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Abstract. As an application o f the theory of solutions o f the classical, Euclidean 
field equation, we prove the existence of solutions to the renormalized 
functional field equation, for the 2~ 4 interaction in four Euclidean space 
dimensions, with non-negative 2 and nonzero mass, through order hc. That is, 
we prove that the functional derivative of the connected generating functional is 
in the Schwartz space ReSP(R4), when evaluated at external sources in Re5 p, 
through order hc. We also prove the existence of all functional derivatives o f the 
connected generating functional through the same order. All quantities of 
interest are analytic in the coupling constant at 0 < 2 < o% and continuous in the 
external source. 

I. Introduction 

A large number of formal, and several exact results, already exist for the loop 
expansion of the generating functional for connected, time-ordered vacuum 
expectation values of scalar field operators over Minkowski space. In this paper, we 
begin to develop the Euclidean version of the loop expansion for the massive scalar 
field with 2q~ 4 interaction, 220,  in four Euclidean dimensions, by proving the 
existence of the renormalized theory through order hc (one loop). We do that by 
studying the functional form of the renormalized Euclidean field equation. The 
techniques of linear and nonlinear functional analysis have matured to the point 
where this becomes a "standard" calculation, and we think it reasonable to hope 
that the same is true to all orders in the loop expansion. 

Some motivating remarks follow: 
(i) In the Minkowski version, Jackiw [11 gives a systematic treatment of the 

effective potential in the loop expansion, and he discusses the renormalization of 
one and two loops for 2(~4)1 +3 in some detail. We are interested in the Euclidean 
version because it is somewhat easier to state and prove rigorous theorems. We say 
"somewhat", because the classical field equation in the presence of an external 
source plays a central role ; and the mathematics for the classical field equation in 
the Minkowski 2~ 4 theory is well developed, albeit in the absence of external 
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sources [-2, 3]. One could hope that no new ideas would be needed to handle external 
sources, and that the Minkowski parallel to the discussion in this paper would go 
through. But the Euclidean version is certainly less involved, and we are encouraged 
by the Osterwalder-Schrader [4] and Nelson [5], Euclidean to Minkowski 
reconstruction theorems to believe that there is no loss of generality in consider- 
ing it. 

(ii) The principles o f renormalization have not yet been formulated or proved as 
definitive formal power series (fps) statements in hc, in contrast to the fps expansion 
in the coupling constant. Rather complete expositions of the latter situation can be 
found in the articles of Hepp [6] and Epstein and Glaser [7]. Whether there might 
be combinatoric or other advantages to renormalizing the loop expansion, over the 
coupling constant expansion, thus remains unknown. 

(iii) A treatment of  sufficiently high orders 1 might conceivably suggest 
nonperturbative techniques of renormalization different in flavor from those 
currently used in constructive field theory. Unfortunately, the superficially 
nonperturbative direction of the loop relative to the coupling constant expansion 
cannot be expected to give direct information about things like bound states [1] or 
phase transitions, for the interaction treated here, because the terms in the loop 
expansion, through one loop at least, turn out to be analytic in the coupling 
constant. We are currently studying two or more loops. 

(iv) Four  dimensions is an upper bound for the techniques of  this paper. Three 
dimensions admits the ¢6 interaction, and two dimensions admits any power, 
subject to positivity constraints. The three-dimensional Euclidean theory might be 
considered warm-up practice for the richer existence theory of static, finite energy 
soliton solutions in gauge field theories [8]. 

(v) The immediate practical motivation is that a sufficiently complete treatment 
of the Euclidean classical field equation (CFE), which controls a large chunk of the 
nonlinearity in the problem, now exists, due to a somewhat one-sided 2 col- 
laboration between J. Rauch and myself [9]. 

We devote the remainder of this introduction largely to a discussion of the 
functional form of the Euclidean quantum field equation, which is our starting 
point. 

We imagine the following Euclidean generating functional to exist: 

E(f)  = (~0, exp( -  V/hc) exp(~(f)/hc)f2o) 
(O0, exp ( -  V/hc)f2o) (1) 

where f2 o is the vacuum for the free, Euclidean scalar field of mass m>0,  f is in 
ReSQ(R4), ~b(f) is the smeared, Euclidean free field, and 

V = ~ [2-  2jr(1 + C)~ '4 + 2-1A#Z~2 - 2-  ~B~A~]dx (2) 

with 2 > 0 and # = mc/h both renormalized quantities. There is no normal ordering. 

I Jackiw [1] emphasizes that less than two loops is structurally too simple 

2 Although I was able to contribute a few parallel arguments, the style of the collaboration was mainly 
that J. Rauch explained to me what he regarded as the standard analysis of the questions I posed, which I 
then digested as what seemed to me powerful and interesting applications of unfamiliar techniques 
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The renormalization constants are regarded as fps in hc (they may equally welI be 
regarded as fps in 2): 

b~ (hcXr, (31 
1 Cn 

with dimensionless coefficients % b,,, and % The infinite parts of these coefficients 
are to be chosen in n-th order to make the solution of the field equation finite in that 
order. We may leave the finite parts unspecified, corresponding to finite re- 
normalizations. 

At the formal level, we think o f g( f )  as the Laplace trans form o f the interacting, 
Euclidean path space measure. The reason for studying the Laplace rather than the 
Fourier transform is that it gives c-number fields that are real, with the correct sign 
of the coupling constant in the Euclidean field equation. 

The field equation can be derived by a formal integration by parts on the free 
Gaussian measure: 

0 = (Oo, [ ( -  A + #2)~b + ~ V/6(I)- f]  exp(-  V/hc) exp4P(f)/hcf2o), (4) 

where we have dropped an infinite normalization factor that turns out to be 
irrelevant. If we express g(f)  in terms of the connected generating functional, 

g(f)  = exp L(f)/hc , (5) 

it is well known that a fps expansion of L(f) in hc is the loop expansion of connected 
Feynman graphs [10J, the term of order (hc)" (the term with n loops) being an infinite 
fps expansion in 2. The field equation takes the functional form 

f = - (1 + B)A ~c + #2( 1 + A)(bc 

+;.(1 + C) l-~b~ + 3hc,I~649 C + (hc) 2 62~bc], (6) 

where 

q~ = g)L/6f(x), 6q~ =- 6~c(x)/6f(x ), 

6 2 q~ = 6 2 q~(x)/6f(x) 6f(x). (7) 

Infinite renormalization is required because of the singularities in the functional 
derivatives at equal arguments. We conjecture that the c-number function ~ 
belongs to the real Schwartz space of test functions R e ~ ( R  4) to all orders in hc, i f f  
is in Re~(R4). We prove that through order hc. The functional derivatives of ~ ,  at 
independent arguments., give the connected n-point functions, when evaluated at 
f =  0. Finite orders in he for these objects will also be finite sums in 2, so the standard 
application o f perturbative renormalization makes them finite. We show that these 
functional derivatives are tempered distributions before putting f =  0. Infinite fps in 
2 are being summed here, and we are getting thereby the loop expansion of the 
Laplace transform of moments of the putative Euclidean measure. The smeared 
functional derivatives of ~c belong to Re5 p through order he, just as 45 C does. 

The connected generating functional L(f)  may itself be computed in terms of 
these results, through order hc; and we do so. 
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To set up the detailed part  of  our discussion, let 

r l = O  

The field equations for order n = 0 and 1 are: 

n = 0  (tree approximation) : 

Krpo + 2g0o3 = f ,  K -  - A + #  2 . 

(8) 

(9) 

This is the classical field equation (CFE), which we discuss in Section III. 

n = 1 (one loop correction) : Let 

Kz = K + 32go~. 

Then 

Kzrpl = _ 32rpo &po - c 1 • 2 ( p o  3 - al 2#2(po + bl 2Agoo 

-= - 32g°o fig°o, R + bl 2Afoo • 

(lO) 

(11) 

In Section IV, we show that the infinite parts of  a 1 and cl can be chosen to 
renormalize &Po into 

_ 1 2 1 2 Re0m(R4), &Po,R - ~q)o + g  c12(P0 + 5  # a l~  (12) 

where O M is the set of  infinitely differentiable functions with polynomial bounded 
derivatives. We shall see that this puts ~p 1 in Re5;.  The constant b~ is finite, as usual. 

The n-th order correction obeys an equation of the form 

K;/p, = R,_ 1, (13) 

where the r.h.s, still requires renormalization, but depends only on g0, and its 
functional derivatives for s < n -  1. 

In Section II, we review some relevant properties of  Sobolev spaces. Although in 
some sense the natural arena for our discussion is Re5 ~, only the Sobolev norms get 
much use. 

In Section III,  we state the basic theorem on solutions of  the CFE;  and we show 
enough continuity of  the solutions in the external source to let us prove that the 
generating functional in the tree approximation has functional derivatives of  all 
orders, which are analytic in the coupling constant. 

We renormalize the one loop correction in Section IV, show that the generating 
functional is well-defined, and prove the existence and analyticity of  its functional 
derivatives. 

Several appendices contain the proofs of  certain lemmas. 
The reader may survey our main results by taking a look at Theorems 1, 12, 

and 20. 

Acknowledgments. I should like to thank Jeffrey Rauch for introducing me to some of the techniques of 
partial differential equations, and Paul Federbush, Ira Herbst, and Rudolph Seiler for their 
encouragement. 
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II. Technical Preliminaries 

We want to review what we need to know about Sobolev spaces and Sobolev 
estimates in four dimensions. Let ~ ( R  4) be the Schwartz space of  infinitely 
differentiable functions of rapid decrease. The notation H.  stands for the 
completion of the pre-Hilbert space ~ ( R  4) with inner product 

( f ,  f ) ,  = ( f  ( -  A + #2), f ) ,  (14) 

where ( . , . ) =  ( . , . ) 0  is the Lz(R 4) inner product. The Sobolev norm is 

llfll 2,n = ( ( f  f),)1/2. (15) 

Most important are the norms for n = - 1, 0, 1, 2 . . . . .  
The injections induced by the inclusions H,  + t C H,  are continuous relative to 

the respective norms. Indeed, 

[]/H 2,n+ 1 _-__ #]l/]l 2,n" (16) 

The Sobolev inequalities for four dimensions correspond to the continuous 
inclusions 

H1cLp,  2 < p < 4 ;  

HzCLp, 2=<p<oo. (17) 

The inequalities are the statement of the boundedness of continuous linear maps, 
such as the injections induced above, between Banach spaces. 

We also recall that 

HnCL~, n > 2 ,  (18) 

for four dimensions, again a continuous inclusion. In this case, f ~ H ,  has an L 1 
Fourier transform, and so is absolutely continuous and zero at infinity. 

Our notation for the Lp norms in four dimensions is ll'llp. 
We use the common multi-index notation l=  (/1, ... 14), 

vl=(~/OX1)ll" '(~/~X4)I4~ Ill =/1 ~- ... Ai-t4 ; XI=X111"'X14" (19) 

For  bounded operator norms on H., we use the notation 

lOin = IK n/2 0 K-n/2[ , (20) 

where I'l is the L2, bounded operator norm. We denote the normed space of 
bounded, linear operators on H,  by B(Hn). 

In case the operator 0 is multiplication by a function h, we can estimate its norm, 
for non-negative integers n, by 

Ih], < Cn max[l[hll ~, [[h[lz,n+ 1]. (21) 

The argument for this is easy and presumably known, and we are just ignorant 
about whom to quote 3. Nevertheless, we present it in Appendix I. Note that the 
Hn + 1 norm controls unless n = 0 or 1. 

3 Reed and Simon give a similar result for general dimensions that is not quite as sharp as that in 
Equation (21) for four dimensions. See Proposition 2 on page 51 of [2] 
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We use the familiar notation F=O(e) to mean F<Clel, where C is uniformly 
bounded in e near e = 0. We use the same notation for the absolute value of a number 
as for the B(L2) norm. 

We shall be dealing with functionals F(f), wherefis in ReSP(R4) and F has values 
in the complex numbers, H., or B(H.). Continuity o f f  atfo in Re5 P, relative to the 
norm appropriate for the values of F, is typically achieved by having F be norm 
continuous as f -+  fo in H,, for some non-negative n. Since these H. norms are part of 
a complete set of seminorms for the topology of 5 P, i f f ~ f o  in Re5 P, then f ~ f o  in 
H., and hence F(f)-+F(fo) in norm. 

HI. The Tree Approximation 

Our starting point is a theorem on solutions of the CFE : 

Theorem i .  Let Kcp + 2(p 3 = f be the CFE, where #2 > 0 and 2 >= O. Then for each f in 
Re ~(R4), there is a unique solution (p in ReY. The solution is analytic at all points 
2~ [0, ~ )  in all of the H. norms. 

The proof is given in [9], for a general class of interactions and dimensions one 
through four. 

As terminology, we sometimes shorten "q~ is a solution" of the CFE for f in 
Re5 p to "q9 is a solution". 

The map cp~-~f is trivially continuous from Re5 ° to Re5 e. We need continuity 
for the inverse map f>+cp in the H,  norms, and that results from the next two 
lemmas. 

Lemma 2. Let cpl and ~2 be solutions corresponding to f l  and f2. Let n>- 1 be an 
integer. Then if there exists a polynomial P2 such that 

IIq,, -~02II 2.. < l]fl - f i I I 2 . - 2 P 2 ( U ,  II2.-2, I[fN 2,.- 2) (22) 

Jbr all f l  and f2 in Re5 a, it follows that there is a polynomial P1 such that 

k[ qol[ 2,.+ 1 =< fIf[T 2, . -  1 nl(f[ ffi  2 . -  1). (23) 

Proof We learned the basic argument from J. Rauch. Let Aacp(x)= <p(x + a)-~p(x). 
Since the CFE is translation invariant, and has unique solutions, 
i f (x )  =- f ( x  + a)'~+qg"(x). Thus, 

H A a~0 I! z.. < !t A. f II 2,.- 2 P2(I] f t12.n-- 2' II f II Z,.-- 2), (24) 

where the two arguments of P2 are the same because of the translation invariance of 
the norm; and 

lIA.~olt 2,.llal <(l[Aafl{ 2,.- z/lal)P2. (25) 

A standard theorem says that AJlal is uniformly bounded as a linear operator 
from H. to H._ 1, for 0 < [a I < 1. Passing to the limit along fixed directions, we find 

][ VQ9 [[ 2,n ~ ][ Vf[[ 2,n-- 2 P2 

< }lfll 2,,- 1 Pz- (26) 
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Since this is true for any directional derivative, and since we may put f2 = q°2 = 0 in 
the hypothesis of  the lemma to eventually get a similar bound on I1 (P II 2,., there is a 
constant C such that 

11~o112,,, + a <CIIfl l2, .-1P2. (27) 

The H._  a norm in P2 may be replaced by the larger (up to a factor #-1)  H._  
norm. []  

Lemma 3. Let 01 and cp z be solutions. Then jo t  each integer n > 1 there is a polynomial 

P2 such that 
Nq)l-cpzll2,.<llfl-f2l[a,.-2P2(llf lN2,.-> ll/2ll2,.- 2). (28) 

For n = 1, we learned from J. Rauch that fF-.p is in fact a contraction from H _ 1 
to H 1. We repeat his argument, and give our own induction proof  for n > l  in 
Appendix II. The proof  is straightforward, given the B(H.) bound in Equation (21), 
It is valid for a large class of interactions, including any polynomial obeying certain 
positivity laws [9]. 

Remark t. Lemma 3 states a stronger condition than we actually need. For  example, 
it would be enough to know that some Sobolev norm occurs on the r.h.s., not 
necessarily the one for n - 2 .  We have taken some pains to get the n - 2  norm 
because in the theory of the CFE there is a natural correspondence: 
f e H , ~ ( o ~ H , +  2. 

In the next lemma we collect some useful facts about the linear operator 
K z = K + 32~0 z, corresponding to any fixed f ~  ReSC 

Lemma 4. (i) As an operator on L 2, K ;~ for 2 > 0 is strictly positive and setf-adjoint on 
the domain of K, ~ ( K ) =  H 2 C Le. 

(ii) The inverse operator K-~ i is bounded on L 2 and maps H, into H n + 2 for every 
integer n >= O. 

(iii) K;, and K ;  1 map D a and ReS e continuously onto themselves. 
(iv) The operators KK-~ ~ and K-j 1K are bounded on H, for all inteoers n>=O. 
(v) The same operators are analytic at 2~ [0, ~ )  in the bounded operator norm on 

H, for all integers n>=O. 

The proof  is in Appendix III. 

We want to study functional derivatives of  solutions of  the CFE. In doing so, 
functionals F(f) will arise that have values in the complex numbers, in H,, or in 
B(H,). The functional derivative with respect to f in the 9 direction, for 9 ~ Re o~, is 

5s(O) e ( f )  = lim A s(eg) F(f)/e 
~ 0  

= (d/de) F ( f  + eg)l ~ = o, (29) 

where we define the difference operator with respect to f by 

A y(h) F(f)  = F ( f  + h) - F( f ) ,  (30) 

and where the convergence is in the norm appropriate to the image space of F. 
We make the index f explicit in these notations, because later we are going to 

want to consider functional derivatives and finite differences with respect to ~o. 
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In the case of  interest, 6z(g)F is a continuous linear functional for g in 5 °, and 
higher functional derivatives are multilinear and separately continuous on 50 ×", so 
the following notation is sensible: 

sty 1 . . . . .  9,,,) F = 6I( 91)... bI(g,,) F 

6 " F ( f )  , , 
= J ~f(x~TS.. .~f(xm) g t ~x 1)... 0m(Xm) dxt ... axe. (3 ~1 

The difference operator  gets bounded in the next few lemmas. 

Lemma 5. Let l be any multi-index, m > 1 any integer power, and 2 <= p <= oo, Then there 
exists an n such that 

ttD~[Az(h)~o]'llp = O(llh][~',). (32) 

Proof  First, suppose p @ oo. By its definition, the difference operation commutes 
with the gradient; so we can let the derivatives act, and bound the Lp norm by a sum 
of products of  p~ norms, p <p~ < o% of  the form 

lTA f(h)Dt'q)Tip, = fFDZ'A y(h)~oT}p, 

< Ctl Af(h)q~ tl 2,2 + II,1 = O(11 hi[ 2,1/il), (33) 

where the last step is from Lemma 3. 
That  leaves p = oo. Bound the L~ norm by a sum o f products of  the same form as 

the 1.h.s. above, but with p~ = oo. Now bound these norms by H~ norms, etc. []  

It is sometimes convenient to treat Ay(h)q9 as a multiplication operator on H,. 

Lemma 6. For any integer n > O, there is an n' such that 

IA :(h)q~l, = O(11 hll z,,,). (34) 

Proof  Lemma 5 for p = 2, and the estimate in Equation (21). [] 

Lemma 7. Consider K ~ 1 as a functional of.[. Then for every integer n > 0 there is an n' 
such that 

]AI(h) K ~  ~(f)l. = O(l] hll 2,,,) • (35) 

Proof  The idea is that the resolvent expansion for K - j l ( f + h )  about  K ~ a ( f )  
converges in norm for h small in some norm, and that we may thereby bound the 
difference. Thus 

IAy(h)K; t l, <= IK 2 tin ~ [lAy(h)(32(p2)1, I K ; '  I,]" 
m = l  

< a lK;  t 1,2/(1 - alK~ t l,), (36) 

where a=lAy(h)(32qo2)l,=O(llhllz,,,), by Lemma 6. []  

These lemmas can no doubt be sharpened by computing the opt imum norm for 
h, Which norm occurs, however, is irrelevant for us, because we typically consider 
limits where h scales to zero, and so goes to zero in every H,. 
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With these estimates, we begin to compute functional derivatives. We use the 
temporary notation A~=Az(e9). We get the first functional derivative of (p from 

A,q) = K S ' { e g -  213~o(A,q)) 2 + (A,~o)3]). (37) 

Lemma 8. fly(g) q~ = K S 1 g belongs to Re 6 e, exists in H n norm for every integer n >= 1, is 
analytic at ).e [0, co) in those norms, and 

II A y(h) fly(g)fp [I z,~ = O(11 h II z,n,) (38) 

for some n'(n). 

Proof. To compute the functional derivative write 

[[e- l A~q~- K S  l gHz,n 

< (;t/z)II KJ -1 [3 q~(A,~0) 2 + (A ~0) 3] II 2,,. (39) 

The factor K S t is bounded on H,, and its norm may be factored out. Apply Lemma 
5 to show that the r.h.s, goes to zero like 5. The bound on the functional derivative 
follows from Lemma 7. The fact that the derivative belongs to Re5 e follows from 
Lemma 4.iii; and anatyticity in 2 is a consequence of  Lemma 4.v. []  

Before considering higher derivatives, let us introduce the functional derivative 
and the difference operation relative to ~o. Since the correspondence between f and 
q) is one-to-one, we can make a change of variables and write 

F( f )  = G(cp). (40) 

Then we define 

A e(h)F = G(~o + h ) -  G(q))-  F h - F .  (41) 

We often do not bother to give F a new name in terms of the variable (p, and the 
notation is always F h = G(~0 + h), unless we state otherwise. 

Functional derivatives of F with respect to ~o are now defined like those with 
respecato f but using the difference with respect to ~o instead off.  An important link 
between the two derivatives is the 

Bounded Difference Condition. A functional F( f )  with values in one of the relevant 
normed spaces is said to obey the bounded difference condition relative to the norm in 
that space is there is an n such that 

II Aq)(h)Vl[ = O([I h [I z,,). (42) 

Note that, by Lemma 3 and the continuity property mentioned in Section II, a 
functional that obeys the bounded difference condition is continuous from Re6 e to 
the image space. In practise, the q~ differences that we shall encounter obey the 
condition above for complex h. And although we shall only need real q~ derivatives, 
all objects that we consider will in fact be analytic functions of  the parameter e in the 
definition of  the derivative, for small e. 
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Lemma 9. Let F(f) have values in a normed space. Let F obey the bounded difference 
condition relative to the norm, and let 6~o(g)F exist in norm, for all gGRe5  f. Then 

6 f(g) F = 6~(K; : g) F , (43) 

where the f derivative exists in norm. 

Proof 

6~(K7~ :g)F -- A s(eg)F/e 

= 6~(K~ l g ) F -  A~(eK~- lg)F/e 

+ (G(rp + eK;  :g) - G[cp(f + ~g)])/e. (44) 

The difference in the first two terms on the r.h.s, converges to zero in norm by 
hypothesis. The  second term obeys. 

e -  1!1G(~p + eKe- lg) _ G[go(f + eg)] tJ 

= e-: 0(1t ¢P + eK-~ :g - go(f + ~g)II z,,') 

= 0(1[ K~- :g - e -  :A f(~g)go II 2,,,), (45) 

which converges to zero by Lemma 8. [ ]  

Lemma 10. Let A: .... ,Am be funetionats o f f  with values in B(H,), and tet~ be a 
functional of f with values in H,. 

(i) I f  A: .... , A m and ~p obey the bounded difference condition in the relevant norms, 
then so do the products A:.. .A,,  and A1...A,d p. 

(ii) I f  the A's and ~ have q~ derivatives in the relevant norms, then so do the 
products, and the answer is given by the Leibniz rule. 

Proof (i) 

A ~(h) [A :... Am~P] = [A,~(h) A 1 ] A 2.h"" ~h + A i [A ~(h) A 23 A 3,h'" ~0h 

+ ... + Ax...AmA~(h)~p. (46) 

Given n, choose n' large enough so that  each factor obeys the difference condit ion 
with O(ll h II 2,,')- Each of  the factors A~,h or ~h is thus uniformly bounded  in norm for 
small ]lhllz,,,, and the result follows by bounding the H, norm of  the above 
expression in the obvious way. The same argument  works with ~p left out. 

(ii) If  the ~0 derivative is written in terms of  d/de, this is a s tandard theorem for 
norm differentiable operators  and vectors. [ ]  

To  handle higher functional derivatives, we first study the derivative o f  the 
opera tor  K~- 1 : 

Lemma 11. 

5~(g)K~ 1 = _ 62K~- :cpgK~ : ,  (47.a) 

6f(g) K~- : = - 62 K~- :(K~- 19)(p K ; : .  (47.b) 

Both derivatives exist and obey the bounded difference condition in B(H,) for every 
integer n > O. 
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Proof By the resolvent formula, 

Ao(h)K ; 1 = _ KS 1 [Ae(h) (32(pz)] K~,~. (48) 

The proof of Lemma7 can be adapted to show that K S 1 obeys the bounded 
difference condition in B(H~). Thus, putting h =eg, we find that K~,~a~K S i in norm 
as e--,0. The difference divided by e converges in norm, because in the middle factor, 
the multiplication operator (p has the trivial norm, (p derivative, g. The f derivative 
exists in norm, by Lemma 9, because we just saw that K]- 1 obeys the difference 
condition. 

The (p derivative obeys the difference condition because K~ 1 and the 
multiplication operator ~0 do, and the f derivative obeys it because the multipli- 
cation operator 6y(g)~o=K-/lg does. [] 

Higher functional derivatives with respect to f or ~0 may now be computed 
routinely, and they converge in H,  and B(Hn) for positive integers n. Although there 
is no particular advantage in getting f derivatives through intermediate ~0 
derivatives at the level of the tree approximation, it becomes convenient at the one 
loop level; so we discuss both derivatives. 

The general f derivative is a sum of terms of the form 

K~ t hi KS 1...hjK S ig ,  

where the h's are multiplication operators by functions of the form: a product of 
two, lower order f derivatives of ~0 (including ~0 itself). It is clear that this form is 
preserved under the operation o f taking the next f derivative, because o f Lemma 11, 
and the Leibniz rule for differentiating products. A simple induction argument, 
based on Lemma 4.iii, shows that the higher order f derivatives belong to Re 5 ~ ; and 
an induction based on Lemma 4.v shows that they are analytic at )~ [0, m) in the H, 
norms. An induction plus Lemma 10.i shows that they obey the bounded difference 
condition. 

The ~o derivatives admit an analogous discussion. 
Separate norm continuity in H n of the f or (p derivatives as the g's vary in 5 p is 

easy to check, as a consequence of the fact that g ~ 0  in 5 ~ entails Ilgl12,.~0 and 
[g[,-,0. It is easy to verify that the derivatives are multilinear in the g's. 

We summarize what we have learned so far, and complete our characterization 
of the tree approximation, in the following theorem: 

Theorem 112. (i) The generating functional for the tree approximation is 

- ~ (g~oK~o +~2~p - cpf)dx Lo( f  ) = 1 1 * 

= ~ (½ q~ K qo + ¼,~ ~o 4) dx, (49) 

where ~o = 6 Lo/dJ'(x)~ Re5 ~ is the solution of the CFE correspondin 9 to f ~ Reo9 ~. L o is 
continuous for f in Re5 P and analytic at 2E [0, oe). 

(ii) For g's in Re5 ~, the smeared functional derivatives 6~(g 1 ..... gm)q~ belong to 
Re5 P, converge in H,  for every n, are analytic at 2~ [0, oe), are continuous in f and 
obey the bounded difference condition in those norms. Similar statements hold for the q~ 
derivatives of any of  the f derivatives. 
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(iii) The unsmeared functional derivatives, 

6 6 
Lo(Xl, ..., x m ; f )  = 3 f ( x l )  ... 6 f(xm) Lo( f )  , (50) 

are real, symmetric, tempered distributions. 

Proo f  (i) The expression for Lo( f )  is well known, for Minkowski fields, in the sense 
of an "effective potential" [1] ; what is new here is the precise characterization. It is 
easy to check that L o is analytic in 2, and that 

Ae(h)Lo = O([I hlI 2,1), (51) 

by bounding the L 4 n o r m  by the H 1 norm, and by Theorem 1. It is easy to show that 
the (p derivative exists, and hence the f derivative does, too, by Lemma 9. The CFE 
gives 6 f (g)L o = (g,  q~). 

(ii) This part of the theorem was already discussed. 
(iii) That we get tempered distributions is a consequence of the nuclear theorem 

and our earlier discussion on separate continuity of the f derivatives of q~ in the g's. 
The symmetry of the functional derivatives is easy to check for lower derivatives. 
For example, for the two-point function, 

62Lo/~Sf(xl)6f(x2) = ( x l l K ;  11 x2)  = (x2 ]K~- 11 x l ) ,  (52) 

it follows from the reality and Hermiticity of K~- 1 As for the higher derivatives, 
note that we could have evaluated them at nonzero e by the formula 

67(gl . . . . .  g , , )Lo ( f+  81gl -1- '.. + 6,gtn) 

= L o ( f  + elg 1 + ... + e,,g,,)/Qe t ...~?~,,. (53) 

By a standard theorem from real analysis, we could conclude the symmetry of the f 
derivative in the g's from continuity in @~, ..., era), because we know that the partial 
derivatives with respect to e~ exist with any ordering; and we would then know them 
to be equal. But continuity, say at (e0 .... , ~o), follows from the bounded difference 
condition relative to f, which in turn is a consequence of that condition relative to q), 
plus Lemma 3 : 

[Af(e'lgl + ... +e~gm) (g~, (Y"- l(g 1 . . . .  , g,,- ~)to(f +e°gl  +. . .  + ~°g,~))l 

O(]l~igt + . . .  +e~g,,[] e,,'), (54) 

for some n'. [] 

Five remarks complete our discussion of the tree approximation. 

Remark2.  Lo( f )  is invariant under the full, inhomogeneous Euclidean group, 
including reflections, because of the invariance of the CFE, the uniqueness of its 
solutions, and the invariance of four-dimensional Lebesgue measure dx. 

Remark  3, We are not sure in precisely what way the tree functional g o @  
= expLo(f ) / f ic  violates the axioms of Euclidean field theory. For example, does it 
violate Symanzik-Nelson positivity; and if so, is it perhaps still the Laplace 
transform of a signed measure? 
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X X X X 
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Fig. 1. Infinite parts (a) and (b), and the finite part (c) of 6¢=(a)-(b)+(c) 

Remark  4. The theory of the CFE [9] shows that Lo( f )  is well-defined fo r f~  ReL 2. 
In that case, q~e Relic, and a Sobolev inequality says that the ~p4 term and the ~of 
term are both finite. 

Remark  5. We have made no statements about the size or uniformity of the size of 
the domain of analyticity in 2. We sort of expect that there will be no uniformity, 
neither in the number of points in the n-point function for a fixed order in the loop 
expansion, nor in the order of the loop expansion, for a given n-point function, nor 
even perhaps in f or in the choice of H,  norm in the CFE itself. 

Remark  6. We certainly expect the functional derivatives of q~ to exist, and be 
analytic in 2 and continuous in f not only in the H, norms, but in the "rapid 
decrease" seminorms that remain to make a complete set for the topology of 50. 

IV. The One Loop Correction 

1. Solution of  the Functional Field Equation 

The object to be renormatized at the one loop level is &p=6q~(x)/6f(x), where q~ 
obeys the CFE. The infinite parts can be isolated by expanding the kernel 
<xlK~-l[y) through the resolvent formula, with one iteration. Let 

u = 32 q02 . (55) 

Then 
K ~  1 = K -  1 _ K -  a u K -  1 + K -  l u K -  luK~ ~ 1. (56) 

The strategy is to show that 

,5~@= ( x l K -  11 x)  + 3-1/z2al, (57) 

6q) L = - ( x I K -  l u K -  1Ix) + 9-1 q u ( x ) ,  (58) 

are finite by the choice of the infinite parts of a 1 and cl, while 

g)fPF = <x lK-  l u g -  l u K ~  11 x> (59) 

is automatically finite. The first two expressions above correspond, respectively, to 
the normal ordering of ¢2, the x-space Feynman graph in Figure (la), and the 
renormalization of the loop in Figure (lb). Figure (l c) represents a rearrangement 
of 6~0 e. 

The renormalized functional derivative at equal arguments is then written 

fiq~R = 6~°N +6qgL +~¢e ,  (60) 

where all three pieces on the r.h.s, are finite. 
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The normal  ordering term is diposed of  in the usual way;  the kernel 

(x[ K -  1[ y )  = (2~)- 4 ~ elk O{X- y)/(k 2 + #2)d k (61) 

is (hc)- 1 times the free, Euclidean propagator  4. It is translation invariant, and so is 
constant  when evaluated at x = y. We choose 

- 3 d k  (62) 
a l = ~ i 2 V  I k 2 - - ~ 2  + a lF,  

where alF is finite. Thus, 

~oN = #2 a lV/3" (63) 

The loop term is also handled by the s tandard renormalization. Define the 
Fourier  t ransform fi by 

fi(k) = (2r O- 2 y u(x) e-ik °~dx. (64) 

Putt ing the infinite part  of  c t equal to the logarithmically divergent constant  

cl oo = 9(2rc)- 4 ~ (qZ + #2)- 2 dq, (65) 

we get 

&pL=(2Z0_ 6 S{iq 2 1 1 +#2)2  

• fi(k) e ik°x dq dk + c i e u(x)/9 

= (2re) - 2 ~ 11 (k) ~(k) eik° Xdk + c 1F U(X)/9, (66) 

where 

It(k) = -1 log(r  + 1), 

"c= (k 2 + 4#2)i/2/2k. (67) 

The renormalized loop integral 11 :is continuous,  non-negative, and mono tone  
increasing in k, starting at zero at k = 0, and growing logarithmically at large k. Since 

e 5 ~, 11 fi is cont inuous and rapidly decreasing. Taking derivatives in x-space gives 
11ilk ~ in k-space, which is absolutely integrable. We conclude that  3q0 L is smooth,  
with all derivatives uniformly bounded and vanishing at infinity. These functions 
are multipliers on 5 P, so (paq~LeSC 

It is convenient  to consider 11 as a multiplication opera tor  in k-space, and as a 
convolut ion opera tor  in x-space: 

[** ~ = ~ [ l (x  - y)tp(y)dy 

= ~ I~ ~dk°Xdk.  (68) 

Then i I • is a real, positive, self-adjoint opera tor  on the appropria te  domain in L>  
and is a bounded  opera tor  from H,  to H,_~ for every n and every e >0.  

Lemma 13. (PaL = - 32K~- 1 [(~fi@L] E ReSC Alljunctionat derivatives with respect t o f  
and (p exist in H,  norm for every integer n > O. q~lL and its functional derivatives are 
analytic at 2~ [0, oo) and obey the bounded difference condition in those norms. 

4 All dot products in this paper are Euclidean 
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Proof We are in Re~9 a because of Theorem i and Lemma 4.iii. The only term of 
concern is [1" ~ °2- Note that it obeys the bounded difference condition in the H,  
norm, because 

I] A~o(h)[1 * p2 [I 2,n <~ C II A~o(h)~ o2 II 2 .  + 1, (69) 

and (p2 obeys the condition. 
Putting h = eg, it is easy to check that 

fie(g) [ I  * (P 2 = [1 * (2pg)  (70) 

exists in H n norm, and so by Lemma 9, 

(}f(9)/~, * (#2 = 2i,  • (q) K~- 19). (71) 

This derivative dearly obeys the bounded difference condition in H,, norm. Higher 
functional derivatives are no problem; they can be treated by simple induction and 
all properties easily verified. 

The expression K;] l(q~ [ , .  q~2) is now easy to treat as a product of factors, each of 
which has functional derivatives of all orders obeying the bounded difference 
condition and analytic in 2. That leaves K i 1(~03), which is even easier to treat. [] 

There remains the piece 6q)~, which can be written 

~qoe = (x[ K -  luK]~ 1 u K -  11 x ) ,  (72) 

because the resolvent formula says K - * u K ~  1 is Hermitean. To treat higher 
functional derivatives, we want to consider expressions of the form 

X(x) = (x[ K -  l u 1K~- lu2.., g ;i lumK-  11 x )  

k l  - 1 - 1 k 2  
f ( u l , K ;  *u2 . . .K; -u ; ; )  . =(2rc)-8., ,k2+ 2,(k2 + 2, e~(k~-ka)'Xdkldk2, 

t l  /1~ 2 # )  

(73) 
where u 1, ..., u m E 5~, 

uk(x) =_ e ik°'u(x) = T(k) u(x), (74) 

and T(k) is the unitary, momentum translation operator on L 2. Denote the matrix 
element in the integrand by 

z -  1,,k2\ (75) M(k 1 - k2, k2) = ( u ]  1, K~- 1 U2 . . . . .  2 " m / '  

We begin our attack on Xby studying M. We use the multi-index notation D~ for 
derivatives with respect to k. 

Lemma 14. Let xttp~Lz. Then, considered as a .function of k, 

g(k)  - ] l O ~ g ;  1 Z(k)w II 2ff Lp(R 4) (76) 

for 2 < p <= oo. For these values of p, 

II g II p < N ( k2 + ~ t2)- *ll p II xq; ]12 l g~- 1 g l .  (77) 
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Proof. The effect of  the k-derivative is simply to bring down x I on ~p. We shall 
therefore forget about  the derivative and restore the x l at the end of  the argument.  
Thus 

N(k) -- [ Ig ;  1KK-1 T(k)tp ]12 < [K;  ~ KIII K -  1 T(k)tp [12. (78) 

Next, 

11 K -  ~ Z(k)~p][ ~ = ~ [(q + k z)2 _~ # 2 ]  -- 2 ] ip(q) [z dq. (79) 

Applying the Young inequality, we find 

II N2( ' )ll; --< [ 1 ;  1 1[2 [I I~l 2111 [1 ( k2 + #2)-  2 l[ p, (80) 

which makes sense on the r.h.s, for 1 <p__< 09. Taking square roots, not ing that  
[[ ]t)[ I] 2 = [I V [I 2, and restoring x 1, we get the result. [ ]  

Lemma 15. Define M as in Equation (75), and let k = k  1 - k  2, q = k  a. Let 

_ t tl  t5 N(k, q ) -  k Dk, Dk2M(k , q). (81) 

Consider N as an Lp function of q for fixed k. Then for every 2 < p <  0% there is a 
polynomial P, depending on p and l, but independent of k, such that 

11N(k, ")Ilp <P(IK; 11 11Ull 2,111 + 1) l l x l l U l  H 2,tl I 

• IluNll 2,1~1 + 1 . . .  LI u , , _  1tl2,111+1 
• II x laum If 2, tli l g2  l lm- 2 IK ;  1KI. (82) 

In the exceptional cases Ill = 0 or 1, the Hiz I + 1 norms should be replaced by H a norms• 

Proof. The k-derivatives bring down powers x 11 and x 1~, which may be put  onto  u~ 
and urn, respectively. We forget them for now. M is clearly a C ~ function of  k 1 and 
k 2. It is convenient  to rewrite M as follows: 

M(k, q) = (Ul, T ( -  k)K7~ l (q )uz . . .K;  l(q)Um), (83) 

where 

K z(q) =- T ( -  q)K S ( q )  = K(q) + u, 
(84) 

K(q) = T ( -  q)KT(q) = ( -  iV+ q)-(-- iV+ q) + #2. 

The idea of  the p roo f  is the same as in the Jos t -Hepp theorem [11], except that  
here we look at matr ix elements o f the momen tum rather  than the space translation 
operator ,  and we have a uniformity problem in the extra variable q. As in the Jost- 
Hepp argument,  we write 

k ~ T ( -  k) = (adiV)1T(- k), (85) 

where the r.h.s, is a multiple commuta to r  of  order  111 of  Z ( -  k) with components  of  
the opera tor  V. Any V's standing to the left of  T ( -  k) get absorbed into the left-hand 
vector u~ ; the maximum degree on u I is 111. Those standing to the right are to be 
pushed through the K21 and u factors, so they can be absorbed by u,,. 

The  opera tor  K(q) is still a function o f  V, and that  makes the commuta tors  
controllable : 

IV, K 2 l(q)] = _ K z  ~(q) (Vu)K ; l(q). (86) 
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The result after pushing the V's through is a sum of matrix elements of the same 
form as before, except that there may be more K~- t(q)'s, and a certain number of 
factors Dhu may be inserted, and u 2 .. . .  , u,~ may get derivatives, at most of  degree III- 
Each matrix element has a bound of  the form 

m--1 
I-[(ID~ullgT~ll) I-I (lD%al IK~-ll) 

i j=2  

• [[Ul [] 2,[/[ [IK~ - 1 r(q)Vlmum[[ 2, 

The result follows by Lemma t4. []  

Note that the above arguments and the statement of Lemma 15 are scarcely 
modified if we put different f ' s  in each Kx, or if we allow the 2's to be unequal and 
complex, but near the real axis. Also note that with this modification, if the u's are 
the usual functionals of q~, then A~o(h)M or A~(e)M (we hope the latter notation is 
clear) is a sum of terms with the same structure as M, with extra factors of K~- 1, 
K/,h*, etc., and with similar estimates that are O(t[hN2,,) for some n, or O(a). 

Lemma 16. Define X by Equation (73). Then X is in 5 a, and in Re5 e when u 1 . . . . .  um 
are real. (~qo r and all of its functional derivatives with respect to (p and f exist, obey the 
bounded difference condition, and are analytic at 2~ [0, oo), in H~ norm for all n. 

Proof Write 

M(k, q) eik°* dk dq (87) 
X=(2rc )  - 8  5 [(k_t_ q)2 +/. /2] (q2 + # 2 ) "  

Note that one over the denominator, along with any number of derivatives, belongs 
to L v for p > 1, in the variable q. The Lp norm of  one over the denominator (or any of  
the derivatives of that) is bounded by a (sum of) product(s) of Lip norms of two 
factors, each of which is finite for p > 1 ; and these bounds are independent of k, by 
the translation invariance of  Lebesgue measure. To fix our ideas, take p =4/3 for 
this part of  the integrand. 

Lemma 15 says that the numerator, or any of its k derivatives, belongs to L 4. 
Thus, by the H61der inequality, the q integral exists and is bounded by 

II M(k, ")114 II [( ') 2 +#21-  *ll 2/3, 

with analogous bounds for k derivatives. Lemma 15 also says that these bounds are 
rapidly decreasing in k, so we conclude that Xis the Fourier transform of a function 
in (T, and hence is in 6 °. 

The reality of Xis most easily seen from Equation (75). Using the reality ofK~- 1, 
we get }l(k, q) = M ( -  k, - q), which does the job because the denominator obeys 
the same law. 

To put the discussion in the frame work of the typical argument for functional 
derivatives and the bounded difference structure, we note a standard argument: 

I]DZXll2 < II(1 +lx[4)- 1[12 II0 +lxl4)DtXll~. (88) 

After translating ]x] 4 and D ~ to k-space, we can eventually bound the H~ norm of  X 
by expressions o f the sort in Lemma 15. Taking into account our earlier remarks on 
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the bounded difference structure of M, it is not hard to see that we are in the typical 
situation for our methods of proof, and that all statements in Lemma 16 about fi(0v 
follow. 

The proof  just given gets H,  bounds more indirectly than previous arguments. 
Perhaps there is another way to get to the same goal, based on an expression that we 
shall get later, containing 6(0 v in terms of a trace. Without further proof, we state 

Lemma 17. (oaF = --32K~-'[(0~(0v] obeys exactly the same statements as (PaL in 
Lemma 13. 

That completes our discussion of the one loop correction to the solution of the 
functional field equation, hc(01, 

(01 = (01N AV (01L ~- (01F "~ bl)cK; 1A(0o " (89) 

We did not put the piece (01~ = - a l F/A2 K£- 1 (0 in a lemma, because it trivially has all 
the properties stated in Lemmas 13 and 17 for (01L and (Par. 

2. The Generatin 9 Functional 

It remains to discuss the one loop correction to the generating functional. To 
compute it formally is a standard manipulation [1]. At first, we follow that 
procedure, which is a fps functional integration of polynomials in (0, to get the 
candidate for Ll(f). Then we take the formal result as a starting point, and show 
that it is rigorously well-defined, and has the required functional derivatives. 

So we take the one loop correction to the solution of the functional field 
equation, and write 

(01 =~L1/~ f . (90) 

Assuming that L I obeys the conditions of  Lemma 9, this follows from 

6L1/fqo = - 32(06(0 R +2blAq~. (91) 

All of the terms except 

fiLly/6(0 = - 32(06(0 e (92) 

are trivial to integrate formally, and the answer is displayed in Theorem 20. This 
term is not so bad either, as a fps in 2. Remembering the definition o fu  in Equation 
( 5 5 ) ,  we get 

6Llv 
_ ~ ( _  1)m+ 13~t(0(x)(xlK- I(uK- 1)"Ix ) 

3(0 ,~=~ 

1 °~ 1 l m  
= 5(6/6(0) m~__ 3 mI<xl(-u/(- ) Ix>dx 

= ~(8/fi(0) ~ 1 T r ( - A ) ~ ,  (93) 
m=3 m 

A m 32(0 K -  1(0. (94) 
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This gives the formal expression 

1 Az 
L1F(f) = -- ~ Tr l og [ ( /+  A) e 5- - A], (95) 

which we now study. 
We are going to find that A is a non-negative, self-adjoint, compact  operator  on 

L2, and that A 3 has a trace. The last fact should already be expected from 
Lemma 16, by putting m = 2 and replacing K S 1 by K -  1 in Equation (73) for X. We 
get that more directly from the following: 

Lemma 18. Let  u 1 and u 2 belon9 to H 3. Then 0 =- K- lulK- 1uzK- 1 is a trace class 
operator on L 2, and the usual trace norm obeys 

I[Ol[zr<=Clpulll2,3 I[u2112,3. (96) 

Proof  Let A(x) and B(k) be functions, and let A and B be the corresponding operator 
functions of  the operators x and - W o n  L 2. It is well known that if A(-) and B(. ) are 
L 2 functions in their respective variables, then AB is a Hilbert-Schmidt operator 
with 

TrB*A*AB=(2~z)  " [IA(.)!I 2 [LB(.)[I 2, (97) 

and that if A(-) and B(. ) are continuous functions that vanish at infinity, then A B  is 
compact s. We thus know that K - l u  is compact, for u in H 3. We also know that 
K-(l+~)u is Hilbert-Schmidt, and that u lK-3u2  is of  trace class. 

For the operator O, the idea is to shove enough K -  l's to the middle by means of 
the commutat ion relation: 

[ g ° l ,  u] = K - 1  [2(Vu). V+ (VZu)] K - 1  

= 2 K -  1V. (Vu)K-  1 _ K - I ( V Z u ) K -  1. (98) 

For  each commutator,  there is a net gain of  one inverse power of  Vin the middle of  
the expression for O, coming from the term with the VK - 1 factor on the right or left, 
as the case may be. Thus, consider 

K -  tul K -  lu2 K - 1  =ul  K -  3u2 + ul K -  2[u2,K -1] 

+ [ K - I , u l ] K - 2 u 2 + [ K - I ,  U l ] K - I [ u 2 , K - 1 ] .  (99) 

The first three terms on the r.h.s, have effective powers of at least K-5/2 in the 
middle, and derivatives of at most second order on the u's. The last term has one 
piece, containing Vu~ and Vu 2, where the effective power in the middle is only K - 2. 
Shoving one more K - 1  through in that term gives K 5/; in the middle, and 
derivatives of  third order on one 0 f the u's. Any outside factors K -  1 are bounded, so 
the result follows from the statements in the first paragraph of the proof, plus the 
Schwartz inequality for the Hilbert-Schmidt inner product. [] 

Lemma 19. Let  
A 2 

A=32q~K_1~o, B _ _ l o g [ ( i + A ) e 2  A]. (100) 

s I want to thank I. Herbst for making these facts known to me 
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(i) A is non-negative, self-adjoint, and compact o n  L 2 ; A 3 is in the trace class; and 
so is B. In particular 

O<_B<A3/3. (101) 

(ii) Let T=TrB.  Then for hEH3, 

IA¢(h) TI = O([I hll 2,3) ; (102) 

and T is analytic at 2E[0, oo). 
(iii) For any g e 5  P, 

~Se(g) T = 32 Tr I-A2(I +A)-  ' (~oK- 19 + g K -  ' q~)J. (103) 

Proof (i) Positivity of A is evident from that of K - 1  and self-adjointness, too, 
since only bounded operators are involved. The trace condition for A 3 follows from 
Lemma 18, and the estimate on B can be taken as straightforward ifA is replaced by 
a non-negative real number. That will be clear from the integral representation in 
the next step. 

(ii) The integral representation 

B = S A3q2/( I + r/A)dt/ (104) 
0 

converges in B(L2) norm, for positive A, and in trace norm, if A 3 also has a trace. 
Since A ~(h) TrB = Tr[A~(h) B], we consider 

1 

A~(h)B = ~ {(A2 - A 3) (I + t/A)- ' 
0 

- A3( I  + q A ) -  ~ r/(Ah -- A)  (I + r /A)-  ~ } r/z dtt. (105) 

Taking into account the cyclic property of the trace, and factoring out certain B(L2) 
norms, we get 

[I A~o(h)B[ITr <= [I A~ - A 3 IITr/3 + 2- 21A h - AI TrA 3 . (106) 

To get the result, look at 

A h -  A = 32(hK-  'q~ + q~K- 1 h + h K -  lh). (107) 

In the first term on the r.h.s, of Equation (106), expand A h by Equation (107), cycle 
the trace to bring a factor h to the outside, and write II hO [I Tr < Ihl I[ O II T~. The factor O 
left behind is still of trace class, by Lemma 18. For any factors h e remaining in the 
terms in O, we remove fhl by cycling the trace, still leaving a trace class operator of 
the sort in Lemma 18. We conclude that IIOIIT~ is uniformly bounded for small 
II hll z,3, because Ih I is easily bounded by Cll hll 2,3. The result for the second term in 
Equation (106) is immediate. 

Analyticity in 2 follows from that of q~ after similar arguments. 
(iii) Now put h =eg in Equation (105) for Ae(h)B, and note that, except for the 

factor (I + r/A~o )-  ', the rest is a polynomial in e, of order e for small e, with trace class 
coefficients, because of Equation (107) for A~o- A. To handle the factor, note that 

IA~(ag) (I+ r/A)- '1 = O(e), (108) 
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from the resolvent formula, uniformly in t /for positive t/. Thus, cycling the trace, we 
get 

d~(g)T=Tr{i[3A2(l+rlA)-l-A3rl(l+rlA)-2]rlZdrlde(g)A}, (109) 

where 

de(g)A = 32(q)K- lg + g K -  lq>) (110) 

can be taken as simply a notation, although in fact this formula makes sense in 
B(H,) for integer n ~ O. The integral may be evaluated from the functional calculus, a 
triviality since A is not only Hermitean but compact ; and that gives the result in the 
Lemma. [ ]  

To make the connection with our earlier expression for dq~e, we use the bounded 
operator identity : 

KK~lq~=~(I+A) 1, (1t l )  

and its Hermitean conjugate. A straightforward manipulation gives 

6e(g ) T = 62 Tr[gq~ K-  luK;  1 uK-  1] 

= 62 S g(x) q)(x) (x[ K -  1 u K;  i u K -  1 Ix) dx. (112) 

One may question in the last step how the expression (xtOlx) is defined, and 
whether the definition agrees with our earlier definition of dq~ v. In general, the 
Hilbert-Schmidt kernel (x[ 0 [y) of a trace class operator 0 has an L1 restriction to 
the diagonal x = y  in a certain sense. In our case, we can use Lemma 15 and the 
argument in the proof  of  Lemma 16 to show that the Hilbert-Schmidt kernel is the 
Fourier transform of  a function in L l(dk 1 dkz), and hence is continuous in (x, y); and 
the restriction to x = y can be carried out directly and seen to belong to L r 

With this sketchy proof, we conclude that 

dT/&p = 62q~ dq) v. (113) 

where &o v is the function in Re5 p defined earlier. 
The smeared functional derivatives of  T, with values in the real numbers, could 

be discussed directly in terms of the trace norm. Our results on the first, unsmeared 
functional derivative, part of the correction to the solution of the functional field 
equation, with values in R e ~ ,  are of course stronger than what that discussion 
would give directly. 

To put it all together for the one loop correction, we have 

Theorem 20. (i) The one loop correction to the generating functional is hcL~(f), 
where 

L l ( f ) =  - [.(½2l~2alrcpz-½2blq~Aq)+¼2ZciF(p4)dx 

- 9/4(2n)- 222 ~ ~o2(x)i~(x - y) q~Z(y)dxdy 

- ~ Tr to8[(1 + A) exp(½A z - A)], (114) 

A-- 32(pK- lop. 
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and where (p is the solution of the CFE corresponding to f and [~ is defined in 
Equations (67) and (68). L l ( f )  and its smeared functional derivatives of all orders with 
respect to cp and f exist, are analytic at 2~ [0, oe), and are continuous in f ~  Re5  °. 

(ii) The first unsmeared functional derivative ~o 1 = 6L 1/c3f belongs to Re 5 ~, and 
has smeared functional derivatives of all orders with respect to q~ and f belonging to 
ReS9 °. The functional derivatives exist in H, norm for all integers n >0, and ~o~ and its 
functional derivatives are analytic at 2~ [0, oe) and continuous in f in Re5  ~ in those 
n o r m s .  

(iii) The unsmeared functional derivatives 

L 1 (X l, ... , X m ; f )  = 6mLl(f)/6f(x 1)... bf(xm) (115) 

are real, symmetric, tempered distributions. 

Proof (i) The only thing we haven' t  verified already is that  the polynomical  terms 
in ,co have the correct  properties. By now, we feel we have the right to claim that  that  
is trivial. 

(ii) This is already verified in Lemmas 13, 17, and 19, up to trivialities. 
(iii) The  argument  that  we have tempered distributions is the same as in the tree 

approximation,  based on the nuclear theorem. The argument  that these distri- 
butions are symmetric in the permutat ion o f  x's is also the same, based on the 
bounded  difference property,  which is true by Lemmas 13, 17, and 19, and Lemmas 
6 and 7. [ ]  

Remarks  2, 3, 5, and 6 on the tree approximat ion  apply equally welt to the one 
loop correction. 

Appendix I. Bounds on Multiplication Operators 

Instead o f  the expression (20) for 101~, we use the definition o f  the opera tor  norm as 
the supremum of  absolute values of  matr ix elements 

(tp, g"o~p), ]l~'l/2,n-- 1. (A.1) 

The procedure  is to integrate each V. Vin K" by parts once, putt ing one Von the left- 
hand p. Then let the other  gradients act to the right, giving a sum of  terms of  the 
form 

[(D zl tp, (Dz~O)DZ3~p) t < Cl[~tl 2., II D'~ODz~ wit 2, (a.2) 

where the first factor on the r.h.s, follows because 1111 < n. We also have [le[ + tl31 < n, 
and we estimate the second factor by 

lJDZ20 l] 4 l[ D/3tPJ[ ~ < eli Oil 2, t~1 +1 [1~1t 2,1g31 + 1 

<c't10112,.+a tJ~,ll2,., (a.3) 

for 113L + 1 <n ,  and by IlOII ~ bl~ll 2,, times a constant  for ll3l =n.  
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A p p e n d i x  II .  P r o o f  o f  L e m m a  3 

The a rgument  is by induction,  after settling the cases n = 1 and  2. For  larger n, we 
can make  effective use of  the B ( H , )  norm.  

n = 1 : This case is settled by Rauch 's  a priori  est imate:  

tI~Pl - (P21[ 2,1 -<-1[ f l  - -  f 2 H 2 , -  1 • (A.4) 

Rauch ' s  p r o o f  is very short :  mult iply the difference of  field equat ions by (Pl -q~2;  
drop  the positive term 

)~(q~ i - q~2)(p3 _ q~23) > 0 ; (A.5) 

and apply  the Schwartz inequality. 
Before looking at n = 2, we want  to look at some general features of  the case 

n > 2. Applying the CFE,  we get 

(11 ~ol - ~o2 II 2,.) 2 = <~ol - ~o2, K" - 1  [ A  - A - ,~(,p 3 _ q , ~ ) ] )  

~[[@l--@2[12,nllfl--All2,n-2 
+ ,~1 (~0, - q)2, K " -  ~ [(~p ~ - q~2)Q])t ,  (A.6) 

where 

We have  to keep part ial  t rack o f  the two cases: 

odd n:  Est imate  the second te rm on the r.h.s, by 

t{ (Pl - q~2 II 2,,-1 II Kt("- 1)/21((P 1 - q)2)Q Ii 2, 

where [a]  means  the integer par t  of  a. The first factor is bounded  by 11 q~l -~°2 XI 2,,, 
and  we divide it out. 

even n:  Est imate  the second te rm by 

I l q h -  q~211 =,, II gt<"-a)/21(q)l- ~°2)Qll 2" 

Immedia te ly  divide out  the first factor. 
Tha t  leaves the second factor, involving Q. The  a rgument  that  follows is going to 

work  for any polynomial  Q in q~l and ~0 2, in par t icular  for the Q that  would result 
f rom replacing the interact ion te rm q~3 in the C F E  by any other  polynomial .  So 
f rom now on we let Q be any  polynomial .  

n =  2: The factor to be est imated is 6 

I[(q)l --(p2)QI[ 2 < ilq~t - q~2[[~ [IQil4 

_-< C[ l ~ o t -  q,21l 2., llQII4. (A.7) 

T h e  d i f ference  in the  H 1 n o r m  gets b o u n d e d  by tlf~ - f 2  II 2, - 1 =__]A- l llf~ -f211 > f r o m  
the case n =  1,. T o  est imate the Q factor, we note  f rom n = 1 and L e m m a  2 that  

6 We learned this estimate from J. Rauch 
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I[ q)][ 2,2 ~ [I fll 2 P1- Now bound the Q factor by sums of products of Lp norms of q;s, 
p < 2 <  0% which in turn are bounded by H a norms, then by L 2 n o r m s  o f f ' s .  

Induction Step. Suppose we have proved the result up to some n > 2. Then, for n + 1 
we have to estimate 

II Kt"/~[(~o ~ - q~_,)Q] II ~ = II Q(~o~ - cp2)II 2,.. 

_-< IQI.. l ifo1- ~02 II 2,.,, (A.8) 

where n'=2[n/2] is n for even n and n - 1  for odd n. Since n'<n, ]lcpl-q02]t2,,, is 
bounded by [[fl-f2112,,,-2 times a polynomial in H , ,  2 norms of  f 's ,  by the 
induction hypothesis, which is better than the H,_  1 norm we need. 

The Q factor can be bounded by a polynomial in 11 q~[] 2,,,+ 1, from Equation (21), 
because n' > 2. Since n' + 1 < n + 1, we conclude from Lemma 2 and the induction 
hypothesis that this is bounded by a polynomial in H,_  1 norms of f 's. [] 

Appendix IH. Proof of Lemma 4 

(i) By Theorem 1, (p2~ Reso. Thus, multiplication by 32(p 2 is a bounded, Hennitean 
operator o n  L 2. The operator K is known to be setf-adjoint on the domain H 2 C L 2, 
which is easy to check in k-space. Thus, Kz is self-adjoint with domain H z. 

(ii) Strict positivity is evident because Kz>=K>=#2I. The existence and boun- 
dedness of the inverse follows from the functional calculus and the fact that the 
spectrum of  K~ is contained in [#2, co), so that of  K S 1 is in [0, #2]. 

To see that K~-1H, C H,  + 2, note first that K~-1 L2 = H2" Indeed, for any strictly 
positive, selt'adjoint operator A, one has the range N(A)= L2, and ~ (A)=  N(A-1). 
Thus, for any h~H,,  we know there is a ~pEH 2 such that 

K ~ = h .  (A.9) 

Suppose we know that K~-1 H, C H,+ 2 for s < n. Taking the gradient of  the above 
equation, we get 

K ~ V~p = Vh - 62(o Vq0~v ~ H,_  1 

~VIpEHn+ 1 =>tp~Hn+ 2 • (A.10) 

(iii) That Kz maps 5 p continuously onto itself, and Re5O continuously onto 
itself is evident. We need only show that the maps are onto, for the inverse of  a 
continuous, linear, one-to-one map of 5" onto itself is automatically continuous. 

Let Kz~ = h ~ 5 °. We have shown above that then ~p ~ H,  for all positive integers 
n. Now for any n>2 ,  every function in H,  is the Fourier transform of an L I 
function, and hence is continuous, uniformly bounded, and zero at infinity. Thus, ,p 
is infinitely differentiable, with uniformly bounded derivatives vanishing at infinity; 
so in particular, ~ps0~t. But then 

Kq~= h -  32(p2~5O. (A, I1) 

The result for 50 follows, because K and K -  1 map 50 onto 50, as well as Reso onto 
Re5O. The result for Reso follows, because K~. preserves reality, and if K~p = h is 
real, then K;, Re~ = h=>~ = Reap. 
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(iv) The opera to r  

A. = K n/2 K K S i K -  n/2 (A. 12) 

is bounded  on Lz, because K S 1K-"/2  maps  L 2 into H . +  ~_, and  K i +"/2 m a p s  H . +  2 
onto  L 2 ; so A. is defined on all o f  L2, while A* is densely defined, on H .  + z C L 2 ; SO 
A . - - A .  is a closed ope ra to r  defined on all o f  L 2. Thus,  K K  S i is bounded  on H. .  

Next,  

Kn/Z KS t KK-n/2 =An_ 2 (A.13) 

which easily gives boundedness  of  K S 1K on H, ,  except for the case n = 1, which 
yields to an a rgument  that  ~(K]/Z)=H~, and tha t  Ka/2KS 1/2 is bounded  on L 2. 

(v) Fo r  a fixed f, consider the opera tors  K~-01 and K4o+~,- 1 where 20 E [0, oo), and  
is a small, complex  number .  The  resolvent expansion gives 

K - 1  _ K - 1  4o+~- 4o ( -hK4o-i)  
tt~ 

/ n = O  

hK-1 m = [,n~0 ( -  4 ° ) I K S o  i (A.14) 

where h = 3(20 + e) q~2 _ 320(o 2, and the qCs cor respond  to 2 o + e and 20, respectively. 
The  strategy is to show that,  for each H,,  there is a complex ne ighborhood  o f  zero in 

where the expansion converges uni formly  in norm.  The same will then be true if we 
mult iply the expansions f rom the right or  left by K, because the factors K K~o ~ and  
KSolK are bounded  on H ,  for integers n > 0. 

The first step is to show that  h, considered as a mult ipl icat ion opera to r  on H, ,  is 
small in norm.  Thus,  

(A.15) 

F r o m  Equat ion  (21), we m a y  replace the [. 1, on the r.h.s, by H,,  norms,  and the whole 
thing goes to zero like e as e ~ 0 ,  because q~ is analytic (and hence cont inuous  and  
uniformly bounded)  in H,, norm,  by Theo rem 1. 

Tha t  is good  enough for the no rm convergence of  the resolvent expansion in 
every H, ,  for integer n ~ 0 ,  uniformly for e small, because KSo 1 =KSolKK - i  is 
bounded,  and [hKSol[, can be made  uni formly  less than  one for ~ small. 

T o  complete  the proof ,  we need only r emark  that  h is an analytic function o f  e, 
with values in B(H,), because cp~ is, due to Theorem 1 and Equa t ion  (21). [ ]  

References 

1. Jackiw, R. : Functional evaluation of the effective potential. Phys. Rev. D9, 1686--1701 (1974) 
2. Reed, M., Simon, B, : Methods of modern mathematical physics, Vol. II. New York : Academic Press 

1975 
3. Reed, M. : Abstract nonlinear wave equations. Berlin-Heidelberg-New York : Springer 1976 
4. Osterwalder, K., Schrader, R. : Axioms for Euclidean Green's functions, Commun. Math. Phys. 31, 

83--t12 (1973) 
5. Nelson, E. : Construction of quantum fields from Markoff fields. J. Funct. Anal. 12, 97--112 (1973) 



218 D.N. Williams 

6. Hepp, K. : Renormalization theory. In: Statistical mechanics and quantum field theory. Universit~ 
de Grenoble--Summer School of Theoretical Physics, Les Houches 1970 (eds. C. DeWitt, R. Stora), 
pp. 429--500. New York: Gordon and Breach 1971 

7. Epstein,H., Glaser, V. : Le r61e de la localit6 dans la r6normatisation perturbative en th6orie 
quantique des champs. In: Statistical mechanics and quantum field theory. Universit6 de 
Grenoble--Summer School of Theoretical Physics, Les Houches 1970 (eds. C. DeWitt, R. Stora), pp. 
501-- 545. New York: Gordon and Breach 1971 

8. Goldstone,J., Jackiw, R. : Quantization of nonlinear waves. Phys. Rev. D 11, 1486--1498 (1975) 
9. Rauch,J., Williams, D.N. : Euclidean classical field equations for n=<4 dimensions (unpublished) 

10. Boulware, D., Brown,L. : Tree graphs and classical fields. Phys. Rev. 172, 1628--d631 (1968) 
11, Jost, R., Hepp, K. : ~ber  die Matrixelemente des Translations Operators. Helv. Phys. Acta 35, 34--46 

(1962) 

Communicated by J. Glimm 

Received February 9, 1977 


