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Abstract.The Glimm-Jaffe-Spencer cluster expansion from constructive 
quantum field theory is adapted to treat quantum statistical mechanical 
systems of particles interacting by finite range potentials. The Hamiltonian 
H 0 + Vneed be stable in the extended sense that Ho +4V+BN>O for some B. 
In this situation, with a mild technical condition on the potentials, the cluster 
expansion converges and the infinite volume limit of the correlation functions 
exists, at low enough density. These infinite volume correlation functions cluster 
exponentially. We define a class of interacting boson and fermion particle 
theories with a matter-like potential, 1/r suitably truncated at large distance. 
This system would collapse in the absence of the exclusion principle--the 
potential is unstable--but the Hamiltonian is stable. This provides an example 
of a system for which our method proves existence of the infinite volume 
limit, that is not covered by the classic work of Ginibre, which requires stable 
potentials. 

One key ingredient is a type of Holder inequality for the expectation 
values of spatially smeared Euclidean densities, a special interpolation theorem. 
We also obtain a result on the absolute value of the fermion measure, it equals 
the boson measure. 

1. Introduction 

In the quantum statistical mechanical theory of matter (positive charged particles 
and negative charged identical fermions interacting with a 1/r potential) the most 
basic result is the stability, first proved by Dyson and Lenard in [2]. One of the 
authors presented a new proof in [3], and recently another proof was given by 
Lieb and Thirring in [8]. The second basic result was the proof of the existence 
of the thermodynamic functions in the infinite volume, by Lieb and Lebowitz 
in [7]. A natural next problem is the existence of the infinite volume correlation 
functions, for some range of parameters--an open question. 
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** Michigan Junior Fellow 
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Towards this end, the Glimm-Jaffe-Spencer cluster expansion (see [6]) was 
adapted to treat the problem of matter with the t/r interaction modified to 1/r 
( e - " - e  -a") in [4]. In this situation (with suitable values of ~,/~, etc.) the cluster 
expansion was shown to converge, yielding the existence of the infinite volume 
correlation functions. However, the classical methods of Ginibre (see [5]) already 
applied to this case, so this was not a new result. 

In a later paper we will show that for a matter-like system with 1/r replaced 
by e-~/ r  the infinite volume limit of the correlation functions exists, (Ibr some 
range of parameters). This will be a straight forward extension of the present paper 
and [4]. At present we consider a matter-like system with 1/r modified to 

v ( x -  y) = ~ d 3 z f ( x -  z ) l x -  Yl- l f ( y  _ z) 

with f a non-negative function in C~. For this system, the Hamiltonian is stable, 

H + B N > O  

for some B, but the potential is not. The system would collapse in the absence 
of the exclusion principle. We derive the existence of the infinite volume correla- 
tion functions for this system (in some range of parameters). 

In fact our treatment is much more general than just of the atbrementioned 
matter-like systems. We consider systems of boson and fermion particles inter- 
acting via two-body potentials with H = H 0 + V. In this paper we assume 

a) The potentials are finite range. 
b) Ho+4Vis  stable, i.e. there is B' such that 

H o + 4 V + B ' N > O .  

c) The potentials are in L3/2. 
Our main result will be that for such a system at any temperature, if #, the 

chemical potential, is large enough negative the infinite volume limit of the correla- 
tion functions exists. We do not detail the need for condition c) in this paper, a 
technical condition to justify some of the basic manipulations. 

Section 2 presents the cluster expansion we use. Familiarity with [6] is assumed. 
Section 3 contains a statement of our basic results. The key steps in the proof of 
convergence are given in Section 4. Appendix A contains a proof that the absolute 
value of the fermion measure equals the boson measure. Appendix B discusses 
the stability of our matter-like system. Appendices D and E contain technical 
estimates important to the convergence argument. 

The key to the efficiency of the present paper is the interpolation estimate 
in Appendix C. It gives a very useful analog of the Holder inequality for systems 
with fermions, where the natural setting is function spaces over signed measures, 
rather than measures as with pure boson theories. We believe it goes a long way 
in bridging the gap between techniques available for fermion theories and tech- 
niques for boson theories. 

The cluster expansion as developed here is purely a geometric analysis of the 
paths that realize the traces in path space. The total path space integral is split 
into subsets in which paths avoid certain regions and must hit other regions. The 
use of barrier potentials as in [4] is bypassed, this is a matter of choice. 
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In addition to the generalization to infinite range potentials mentioned above, 
that will be the subject of a further paper, it is trivial to include finite range many- 
body forces in the present treatment. 

2. Notation and the Ouster Expansion 

We consider I species of particles described by fields q~l(x) . . . . .  q~(x) obeying 
either fermion or boson statistics. Let 

l 

Hoo = ~ (1/2mi) .f dx(V~)i)(x)(Ve)i)(x ) (2.1.) 
i = 1  

l 

Ho = Hoo - E tii ~. dx(),(x)c~,(x) (2.2) 
i = 1  

l 

N~= ~ dx~(x)dA(x); N =  ~ Ni (2.3) 
i = 1  

H = Ho + V (2.4) 

Vis constructed from potentials with finite range. To partially ftx the length scale 
assume the range is less than 2/10. We will assume that V is sufficiently regular 
that Friedrichs extensions H A may be defined by extending H off N-particle 
wave functions with compact support in an open bounded region (A)NCIR3N; 
and furthermore that exp ( - /~H a) admits a path space representation (Feynman- 
Kac formula) on N-particle subspaces. 

IR 3 is filled with closed unit cubes {A~} with disjoint interiors. A (the large 
box one works in) is the interior of a finite union of such cubes. The cluster ex- 
pansion is applied to quantities of the form 

# 
-- 5 H A ( v ) d z  

(A)a  = Tra(Te ° A)/Tra(e- ~nA) (2.5) 

where Tr A is the trace on the Fock space built on LZ(A). T is the time-ordering 
operator. A has the form 

A = al(tl) ... a,(t~) (2.6) 

where 
l 

ai(t3 = ~ S dxf~j(x)~j(x)Oj(x). (2.7) 
j = l  

Thus the t~ is dummy, it serves to define the order of the operators in (2.5). For a 
given i each f~j is supported in a single cube A for all j =  1 . . . . .  1. Each f j  is real, 
measurable, and 0<f~ j<  1, With these conditions our estimates may be taken 
to depend on the operator A only through the number of factors, s. 

The expression (2.5) can be represented as a path integral using a signed 
measure. Thus 

-- .~ HA('c)d*: - ~ V (*d)d~ 

TrA(Te ° A) = ~ dl~e ° a~(h)..,  a,(t3 (2.8) 
A 
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l 

d# may be described in the following laborious way: d/~= I-I d/~(J) where d# C J) 
j = l  

is associated with the ith species. Then d# °)= + d/~ ) where the N particle 
N = O  

measure d/~ ) is 

V ~s<e) f d3x daxNd#Px~ xp ~ d/~(~)=(N!) -~ z_,~j j ~ ... . , >...d#~.~p~,,) (2.9) 
P 

d~,y is the measure on the space of paths t ~ x t s l R  3 (starting at x at t = 0  and 
ending at y at t=fl) associated with the semigroup e x p - t ( - # ~ - A ) .  (dp(d)-- 1). 

( 1 )  ( boson t (~) 
P is a permutation of {1, 2 . . . . .  N}. ej= 1 if species j is \fermion]'  S=  

(even) 
if P is \ odd]"  The integral over x t . . . . .  x s takes the trace. The A on the integral 

sign in (2.8) means that the integration is over the subset of path space such 
that the paths of each particle do not hit A ~ in the time interval [0,/3]. V(z), a~(ti) 
in (2.8) stand for the obvious functions corresponding to the operators V, a~ 
evaluated at the positions of the paths for each particle at times, z, t~. On an 
n-particle subspace the n paths describing the particles give a mapping t ~ R  3" 
which we call an n-path. 

Our description of the cluster expansion imposes the following notation. 
{S~} is the set of all faces of cubes {A~}. E~ is the characteristic function of the 
subset of path space consisting of all n-paths such that no particle hits the "barrier" 
t l~={xs lR3:dis t (x ,S , )<~} in the time interval [0,/3]. Note that the width of 
the barrier is greater than the range of V. X C A  is a union of cubes Av { A / j e J }  
is a distinguished set of cubes. 

The cluster expansion is developed by inserting inside the d# integral in (2.8) 
the identity t = 1~ (E~+H,) where H~= 1 - E ,  and ~ runs over faces S~ in A, then 

(i 

expanding the product. This is followed by factorizing and resumming outside 
sets X. Since this is a familiar process from [6], we merely write down the result. 

- i V(Ocl~ - I V(~)dz  

d#e ° al(tl) ... a~(t~)/ ! d#e ° 
A 

t~ t~ 

t V(7:)d~ 1 -- f V("~)dv 

= 2 K(X,F)  ~ d#e -~ / i d l ~ e  o (2.10) 
X ,  r ( A -  X )  ~ / A  

where 
t) 

- f V(~)d~ 

K(X, F)= S d#Hre ° 
( X -  r~)  ~ 

Hr = 1~ H~. 
oLaF 

l-[ a,(ti) (2.11) 
i 

(2.12) 

If SCA, S=  {xsS:  dist (x, 8S)> ~o}. (?S=(S- Int S ) -  8/i. The distinguished sets 
have been required to include the supports of all the j}~. F is a subset of {S,} and 
also denotes the corresponding set in IR 3. The sum over X, F in (2.10) runs over 
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all X C A  such that U AjCX and, for a given X, all F such that (1) (Fn  Int X ) = F  
jEJ 

(2) each component of X - F  c contains at least one Aj, j~J.  F c is the set of faces 
S~ in X, complementary to F, considered as a subset of IR 3. (The S~ are closed sets.) 

Our constants c a all satisfy 

0 < C a < O O  

and the same notation may mean different constants in different sections if not 
obviously related. 

3. Results 

Proposition 3.1. Let Z(A)= TrA(ex p --/~H ~l) 
IZ(A)I < oo, 

IZ(A1)/Z(A)I < 1. 

Proof. Apply the minimax principle. 

Theorem 3.2. I f  for some B >_ 0 

1/2Hoo+ 2V + BN>O 

then for some t~o (large negative), 
uniformly in A for I~ 1 . . . . .  #~ <--Po. 

and let A1 CA be open. Then, if 

(3.1) 

the cluster expansion (2.10), (2.11) converges 

Theorem 3.3. Let A, B be quantities of the type (2.6) amt let B e for 4sIR 3 denote the 
translation in the obvious sense of B by 4. For some #o (large negative), if (3.1) 
holds and #i <- # o for i= 1 . . . . .  I, then 

KAB~)A-- (A)A(B)At  <= CA, B exp ( -  c, ...... u,141) (3.2) 

uniformly in A, for 141 large, c u ...... ~,~oo as Ita . . . . .  # l ~ - o o .  

Theorem 3.4. There exists #o (large negative) such that if pi< go for i= 1 . . . . .  t 
and (3.1) holds then 

(1) lim Z((A-X)~) /Z(A)  exists for all X. 
tal-*~o 

(2) lim (A)A exists and the limit of  (3.2) holds. 
IAl-*~o 

Thus the correlation functions exist and cluster exponentially. IAI represents 
the volume of A. The A's are boxes (rectangular paratlepipeds) centered at the 
origin whose minimum width goes to infinity, this is understood in the limits in 
(1) and (2). 

Part (2) of Theorem 3.4 follows from part (1), Proposition 3.1, Theorem 3.2 
and Theorem 3.3. Part (i) is not difficult, and is proven in Appendix E. The con- 
stants #o in Theorem 3.2, Theorem 3.3, and Theorem 3.4 are taken to be the 
same, this can be done at the expense of not using the largest possible value in 
each theorem. 

Parallel to Proposition 5.3, p. 218, in [6] we have 
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Proposition 3.5. Under the hypotheses of Theorem 3.2 

IK(X, V)l < Ca exp [c 1 [Xt-  c2,~, ...... u,}F[] 

c2. ~ ...... , --,oo as # i ~  - ov for i= 1 . . . . .  1, c, fixed. 

Proposition 3.5 combined with Proposition 3.1 leads to proog of Theorems 
3.2 and 3.3 by the same argument as in [6], which we do not repeat here. 

Our proof of Proposition 3.5 uses an inequality of the following type: 

Proposition 3.6. For p> t, 1/p+ l / q=1  

Tr A(Te - ~ I~)"~ o A) < [TrA e-e(n~° +Pv)] lip "(I dllt[Aq) t/q 

This inequality is closely analogous to Holder's inequality in Euclidean Field 
Theory. It has the important feature that the fermion statistics, or equivalently, 
the signed measure in (2.8) has been preserved for the first factor on the right. 
For the absolute value of the measure # appearing in the other factor on the 
right we have: 

Proposition 3.7. The absolute value J#l of # is equal to the measure obtained by 
changing all fermion species to bosons. 

Finally, as an example of a potential V which exploits most of the latitude 
(see (a) and (b) below Theorem 3.8) of Theorems 3.2, 3.3 and 3.4, set 

9 2 
V =  T~d3xd3y:(~l~l--~2~)2)(X)U(x--y)(~l~)l--~2¢2)(y); where q51---~b is a 

boson field and 42 =~P is a fermion field, v (x - y )  is the truncated Coulomb po- 
tential 

v(x - y) = 5 dazf( x - z) ix-@y l- f ( y  - z) 

where f is a non-negative real C 2 function on IR 3 such that f ( x ) = 0  for Ixl > 1/10. 
This V satisfies 

Theorem 3.8. For B > 0 sufficiently large 

1/2H00 + 2V + BN>O.  

This theorem is the equivalent of the Dyson-Lenard theorem for the Coulomb 
potential [2, 3, 8] and shares the following features with it (a) V is not stable in 
the sense of Ruelle (b) at least one species must obey fermion statistics ((b) is not 
supposed to be obvious). 

4. Proof of Proposition 3.5 

We use the three lines lemma, thus set 

- 2 z  .[ V(z)d~ 

K(X, F, z) = ~ dpHre o [ I  a~ - 2~(ti) 
Xx i 

(4.1) 
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where X 1 = ( X - U ) L  To make this analytic in z we temporarily assume that 
only integrates over the subset of path space representing less that t/j, j = 1,2 ..... l 

X1 
particles of species j, and furthermore that V is bounded above and below on 
this subset. We obtain bounds uniform with respect to these assumptions which 
can be removed by taking limits at the end of the proof. By the three lines lemma, 

IK(X, F)t<-( sup IK(X, F, z)])l/z( sup IK(X, F, z)l) I/z (4.2) 
\ R e z = O  ] \ R e z = l  

By taking absolute values inside the ~ dp integral and then using the Cauchy 
Schwartz estimate: 

sup ]K(X, F, z)l]t/2< ( S dllz[Hr] 1/,( S dl#[ I~)[ a~[(t,))1/, . (4.3) 
R e z = 0  ] \X:  / \Xz 

Therefore, to prove Proposition 3.5 we derive the following three estimates. 

j" dl~l H a4(ti) ~= CA ec31xl (4.4) 
Xt i 

dl#lH r <<- c4e-4C2.,~ . ...... trlec"txl (4.5) 
X1 

sup IK(X, F, z)[ < c :  c~rxl . (4.6) 
R e z = I  

To prove (4.4), combine Proposition 3.7 with the easy estimate a~ < IN. The proof 
of (4.5) is deferred to Appendix D. 

Proof of (4.6). Unravel H r by expanding Hr  = 1~ (i - E~) 
g~F 

# 
- 2z S V(z)dT 

due o [I  a~ -2 z(t,) 
i 

sup ]K(X, F, z)[ < ~ sup ~ (4.7) 
R e z = l  f l C f  R e z = t  X(fi) 

where X(F1) = ( X -  (FC~F1)) ~ 

2 (ti) . 
- 2z I V(r)dt 

=<2 Irl sup sup ~ dl~e ° 1~ i (4.8) 
Flee  Rez =1  X(F1) 

Thug the proof of (4.6) will be completed by 
P 

- 2z f V(z)d~ 
sup !d#e o [Ia2-2z(ti) <eCT[X[ 

Rez = 1 i 

uniformly in Y C X open. The left hand side of (4.9) may be rewritten as 

[ - 7  [H~+ 2zV]dr ) 
sup TrrITe ° ~ia2-2z( t i ) .  (4.10) 

Rez= 1 

We refer to the proof of Proposition 3.6 in Appendix C to show that (4.10) is less 
than 

Tr r (e-p~n~ + 2v)) (4.1 t) 

(4.9) 
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This is in fact the main point in the proof of Proposition 3.6. It exploits properties 
of the trace and exponentiall By the minimax theorem or equivalently Proposi- 
tion 3.1, (4,tl) is tess than 

^ 

Tr x (e- fl(H°X + 2V)) (4.12) 

and this may be estimated by e CTIxf by splitting Ho + 2V into 1 / 2 H o , 1 / 2 H o  + 2 V  
and using the well known fact, 

Tr (e-a)< Tr (e -~) (4.13) 

if A>__B, along with the hypothesis (3.1). 

Appendix A. J Fermion Measure[ = Boson Measure 

Let (x I . . . . .  xN) and (yl . . . . .  YN) be two sets of distinct points in R 3. We denote a 
single particle path space measure for paths from x to y in time a _  t_< b by 

The path is described by z(t).  We construct the boson and fermion measures as 
follows: 

# V , B = ( 1 / U ! ) Z e s { P ) I - I ( f d ' " ' b  ' (A.1) ~Lgyp( i ) ,  XiJ 
P i 

(~) (event 
where S(P)  is if the permutation is \ o d d /  and e = l  for bosons, giving i% 

and e = - 1  for fermions, giving/~F- Let ~ be the space whose points are sets of 
N points in R3; Tbe the space of mappings of [a, b] into 3. The set Z l(t) . . . . .  zN( t )¢  
identifies the n-paths in (A,1) with points in T, and #v and /1, are defined (at 
last) as measures on T. The image in T of continuous paths that never intersect 
each other we call T'. T -  T' is a set of measure zero. The sum in (A.1) realizes 
PF and/~8 as a sum of measures with disjoint supports in T'. Thus I#rt =kt,. 

Appendix B. The Truncated Coulomb Interaction and Its Stability 

We consider 

H = H o F  + HoB + g2/2  ~ : (@P -- ~d?)V(!lTV - ~¢):  

with 

1 _ 

N = NF + N B 

v is our truncated 1/r potential given by 

v(x  - y)  = ~ d 3 z f ( x  - z)Lx - Yl - 1 f ( y  _ z) 

(B.1) 

(B.2) 

(B.3) 
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We assume f is a non-negative real C 2 function on R 3 satisfying 

f ( x ) = 0  if Ix l>l /10 (B.4) 

We also define auxiliary potentials v. 

v . ( x -  y) = ~ d3zf (x - z)l x - Yl - 1 e-" tx- ' l  f (y _ z) (B.5) 

v and v. satisfy the following properties: 

P,0 v=vo (B.6) 

P.1 v.(x)=0 if Ixi>2/10 (B.7) 

Iv.(x)l < cllxI- *e -hill (g.8) 

P.2 There are c2 > 0 and c3 > 0 such that 

v.(x)~c2lxl-le -"Lxt if c3>lx  t (B.9) 

and vm(x ) > 0 for all x. 

P.3 There is c 4 such that 

V n * V n ( X ) ~ c 4 ( r -  le-" ' )  * (r-  % - " 9  (B.10) 

P.4 If n > m then 

v m - v . > O  (B.11) 

as an operator and numerically. 

P,5 There is a c5 such that 

( v -  v,)(0) = csn (B.12) 

P.6 Let {X~} be translates over a lattice of a real function in C 2, then there is a 
c6 > 0 (c 6 depending on Z~) such that 

v -  v I > c 6 ~ ZiZi (B.13) 

as an operator inequality. 
These properties are immediate except for P.6. It is proved below. 

Theorem. I f  to v(x) may be associated a set of  potentials v,(x) satisfying P.0 through 
P.6 then H as given in (B.1) is stable. 

A proof of this theorem may be constructed by examining the proof in [3] 
and verifying these properties are sufficient to provide stability. In the absence 
of the exclusion principle--that is if ~p were a boson field instead of a fermion 
field---the Hamiltonian is unstable. By examining [1] one can deduce if 

H + BN~>O 

then 7 > 7/5. 

Proof  of  P.6. We wish to prove P.6, that for X~ translates over a lattice of a real 
function in CZo 

f ( r -  ~(1 - e-~)) f  >= c ~ Z,X, (B.14) 



242 D. Brydges and P. Federbush 

Basically we proceed via a few reductions. Assume {¢z~} are real functions, {e} 
a finite indexing set, and for fixed e the ~b~ are translates over a lattice of each 
other; then if 

Zi = ~, 4i~ (B.15) 

it follows that (B.14) is implied by 

f(r- 1(1 - e-'))f > c'~ dp,~4),~ (B.16) 

This is the first reduction. It follows from the inequality 

¢~(P~p + ~b~p(h~ =< ~b~b~ + ~b~pq~, (B. 17) 

upon expanding 

The next reduction is to observe that (B.16) follows from the relationship 

1 -- e-{x-yt 
f (z-  x) f (z-  y) > c"dpi~),~ (B.18) Ix-  yl 

for ze U~, the U~ non-empty open sets; i fixed. This can be seen by noting that 
the integral in (B.16) then contains positive contributions to dominate the terms 
on the right hand side (which may be picked coming from disjoint portions of the 
integral). 

We look at an equivalent form of (B.18) again for ze U,, 

t - e-t:,-yl 1 1 (B.19) 
__> c "  - -  q ~ i ~ ( x ) ~ A y )  - -  

Ix-y] f ( z - x )  f ( z - y )  
1 

From the proof of Fact 5 in [3] we get (B.19) provided ~ b ~ , ( x )  is in C 2, 

with derivative estimates uniform in z, for ze U~. The ¢~: are easily constructed as a 
finite C g partition of )~ satisfying 

Supp (qSz~(x)) C {xl f (x-  z) > e} (B.20) 

for some e > 0 and z. 

Appendix C. Proof  of  Proposition 3.6 

As in Section 4, the three lines lemma implies (the comments below (4.1) are in 
force) 

(Te ~ A) 
- -  I H A ( ' c ) d  1: 

Tr A o 
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where 1/1)+ 1 / q =  1, p >  1, [9]. To complete the proof we need to show that the 
first factor on the right of (C.1) is less than 

(Tra(e e \\l/p - ~ [no + pvl(~)d~)) . (C.2) 

The principle involved is contained in the following lemma. 

Lemma. L e t  A , B  be hermit ian matr ices  with A > O .  L e t  s 1 . . . . .  s , > O  with 

~ s i = l  and let Ul . . . . .  u ,_  1 be uni tary  matrices,  then 
i=1 

[Tr ( e -  s l (A + iB)U I e -  s2(A + iB)u2  . . .  Un _ l e - s.~a + iB))I 

< Tr e - a  . (C.3) 

Proof .  It is sufficient to prove it when sl . . . . .  s, are rational fractions with No 
their common denominator. Apply the Trotter product formula in the form 

e - sk (A+iB)=  lim (e -(1/IN°)iBe-(1/lN°Ia) l~°sk 
i-+oo 

for k =  1, 2 . . . . .  n so that the left hand side of (C.3) is 

lim T r ( ~ f  (Vse-~I/m°)A)) (C.4) 
t~m \ j = l  

Where gj is a unitary operator (either e -~*/IN°)~s or uke -C*/m°)iB for some k). By 
Holder's inequality for trace norms [9], the absolute value of (C.4) is less than 

/No 

lim 1-I (WrlVf-{*/'s°)alm°)*/'N° 
l-,m j = l  

/No 

= lim 1-[ (Yrle-~*/'~°)al'N°)*/'u° 
l~oo j = l  

= Wr (e -a) (C.5) 

which concludes the proof of the lemma. We do not discuss the technicalities 
involved in extending the inequality (C.3) to allow A = H o + p V ,  B = p ( I m z ) V ,  
and ui=al LIm(1-znq, thereby obtaining (C.2). 

Appendix D. A Path Space Estimate Incorporating Conditions that Paths 
Must Hit Barriers 

We study 

I =  ~ d~H r (D.1) 

We restrict our notation to the situation where a single boson species is described 
by the measure, this is a trivial simplification. Without the function H r this 
would be the integral over n-paths in X that realizes the trace of e - ~ .  The 
inclusion of H r  restricts the integral to n-paths with the property that each barrier 
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in F is hit by some path (different barriers may be hit by different paths or the 
same path). 

We majorize (D.1) by a sum of terms, one for each partition p of the faces in F 

P~--~(P l . . . . .  Ps) (0.2) 

p~ a subset of faces in F. To each p~ is associated a path integral from x~ to y~, the 
x~ and Yi localized in A2, and A~;. The paths associated to Pi must hit all the barriers 
in p~. With this notation we claim 

ji,J[ i= 1 zlj~ ~j/ pi J 

.Tr2(]~ Nyi)e -~Hg ~ c~(xi) ) (D.3) 

Realized as n-paths the trace in (D.3) is greater than I since all the n-paths in I 
are summed over with same numerical weight, but some more than once. 

We now note that the expression inside the trace equals 

[1 g(Yi) e-Ne-~Hg + 2Ne-N [I 4(xi) (D.4) 

We let ~j be the number of x~ localized in A j, and flj the number of y~ localized in 
Aj, We recall if T > 0  then 

I Tr (e- rR)[ <-_ r r  (e- T). T I R]T (0.5) 

Our "R" is of the form 

[I(\ ~ dxz ~ dyz]G(xi, yi)e -~" I-I 4(xz) [ [  qS(Y)e -N (D.6) 
ail ] 

Normal ordering and employing N~ estimates one finds 

I[(D.6) Ib < 1-[ (ej + 1) 2C~s+ 1)(flj AV l)2(flj+ 1)Sup [G(x~, Yi)l (D.7) 

We have used the fact that the integration regions are of volume one, so that the 
sup norm dominates the L2 norm (and other norms arising in the process). 

We let hi= h(p~, A j,, A j,,) be the maximum over x~ and y~ of the path integrals 
in parentheses in (D.3). This yields the estimate 

I <=e~lxl Z ~ 1-[ (c~j+ 1) 2(~j+ 1)(flj+ 1)2(flj+ 1) I~ hi (D.S) 
p j~,j'~ 

We write 

hi<hli.hzi.h~ 

with 

h i  i = c 3e -c4d(~ ,  ,S~), S~E  p i (D.9) 

and 

h2 i ---- c 3e-~at~,. s~,), Sa, E pi (D.10) 

where S~ and S~, are picked minimizing the distance d. We get that 

Sup ~ (c~j+ 1) 2(=J+ ~)(flj+ 1) 2{ej+ 1) 1~ h,i [] h2~<e c,lrl (D.11) 
p ji,,j~ 
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by an argument as in Section 10 of [6]. Thus we have the estimate 

I <--e¢llxl+csIrl Z l-~ h~i (D.12) 
P 

The final result is obtained provided 

Sup ~ h3~<e -c6lri (D.13) 
P 

with c 6 going to infinity with # going to minus infinity, and 

2 11 hai~ ecalrl (D.13)' 
P 
The estimate for h23~, the heart of the matter, is obtained by the same argument 

as in Proposition 8.1 of [6]. It is the square root of the measure for paths hitting 
all the barriers in Pi in time ft. (The root is taken so that hli and h2~ may be factored 
out of the total probability.) The length of such a path must be at least cvlp~[ for 
IP~[ large. It is not surprising that one gets 

h3i < e -  1/4~ + cglwt- ~8Ip~l~lp~i ! (D. 14) 

The factorial accomodates different orders of hitting the barriers. By picking # large 
enough one gets (D.13) for any c6. 

To get (D.13)' we observe that to a path that hits barrier i and then barrier j 
may be associated a numerical factor e-~'e% where d~j is the distance between 
barrier i and barrier j, such that ~ l-I h3~ is overestimated by 

P 

Those to to hit barriers 2 k in have paths contributing h3i required t, order, 

associated to them 
k--1 ) 
1FI e 

j= l  

Theorem. 

t < e~,lxI-klrl 

where k can be made arbitrarily large, c 1 fixed, by picking # large negative. 

Appendix E. Proof of Theorem 3.4 (1) 

We consider the difference between the ratio of Z's in Theorem 3.4 (1) for two 
choices of A, A1, and A2. 

Z ( ( A  1 - X F  ) / Z ( A  1) - z ( ( A 2  - X f  ) / Z ( A 2 )  = 

= (Z(A2)Z((A l - X )  ~) - Z(A 1)Z((A2 - X) ~))/Z(A 0Z(A2). (E. 1) 

We pick a set {Aj, j e J }  of distinguished cubes with the property that their union 
is inside ( A - X F  for all A large enough, and such that this union separates X 
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and the component  of  infinity. This choice depends on X but is independent 
of A1 and A z  for A1 and A2 large enough. ( U Aj is a collar a round  X.) 

jsJ 
We view each product  of  Z's  in the numera tor  of  the right term in (E.1) as a 

single part i t ion function for a doubled system, each subsystem with the same 
interactions as the original system, but with no mutual  interactions. The boundary  
data of the two subsystems are different to yield the indicated products.  We 
expand each product  of  Z 's  in the (E.1) numera to r  in a single cluster expansion 
for the doubled systems, using the distinguished cubes defined above. 

Pairs (X, F) arising in the two cluster expansions cancel until X hits either 
0A1 or (?.4 2 . Thus the difference in (E.1) goes to zero exponentially with the mini- 
m u m  width of  A 1 or  A 2 whichever is smaller, provided #o is large enough negative. 

This proof  is similar to the p roof  of  clustering in [6], Section 4, which also 
uses a doubled system. 
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