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Abstract. We construct free, Euclidean, spin one-half, quantum fields with the following 
properties: (i) CAR; (ii) Symanzik positivity; (iii) Osterwalder-Schrader positivity; (iv) no 
doubling of particle or spin states. They admit the recovery of the relativistic Dirac field 
by the Osterwalder-Schrader technique. We then formally parametrize interacting theories 
by a natural class of Hermitean, Euclidean actions, and obtain a simple, Hermitean, 
Feynman-Kac-Nelson formula. The interacting theory formally obeys all the properties 
(i)-(iv), and admits the reconstruction of a physical Hilbert space, including a Hermitean, 
contraction semigroup for the Wick rotated time evolution. We propose a system of 
axioms for the interacting theory. 

I. Introduction 

Nelson's work on Euclidean field theories for spinless bosons [ t ,  2], 
has proved a very significant conceptual and technical stimulus in the 
program of constructive quantum field theory. It was followed by two 
important papers of Osterwalder and Schrader [3, 4], who discovered the 
Osterwalder-Schrader (OS) positivity condition. Modulo a troublesome 
technicality in their original proof, the OS positivity condition was the 
key property which allowed the reconstruction of a Wightman field 
theory from the Euclidean Schwinger functions at unequal arguments, 
with 'or without an underlying Euclidean field theory. 

They also discussed fermions, and got an algebraically simple, 
Feynman-Kac-Nelson (FKN) formula, at the expense of doubling the 
fermion fields, and of a non-Hermitean Euclidean action. 

There continues to be an interest in the formulation of the Euclidean 
fermion problem, and there have been recent technical advances in 
work by Brydges and Federbush [5], Schrader and Uhlenbrock [6], 
and Wilde and Perez [7]. We refer particularly to the rather extensive 
work of Schrader and Uhlenbrock for a more complete list of references. 
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We also want to cite explicitly a paper by Hegerfeldt [8], because his 
axiomatic approach is close in spirit to our own, although he only 
mentions fermions in a side remark. 

In this paper, we choose a different construction of the free, charged, 
Euclidean-Dirac (ED) field than that of Osterwalder and Schrader. 
We proceed by first supplying a factor 7'5 in the relativistic two-point 
function at Schwinger points, to make it Hermitean, and then adding a 
term with support at the origin of four-dimensional, Euclidean space, 
to make it positive. The latter step can be done in many ways; but we 
choose a scheme that not only does not double particles, but also does 
not double spin states. 

The resulting ED fields obey canonical, anticommutation relations 
(CAR), which turns out to be of some importance in the FKN formula. 
In particular, the ED field anticommutes with itself, as does its adjoint, 
while the field and its adjoint anticommute at unequal Euclidean space 
arguments. We call this situation "local anticommutation relations". 

The natural expression of the OS positivity condition turns out to 
be in terms of an auxiliary, nonlocal field, related to the original ED 
fields by inverse differential operators. The nonlocal fields are defined 
at sharp times, and the OS positivity condition, when expressed in terms 
of them, is of the Nelson type. 

In spite of the nonlocality in the OS positivity condition, the abstract 
proof that one gets a Hermitean, contraction semigroup on the physical 
space goes through; and one can see by inspection that the entire 
relativistic reconstruction for the free field goes through. 

Next, we consider at the heuristic level local polynomial interactions, 
and obtain a formal parametrization of a natural class of Euclidean field 
theories with fermions in terms of Euclidean actions. Our actions are 
Hermitean, with locally commuting integrands; and our version of 
OS positivity is preserved. The construction of a physical Hilbert space 
and a Hermitean, contraction semigroup on it, induced by the Euclidean 
time evolution, goes through. 

Finally, we abstract from our heuristic discussion a proposal for 
a set of Euclidean axioms for fermions. This proposal remains subject to 
modification. The recovery of the time evolution goes through, but we are 
currently studying what might be rigorously sufficient for the existence of 
the analytic continuation to the relativistic fields in the physical space. 

II. Dirac Matrices and the Euclidean Group 

Our Minkowski metric is (+ - - - ) ,  and we follow the van der Waer- 
den representation for relativistic Dirac matrices: 

7. = ~. 
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tT. = a* *-~(I, g), (2) 
~ = a ~ ~ ( I ,  -- q). 

Then 7~ = 7o = 7~ r ; 7" = - 7, and 

75  = - -  i~,)071 723)3 = Y~ = 7T5 r 

=(i ° 
Osterwalder and Schrader exploited the fact that O+(4,1R) is iso- 

morphic to the subgroup of L+ (4, tL-) (identity component of the complex 
Lorentz group) that leaves the set of Euclidean points z=(-iyo,y),  
y e 1R 4, invariant. Our notation for the correspondence between O+ (4, IR) 
and its covering group SU(2)xSU(2)CSL(2,C)xSL(2,tL-') is the 
following, We introduce the Euclidean-Pauli four-vector of 2 x 2 matrices, 

z u = zu*-*(--iI, a). (4) 
Then 

Ulz. U] = R ' .%;  U1, L½6SU(2) 
(5) 

~ R  e O+ (4,1R). 

We define Euclidean-Dirac (ED) matrices: 

7E. ~--~(- i75 70, Y5 ~). (6) 

(These matrices result from those of Osterwalder and Schrader by 
multiplying from the left by - i~5  .) Then 

(0 0) 7E= z* = 7 " ,  (7) 

and 
{7E.,75} = 0.  (8) 

The ED representation of S U(2)x S U(2) is 

U~E. U* = R~.TE~ . (10) 

The Euclidean (as well as the Dirac) raising and lowering matrix is 

K UK -~ = U Tr-1 = g .  (12) 
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T h e  las t  i d e n t i t y  is a l so  o b e y e d  by  the  E D  cha rge  c o n j u g a t i o n  m a t r i x  
(which  p l a y s  n o  ro l e  in  o u r  t h e o r y ) :  

T h e s e  m a t r i c e s  o b e y  the  f o l l o w i n g :  

K = K = - K a~ = - K -1 , (14.a) 

C = (7 = --  C Tr = --  C -1 ; ( t4 .b)  

K7~ K - 1  = - -  yETr, (15.a) 

CytsC -~ = 7~ ~. (15.b) 

lII. The Free Euclidean Two-Point Function 

The  re la t iv i s t i c  t w o - p o i n t  func t ions  a re  

s+ (x) = (~ ,  ~,(x) ~(o) o5 

1 ~ d3k -ik.~ 
= ( i T " t 3 + m )  ( ~ ) 3  j - ~  e , 

s_ (x) = (c~, ~(x) ~(o) c2) 

= ( i y . O _ m ) T  r 1 dak e_ik.~, ' 
(2~)3 f 

w h e r e  

where  

~o=(m2+k2)L and k = (o~, O . 

W e  def ine  E u c l i d e a n  t w o - p o i n t  f u n c t i o n s :  

s~+ (y) = ( ~ ,  ~¥(y) ~ ( o )  o~ )  

= (2re)- 4 ~ d#E(I 2 + YE" P + Y5 #) eiV'Y, 

S ~ _ (y) = (f2~, ~p* (y) ~p(0) f~E) 

= (2~)- 4 ~ drE(I 2 + 7~. p - 75 U)xr alP Y, 

d#E = da p/(P 2 + m2), 

2 = (p2 + m2)/2m, It = (m 2 -- p2)/2m, 

(16.a) 

(16.b) 

(17.a) 

(17.b) 

(18) 
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and where we follow the convention that dot products involving p 
rather than k are Euclidean: 

P ' Y  = PoYo+ P ' 2 -  

The Euclidean two-point functions have the property that for Y® > 0, 
and z = ( -  iyo, ~): 

S~(y) = ?s S+(z) = <O, Ys ~p(z) v-p(0) f2>, (19.a) 

S~(y) = S_(z)  7 s = <f2, ~p(z) ?s ~(0) f2> ; (t9.b) 

i.e., we are making the formal correspondence 

~pE(y)*--~ 75 ~p(z), (20) 
W~(y)~w(z). 

Now S~: can be regarded as the two-point functions of a field ~o F 
and its Hermitean adjoint ~p*, because the matrices in the integrands 
can be written 

m±(p) =(2I+?~-p+~75) 
=(+?~'p+m?5)(I +_?5)(+?E'p+mys)/2m. 

(21) 

Since (1+75)/2 are orthogonal projections, this displays Me as the 
squares of Hermitean matrices. It also shows that M± have rank two, 
so that each particle has only two independent spin states. 

The eigenvalues are easy to compute, because M e are unitary 
equivalent to 

i p I (2 -T- g) I - (22) 

and 
~ q ± ® I ,  

det t/± = 2 2 - #2 _ p2 = O, 

Trr/± = 22,  

so the eigenvalues are 0 and 22, with two-fold degeneracy. 

IV. Euclidean Fock Representation 

We define p-space creation and destruction operators on the 
Euclidean Fock space ~ in a ED spinor basis, i.e., we do not factor 
out the analog of the Dirac wave function. The nonvanishing anti- 
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commutators are 

{b (p), b* (p')} = M+ (p) 6(p - p'), 

{c(p), c* (p')} = M_ (p)Tr 6 (p -- p'). 

(23.a) 

(23.b) 

We specify an irreducible, Fock representation, with Euclidean 
vacuum: 

b (p) f2~ = c (p) f2~ = 0. (24) 

The action of the unitary Fock representation of an element (a, U) 
of inhomogeneous S U (2) x S U (2) is: 

U(a,  u )  = 

U (a, U)* b(p) U (a, U) = e -~p'" U b(R -~ p) , 

U(a, U)* c(p) U(a, U) = e - 'p '"  0 c(R -1 iv), 

(25.a) 

(25.b) 

(25.c) 

plus the equations derived from these by Hermitean conjugation. The 
"bar" notation always means complex conjugation, except on the 
Minkowski, Dirac field. Thus, b and c transform like ED spinors with 
lower and upper indices, respectively. 

The ED fields are 

1 d4p . . 
~pe(y)= (2~) ~ ~ ~ [b(p)e  ~p Y + c * ( p ) e - i P ' r ] ,  (26) 

and the Hermitean conjugate. Note that lp E and ~p~ transform with lower 
and upper indices, respectively, and that they obey CAR: 

= 0,), = 0 ,  
. t {~c,E (y), tp~ (y)} = 16 (y -- y ' ) /m.  

(27) 

We introduce a complex space of spinor-valued test functions, F, 
with arguments y elR4; e.g., F = ,0P(IR4)@~ 4, or F = L2 (]R4)@tI~ 4. The 
smearing operations 

f ~'~PE(T), ~P*(f) 

are linear in f ,  and we always think of multiplication by f from the right 
in the spinor space. 

Our convention for Fourier transforms is 

f ~ g (p) = (2~)- 2 [. d 4 y e -  i p.r f (y). (28) 
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We shall be especially interested in the differential operators: 

D = - i T E . O + ? ' s m ,  

= (iTE" 0+75m) rr, 
(29) 

D f  ~-'~(?'E" P + ?'5 m) g,  

Bin(-  ?'E" p + ?'5 m) Tr g.  

The inverses are well-defined by 

D-l  f ++(?'E • P + 75 m) g/(pz + m2), 
(3O) 

~ - l  f ,...~(_ ?'e" P + Y5 m) Tr g/(p2 + mZ). 

We define scalar products in the one b and c particle subspaces of ~-e, 
respectively, by 

(9, g)b = (OE, ~PE(f) ~P~ (f)  OE) 
(31.a) 

= ~ '/UEg* M+ O, 

(g, g)~ = (f2E, v2~(f) ~PE(f) (2E) 
(31.b) 

= ~ d/~  g* M Tr g.  

The corresponding Hilbert spaces are denoted d~g b and ~ ,  respectively, 
and the one-particle subspace of ~'E is ~x = ~b O ~ .  

Note that F = L2(1R4)®G 4 is indeed natural, because the matrices 
M+_/(p 2 + m z) are uniformly bounded. 

For later convenience in describing the appropriate OS positivity 
condition, we introduce an auxiliary pair of conjugate fields: 

~b(f) ---- (D -1 ~PE)(f) = IPE(D-1 f ) ,  
(32) 

O*(f)  =- ( D-~ ~PE)* ( f )  = q~(D-X f )  • 

Because of Eq. (2t), their two-point functions are 

1+75 
( f2E,~(f)  dp*(f)f2E)=(g,g)N+ = ~ g * ( ~ ) g d , u E ,  (33.a) 

The nonvanishing anticommutation relation is 

1 e , ,  d 1 , ,  {~b(f),~b*(f')}= - ~ - j g  g #E-----~-~,g g')~. (34) 

The notation "N" anticipates a Nelson-type application of the Sobolev 
scalar product. The natural test function space is a Sobolev space, and 
the anticommutation relation is of course non-local. Covariance under 
inhomogeneous S U(2)x S U(2) is preserved. 
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V. Euclidean Time  Reflect ion and O S  Posit ivity 

We define a linear, local, Euclidean time reflection operator O as 

Again, one gets 

OOE=OE, 

O ~o* ( f )  0 -1 = tpe(K -17EOf0), 
(35) 

O -1 * tpe( f )  O* = ~P~(KTEofo), 

fo(Y) = f (Oy)= f ( -  Yo, £). 

It is easy to verify that 

0 2 = I ,  O* = 0 -1 = O .  (36) 

N o t e  that O has the correct act ion as an a u t o m o r p h i s m  of  i n h o m o -  
gerieous S U(2)  × S U(2): 

0 U(a, U 1 x U2) 0 -1 = U(Oa, U2 × U:t). (37) 

This is correct, because conjugation of Eq. (5) gives 

U 2 % U* = (OR O) ~ u%. (38) 

The action of O on q~ is: 

O ~b* ( f )  O -  1 = ~b (K 7Eo fo),  
(39) 

0 (o ( f )  0 -1 = dp*(K -1YEofo).  

The reflection operator that appears in our form of the OS positivity 
condition is most simply expressed by its action on qk We define a 
linear, time reflection T by: 

T a E = O  ~ , 

T~p*( f )  T -1 = ~b*(fo), (40) 

T (o( f )  T -1 = $(fo) . 

T 2 = I ,  T -1 = T* = T .  (4t) 

The action of Ton  ~PE is nonlocal: 

Z~p*( f )  T -1 = ~p~(D -1Dofo) 
(42) 

T ~pe(f ) T -1 = ~OE(D -1Do fo) 

where Do results from D by sign reflection of the )'EO term. 

follows: 
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m 

Let F+ and F+ be the subspaces of test functions f+ such that D f+, 
respectively, Of+ have support as distributions in the interior of Yo > 0. 
That is, f+ = D- 1 h+, respectively, 15-1 h+, where h+ is in N+, the subspace 
of the Nelson (Sobolev) space spanned by vectors with strictly positive 
time support. Recall that 

tp* (f+) = q~*(D/+) ; ~pg(f+) = qb(/sf+). (43) 

Let ~-+ be the linear submanifold of fie spanned by polynomials in 
,p~ and ,p~ smeared, respectively, in F+ and F+, applied to the vacuum. 
Then if+ is also the submanifold of fie generated from f2 E by qb and 4J* 
smeared in N+. For the sake of notation, we do not take the completion. 

Lemma (OS Positivity). Let ~+ ~ + .  Then ( ~ + , T ~ + )  > 0 .  (44) 

The proof is a simple imitation of an argument due to Osterwalder 
and Schrader. The statement is true for two-point functions, as one sees 
most clearly in the qb representation of ~-+. It then follow easily for 
Wick ordered monomials. For polynomials, one writes the Wick ex- 
pansion, making use of the fact that Tcommutes with the Wick expansion 
because of its unitarity in the contraction functions, and one then uses 
orthogonality of the Wick monomials applied to the 'vacuum. 

The reconstruction of the Wightman Fock space follows standard 
lines. One has the choice of working with the qb representation and 
Nelson's sharp-time method, or of working with either the qb or the ~pr 
representation and following the OS construction. We prefer the OS 
construction because of the probable instability of the sharp-time method 
under interaction in four-dimensional space-time. 

The physical Hilbert space ~÷, then, is obtained from ~+ by 
dividing out the kernel of the bounded, positive, bilinear form defined 
on ~+ by T. The unitary, Euclidean time evolution U(t)= u[(t,Q), 1] 
preserves ~-+ for t > 0, and obeys 

T U(t) T -~ = U ( -  t), (45) 

It therefore passes to a Hermitean, contr~tction semigroup on ~+ by an 
argument due to Osterwalder and Schrader, and refined by Heger- 
feldt [8]. 

Of course, one can verify explicitly, by inspection of the two-point 
function, that ~'+ is identified with the Wightman space, and that one 
recovers the Wick rotated, physical time evolution, and the Wick 
rotated, free Dirac field operators. 

In that regard, we remark that the free Dirac field could already 
be recovered from the subspace of ~+ generated by 'PE and ,p* smeared 
with functions in F having strictly positive time support. After careful 
consideration of the formal interacting case, we have decided it would be 
dangerous to try to get away with that in general. 
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VI. A Heuristic Feynman-Kac-Nelson Formula 

Rather than derive in the usual way an expression for the Schwinger 
functions in terms of the Euclidean action associated with a local 
relativistic interaction, we proceed by guessing directly how to 
parametrize Euclidean theories in terms of Euclidean actions. In our 
heuristic discussion, we constrain ourselves to preserve the following 
"non-technical" properties: 

(i) existence of an invariant vacuum, 
(ii) Symanzik positivity, 

(iii) Osterwalder-Schrader positivity, 
(iv) unitary Euclidean covariance (including reflection invariance), 
(v) local anticommutation relations, 

(vi) Hermitean, contraction semigroup property. 
The kind of Euclidean action V we consider is formally the integral 

v =  5 V(y)d4y 

of an invariant, local polynomial, which couples spinless or vector, free, 
Hermitean, Euclidean boson fields, which of course commute with every- 
thing in sight, with powers of local, Hermitean bilinears in the free, 
ED field of the form 

(o (y) r D   dY), 

where F is a coupling matrix, and where the reason for the derivative D 
will emerge. Because our Dirac fields obey CAR, it is easy to write 
down physically interesting couplings such that the integrand of the 
Euclidean action is not only formally Hermitean, but formally commutes 
with itself at different arguments. The action wilt not, however, commute 
with the ED field. 

We impose the following local conditions on the action integrand: 
(i) V(y) is a local function of free fields of the sort described above. 

(ii) V(y)= V*(y). 
(iii) IV(y), V(y')] = O, y 4: y'. 
(iv) U(a, U) V(y) U(a, U) -1 = V(Ry+a).  
(v) o V(y) o = v(oy) .  

(vi) r v ( y )  T -1 = V(Oy). 

A simple example is the Yukawa interaction 

V(y) = : (D~pE)* (y) 75 D ~p~(y) : ~bE(y), 

where ~bE is a boson field with even parity under O and T. Another is 
the massive vector interaction 

V(y) = :(DYE)* (y) y~uD ~p~(y) : A~(y), 
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where 
OA~(y)  0 -1 = OAg(Oy), and TA~(y)  T -1 = Ae(Oy).  

These examples are T covariant because we used D,pg rather than 
tp~. The D has no effect on O covariance, but it has the virtue that D ~p~ 
transforms locally under T: 

T(D~pE)* ( f )  T -1 = T l p ~ ( D f )  T -1 

= lp~(D-iDoDofo) = ~p~(DDo 1Dofo) (46.a) 

= (D ~PE)* (fo). 
Similarly, 

T O~pE(f ) T -1 = (D~p~) (fo) . (46.b) 

Consider the formal expression 

= exp - V. (47) 

We think of it heuristically as a Hermitean, positive definite, invertible, 
invariant operator on the Euclidean Fock space ~E (which now includes 
bosons). To imitate its role in the strictly boson theory, we would like to 
use it as a metric operator to define a new Hilbert space. But the fact that 
d~ fails to commute with the ED field suggests a modification of the field, 
if we want to preserve the properties mentioned above. This can be done 
as follows. 

Define the Euclidean, pre-Hilbert space Jvf v of the interacting 
theory (for a "suitable" dense set of vectors in o~E, including Q~) by the 
scalar product 

<~P, ~P)v = <~o, gqJ)/<aE, gOE).  (48) 

The denominator normalizes the interacting vacuum state Ov, which is 
identified with ~2g in the above construction. The Hermitean adjoint 
operation for operators on ~ v  is related to that for operators on ~ by 

(9A = g -  1 (9* g .  (49) 

Define interacting ED fields in terms of free fields by 

tpv = g-½,p~g+, 
(5O) 

, ; a  = g -  +,,,, ~+ 
WE ~ • 

The definition of ,p~ is consistent with Eq. (49). The interacting fields 
obey CAR because the free fields do. They should be modified in general 
by a wave function renormalization constant, which we omit for sim- 
plicity. Even then, we would have local anticommutation relations. 
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The old action of the Euclidean group, including O and T, is still 
unitary, because the invariance of g implies that 

U (a, u p  = U (a, u)* = U (a, u)  -~, 

0 A = O *  = 0 - 1  ; T A = T *  = T -1  . 

(51) 

The vacumm ~v = Q~ remains invariant. The interacting fields ,p~, 
where " ~ "  means supply the adjoint or not, appropriate to the subscript, 
have the same transformation laws under U, O, and T as the free fields, 
again because of the invariance of g+-~. 

So far, we clearly have an invariant, normalized vacuum, Euclidean 
covariance, local anticummutation relations, and Symanzik positivity. 
It remains to check OS positivity and the semigroup property. 

For that purpose, we split V into positive and negative time parts, 

V= V + + K ,  

v± = ~ v (y) d4 y , 
yoXo 

(52) 

and we note the global properties that we actually need: 
(i) V± are functions of positive and negative time fields, respectively, 

with D's acting on the fermi fields; 
(ii) V+ = V±*; 

(iii) [V+, V_] = 0; 
(iv) o v± o -1 = v~ ; 
(v) TV± T-t= V~. 

We make the corresponding split: 

g = ~ + g _  = g _ g +  ; (¢_+)* = g± ; 

ON+ 0 -1 = TN_+ T -1 = g ~  . 
(53) 

Now let J¢fv+ be the submanifold of 3try generated from the vacuum 
by ,pa and 'Pv smeared in F+ and F+. Note that the fields D,pe have 
another nice property; they have local anticommutation relations with 
q~: e.g., 

{D ~Pe(f), q~*(f3} = {qb(D2 f), ~*(f')} =(DZf, f')N/m" (54) 

The last line vanishes if f and f '  have disjoint y-supports, because 
~ 2 =  D 2 ~_.~p2 + m 2 kills the nonlocal factor in d#E. This has the con- 
sequence that ,p~ (f+) are formally functions only of free fields smeared 
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in the appropriate F÷ and if+. For example, 

# ( f ÷ )  = ~ -  ~ w.(f÷) ~ 

= ¢-~ ,~*(Df+)e~ 

= ¢ ; ~ * ( D f ÷ ) g ~ +  

= e ~ * ( f ÷ ) e t .  

(55) 

In other words, ~¢~v+ is manufactured from ~+. 

Theorem A (OS Positivity). 

Let ~ v + ~ v + .  Then (~v÷,T~v+>v>O. (56) 

Proof. From the intertwining property of T and the Hermiticity 
of ~_+, we have 

( ~v+, e T ~v+ ) = (¢+ ~v+, T S+~v+) . (57) 

The results follows from OS positivity in ~ + a n d  the remarks above. 
We can now construct a physical space ~v÷ from ~v+ by the OS 

method just as before in the Fock space, and by the same token, a 
Hermitean, contraction semigroup. (Strong continuity is formally easy.) 

To complete the formal reconstruction, we need to construct the 
Wick rotated, physical field operators. One can give an ultra-heuristic 
argument, which treats the ~b field at time zero as an operator and then 
concludes from the commutation relations with the action that this 
operator passes to the physical space. That becomes a bit too conjectural 
for our taste, and so we defer the argument until we can justify it by a 
more technical, axiomatic study, now in progress. It does seem worth 
remarking that, even for the formal argument, it seems essential to have 
the full space ~'~v+, and not just the subspace of strictly positive times 
relative to ~pv ~- 

We conclude this section with our version of the Feynman-Kac- 
Nelson formula: 

Theorem B (FKN). 

(58) 
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VII. Preliminary Axioms for Euclidean Dirac Fields 

We propose the following axioms for ED fields ~v and ~v*. It should 
be clear to the reader how to include Euclidean bosons. 

(i) We are given a separable Hilbert space 2FE and a unitary, 
strongly continuous representation U(a, U) of inhomogeneous S U(2) 
× S U(2), and of the reflections, with a unique, invariant vacuum. 

(ii) Irreducible field operators tp(f) and ~p* ( f ) =  tp(f)* are densely 
defined on the usual domain generated by polynomials from the vacuum. 
The vacuum is cyclic. The fields are operator-valued, tempered distribu- 
tions in the usual Wightman sense. In particular, the test function space 
is F = 5z (IR'~)®~ 4. 

(iii) The fields ~,# ( f )  transform under the full Euclidean group 
by the same laws as our ED free fields. 

(iv) We have local, anticommutation relations: 

{tp(f), tp(f')} = {tp* (f),  ~p*(f')} = 0; 

{~p(f), ~v* (f')} = 0 i f f  and f '  have disjoint supports. 
(v) There is a unitary, Hermitean, time reflection operator T on 

~'~E which leaves the vacuum invariant and has the same action on 
~v* ( f )  as described before for the free field. 

(vi) Osterwalder-Schrader Positivity: Let ~¢gg+ C H~ be the sub- 
manifold of ~ufE generated from the vacuum by polynomials in ~v* and 
~v smeared, respectively, in F+ and F+, where 

F+ = {f+ e F  :D f+ eN+}  

F+ = {f+eF:Df+eN+} 

N + = { h + e F : h + ( y ) = 0  for Y0 < 0 } .  

Let ~+ e ]gv÷- Then <~+, T ~+ > > 0. 
(vii) Nelson's Property A'): Let 

~b* ( f )  = ~p* (D - i f ) ,  

¢ ( f )  = W(~-*f ) .  

Then the unsmeared fields ~b# (y) obey a sufficiently strong version of 
Nelson's Axiom (A'). 

We are currently working on the problem of what can be taken as 
sufficient in the last axiom. As we mentioned in the Introduction, the 
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above scheme is similar in spirit to one proposed by Hegerfeldt [8], for 
the situation where OS positivity is defined locally. 

v m .  Concluding Remarks 

(i) The role of the differential operator D in the Euclidean action 
might be clarified by formally connecting our FKN formula to the 
relativistic interaction in the physical space. We expect that to be a 
straightforward exercise. 

(ii) We stated the properties of the action that we needed for our 
heuristic discussion in a global form that is amenable to cutoff; i.e., there 
is a way to cut off the positive and negative time parts of the action 
separately, while retaining everything except restricted Euclidean 
invariance. 

(iii) We have of course ignored, at the formal level, any details of 
renormalization. Superficially at least, the renormalization problem 
would appear to be made worse in the Euclidean space by the presence of 
derivatives on the fermi fields in the action. Such difficulties could be 
ameliorated in the physical space, where the operator D goes over into 
75 times the Dirac positive energy projection. 

(iv) Our free field fits into the functorial scheme of Schrader and 
Uhlenbrock [6] if one considers the fields q~e instead of ~p~, in the sense 
that the second quantization of a minimal Sz.-Nagy semigroup extension 
is involved. 
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Note Added in Proof. We have subsequently learned that the positivity structure of 
the free ED field is richer than we had thought, and that it obeys another, local form of OS 
positivity which is preserved under a second, heuristic parametrization of interaction that 
has the right intuitive properties for reconstruction of relativistic fields. Concluding 
remark (i) above is over-optimistic because we have not succeeded in even an intuitive 
reconstruction of relativistic fields (in the interacting case) from the parametrization in 
this paper. Although we do not think it clearly impossible that the nonlocal method here 
could be made to work, we now prefer the second, manifestly local structure, which has 
appeared in preprint as a sequel to this paper. 

After submitting the second paper for publication, we received a preprint from J. Fr6h- 
lich and K, Osterwalder, which casts doubt on the viability of any scheme for interacting 
Euclidean fermi fields which attempts to avoid doubling. Their argument is essentially that 
the extra growth in momentum space which results from extending the Euclidean Green's 
functions to coinciding arguments makes the renormalization problem for the Euclidean 
theory unmanageable. This difficulty appears here through the mechanism mentioned in 
concluding remark Off), and it appears in our second method as well, as we have indicated in 
the sequel. While we agree that renormalization could well turn out to be fatal for the utility 
of either of the methods we propose, we nevertheless think it sensible at this point not to 
anticipate the results of a more detailed study of specific models of interaction. 


