribution, it is very important in the troposphere, particularly
near the surface, and less important at higher altitudes. The influence
of the 6.3 u water vapor band is small compared to that of the rotational
band (Kuhn, 1966).

The situation as regards ozone is discouraging. The atmospheric
absorption in the 14 u band is weak and is masked by the strong ab-
gorption of the 15 u CO2 bands. The 9.6 u atmospheric absorption is
moderately strong and falls in an otherwise largely transparent region
of the spectrum. Calculations by Plass (1956a) and Kuhn (1966) indicate

that it provides an important cooling mechanism in the upper stratosphere,
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falling off quite rapidly above and below this level.

In the remaining part of this chapter the cooling due to the 15 u
bands carbon dioxide in the mesosphere, mesopause and lower thermosphere
will be investigated. It is clear from the preceding discussions that
this is the dominant band at these altitudes, as well as being the one
with the best understood structure. In addition the concentration of 002
is better known than 05 or water vapor. Moreover, recent results (Kuhn
1966, Kondrat'yev et al., 1966) have indicated that CO, is responsible for
some atmospheric heating at the mesopause level and the calculations to
be described were designed to confirm or reject these results. A point
of further interest lies in the evaluation of a source function in the
mesopause and lower thermosphere, where significant deviations from the

Planck black body function occur.

3,2 EQUATIONS FOR THE SOURCE FUNCTIONS IN THE UPPER ATMOSPHERE
For a gas that is in thermodynamic equilibrium it is well known that

the source function is given by the Planck black-body function
B(v,T) = 2hv?/c?[exp (hv/kT)-1] (2.2.1)

where
h is the Planck constant
k is the Boltzmann constant
¢ 1s the velocity of light in vacuum

and
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T is the absolute temperature

In the atmosphere, where radiative heating or cooling is taking place,
strict thermodynamic equilibrium is not maintained and the source function
is not equal to the Planck function. However, for much of the earth's
atmosphere the deviation from the Planck function is slight, and the fluxes
may be calculated from the equations of the previous chapter, assuming
equality between the two functions.

Near the mesopause, however, for the 15 p COy bands the differences
become larger and the errors induced by assuming equality become serious
(Curtis and Goody 1956). The explanation for the breakdown is as follows:
for a CO2 molecule in thermodynamic equilibrium the vibrational energy
is distributed over the vibrational states according to a Boltzmann dis-
tribution. In the non-equilibrium case, the Boltzmann distribution is
disturbed by the gain or loss of radiant energy. If molecular collisions
are sufficiently frequent the vibrational energy regains its Boltzmann
distribution by loss or gain from translational energy. However, there
is a possibility that an excited molecule may re-emit its energy before
the equilibrium process can be completed. These two mechanisms are charac-
terised by two time constants, the former being the relaxation time A,
the latter the radiative life-time ©. The same is true for the rotational
energy states.

If A << 0, a distribution close to the Boltzmann distribution is at-
tained and the Planck function becomes a good approximation. Conversely

if @ << A\ very little collisional exchange of energy will occur and the
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atmosphere will act as pure scattering atmosphere. Between these two
extremes both processes are important and some alternative form for the
source function must be found. The problem is complicated because the
source function depends on the radiation field, which in turn depends on
the source function.

Laboratory measurements have shown that the rotational relaxation
time is approximately three orders of magnitude less than the vibrational
relaxation time of the vo CO, band, so that levels where vibrational
relaxation begins to become important a Boltzmann distribution over the
rotational energy levels may still be assumed. Rotational relaxation
never becomes important in the earth's atmosphere, because the molecule
1s dissociated at the level around 120 km where the radiative lifetime
and the rotational relaxation time would become comparable (Curtis and
Goody, 1956).

The first derivation of an equation for the source function in the
eqrth's upper atmosphere for the 15 p COp bands was made by Curtis and
Goédy (1956), in a paper that has become a classic in the field. They
assumed a simple harmonic oscillator model in which the rotational energy
levels have a Boltzmann distribution. The equation of radiative transfer
was written in terms of Einstein transition probability coefficients and
related to the number density of vibrational quanta, E. The transfer of
energy between the vibrational and translational modes was taken into

account by use of the equation



a %(E—E) (3.2.2)

where E is the value of E when the vibrational energies have a Boltzmann
distribution. The final form of the equation relating the flux divergence

and the source function is

& 86 (5 g (3.2.3)
du A

where S is the band inténSity.
Kuhn (1966) derived the source function in a rather different way,
analogous to the two level atom problem in astrophysics. He determined
the ratio of the populations of the O and 1 energy levels of the CO2 mole-
cule and showed further that the influence of a third level could be neg-
lected for carbon dioxide in the earth's upper atmosphere. The derived
equation is identical to that of Curtis and Goody, expressed in Eq. (3.2.3).
An equation for the source function has also been obtained by Shved

(19653), using gas kinetic equations, and takes the form

B g, Hrnexp(hv,/kT)
’ ‘BEJ‘Q T j (3.2.)

where

Vo 1s the frequency of the band center,

g, and g, are the statistical weights of the lower and upper levels
respectively,
1

H is the flux divergence in quanta em™ sec”

and
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N ig the number density of absorbing molecules.
This expression apparently has a different form from Eq. (5.2.5) but can

be changed using the approximation

2hv 2
B(v,T) ~ Zg exp( -hv, /KT) (5.2.5)

This approximation is used in all three derivations and introduces a maxi-

mum error of about 2% in B. Shved's Equation (3.2.3), becomes

ar hy OH gl 1 C
—_— = - = —_— J-B 02 06

The radiative lifetime © 1s related to the total band intensity S by

the following equation
ot = 82 (3.2.7)

(Mitchell and Zermansky 1934, Penner 1959). Substituting into Eq, (3.2.3),
Eq. (3.2.6) is obtained, i.e., the same equation for the source function is
obtained in each of the three cases. It should be noted, however, that

both Curtis and Goody, and Kuhn neglected to include the factor of the ratio
of statistical weights in Eq. (3.2.7). For the 002 fundamental, 8 =28y,
so that the final equations are in error by a factor of 2. This is equiva-
lent to using vibrational relaxation times of twice the nominal values
quoted in their papers. Whenreferringto their results this correction
will be automatically applied. Although a factor of two appears to be

an important quantity the uncertainty of an order of magnitude in the relaxa-

tion time A prevents a more accurate determination of flux divergence, as dis-
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cussed later. The methods of deriving the equation for the source function
employed by Shved and Kuhn are basically the same, and are also contained
in Kondrat'yev (1965) . They do not depend on the simple harmonic ogcil-
lator model used by Curtis and Goody; the latter represents a simplicica-
tion of the energy states of the molecule, but retains many essential
features, so that the equations obtained in each derivation are identical.

A rather large number of assumptions and approximations in addition
to those already mentioned have been made in the derivations of equations.
The more important of these are:

(i) It has been assumed that, in the regions of the atmosphere where
deviations from;Kirchoff‘s law become important, the lines of the individual
bands are non=-overlapping. This presents no difficulty since the lines
in the earth's mesosphere and above are very narrow, and no appreciable
overlap occurs, even in the Q-branches where the spacing is least.

(ii) The source function J(v,T) has been approximated by J(vOyT),
where Vs is the center of the band, i.e., it has been assumed independent
of frequency within the confines of the band. In particular this implies
that the Planck function is replaced by a frequency independent function
over these frequencies. Fortunately, the Planck function varies slowly
with frequency in the 15 p region at mesospheric temperatures. However,
the effect on the accuracy of the calculations is difficult to assess.

It i1s better to look on this approximation as one which makes the calcuia-
tion possible at this time and accept it until a more complete solution

can be found.
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(iii) The equations apply to a single band only, and then only to
the fundamental. This fact has some important implications.

(a) The equations cannot be applied to the weaker overtone bands,
some of which are important in and above the mesosphere.

(b) The equations are valid for the fundamentals of the molecules
with the less common carbon and oxygen isotopes. These
molecules play a much more important role in radiative
transfer than their relative abundance would suggest. The
overtone bands of these isotopes are not significant.

(¢c) Where local thermodynamic equilibrium breaks down there
is no single source function applicable to all bands, but
a different one must be derived for each individual band.

In general, the level at which deviations from the Planck
black-body function become significant will vary from band
to band, and will be expanded upon later. Using Eq. (50201)

and (2.1.6) the expression for the source function becomes

P -
g 2y +1 '
J-B = 'é% A -:g an [, [ Ilv,m,0) = 3(v,m) Ik, 4, 4

(3.2.8)
The dependence on the ratio x/@ has now reappeared since the absorp-
tion coefficient kv in the integrand is proportional to the band intensity
S and therefore proportional to .l/@° This means that the source function
for the band is determined solely by the ratio k/@ and the atmospheric

structure parameters, all other quantities being constant for the band.
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To obtain the flux divergence the source function is evaluated from
Eg. (3.2.8). 1In Section 2.4L.2 it was shown that the integral could be
expressed as a linear sum of source functions at all levels in the atmos-

phere. At each level i the source function can be expressed as

N
J, =By = j;l G5 Ty L= 12,00 (3.2.9)

Thig set of N linear simultaneous equations may be solved for the N un-
knowns JljaooyJNo The solution presents no particular numerical difficulty,
at least in the cases encountered in the calculations made here. A double
back substitution method was employed, using a library subroutine of the
University of Michigan Computing Center. Another subroutine (a Gauss~
Jordan reductfon with a complete pivotal strategy) gave almost identical
results.

The flux divergence may be evaluated from Eq. (3.2.6) or Eq. (2.1.6),
once the source functiong have been obtained. Using both equations pro-
vides a good check on the accuracy of solution of the linear equations.

The heating rates obtained from the two equations were very close, except
at high pressures, where \ is small. Under these conditions J and B are
almost i1dentical, i.e., local thermodynamic equilibrium exists, and the
accuracy with which the numerical value of these functions can be repre-
sented in the computer produces a large relative error in their difference.
It is better to calculate flux divergence using Eq. (2.1.6) at high pres-
sures .

For the reasons outline in Section 2.L4.2 the finite difference for-
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mulation of the flux divergence is preferredand Eg. (2.4.6) is used in
place of Eq. (2.1.6). The flux divergence in the ith layer is assumed
to be that of the mid point where, because of the linearity of J and B,
the source function and Planck function have a value equal to the average
of the values at the boundaries. The system of linear Equations (3.2.11)

is replaced by a slightly modified system in the form

Ji +Ji0y o BitBi | <J SRR > ; .,
,”“‘J°°°)
2 2 = 1J

(3.2.10)

This number of unknowns is now N + 1, with only N equations to determine
them. A further condition is that at the surface the source function is

identical to the Planck function, i.e.,

In the earth's atmosphere no difficulty arises from this assumption be-
cause almost any reasonable value of Jy leaves the cooling in the upper
atmosphere unchanged. Otherwise the solution proceeds in exactly the same
way .

The equations for the source function have been derived on the as-
sumption that the absorption lines in the mesosphere and above are non-
overlapping. In the mesosphere Doppler broadening dominates the line s
shape, where the Doppler half-width is approximately 6 x lO“u cmflo The

region of the 15 u COP bands near 668 cm™+ has the highest line density,
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containing the Q-branches of the 1201602 fundamental and some overtones.

The line spacing is approximately 1 x 107 em™t

; so that non-overlapping

is a valid assumption. In the mesosphere much of the incident radiation
field orginates from the troposphere where overlapping is important. Never-
theless, the flux divergence at the upper levels can be accurately computed
on the assumption that the lines are non=-overlapping throughout the atmos-
phere. In Eq. (2.1.6) the expression for flux divergence contains the
welghting factor kv in the integrand; away from the line centers k,, is

zero, but near the line center, where k, is large, the absorption is com-

plete well above the levels where overlapping is significant, unless the

line is extremely weak and ineffective in radiative transfer. (Cf. Shved,

1964) .

3.3 CALCULATION DETAILS

For each absorption band in the mesosphere, the total flux divergence
was expressed as the sum of the flux divergences for the individual lines.
In each of the P, Q and R branches of the bands, variations from line to
line were found to be small, so that calculation of every third rotational
level provided sufficient accuracy with a considerable saving in computing
time.

The most uncertain parameter 1s the vibrational relaxation time \.
Experimentally it i1s difficult to determine, especially for the temperatures
encountered near the mesopause and theoretical estimations of N do not

produce agreement with experimental data. A complete discussion, in=-
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cluding the possible catalytic effect of water vapor is given by Shved

6 to 2 X lO”5

(1965a). The value of A prcbably lies within the range 2 x 10~
'sec at 1 atmosphere and about 200°K. Since the relaxation time depends
on the frequency of molecular collisions, A 1s inversely proportional to
pressure p.

After the cooling rate calculations had been made, a paper by Read
(1965) was brought to the author's attention. The vibrational relaxation
time for CngCO2 collisions is approximately 6 x lOm6 sec at 1 atm and

6 and 2 x 107 secs) bracket

280°K. The values used here (between 2 x 107
this result. The presence of small amounts of water vapor significantly
reduces the relaxation time. The values for COE~N2 collision is not given,

The concentration of carbon dioxide was assumed to be constant up to
120 km at .314 per cent by volume, but the calculated heating rates are
not sensitive to small changes. CO2 starts to dissociate at about 100
km (Curtis and Goody, 1956) so that radiative heating rates above this
level are uncertain. The effect on heating rates lower in the atmosphere
is unimportant, as shown by test calculations.

Because the primary interest in this calculation was on the behavior
near the mesopause, thin layers were used between 70 and 90 km (about 2
km)9 and rather thicker layers elsewhere (5 km in the thermosphere and
mesosphere). Layers of 5 km. thickness in the region of the mesopause
were found to distort the cooling rates at these levels.

The band parameters (line positions, intensities and Lorentz half-

width) used in the calculations are taken from Drayson and Young (1966)
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and Drayson et al., (1967). Table I listsall the bands which are important
at atmospheric temperatures. The most common of the CO, molecules are

12016

given in Table II, with their abundance relative to 05 The value

of the Lorentz half-width used was 0.08 cm-l

at 1 atm and 300°K. This
value is somewhat uncertain, but at mesopheric pressures the lines are
predominantly Doppler broadened, and errors in the Lorentz half-widths
are not significant.

The intensities of the weak bands in the 15 u region are also un-
certain, particularly those’ which are overlapped by strongly absorbing
bands. However, their role in radiative transfer near the mesopause is
small, largely & result of their rapid decrease in intensity with decreasing

temperature. This point will be discussed more fully when the results

of the calculations are presented.
3.4 RESULTS OF CALCULATIONS AND COMPARISON WITH PREVIOUS RESULTLS

3.4.1 Cooling Rates for Model Atmospheres

Radiative transfer calculations are frequently applied to standard
or model atmospheres, which are important because they represent average
temperature profiles and are not encumbered with fine structural details.
Many radiative transfer models are not capable of representing such fine
structure and this provides an additional reason for using the smooth
profiles.

The calculations for the U. §. Standard Atmosphere (1962) demonstrate

many of the features common to all model atmospheres at the mesosphere
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TABLE I

BAND INTENSITIES USED IN CALCULATING ROTATIONAL LINE INTENSITIES
(From Drayson et al., 1967)

level Band Center Intensity
Lower Upper (12¢ 16p,) (em™L(atm em)=1 at 300°K)
1 000:0 010:1 667.379 194 '
2 010:1 020:0 618.033 L.27
3 010:1 100:0 720.808 6.2
L 010:1 020:2 667.750 15.0
5 020:0 030:1 647.054 1.0
6 020:0 110:1 791447 0.022
7 020:2 030:1 597.337 0.14
8 020:2 110:1 741730 0.1k
9 020:2 03%0:3 668.151 0.85
10 100:0 110:1 688.672 0.3
11 100:0 0%0:1 5hly,279 0.00k
12 0%0:3 0Lk0:2 581.62 0.0042
13 030:3 120:2 5747 0.0059
14 030:1 120:2 828.284 0.000L9
15 030:1 120:0 738. 364 0.01k
TABLE II
REIATIVE ABUNDANCE OF ISOTOPIC MOLECULES
(From Drayson and Young, 1966)
Abundance Relative Band Center
Molecule to 120 1602 Of Fundamental
0 1z, 16, 1.00 667k
1 13, 1652 1.12 x 1072 648.5
2 12q 160°18y 4.0 x 1073 662.3
5 124 165 170 8.0 x 1074 66k 7
4 13, 164 18, 4.5 x 107D 64736
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and mesopause levels. The equations for the fundamental transition, de-
scribed in the previous section, were applied to each of the isotopes
separate using valueg of the vibrational relaxdtion time Ao = 2°x 10_6,
L x 10‘6, 107 and 2 x 107 sec, where A is the value of N at 1 atmos-
phere. It was found that only isotopes O, 1, 2, and 3 (Table II) gave
any contribution to radiative transfer in the upper atmosphere (greater
than about 0.1°K per day heating or cooling). The full results are too
extensive to give here in detail; only representative values will be given.
The cooling rates for the four bands are shown in Table II1 for the value
Ny = 1 x 102 sec. Table IV provides details of the deviation of the
source functiomr from the black body function. For isotope O the devia-
tion does not become apparent until about 80 km, while for isotope 3 the
difference begins near the stratopause. It is interesting to note that
atthat level the radiative lifetime 6 is still approximately two orders

of magnitude greater than the relaxation time A, a condition generally

unfavorable for vibrational relaxation. The reason can be explained by

rewriting Eq. (3.2.6) in the form

2

@F o Faw _ wELC
dp du dp dp g0 M 2V02

(J -B)
%E is proportional to the mixing ratio, which is very small for the less
b
abundant isotopes. This implies that large differences between the source

function and the Planck function are required before appreciable cooling

can occur.
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TABLE IIT

COOLING RATES IN °K/DAY FOR THE INDIVIDUAL BANDS,
U.S. STANDARD ATMOSPHERE (1962), A, = 1 x 1072 SEC

Height Iso. 0 1 2 3 0
(km) Band 1 1 1 1 2

107.5 3.01 .03 .00 .00 .92 . .

102.5 3.80 .03 .01 .00 .60 43 .89
97.5 L.67 .03 .00 .00 .09 15
92.5 5.03 .01 .02 Noil 1 0L
89.0 3.49 .03 «05 .01 .17 .26
87.0 3.25 .05 .07 .02 .17 .28
85.0 2.48 .08 .10 .02 .18 .30
83%.0 1.33 .13 J1h .03 .18 .33
81.0 -.16 .20 .18 o .19 .37
79.0 -.45 .23 .21 .05 .19 .35
77.0 .30 .17 .19 .04 .16 21
7.0 .55 .09 .16 0L .09 .00
73.0 .68 .00 .10 .02 .00 .26
7L1.0 _ .81 11 .02 .00 .12 .55
68.0 .86 .26 .12 ol .29 .88
64.0 1.36 A5 .3k 11 .56 1.3%
60.0 1.89 .50 48 .16 .62 1.34
56.0 2.40 N .52 .20 .53 1.11
53.0 3.02 145 .55 .21 .55 1.19
49.5 3.23 .39 L7 21 L6 1.07
44.0 2.85 31 .30 .15 .33 .85




RATIO J/B FOR INDIVIDUAL BANDS, U.S. STANDARD
ATMOSPHERE (1962), A, = 1x10™ SECS
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TABLE IV

Height Iso. 0 1 2 3 0 0 0
(KM) Band 1 1 1 1 2 3 b
110 .07 27 L2 45 15, .39 .31
105 .13 .38 .61 67 .71 .65 .50
100 .20 .59 .PH 1.05 .93 .92 17
% 4o .81 1.32 1.47 1.00 1.02 .99
90 T2 1.18 1.89 2.10 1.01 1.0k 1.04
88 .80 1.18 1.86 2.07 1.01 1.0% 1.03
86 .89 1.21 1.82 2.00 1.01 1.02 1.02
8k .95 1.21 1.77 1.94 1.01 1.01 1.02
82 .99 1.24 1.77 1.83 1.00 1.01 1.01
80 1.01 1.2k 1.64 1.7h 1.00 1.01 1.01
78 1.00 1.12 1.34 1.39 1.00 1.00 1.00
76 1.00 1.04 1.18 1.21 1.00 1.00 1.00
Th 1.00 1.01 1.07 1.08 1.00 1.00 1.00
2 1.00 .99 1.0% 1.02 1.00 1.00 1.00
70 1.00 .99 .99 .98 1.00 1.00 1.00
66 1.00 .99 .98 .96 1.00 1.00 1.00
62 1.00 .99 .98 .97 1.00 1.00 1.00
58 1.00 1.00 .99 .98 1.00 1.00 1.00
54 1.00 1.00 .99 .99 1.00 1.00 1.00
52 1.00 1.00 1.00 .99 1.00 1.00 1.00
L7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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This result is important for the radiative transfer in upper levels
of other planetary atmospheres. In Mars and Venus for example carbon
dioxide is a major atmospheric constituent and vibrational relaxation of
the fundamental will not take place until lower pressures are reached,
possibly not until dissociation takes place, at least for the isotope
12C 1602.

The equations for vibrational relaxation have not been derived for
overtone bands. Nevertheless the equations developed for the fundamental
were applied to these bands. It was found that only the three strongest
overtones were important for radiative transfer in the upper mesosphere
and moesopause region (bands 2, 3 and 4) and these only for the molecule
120 1602. For these bands the ratio of the statistical we%ghts is unity.
Furthermore, relaxation is not significant even at 80 km, as can be seen
from Table IV... This is due, in part at least, to the fact that the
radiative lifetime of these weaker bands is at least 1 to 2 orders of
magnitude larger than the fundamental. Because the bands are relatively
weak, the magnitude of the heating and cocling rates is quite small. Un-
less the equations for vibrational relaxation are in a quite different
form for these bands, or the vibrational relaxation time A is much larger
than for the fundamental, the method of calculation should introduce only
a small error.

The total cooling for all bands for the U. S. Standard Atmosphere,
(1962) is shown in Fig. 3, for values of N, =2 X 10—6, 10 and 2 x 107

sec and are compared with the values of Kuhn (1966). For all values of
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N, the present calculations show a small amount of heating near the base
of the mesopause, although its magnitude and vertical extent are both
significantly smaller then those of Kuhn. In the thermosphere the present
results show much more cooling. This is a consequence of the separate
relaxation of the bands, since the weak overtone bands are not completely
relaxed, even at 110 km. and have appreciable contribution to cooling at
this level. Near the stratopause the assumption of non-overlapping lines
may begin to break down and some of the weaker bands also provide an ap-
preciable source of cooling. The present calculations were not designed
to be accurate in this region of the atmosphere.

There are "a number of important differences between the two methods
of calculation. Kuhn's calculations included the following features:

(g) Isothermal layers were used

(b) Equation (3.2.6) was applied to the total flux divergence for
all bands, i.e., the bands were not relaxed separately.

(c) A constant temperature was used to calculate line intensities
in the mesosphere.

(d) The quasi-random band model was used.
It has already been shown that (a) tends to produce greater heating at
a temperature minimum. Test calculations showed that (c) exhibited
the same tendency. Because the lines are isolated in the mesosphere the
redistribution of the lines by the model does not change the absorption

and (d) does not contribute errors directly.
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Test calculations were made to determine the effect of (b). The
differences in cooling rates were greatest for the larger values of Ay,
the new calculation giving an additional heating of about 0.4 deg k/day
near 80 km for A, = 2 X 10m59 but only half this value for A =2 X 10“6
sec. In the Lower thermosphere the effect was more pronounced, roughly
having the cooling rates above 100 km, Calculated in this way, the cool-
ing rates in the lower thermosphere are in good agreement with Kuhn, but
the differences in the mesosphere and at the mesopause are virtually un-
changed.

One of the effects of atmospheric long wave radiative transfer is
to smooth disconpinuities in temperature gradient, and tends to produce
a maximum of heating cr cooling where such discontinuities exist. Many
model atmospheres, including the U. S. Standard Atmosphere (1962), con-
tain such features. A calculation was made for this atmosphere, with
the temperature structure smoothed at the base of the mesopause, where
heating was previously obtained. The new cooling rates are shown in Fig.
L. The heating has been very much reduced (about 0.6 deg K/day maximum)
or entirely eliminated, depending on the value of A . In view of the
large number of approximations made in the calculations, it is concluded
that radiative transfer due to the 15 u bands of carbon dioxide is not
significantly different from equiliilbrium at the mesopause level, for the
smoothed atmosphere.

The effect of other temperature gradient discontinuities can be seen

at 90 and 60 km. Only one atmospheric layer was used for the stratopause,
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but if a model of greater resolution is used for thisz region of the atmos-
phere, two maxima of cooling obtained, at the bottom and top of the iso-
thermal layer, a result which was also reported by Plass (1956b).

A study of the ~ooling rates for the individual bands reveals that
the weak overtone bands are insensitive to local changes in temperature
gradient, and that the same is true of the less abundant isotopes. Only

the fundamental of 12C 16

02 showed a large change from the cooling of the
unsmoothed standard atmosphere, although band 1 of isotope 1 and band 4
of igotope C also show smalier differences. This regult is to be expected
since the bands with weak atmospheric absorption are almost transparent
over 2 or L km layers in the upper atmosphere, and cooling does not de-
rend on the temperature gradient in the neighborhood of the level under
consideration.

Caliculations have also been made for the ARDC=1959 and the CIRA-1961
model atmospheres. The ARDCD1959 (Minzner et al., 1959) atmosphere has
a cold mesopause, typical of average conditions in summer at high latitudes.
Similar calculations have been reported by Kondrat'yev et al., (1966) and
these are of particular interest since separate results are given for the

fundamentals of lQC 16

Gy, and the sum of the contributions of the remaining
igsotopes. Full details of the method of calculation are not given but
presumably follow the developments of Shved (1964, 1965a and 1965b),

which feature

(a) non-overlapping iines.

(o) aliowance for temperature dependence of line intensities.
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(c) isothermal layers.

(d) individual relaxation of bands.

(e) 1line half-widths temperature independent.

Comparison of the cooling rates of this calculation with those of
Kondrat'yev et. al., are shown in Fig. 5. The rates for the less ebundant
isotopes show agreement. to within the error that the values can be deter-
mined from the figure. For 120 1602 the cooling rates are still quite
close, both showing a heating of about 1 deg K/day near 80 km. In the
present calculation this heating is localized near the lower mesopause
where the temperature gradient is discontinuous. Kondrat'yev et al.,
shows heating spread over a layer twice as thick. As with Kuhn, the
present calculation shows a small but consistantly larger cooling rate
throughout the mesosphere. In the lower thermosphere Kondrat'yev et al.,
have slightly smaller cooling rates.

Unlike the other two models, the CIRA 1961 atmosphere (Kallmann-
Bijl et al., 1961) has a smooth profile, with slowly changing temperature
gradients. This characteristic is reflected in the sum of the cooling
rates due to the fundamentals (all isotopes) (Fig. 6). Depending on the
relaxation time N, a small amount of either heating or cooling is in-
dicated at the mesopause. In contrast, Kondrat'yev et al., show approxi-
mately 0.5 deg/day additional heating at this level, with the heating
region again of larger vertical extent.

Although the differences between the present results and those of

Kondrat'yev et al., are small, they are consistent. Possible reasons for
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these are:

(a) the use of isothermal layers, already discussed.

(b) the use of temperature independent line half-widths: this as-
sumption has been discussed by Hummer and Rybicki (1966), who showed
that variations in Doppler half-widthswith temperature can be significant

in some situations.

3.4,2 Cooling Rates for Measured Temperatures Profiles
Although model atmospheres are of interest as objects of study in
their own right, they are nevertheless different from real atmospheres, in

that the omnipresent irregularities in the profiles have béen removed. The
gtudy of the moﬁel atmospheres shows that, for the 12, 1602 fundamental,
local features largely determined the cooling behavior near the mesopause,
so that it is natural to expect the fine structure of the atmosphere to
be critical in determining cooling ratéso Temperature oscillations of

up to 30-40°C are not uncommon between 70 and 90 km. (Theon et al.,
1967), and these oscillations frequently exhibit a wave-like structure

in the vertical.

The profiles used are from Jones and Peterson (1967) and Peterson
(1967), measured by the falling sphere technique. Above the maximum
altitude of the soundings, the temperature was extrapolated to agree with
the U.S. Standard Atmosphere (1962) at 120 km; the structure at these

levels is irrelevant to the cooling rate near the mesopause.

Like the calculations for the model atmospheres, a resolution of 2 km
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was used between 70 and 90 km, and approximately 5 km layers elsewhere.

To reduce computing time the coefficients for the U.S. Standard and Atmos-
phere (1962) were used to calculate cooling rate for each profile i.e.,

the temperatue dependence was neglected. The results showed that the
fundamental of 12C 1602 is by far the most important band, and the tempera-
ture dependence for this band is small.

Figure 7 show the temperature structures and calculated cooling
rates for six soundings, for the two values of vibrational relaxation time
Ao 2 X lOm6 gsec and 2 X 10”5 sec. The contributions from all isotopes
and all bands are included.

Before commenting on the individual soundings, some general features
common to all the profiles are immediately noticeable.

(a) The smooth features of the cooling rates for model atmospheres
are no longer apparent. Instead, large variations in heating and cooling
rates are indicated, corresponding to the maxima and minima of the tempera-
ture profiles or change in temperature gradient.

(b) There appears to be a marked tendency for greater overall cool-
ing, particularly for the larger value of vibrational relaxation fime;
for most, but not all, the profiles the heating is restricted to rather
thin layers.

(c) In the mesosphere and mesopause region, the maximum cooling
rate is frequently about the same or greater than the cooling rate at
the much warmer stratopause.

(d) For most profiles the cooling rate is the same for both values
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of vibrational relaxation time below 75 km, although small differences
occur down to 70 km for gsome of the soundings.

The first three profiles (Figs. 7 (a), (b), and (c)) are from con-
secutive soundings taken within a 24 hour period in August 1965 at Wallops
Island. Each shows some oscillatory temperature structure in the mesopause
region. The maximum cooling rate between 90 and 7O km for the first sound-
ing is about 7 deg K/day for Ag = 2 X 10'6 sec. The radiative transfer
due to the 15 u bands of COy ig incapable of explaining by itself the re-
duction by about 20°K of the temperature maximum at 88 km during the 10
hour interval between the first and second soundings. The oscillations
increase during the night and are more marked in the third sounding. Al-
though the carbon dioxide plays a substantial role in the transfer of
energy at these levels, it is clear that even more important dynamic pro=-
cegseg are controllingthe temperature profile.

Soundings (d) and (e), taken in October 1965 at Wallops Island, have
similar temperature gradient discontinuities in the mesosphere near 70
km which provide large cooling at this level. The mesopause is particularly
well defined with the temperature rising rapidly above the temperature
minimum. This characteristic explains the substantial heating observed
around 80 km for both soundings.

Figure 7 (f) shows a remarkable sounding from Point Magu on 24 Octo-
ber 1966. A temperature perturbation of amplitude almost 50°K was obtained
at 85 km. Smaller perturbations are common at this level, but this ampli-

tude is apparently one of the largest recorded. As expected, this perturba-
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tion produces a large cooling rate, of about 35 deg K/day for Ay =2 x lO=6

sec, and 17 deg K/day for g = 2 X 1072 sec. A heating of comparable
magnitude might have been expected in the region of temperature minimum
immediately above and below the warm layer, but its value is only about
one seventh that of the maximum cooling rate. Also shown 1s the cooling
rate obtained in the absence of the temperature perturbation, with near
equilibrium conditions at the mesopause.

The calculations for the measured profiles show that the cooling implied
by mean atmospheres is not the same as the mean cooling derived from indi-
vidual soundings. This result is significant for an understanding of the
energy balance in the mesopause region of the atmosphere; radiative trans-
fer by carbon dioxide may be able to provide a mean energy sink, particularly
for situations in which waves are being propagated vertically.

The effect of temperature oscillations on cooling rates has been dis-
cussed by Goody (1964) and by Sasamori and London (1966) for homogeneous
atmospheres. In the mesosphere the atmosphere is not homogeneous, or
even approximately so, and the departure from local thermodynamic equili-
brium makes it impossible to apply their methods.

The calculations made in this section used a vertical resolution of
2 km between 70 and 90 km. The method could be applied to soundings of
higher vertical resolution if reliable sounding data become available.

The profiles available are not suitable for this application, since they

contain a considerable amount of high frequency noise.
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3.4.3 Comparison with Previous Calculationg

A full comparison of the methods and results of the calculationsg of
Kondrat'yev (1965) and Kuhn (1966) has already been made in the previous
sections. Young (196k4) attempted calculations that were essentially similar
to those of Kuhn, but was unable to obtain cooling rates because of numerical
difficultiesa

At the time that Curtis and Goody (1956) made their calculations fast
computers were not so readily available. They chose an iterative procedure
to solve the radiative transfer equations using as an initial guess for
the flux divergence the 'cooling to space' (iaee, the amount of energy
lost directly to epace), a concept that has appeared a number of times
in radiative transfer literature. In the mesopaﬁSe region it has been
shown that for strong bands the cooling is dependent on the local temperature
structure, while for weak bands heating, rather than coolihg, takes place.
Lower in the atmosphere where absorption is stronger, the local structure
may dominate all but the weakest bands, so that 'cooling to spacef cannot
be expected to provide a reasonable apprdximation to the cooling rate.
Moreover, iterative procedures for solving the transfer equations have
been shown to converge extremely slowly and to depend on the initial guess,
and may even diverge (Kuhn, 1966). Curtis and Goody do not make it clear
what weak lines, if any, were included or if the less abundant isotopes
were considered. These lines have been shown to be important. Murgatrdyd
and Goody (1958) also made calculations for themesosphere, citing Curtis

and Goody for the method of computation. Because of the uncertanties in
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the actual parameters and method used, no direct comparison can be made
between their results and the present calculations.

The calculations of Prabhakara and Hogan (1966) contain two serious
errors. The first lies in the attempt to simulate the absorption in given
spectral regions by lines of constant intensity and frequency spacing,
using transmission tables of Stull et al., (1963) to deduce some of the
parameters. The transmission tables contain the contributions from lines
of many different intensities, so that the simple model cannot be expected
to represent the transmissivity accurately, especially when extrapolated
to low pressures. A further consequence of this treatment is that all
bands are conside{ed together, instead of treating the relaxation separately
for each band.

The second error lies in the method of solution of the radiative
transfer equation. The energy absorbed by a horizontal layer in the atmo-

sphere is
en [, ], Wv,u,mull-y(v,u) ] du dv

where 7 is the transmissivity of the layer. This equation is correct.
However, Prabhakara and Hogan applied it using the average values of I

and y over finite frequency intervals, i.e., they integrated over frequency
assuming that the integral of the product I(v) [1-y(u)] is equal to pro-
duct of the integrals of I(v) and [L-y(v)]. In fact, I(v) is closely
correlated with 7(v). When the absorption is large the radiation origi-

nates from a region near the layer under consideration. Conversely, when
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the absorption is small, the radiation originates from deep in the atmos-
phere.
The method used by Prabhakara and Hogan is the finite difference form

of Eq.(2.1.6). Their assumption is equivalent to replacing the integral

fv(Iv-Jv) k, dv Dby fv k, dv . fv(Iv—Jv) av

= 8 fv (IV—JV) dy

where S is the total band intensity. This reasoning is false.
The same method was also applied to the Martian atmosphere (Prabhakara

and Hogan, 1965).

3.5 SUMMARY AND CONCLUSION

The most important results of the investigation of radiative cooling
due to carbon dioxide in the mesosphere and mesopause are:

(a) The equation linking the source function to the flux divergence
should contain a degeneracy factor.

(b) Although some radiative heating near the mesopause is typical,
its magnitude is small and is usually correlated with either a temperature
minimum or an abrupt change in temperature gradient.

(c) Oscillations in the temperature structure near the mesopause
dominate the cooling rate, resulting in a considerable increase in cool-
ing at this level. Most of this cooling is provided by the 12¢ 1602
fundamental, with the other bands playing a minor role. When the profile

is smooth, the remaining bands (fundamentals of the isotopes and overtone
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120 l602 fundamental.

(d) Vibrational relaxation begins to influence the cooling rate above
about 75 km. Uncertainties in the vibrational relaxation time lead to
large uncertainties in the cooling rate above this level.

The mesosphere is not in radiative equilibrium (lLeovy 1964a and 196Lb).
This has also been demonstrated by the series of soundings at Wallops i8m
land. However, there can be little doubt that radiative cooling is én
important factor in determining the atmospheric temperature profile in
the mesosphere and mesopause and that it must be accurately accounted for
in any model of-+this part of the atmosphere. Mean temperature profiles
cannot be used to derive mean cooling rategs. Wave-like temperature oscil-
lations in the vertical, which are lacking in simple models, are essential

in the determination of mean cooling rates.
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APPLICATION TO THE ATMOSPHERE OF MARS

4,1 INTRODUCTION

Ih the last decade significant advances have been made in observations
of the surface and atmosphere of Mars. These have come from ground based
spectral observations, including the remarkable high resolution interfero-
metric observations of Connes and Connes, 1966, and also from a planetary
fly-by mission.

Plans are now being made for the soft-landing of scientific packages
on the surface, and for manned exploration at a later date. It would be
of significant Aelp to the spacecraft designers to know the range of meteoro-
logical conditions such as temperature, pressure, wind velocity to be ex-
pected at the surface.

Meteorologists are algo interested in the Martian atmosphere. Its
structure appears to be simpler than that of the earth's, and therefore
interesting for general circulation studies. The virtual absence of clouds
and of water vapor from the atmosphere and oceans from the surface ig in
marked contrast to conditions on the earth. Long wave radiative transfer,
in particular that due to carbon dioxide, is of great importance.

The calculations described in this chapter are designed to be used
in conjunction with a simple atmospheric circulation model. An essential
requirement is that the flux divergence must be simple and quick to evaluate,

since it has to be calculated many times.

8l
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4.2 ATMOSPHERIC COMPOSITION

It has been known for a number of years that the Martian atmosphere
contains considerable amounts of carbon dioxide (e.g., Grandjean and Goody,
1955), deduced from the absorption spectra of reflected solar radiation.
Beginning with Kaplan et al., (1964) a series of more precise measurements
was made of the carbon dioxide content and the surface pressure. The
Mariner IV occulation experiment has also provide valuable information
on the surface pressure and composition of the Martian atmosphere (Kilore
et al., 1965). Although the exact amount of carbon dioxide is still some-
what uncertain, the amount in a vertical column is believed to be in the
range 68 £ 26 m atm. (a partial pressure of 5 * 2 mb at the surface) and
the surface pressure between 5 and 13 mb (Belton and Hunten, 1966). Thus,
carbon dioxide is a maJjor atmospheric constituent and the possibility that
the atmosphere consists almost entirely of carbon dioxide is not inconsistent
with the spectroscopic observations, nor with the occultation observations
of Kilore et al.

The amount of water vapor in the atmosphere is small. Kaplan et al.,
(1964) deduced 14 + 7 u precipitable‘water from their observations but,
as in the earth's atmosphere, the amount may be variable. Kaplan et al.,
also failed to detect any molecular oxygen in the atmosphere, and set an
upper limit of 70 cm atm. This implies that the amount of ozone in the
atmosphere is strictly limited, and is consistent with the detection of

carbon monoxide in Martian spectra, approximately three orders of magnitude
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less abundant than carbon dioxide (Kaplan, 1967). Kaplan was also able
to deduce that the relative abundance of the isotopes 120, 150, 160, 170,
180 is approximately the same as in the earth's atmosphere.

Although there are still uncertainties in the exact composition of
the Martian atmosphere, the important constituents, particularly those that
affect long wave radiative transfer, are known quite well. In any case,
a circulation model is probably not sensitive to small uncertainties, and
new calculations can easily be ﬁndertaken when more accurate data become
available. In the radiative transfer calculations described here, a pure
CO, atmosphere was chosen, with a surface pressure of 6mb.

The influencg of water vapor was neglected; Goody and Belton (1967)
have shown its influence to be small. Carbon monoxide has no vibration—
rotation band in the thermal infrared region, but a pure rotation band
with lines between 100 and 600 p has been detected. Thus, the radiative

role of CO is small and was also neglected.

4.3 CALCULATION DETAILS AND RESULTS

‘The details of the bands of carbon dioxide in the 15 p region have
already been given in the previous chapter, and the abundance of the
isotopes was left unchanged. The only major change i1s in the Lorentz
half-width of the lines, which are now self-broadened. Burch et al.,
(1962) have shown that the self broadened half-width is about 1.3 times
the nitrogen broadened value, i.e., about 0.105 cmm1 at 1 atmosphere and

300°K. This is the value used in these calculations. Madden (1961) has
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shown that there are variations in half-width with rotational quantum
number in the 15 p region, and these should be taken into account. How-
ever, the correct value is not known for all lines, and probably does not
have a large effect, especially when compared to other uncertainties in

the model. Mixed Doppler-Lorentz broadening was used throughout the Martian
atmosphere.

The atmospheric model used for the circulation calculations is quite
simple. The atmospheric temperature profile is defined by the temperature
at three presure levels. pg/§, 2pg/3 and pg, where p, is the surface
pressure. At pressures lower than pg/B the atmosphere is isothermal.

At higher pressures the temperature is given by a quadratic in logarithm

of pressure, through the three pressure levels.

LEVEL PRESSURE LAYER TEMPERATURE
(mb.) (°K)
0 0] 170
|
I 2 I70
2
2 3 190
3
3 4 210
4
4 5 220
5
5 6 v 230

Fig. 8. Model of Martian atmosphere, showing temperatures
and pressures used in radiative transfer calculations.
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For the radiative transfer calculation, two further levels at pg/2 and
5pg/6 were inserted, and the calculation methods described in Chapter 2
were‘applied to this simple atmosphere.

From Eq. (2,ho7), the flux difference between adjacent levels may

be written in the form

AF = ) % a  J. om o= 1,...,5 (4.3.1)

m V i=] mi i

In order to arrive at this form of the equation the source function
(identical to the Planck function in these calculations) has to be assumed
frequency independent over finite frequency intervals. It was found that

1 intervals was satisfactory. This

using the average value of J; in 10 cm™
should be contrasted to the mésospheric calculations in Chapter 3, where
the source function was assumed constant over a whole gbsorption band,

' . -1 . '
approximately 100 cm ~ wide.

In each of the 10 cm“1 intervals the source functim J; was expanded

in the form
T (4.3.2)

coefficients . nd : £ .
The do,i’ dL,i and d2,i were obtained by requiring the

quadratic expression to be exact for three temperatures, T,

l‘andTi * 30°K.

In this way an error of less than 1% can be obtained over the range T+
50°K. The Ti's used are given in Fig. 8.
Substituting Eq. (4.3.2) into Eq. (4.3.1), AF may be expressed in

the form



2
My o= ap+ L (by 3Ty +C 4 T2) m o= 1,2,...,5

(L.3.3)

One difficulty remains: the coefficients ami in Eq. (huB.l) are
functions of temperature, because of the dependence of line intensity and
half-widths on temperature, and should therefore only be used for the
temperature profile for which they are calculated. The temperature depen-
dence of 81 could be allowed for in a simple way by expanding the coefficient
as a linear function of Tl,o,.,T5, but the amount of computation involved
would be very large since the integration over the whole band would have
to be made for many temperature profiles.

In view of the many assumptions made in the atmospheric circulation
model, the temperature dependence of the coefficients was neglected. In
theory, the dependence is easy to account for but practical limitations
on computing time make it impossible at the preseﬁt time.

The values of the coefficients are»shown in Table V. The accuracy
of solution using Eq. (4.3.3) was compared with that of Eq. (4.3.1) for
an extreme profile, assuming the atmosphere to be 50°K colder than the
mean profile atlall levels. The largest error was about 0.5 deg K/day
in the cooling rate. These results are shown by way of example. It
is clearly possible to repeat the computations as necessary, for any de-
sired model atmosphere.

Table VI shows the cooling rates derived from several representative

temperature profiles.
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HEATING RATES IN THE MARTIAN ATMOSPHERE FOR TYPICAL
TEMPERATURE PROFILES

o1

TABLE VI

Temperature at level I (°K) or
heating rate in layer I (°K/Day)

I 1 2 3 L 5
Temperature 170 190 210 220 230
Heating -4.3 1.b -3.7 -7.6 -10.0
Temperature 170 190 210 220 250
Heating -4.0 2.3 -1.8 -1.3 -10.0
Temperature 170 190 210 220 210
Heating -4.5 0.8 -5.3 -12.8 -10.0
Temperature 170 190 210 210 200
Heating -L.7 0.2 -7.3 -12.5 -6.5
Temperature . 190 210 230 240 250
Heating -8.8 0.5 -6.7 -11.4 -13.8
Temperature 170 180 190 210 230
Heating -5.0 -0.3 0.7 -0.4 -9.6

The form of the

solution in Eq. (4.3.3) is simple and quick to evalu-

ate, and therefore meets the requirements for use in the circulation model.

4.4 COMPARISON WITH PREVIOUS CALCULATIONS

Calculations of radiative transfer in the Martian atmosphere have

been made by Ohring and Marino (1966) for several different combinations

of surface pressure and atmospheric composition, although not for pres-

sures as low as 6 mb.

Their long-wave radiative transfer considered only

the 15 u bands of carbon dioxide, using a modified form of Elsasser's

(1960) radiation tables.

It is not clear exactly what allowance was
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made for temperature effects. Their results showed stratospheric equi-
librium temperatures some 15 to 20°K lower than those of Prabhakara and
Hogan (1965). This may be a consequence of the error in computing the
absorbed radiation in the latter paper, as discussed in section 3.4.3.

The resuifs of Ohring and Marino cannot be directly applied tb a
circulation model, although they could probably be modified to do so.
However, calculations by Leovy (ILeovy, 1966 and Leovy and Mintz, 1966)
were made specifically for this purpose. The transmissivities were
calculated by the same method as Prabhakara and Hogan (1965), which intro-
duces an unknown error. However, the manner of calculating transmissivities
"is not essential to the method. The circulation model used by Leovy and
Mintz assumes a constant lapse rate in the troposphere (except for a sur-
face boundary layer), making the temperature dependencé of the transmission
functions easier to incorporate. A similar method could probably be used
for the calculations described here, although it may be better to use
the constant coefficients initially to test the circulation model, and
to modify them afterwards when it becomes apparent precisely what kind

of temperature variations can be expected.



CHAFTER 5
CONCLUSIONS

The main result of this study is the development of a method of com-
puting flux divergences in a plane parallel atmosphere by direct integra-
tion with respect to frequency over molecular absorption bands. Direct
integration methods, which have already been used to calculate atmospheric
slant path transmissivities, offer advantages over previous methods:

1. The Curtis-Godson approximation is applied over successive thin
atmospheric layers, instead of thick layers.

2. Band models are completely avoided and the actual position,
intensities and half-widths of the linés are used, at least to within the
accuracy that they are known.

The calculation of flux divergences by direct integration shares
these two advantages, but also makes possible other features:

3, A diffusivity factor is not employed. Instead, exponential inte-
grals are used and efficient polynomial approximations for E,(x), EB(X)
and EB(X) have been developed.

4, A source function which is linear in pressure in thin horizontal
layers is used. It 1s shown to be more accurate than using isothermal
layers or higher order polynomials to approximate the source function.

5. Flux differences rather than fluxes are calculated, avoiding
numerical difficulties when the differences are small, This i1s important

at low pressures where small differences in flux can provide large amounts

93
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of cooling. The atmospheric layers can be made arbitarily thin to ac-
comodate fine gtructure in the vertical temperature profile.

6. The method is versatile and can be used for any absorber or mix-
ture of absorbing gases.

The disadvantages of the method are:

1. It requires an intimate knowledge of atmospheric absorption
bands, although this is true to a large extent of any method,

2. It requires comparatively large amounts of computing time. This
factor can be expected to decrease in the future as faster electronic
computers are developed, and computing becomes less expensive.

Two applicatiofs of the method are given. The first is to the earth's
atmosphere between about 69 and 100 km, where radiative cooling due to
the 15 p carbon dioxide bands is investigated. Vibrational relaxation
is taken into account to derive source functions for the individual bandsf
Cooling rates are obtained for both model atmospheres and actual soundings.
The results show that cooling predominates near the mesopause, but that
slight heating frequently occurs at the temperature minimum or where dis-
continuitiesin the temperature gradient exist. Local features of the
vertical temperature structure dominate the cocling rate. Vibrational
relaxation influences the cooling rate above 70 to 75 km where the rates
are strongly dependent on the vibrational relaxation time. The radiative
cooling rates calculated from mean profiles are significantly smaller

than the mean of cooling rates obtained from measured temperature soundings,
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suggesting a possible mean energy sink for the upper mesosphere and lower
thermosphere.

The second application is to the Martian atmosphere, where radiative
transfer calculations are performed for incorporation in a simple circula-
tion model. A pure carbon dioxide atmosphere and a surface pressure of

6 mb are used to illustrate the method.



CHAPTER 6

SUGGESTIONS FOR FUTURE WORK

The techniques developed in thié papef cah bé’applied to‘a wide
variety of atmospheric radiative ‘pro'bléms° The speéd of ﬁhe avaiiable
computer was a definité 1imitation gn>the scope of applications deécribed
here, but future computing developménts will make more e#teﬁsive computa~
tions possible.

The lack of detailed knowledge of the absorption bands of water
vapor (6.3 u and pure rotational bands) and of ozone (9.6 u bands) pre-
vents the accurate calculation of cooling rates in other spectral regions
for the earth's atmosphere. Both experimental and theoretical investiga-
tions of these absorption bands are being made and positive results can
be expected within a few years. This will make possible the application
of the present method to other spectral regions, as well as to the rest
of the atmosphere.

In the region of the earth's atmosphere where vibrational relaxation
is important, accurate values of relaxation time are needed. An equation
for the source function for the carbon dioxide overtone bands in the
15 p region is required. Because of the influence of local temperature
structure features, more calculations using measured profiles are required
to determine mean cooling rates near the mesopause, and to obtain an

understanding of the role of the 15 uCO, bands in the energy balance of

2

the upper atmosphere.

%



97

As more details of the composition of the Martian atmosphere become
available, it will be possible to modify radiative transfer calculations.
The problem of Vibrationai relaxatioﬁ in the upper atmosphere is also of
considerable interest, but cooling rates may again be dominated by local
temperature features, which are unknown at the present time. It would
be of interest to apply the present method of calculation to obtain radia-
tive equilibrium temperature profiles.

Although the methods described in this study were developed speci-
fically to examine long-wave radiative transfer, they can be modified
and applied to the absorption of solar radiation in the near infrared.
An understanding of the combined effect of all radiative transfer pro-
cesses in the upper atmosphere would constitute a significant advance in

atmospheric physics.



APPENDIX .
THE POLYNOMIAL APPROXIMATION OF
EXPONENTIAL INTEGRALS
In radiative transfer problems angular integration of the transfer
equations frequently produces terms involving exponential integrals. - The

nth order exponential integral En(x) is defined by

[ _-xt,n
En(x) = fl e ™V /t" at

El(x) may be evaluated in a number of ways, including series and asymptotic
expansions, or less precisely using polynomial or rational approximations.
(Abramowitz' ‘and Stegun 1964). A recurrence relation may be used to ob-
tain higher order integrals from El(x).

The rational approximations are quite suitable for use in a computer
subroutine, but they involve the evaluation of the exponential function
or natural logarithm, or both (depending on the value of x), a factor
which considerably increases computing time. Furthermore El(x) has a
singularity at the origin, whereas the higher order integrals are well
behaved. In addition, values obtained by the recurrence relation for
x > 5 are subject to considerable error. Thus there are advantages in
computing the higher order integrals directly, rather than from the first
order integral.

The approach adopted was to approximate the integrals by polynomials

of intervals on the pogitive x-axis, using a least squares technique.
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Suppose a polynomial of degree m

is a minimum.
In practice, gn(x) is expressed in terms of Legendre polynomials P;(x)

which are orthogonal on (xl,xg)

m
pp(x) = 2 A Py(x)
The condition then becomes
x2 )
fxl Pl(x)[pm(x) - En(x)] dx = 0 i = 0,...,m
or
%2
Ay Cy = fxl P,(x) E(x) ax i = 0,...,m (a-1)
where
X
- re 2
e, = L2 (7(x)° ax

The integral in Eq.-A-1 can be expréssed as a linear sum of integrals of

the form

X5
a, = fxl x Ef{x) dx J = 0,...,1
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By successive integration by parts, or by induction on j, it can be

shown that

J !
a = & ML i ()l g ks G

n+l+k i n+t1l+k

This method can be used for values of Xy greater than about 1.0. The
values of El(xl) and El(X2) were obtained from published tables and the
recurrence relation employed for the higher order integrals.: Double
precision ar;thmetic was used.
For small values of x; and X, the numerical value of the individual
terms in the series expansion are many orders of magnitude greater than
the sum, so that even double precision does not produce sufficient accuracy.
The integrals were evaluated for xq and x, between 0.0 and 1. O by Gaus-v
sian quadrature. The values of the exponential integrals at the quadrature
points were accurately obtained from the series expansibn of El(X) (which
converges raplidly on this interval), followed by the recurrence relation.
Radiative transfer applications generally require a high absolute
accuracy for the exponential integrals, rather than a high reiative ac-
curacy. This implies that for larger values of x, the number of signifi-
cant figures of accuracy may be quite low. The aim of investigation was
to produce an efficient method to calculate the exponential integrals
to an absolute accuracy of about 1 x 1077, Eor Eu(x) this can be readily
achieved, although it requires the interval (O,w) to be broken into rather

a large number of subintervals. Details are given in Table VII. EB(X)
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requires slightly more subintervals but is otherwise similar. Table VIII

lists the intervals and coefficients.

Near x = 0 E,(x) presents some problems, since its slope is not

Al

1}

finite at x = O, a characteristic which make approximation by a poly-
nomial in this region very difficult. In the interval (0,0.005).

function was expanded:
E2(x)~l+[7-l+llnx]x-'2

where

vy 1s Euler's constant.

For x > .005 a polynomial expansion was employed (see Table IX).

The resulting computer subroutines, although not mathematically
elegant, provide a rapid means of evaluating E,, E5 and Eh' With the
exception of the region near x = O for E2, the average time for evaluation
is about 0.24 m sec for the IBM 7090, which is almost twice the average

speed of the system subroutine for the exponential function.
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