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Abstract. We study the real, Euclidean, classical field equation 

(#2-  A)~o+ 2F(~o)= f , #2>0 ,  

where ~o : IRa~IR is suitably small at infinity. We study existence and regularity 
assuming that 2 > 0, F~ C°~0R), and aF(a) > 0 VaEIIL These hypotheses allow 
strongly nonlinear F and nonunique solutions for f ~: 0. When F' >0,  we prove 
uniqueness, various contractivity properties, analytic dependence on the 
coupling constant 2, and differentiability in the external source f .  For 
applications in the loop expansion in quantum field theory, it is useful to know 
that ~0 is in the Schwartz class 5 e whenever f is, and we provide a proof of this 
fact. The technical innovations of the problem lie in treating the noncompact- 
ness of IR a, the strong nonlinearity of F, and the polynomial weights in the 
seminorms defining 5 ~. 

I. Introduction 

It is well known [1] that the tree approximation to the first functional derivative of 
the time-ordered, connected generating functional of a boson quantum field theory 
obeys the classical field equation with an external source. The tree approximation 
to the connected generating functional is an infinite formal sum in powers of the 
coupling constant, over Feynman graphs with no loops. It is the zeroth order term 
in the loop expansion, which is a formal power series expansion in hc. 

The same correspondence holds in the Euclidean version ofboson field theory, 
where the time-ordered generating functional is replaced by the Laplace transform 
of the interacting Euclidean measure on Re6 °'. We refer to the Laplace transform 
rather than the Fourier transform in order to arrange for a real classical field with 
the better sign of the coupling constant. 

We want to discuss the classical field equation itself in this paper, and not how 
it emerges from the limit hc = 0; but since it was the initial motivation, we describe 
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the correspondence. Let 

g(f) = exp [L(f)/hc] 

=N -1 ~ exp{-(hc)-l~[2V((o)-$f]dx}d#o($), (1.1) 
ReSt' 

where f ~  Re5O(IRd), d#G is the Gaussian measure for the free, Euclidean scalar field 
of mass m, and V(4~) is a local interaction, a function of ~be Reso'(IRa), including 
renormalization counterterms. The normalization constant N is chosen to make 
g(0) = 1. Of course, the r.h.s, is a formal object. If we make a formal power series 
expansion of 6L/6f(x) in powers of he, and call the zeroth order term 

aL° (1.2) 
¢°(x) = af(x) ' 

it is a theorem in the formal power series sense that 

( -  a +#2)~0 +~F(,b0)=f, #-mc/h, (1.3) 

where F = V~ is the derivative of the interaction evaluated at zero in any explicit hc 
dependence. In practise, this means that F is the derivative of the naive interaction, 
without counterterms, because the counterterms, including those coming from 
Wick ordering, are of higher order in hc. The above formula is often derived by a 
stationary phase argument on the Feynman path integral, in the Minkowski 
version [1]. We refer to [2] for a sketch of the Euclidean argument, which is 
straightforward. 

This paper is an exposition of techniques for studying the Euclidean classical 
field equation 

(#2-A)~9+2F(q~)=f, #2>0 ,  2 > 0 .  (t.4) 

We look for real solutions for source functions f in a variety of function spaces, 
including the Sobolev spaces Hs(IRa), s > -  1, Lebesgue spaces LV(IRa), and the 
Schwartz space 5 ° . 

An immediate application, discussed in [2], is to higher orders of the loop 
expansion, where the solutions of the classical equation have a central role. 

There are two important classes of Euclidean problems, qualitatively richer 
than ours, which fall outside the scope of our discussion. One is that of three and 
lower dimensional problems of static, finite energy, soliton solutions of certain 
non-Abelian gauge field and other models; the other is that of four and lower 
dimensional instantons in the Euclidean versions of those field theories. A 
comprehensive and still fairly up to date reference for these problems is the review 
article of Jackiw [3]. For  us, the classical potential term V o +/.tZ~b2/2 has a single 
minimum at ~b = 0, which is equivalent to our conditions aF(a) > 0 and bt 2 > 0. For  
the field equations, these conditions imply the uniqueness of the vacuum solution, 
that is, the solution with zero external source f .  In the more complicated problems 
mentioned above, it is exactly the nonuniqueness of the vacuum which is the heart 
of their interest. Our simpler problem may have some useful points of contact with 
such problems. 
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Our investigation is divided into four parts: existence, regularity, uniqueness 
and contraction estimates, and dependence on 2. Corresponding to this division, 
we state four main theorems. 

We use the real Sobolev spaces H~(IR d) = {ueSe'(lR d) :(1 + J~12)S/2lfiJeL2(lRa)}. 
For s a nonnegative integer, this is the space of distributions whose partial 
derivatives of order less than or equal to s are square integrable. 

Theorem 1 (Existence of Solutions). I f  FE C(IR) and aF(a) > 0 for all aelR, then for 
any f~H_I ( IR  d) there is at least one q~eHl(lR ~) which is a weak solution of the 
classical field equation in the sense that F((o)sL~o c and Eq. (1.4) is satisfied in the 
sense of  distributions. In addition, q~F((p)~LI(IR d) and F(~o)eH_ l(IRd). 

If q0 is such a solution, we have Vq~ ~(IR ~) 

1~2tlep + Vt 1 • Vq) + tle(~o)dx = (7, f ) , (1.5) 
where ( , )  is the pairing H 1 x H_ I-+IR. Since F(cp)EH 1, this identity extends to 
all r/eHz(IRe), and ~r/F(~0) is replaced by (t/, F(~0)). If f = 0 ,  we may take t/=~o to 
obtain 

j"/./2@2 + j Vcp]2 dx + Qp, F( ~o) ) =- O . (1.6) 

Formally, (~o, F(~o))"= "5 ~o(x)F[~o(x)]dx >0 since the integrand is nonnegative. It 
is not difficult to show that indeed (~o, F(~o))>0 (the necessary techniques are 
described in Sect. IV), and it follows from the above identity that cp = 0. Thus ~o = 0 
is the only solution in the absence of a forcing term. However when f# :0  there may 
be several solutions. 

Theorem 2 (Regularity of Solutions). In addition to the hypotheses of Theorem 1 
assume that F e C~(IR). Suppose q~e H , (IRe), F( ep )6 H_ l(IRa)c~Lloc(lRe), and q~ satisfies 
the classical field Eq. (1.4). 

(i) (L p regularity) I f  l<p__<oo and f ~LP(IR d) then q)eLP(IR d) and ~/2[Iq?llLP 

< HfHL~. I f f  ~L°° then 

~oe~ W~2gp(IRd)c ~ C*+~(IRa), lim q~(x)=0, 
p 0 < ~ < 1  ]xl~oe 

and min {0, ess inff} __< #2(p =< max {0, ess sup f}. 
(ii) (Smooth regularity) I f  f ECk+~(IRe)c~L~(IR e) then (p~Ck+2+~(IR d) for any 

integer k >O and ae(0, 1). I f  f eSP(IR a) then q~eSeORe ). 
(iii) (Hs regularity, small s) I f  se [ -  1,1] and f ~Hs(lRe)c~L °~ then q)eH~+ 2(IRd). 
(iv) (Weighted spaces, small s) For any integer k and s s lR  let 5ek, s 

={q~H~(lRe)'x=tleH,(lR ~) if N < k } .  I f  s e [ - 1 , 1 ]  and fsSek, s~L  °~ then 
~oe~,~+2. 

In addition to the above hypotheses assume that the number of dimensions d < 5. 
Then 

(v) (Hs regularity) I f  s> - 1 and f eHs(IR a) then (peH,+z(IRe). 
(vi) (Weighted spaces) I f  k >0 is an integer, se [ -  1, or), and f eS~,~c~L ~, then 

(1) e ~k,S + 2 • 

Remarks. 1. We do not know if (v) and (vi) are true without the restriction d < 5. 
2. For each result except the 5 ~ result in (iii) F need only be differentiable to 

finite order. For example F e  C(IR) suffices for (i), and F e  C~(N) suffices for (iii) and 
(iv) while F e C  ~+ ~(IR) suffices for (v) and (vi). 
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3. I f f  and F are real analytic and f e L  ~, then Hopfs theorem [4] implies that 
~0 is a real analytic. 

4. If f~C~(lRd)c~L ~ then f e 0  Ck+~(tRd) so (iii)implies that q)e (" t Ck+~(IR a) 
k k 

= c ~ ( ~ ) .  

Theorem 3 (Contraction Estimates). Suppose that FeC(IR), F(0)=0, and F is 
nondecreasing. For j = 1, 2 let q~j be solutions, in the sense of Theorem 1, of the field 
Eq. (1.4) with sources f~6H_ 1(IRa). Then, 

(i) i#2((p~-(p2)2 + |V((pl -(pz)12dx<=(l + t~- 2)211f, - f21[~_c 
(ii) I f  for some pc(i ,  o0~ J'l and f2 are in LP(IRa), then 

Remark. Inequality (i) implies the uniqueness of solutions with a given source in 
H _  ~ (~d). 

Theorem 4 (Smooth Dependence on 2, f ). In addition to the hypotheses of Theorem 3 
assume that F6C~(]R) and that s+ 2>d/2. 

(i) (Oifferentiable H s dependence) For f ~Hs(IR a) and )~ >__0 let 
~p(2,f)~H~+2(lR a) be the unique solution of the field Eq. (1.4). The map 
(2, f)~+~p(2,f) is infinitely differentiable on [0, ~ ) × H~(IR d) With values in H~+ 2(lRa). 

(ii) (Analytic dependence on 2) Suppose in addition to the above hypotheses that 
F is real analytic on I~ For f ixed f the map 2~-~p(2, f )  is real analytic on [0, ~ )  with 
values in H~+ 2(IRa), that is, for each 2 o ~ [0, ~ )  there exist q~n6 H~ + 2(lRa), n = 0, 1,..., 

and r > 0  such that ~0(2,f)= ~(2-2o)n~p, is convergent for I -&l <r.  
0 

(iii) (Weighted spaces 5~k,s) Suppose k is a nonnegative integer and that the 
hypotheses of  (i) are in force. Then the map ()~,f)~+~p(2,f) is an infinitely 
differentiable function on [0, ~ )  x ~ ,~  with values in 5Pk, s+ z. If, in addition, F is real 
analytic on JR, then the map 2~-~p(2,f) is real analytic on [0, ~ )  with values 
in 5Pk, s+ 2 . 

Remarks. 1. F is real analytic means that F is the restriction to IR of a holomorphic 
function ff on an open set UCC with IRe U. 

2. The map (2,f)~q~(2,f) is C k if FeC~+g+30R). That is, F need only be 
differentiable finitely often to ensure that q~ is. For proof one need only examine 
closely the proof of Theorem 4. 

A remark is in order about techniques. The existence theorem is made 
nontrivial by the fact that F may be rapidly increasing at oQ. For example, F(~o) 
=~p exp ~p. In such cases (at least for d > 4) the nonlinear term is in no sense a small 
perturbation. The associated Minkowski equations ~o~t- zl d_  1 q~ + #2q) ..~ F(~o) = f 
are poorly understood for such strongly nonlinear F. Matters are further 
exacerbated by the fact that IR d is not compact, making degree theoretic ideas more 
difficult to apply. It is important to realize that the existence and regularity 
theorems are proved in a generality that permits multiple solutions. In the absence 
of a source ( f  = 0), the only solution is ~0 - 0 ; 0 ; however, multiple solutions may 
exist for f =# 0. 
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The critical parts of the regularity theorem are the L p estimates, which are 
derived using multipliers in the fashion of Moser [5] and Br6zis and Strauss [6-1. 
The unboundedness of IR d creates technical problems here, too. One cannot prove 
L ~ estimates by taking the limit as p~+oe. The L ~ estimate (which is the most 
important one) requires a separate argument resting on a Harnack type inequality 
of Moser. Once solutions have been shown to be bounded, the growth of F at 
infinity becomes irrelevant; and the regularity theory proceeds without essential 
difficulty. It is worth noting that, as far as we know, the regularity in ~ ,~  spaces 
has not been observed, even in the linear case. The contraction estimates are 
proved with multipliers in the same manner as the L p estimates. 

To study the dependence on 2 and f ,  we show that for (2, f ) ~  (20, fo) one can 
reduce the study of the field equation to solving a nonlinear equation G(2, (p, f )  -- 0, 
where G is smooth. When F' >0, the implicit function theorem can be invoked to 
obtain the desired results. 

Many of the techniques we use are not new. However, since nontriviaI 
innovations are required in several places, and because of the importance of the 
classical nonlinear field equations in mathematical physics, we feel that it is 
worthwhile to set down the basic facts in accessible fashion. 

II. The Existence Theorem 

This section is devoted to a proof of Theorem 1. Replacing 2F by F, we may 
assume, without loss of generality, that 2 = 1. For  further notational convenience, 
we often suppress the labels IR and IR d in the names of functions spaces. The 
argument of F always takes values in IR, and those of (p and f in IR d. 

We use Galerkin's method to construct approximate solutions Ok. For  
k = 1, 2,... choose V k C C~(IR d) such that ~ C ~ + 1, dim V k < oe, and UkV k is dense in 
H r We seek (pk 6 V k such that 

S #2wq) k + Vw. V(pk + wF(q~k)dX = ( w, f )  (2.1) 

for all w in V k. The solution q) is obtained as the limit of a subsequence of the Ok. 

t. Existence o f  q~k 

Define T" C~(lRd)-~Co(IR) by 

T(W) = (#2 _ A)~j2 + F(~). (2.2) 

The basic estimate is that V~e C~ 

(T(~p), ~)L2 = S#2~P 2 ..~ [gl~ 12 @. ~pF(~)dx > min(1, #z)fl W 1[/~i, (2.3) 

since tpF(~,) > 0. 
Let rCk:LZ(IRd)~Vk be orthogonal projection in L z. Consider V k as a scalar 

product space with the L 2 inner product. Now fIVk is a continuous linear 
functional, so there is a unique fk~ Vk such that Vwe V k 

(w, f )  = (w, Jk)L~ • (2.4) 
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Equation (2.1) is then equivalent to the equation ~kT(q)k)--fk=O. We consider 
~z k o T - f k  as a continuous vector field in V k. Let F k be the bounded open convex set 
f k = {re V k : IlvltHl < 1 + max(l ,#-  2)]lfllB_~}. We show that deg(nkr--£,C3Fk, O ) = t 
([7] is a good reference for degree theory), and thereby conclude that ~zkT--o~ has 
a zero in F k. The basic estimate is that for ~ e  Vk, 

(~kT(~P) -- fk, ~)L 2 = (T(~), q))L~ -- (fk, ~)L2 

> min(1, #2)[[ 1])I12/1 - -  [ ( f ,  Ip)[  

---min(1,/~2)l[q~[[~,- [IW[]H_ ~l[~[[m 

= rain(l,/~2)l[~[]n~[]l~p][l~,- max(1,/~- 2)llf[]n_ ~]. (2.5) 

On 3F k this is strictly positive. Therefore ~bt=(1--t)(nkT--fk)+tl,  0__<tN1, is a 
homotopy of ~kT--fk  to I which never vanishes on OFk, since for tp~3Fg, 
(4~t0p), V;)L~ > 0. It follows that 

deg(z~k T -  fk, gFk, 0) = deg(I, 3Fk, 0) = 1. (2.6) 

Thus for each k we may choose Oke V k satisfying (2.1) and in addition with [[ q)k[In, 
<l+max(1,/~-E)[If[[H_r Thus, taking w=~o k in (2.1), we obtain the additional 
estimate that 

(PkF((Pk) < (q0k, f )  ----< tl q)kll HI II ftl H-, 

~constant  independent of k. (2.7) 

2. Use of Compactness to Extract a Convergent Subsequence 

The Rellich compactness theorem, together with the weak compactness of the unit 
ball in H 1, imply that there is a subsequence (still denoted (Pk) such that 

q)g~0 in H 1 weakly. (2.8) 

~0k--, q) in H ~°~ strongly for all s < l .  (2.9) 

~0k~ q) pointwise a.e. (2.10) 

By Fatou's lemma, 

(pF((p) < lim inf~ q)kF(q)k), (2.11) 

and the right hand side is finite by (2.7). Thus, ~,oF((p)eLI(IRd). Since IF(s)[ <=sF(s) 
+max  IF(s)l, this implies that If(q0)[ ~ ~0f(~o)+ max [F(s)J, so f(~o)eL~o ¢. 

tsl =< 1 IsL _-< 1 
Following Strauss [8], we show that a subsequence of the F(~0k) converges in 

the weak star topology of L~o * (recall that (L]o~)' = L~mp,¢t). To do this, it suffices to 
show that for each e>0  there is a 6 > 0  so that coctR d and meas (o0)<6 imply 
~lF(q~k)[<e for all k. Given e>0,  (2.7) permits us to choose M > 0  so that 
69 

2I(PkF(~Ok)<eM for all k. Let 6=e(21suplF(s)l]-'.\~l<=M] Then [F(s)l<M-lsF(s) 
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+ sup IF(s)I, so if meas (e))< 6, 
I~1 =<M 

f[F(~o)I<=M-~f~oF(~o)+b sup [F(s)]< ~ o~ N_-<u 2 + 2 =e .  (2.12) 

Thus, passing to a subsequence, again denoted ~Pk, we may assume that 

F(q~k)~ ~ in Llloo weak star. (2.13) 

It is important to make the identification 7 = F(~p). To do this, observe that for 
any bounded set E CIR ~ and any e > 0 the pointwise convergence (2.10) together 
with Egoroffs theorem imply that there is a set v CE with meas(v)<e and 
F(~pk)~F(q~ ) uniformly on E\v. Then F(CPk)~F(q~ ) in LI(E\v) weak star. However 
by (2.13) F(~0k)~ 7 in LI(E\v) weak star. Thus 7 =F(q~) a.e. on E\v. Since e>0  was 
arbitrary, it follows that 7 = F(~o) a.e. in E and therefore almost everywhere in IR a. 

3. Passage to the Limit k ~ o o  

Suppose we V z for some I. Then (2.1) holds provided k > l ;  and we may pass to the 
limit k ~  oo in (2.1), since well1,  q)k--'q) in H1, weLd%repast, and F((ok)-'F(~o ) in Lltoo 
weak star. Thus Vwe ~kE~, 

#2w(o + Vw. Vq) + wF((o)dx = ( w , f )  . (2.14) 

Estimating crudely, we find that ~ IwF(~o)l < const II w I[ m" Since w ,Vk is dense in H a, 
this implies that F(q~)EH_I and that (2.14) extends by continuity to all w e l l  1. 
Since identity (2.14) is equivalent (for q~eH~) to the field equation (1.4), all the 
assertions of the existence theorem have been verified. [] 

Remark. Except for the intervention of the local spaces ~o~ d H~ (1~) and L~o~(IR a) in (2.9) 
and (2.13), this argument is standard. The noncompactness of IR d is only a minor 
inconvenience here. 

III. Regularity Theorems 

The critical step in the regularity theory is to show that if f is bounded then so is cp. 
For classical solutions this is a simple consequence of the maximum principle. 

Boundedness of  Classical Solutions. If cpeCZ(IR d) is a solution of the classical field 
equation (1.4) with fEL~(IRd)~c(IR d) and I~0(x)l-~0 as I x l - ~  then 
~2 I[~0[I L~ --< II fl] L~. 

Proof We show that #2cp=<max~supf,0~. The proof that #2~o__>min~inff0~ is 
J 

similar. 
If sups0__0 we are done. Otherwise there is an x0~iR d such that 

sup (o = q0(Xo)>0. Then -A(p(Xo)>0 and F[~o(x0) ] =>0, so the field equation (1.4) 
implies that #2~O(Xo)<=f(Xo)<=supf and the result is proved. 

The problem is to prove a boundedness theorem for weak solutions. The idea 
of the proof is easy to describe and is inspired by the multipliers of Moser [51 (see 



20 J. Rauch and D. N. Williams 

also Brdzis and Strauss [6]). Temporarily ignoring convergence problems, one 
takes ~=lq~l~-2q~ in (1.5) to obtain 

(p _ 1)kol ~-  21V~ol 2 + #21~olV + i~ol ~-  2q)F(q))d x = ~ i~ol ~-  2(pf (3.1) 

(as in Sect. II we have taken 2 = 1). 
Dropping two positive terms from the left hand side and applying HiSlder's 

inequality to the right with 1/p + 1/q = 1 yields 

Since (p-1)q=p we may divide both sides by (~[q~IV) ~/~ to find the estimate 

This is the assertion of Theorem 2(i). We now supply the ideas necessary to 
make this argument rigorous. 

1. Proof of Part (i) of Theorem 2 

Suppose 1 < p <  c~ and define ?n:IR~IR by 

[s[ p-2s if p > 2  and Isl <n  
or l < p < 2  and 1/n<lsl<n, 

7,(s)=Jnp-lsigns if [sl>n, 
[n2-Ps if l < p < 2  and Isl<l/n. 

Then 7n is uniformly Lipschitz continuous so ~0 e H 1 (IR d) implies that 7,(~o)~ H I(IR d) 
and Vv,((p) is the element of L2(IR d) equal to 7'~(~o)V~o where [q~t < n and tq~l ~= 1/n and 
equal to zero otherwise (see Lemma 28.1 in [9]). Choose tpeC~(1R) such that 
0_<__tp=<l, lp(s)=~(-s) ,  ~p(0)=l, and tp'(s)__<0 for s>0 .  Define r/m~C~(IR ~) by 
~tm(x) = ~ ( m - l l x l ) .  If q~eH 1 is a solution of the field equation we may take ~/,,7',,((P) 
as "test function" in (1.5) to obtain 

Vrp. VEt/ruTh(q))] + #2t/mq)7,(~o ) + tlmTn(q))F(q))dx = (f,  r/,,7~(~0) ) . (3.2) 

Notice that F(q))~L(o ¢ and t/myn(q~)~L¢~ompact so the pairing Qt,,y,(~o),F(q))) is an 
integral of a nonnegative function and is therefore nonnegative. Similarly, since 
f ~  L p and t/myn(~0)~ Le~mpae t the pairing on the right of (3.2) is also an integral. Now 

~Vq).V[th,7,(q))]=~7,(q))Vqo. Vtlm+ ~ rlmT',,(q))lVq)la>~7~(cp)Vq).Vth~ (3.3) 
lel<n 

since 7 '>  0. Thus, estimating the right hand side of (3,2) by H/51der's inequality and 
using the fact that t/,,Tn(q~)F(q) ) ____0 we have 

< q IflPtl,,dx) I/p(~ 17,(p)l~tl,flx) I/q, (3.4) 

where 1/p + 1/q = 1. Now 17,(s)l q < s?o(s) for all s e IR (they are equal for i/n__< Ist < n), 
so the q-norm on the right of (3.4) is at most equal to (~ q~7,(~0)t/,,)l/L Using this 
estimate and rearranging terms yields 

(I ~°7,(~°)~/,,) ~/~[#2(I q~V~(~°)r/.,) ~ / , -  (I IflP~/m)l/q --< - I T,(q~) Vn,," Vq~. (3.5) 
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For fixed n, the right hand side is o(1/m) as m ~ ,  and (0?,(q~)tb~O?,((0) and 
]f]Pt/,,~lf[ p, both monotonically. The monotone convergence theorem allows us 
to pass to the limit m ~  ~ in the integrals in (3.5) to conclude that ~ O?,,(O)< ov and 
moreover 

pz ~ O?,(O) <S {fl p- 

Letting n-- ,~,  oy.(o): lol  v, so the monotone convergence theorem yields 
~2 II o II p--< II f II p, which is the desired result. 

To derive the L ~° estimate the argument must be modified substantially. Notice 
that one cannot merely let p ~  ~ since f need not be in any L p space other than 
L ~, and secondly IlfllL~ might be smaller than lim IlfllLp- What does immediately 

follow is that 

~211ol I ~ <liminfg2110[lp <l im inf ]If tip, (3.6) 
p ~ o O  p--+ cO 

which suffices for many applications. For example, i f f e L ~ c ~ L  ~° for some Po < ov 
and ess sup tfl-~0 as R-~ ~ ,  then the right hand side of (3.6) is equal to llfl[ oo- To 

Ixl>R 
derive a sup norm estimate for O without the hypothesis that I f f~0  at infinity, we 
use more of the elegant ideas of Moser [5]. 

Lemma 1. Suppose that ~ E IR e is an open set, O s H]°C((2), F(O)~ L]°°(~), f 6 L:o~((2), 
and ( # 2  A)O + F ( o ) = f  Suppose k:IR~IR is a nonnegative convex function such 
that k(0)=0 and there is a ~ > 0  with k"(s)=0/f ls]>0.  Then Ak(o)> - fk'(o). 

Remark. Since f e L ' t  °~ and k'(o)eL ~, it follows that f k ' (o)e~ ' ,  so the assertion 
-Ak((p)<fk ' (o)  makes sense and is equivalent to the fact that S V~v. Vk(o) 

- ~p fk'(o)dx < 0 for all nonnegative ~ ~ ~(IRa). 

Proof We prove the result assuming that ke C2(IR). The general case follows as in 
[5] by approximating general k by convex functions satisfying the additional 
hypothesis. Since k"=0  for Isl large, k is Lipschitz continuous, so 
o~H~°~k(o)~H~°~;and we need only show that Ak(o)>- f l ( (O) .  

By hypothesis 

~ #2~/O + V~t" Vo+tIF(o)dx=Sqfdx  

Vqe H~(Y2)~N'(Y2). Take t /= ~pk'(o) with ~ve @(Q), ~v > 0. Since sign k'(o)= sign O, it 
follows that ok'(o ) and k'(o)F(o ) are nonnegative; so 0 < ~/~2t/O + tlF(o)dx. Thus 

V,. V(odx < ~ ~lf . 

Evaluating Vq yields 

V~p. Vk(o ) ~ 1 lpk'(o) f - ~pk"(O)[ VoI2dx ~ ~ ~vk'(o) f , 

since k">  0. The proof that - A k ( o ) <  fk'(o) is complete. [] 
Now suppose that O and f are as in Part (i) of the regularity theorem and that 

p=  ~ .  Let k(s)=]sl; then Lemma 1 implies that -AIo(s)I< IIf[[o~ on IR a. Moser's 
method [5] yields a constant c > 0  so that for any xo¢lR a 

esssup IO[~c( ~ < IO(x)tZdx) 1/2. (3.7) 
lx-xol <i \Ix- xol 2 
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The proof is exactly as in I-5]. A more general result is proved in Theorem 8.17 of 
Gilbarg and Trudinger [10]. Since q~L2(IR d) it follows that (oeL~(lR d) and that 
esssuplq~(x)l-,0 as R~oo .  Consequently, f+F(q~)sL~°(IRe); and the elliptic 

lxI>g 
regularity theorem for the operator / , 2 -A  implies that q~e 0 t~o2~P(IRa) • In 

p > l  
particular, q) is continuous. We have proved the last sentence of Theorem 2(i). 

We next prove the estimate #2cp <max  {0, ess sup f}  for f e L  ~. Let 

f2 = {xelR a :#2q~(x) >max  {0, ess sup f }} .  

By the above assertions f2 is an open set, which is bounded if ess sup f  > 0; and in f2 
we have 

Aq)=~zq) + F((p)- f >O, 

lira #2q~(x) = m ax  {0, ess sup f } .  
x~O0 

It follows from the classical maximum principle for subharmonic functions that 
#2q~<max{0,esssupf} in O. Therefore f2 must be empty, and sup#2cp 
< max {0, ess sup f}.  That  inf#2rp > min {0, ess inff} is proved in the same manner 
with 

O = {xeIRe : #2(p(x)<min {0, ess inff}},  

and the proof of the first part of the regularity theorem is complete. [ ]  

2. Proof of Theorem 2 Part (ii) 

By Part (i) (pc C 1 +~. The result follows from a finite number of applications of the 
following "bootstrap" lemma. 

Lemma 2. I f  opEC z+~ and f e C  k+~ with k,l nonnegative integers, then 
~o ~ c 2  + min(k, l) +co. 

Proof of Lemma. Since ~p6C z+~, F(q~)EC l+~, s o  (#2-A)~o=f-F(~o)EC min(k'l)+~, 
and the result follows from classical (circa 1900) regularity theorems for 
# 2 - - A .  [ ]  

From the lemma, if 1 < k, ~o gains two derivatives. If t > k, the conclusion is 
q ~ C  2+k+~. Let m be the unique integer such that t+2m<k<t+2(m+l) .  Then 
m + 1 applications of the lemma yield ~oe C ~+ 2(m + 1)+~. If l+  2m = k we are done. If 
l + 2m < k one more application of the lemma yields the desired result, for finitely 
differentiable f .  

We now go to the case f ~ 5  P. Let ~p~ HI(IR a) be the unique solution of(# z - A)~p 
= ( f 2 +  e x p -  x2) ~/2= - h. Since h is a positive element of 5 ~ it follows that ~p > 0 and 
~p~5 p. We show that ~o is small at infinity by proving lq~[ <lp. Since both ~o and ~p 
are smooth and vanish at infinity, either q~ __< ~p or the positive maximum of q~ - v; 
occurs at some point XoEIR ~. The latter alternative cannot occur, for at such an x o 
one would have (q~-~)>0 ,  A(q~- ~;)<0, ~p>~>__0, so F(q))>0 and 

(#2 --  A)(@ - -  ~/3) "[- F(~o) = f - -  ( f  + exp -- x 2)1/2 < 0, 

a contradiction. That p > -~p is proved similarly. 
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Let B~(x)= {yelRa : l y -x l  < r}. Then the estimate k0] < ~p implies that, for any r 
and N, ~ Icpl2=O(lx]-N)asx~o~. 

B~(x) 

To prove that (p~5 ~, it suffices to prove that for all r > 0  and integer N and 
s, tl q~ll m ~ ,  = 0(I xI-N) as x - ,  o~. The proof is by induction on s. The case s = 0 has 
been proved. The basic ingredient is the elliptic estimate: 

Suppose our assertion is proved for s N s 0. Then II (PlI/~o(~(~))=O(Ixl-~), and from 
the field equation A qo =/~2q) + F(~0)- f ,  so II A q~ II m (~=(x)) = O(Ixl-N), since F van- 
ishes at the origin; and it follows that tl q~l!~+~(~(£)= O(Ixt-N) • [] 

3. Proof of Theorem 2 Part (iii) 

By Part (i), q~eL~(IRa). Choose/7~ C~(IR) such that F(s)=F(s) if [sl < Ilq~tl~. Then 
F((p)=/?(cp). Now F is Lipschitz continuous and H~(IR a) is stable under com- 
position with Lipschitz maps so/?(q~) e H ~. Therefore (/~2 _ A)~0 = f -  F(cp) ~ H~ so 
q)eH~+ 2. [] 

4. Proof of Part (iv) of Theorem 2 

We require a lemma about the spaces 5k,~. 

Lemma 3. (i) For all s, aeIR and integers k, 

(ii) (peS~k,~C~L°° ~F(q))eS~k, ~. 
(iii) I f  s>d/2 then p~SPk,~f(q~)e,~.~. 

(/~/2--zl)~ is an isomorphism of 

Proof. (i) That (#z_ A)~ is 1 - 1  and continuous from ~ , s+  2 to 5Pk, s is elementary. 
To show that it is onto, suppose tl~5~k, ~ and ~peH~+ z satisfies (#2--A)~(p =t/. We 
must show that ~0~ ~-~k,~ + 2~. This is an immediate consequence of the identity 
= ( - ic~/,~ ~)= E(~ 2 + I#12)-  ~0-1. 

(ii) Choose FeC~(IR) such that F(a)=F(a)if  lal < rl~011L~. Then F(cp)=F(cp). 
Since ~o~H~ and F is Lipschitz it follows that F(q~)sH t. In addition, for all i, 
[xiF(~)l __< clxi~o[, where c = max IPI, so  x~f(~o)~ L2. Similarly Dj(xiP(cp) ) = 6uP(q~ ) 
+xiF'((o)Djcp, so [Djx~F(cp) I < If(q~)l + e[x~D¢ol, and the right hand side is in L 2, so 
x~F(q))~H~. This proves (ii) for k=  1. Analogous arguments yield an inductive 
proof of the general result. 

(iii) The proof of this is exactly the same as the proof of Schauder's lemma [see 
the proof of Part (v)] so is not short and not illuminating. It is omitted. [] 

To prove Part (iv) we first treat the case s = - 1 ; that is, we must show that if 
f E  5~k._ t then q~SPk, ~. For k = 0  there is nothing to prove. Consider next the case 
k = 1. We must show that xzq)eH~ for all i. Formally the proof is simple. Take 
t/=x{~o in (1.5) to obtain 

2 2 2 

= (xdp , x J ) .  
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X 2 Now ( i ~o, F(q~)) is formally nonnegative,  so 

Ilx,q, ll~ ~ S # ~  ,~ + v(~,q,). V(x#)& 
r' 2X2(p2 _}_ = 3 # ,  v(x  o)'V ax+Jq ' ax 

< Ilxi~o[lu~l[xifllH ~ + [l~0ll~=, 

and a bound  on IIx~ollm follows. 
To  make  this rigorous, choose ) ~  C~(IR e) such that  Z > 0  and )~(0)= 1. Let )~(x) 

= 7.(ex) and take 2 2 tt=){~x i (p in (1.5). Then (tlx2cp, F(cp))>O, and one finds that  

2 2 2 2 2 2 [,# )~x, q) +V(z ,x  icp). Vpdx<(z~xlc_p, x l f  5 

< II,z~x/,o IIm IIz,xzflli~,, 

2 ~ 2 2 2 2 llx~xi~°llu, = S# z~ xi ~o + V(z~=xiq)). V(x~x,cp)dx 
= .(#2)~{x2(p2 + V(Z2x2cp) - Vcpdx + .(] vO~x~)12cp2dx 

< l iz~xi~olFn~Iiz~xiflln_~ + J lV(x~xi)1202dx. 

Let M =  sup I]x~x~f]ln_l+jIV(z~xi)]2q 92dx < 00. Then 
0 < ~ < 1  

and it follows that  Z~x/p for e~(0, 1] is a bounded  subset of  H >  Therefore  
x~q~ = lira a Z~x~o is in H 1. This completes the p roof  for k = 1 and s = - 1. 

e 0 

For  k >  1 and s = -  1 the p roof  is by induction on k. Suppose the result is 
known for all values less than or equal to k. We prove it for k + 1. That  is, if 
f£o~k+l _1, we show qgE~+I,  i. Formally,  the p roof  is simple. If ]ct]=k+ 1 take 
I /= x2~0 in (1.5) to obtain 

f#2X2C~(~ 2 q- Vx2°:~O " Vcpdx = ( x2°C~o, f )  - (x2~'cp, F(cp)) 

< (x~cp, x ~ f ) .  

Thus 

[Ix~0112~ ~ ~ # 2 x 2 e f p 2  q- i.xo~(o. V x ~ d x  

= jlizx2~q~ 2 + Vx2~cp . Vqodx+ jlVx~lZoZdx 

= <(x~cp, x~f)+cl[q)]]2~.~ 
2 

and a bound  for tlx~q)llH~ follows. To  make this formal argument  rigorous one 
reasons exactly as in the case k = 1. This completes the proof  when s = - 1 .  

If - 1 - < s <  1, the above result implies that  q~E ~Tk, ~ ; so by Par t  (ii) of Lemma 3 
F(~o)s~,~ ; so (#2-A)q)=f-F(cp)~6'°k ,  s and q ) ~ , ~ + 2  by the first part  of the 
lemma. [ ]  

SO 
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5. Proof of  Theorem 2 Part (v) 

For s < 1 the result has already been proved in Part (iv). For s > 1, (iii) implies that 
~oe H 3 . Notice that 3 > d/2 since d__< 5. The result follows from a finite number of 
applications of the following bootstrap lemma" 

Lemma 4. I f  ~oE H ,(]R d) and f E H ~(IR a) with d/2 < a then (PEH2+min(a,s)(lRd).  

Proof. The critical fact is Schauder's lemma, which implies that F(q))~H~(IRe). A 
precise statement is given below. 

Sehauder's Lemma. Suppose aEIR and a > d/2. 
(i) I f  FE C°°(lR k) then the map (/71 . . . . .  t/k)~-+F(r/1, " ' " ,  qk) is a bounded map from 

Ho(IRd)k-~H~(IRd). 
(ii) Theabove map is infinitely differentiable. The derivative at r 1 is the linear map 

(hi,..., hk) ~-,~ ~ hjD f (q) .  
J 

A proof for a an integer can be found in Sect. V.2 of [12~. For fractional a a 
proof along the same lines is possible, using the fact that Ho is closed under 
multiplication (see Theorem 2.1 in [11]). 

Returning to the proof of Part (v), we have F(~o)~Ho, so (/~2-A)q0=f 
-F(q))eHmin(~,~), so  (PEH2+min(a,s). [] 

6. Proof of Theorem 2 Part (vi) 

If s E [ -  1, 1] the result is proved in Part (iv). I f s > l  then by Part (iv) q)eSk, 3 and 
3 > d/2. The result follows from a finite number of applications of the following 
bootstrap lemma : 

Lemma 5. I f  f s ~ , s  and ~pe~,~ with a>d/2 then (pe~k,2+min(s,~). 

Proof. Since (peS~k,~ and a>d/2 it follows from Part (ii) of Lemma 2 that 
F(~0)e cSk,~, Thus (#2_ A)q~ = f - F ( ~ o ) e  cJk, mi~(s,,). Part (i) of the lemma just cited 
implies that @@~k,2+min(s,a)" 

IV. Contraction Estimates 

In this section we suppose that FeC(IR), F(O)=O, and F is nondecreasing, so that 
IF(s ) -  F(t) l (s-  t)>__ 0 V s, t EIP~ We begin the proof of (i) in Theorem 3. 

Suppose ~Pl and ~P2 satisfy the field equations with sources f l  and f2 in H 1. 
Then taking ~Pl- ~P2 as the test function in the field equations for ~pj yields 

S/A2((pl -- ~2)(~j + [7((D1 -- (D 2) " Vq)j~X 

= < (,01 - -  (p2, f j  - -  F ( (p j )>  , j = l , 2 .  

Subtracting the j = 2 equation from the j = 1 equation yields 

5/.Z2((~01 - -  (pC) 2 +117((])1 - -  c&)ledx 

= <q~l - q~2, f l  - f2> - (cpl - rp2 , F(q~ 1) - F(q~2)> • (4.1) 
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The first term on the right is estimated as follows: 

1<~ol - CP2, f , - f 2 } ]  < [ICPl - -  CP2 [IH1/ t fa  - f2 IIH_, 
-_<(1 + 1/p 2) [left hand side of (4.1)11/2 tlf1-/211,_,. (4.2) 

The last term in (4.1) is formally 5(cpi- q~2)[F((P 1)-FqPi)]dx, the integrand being 
nonnegative. One expects this term to be nonnegative; and once that is proved, 
(4.1) and (4.2) yield the desired estimate. 

Choose t/e C~(IR d) with t /> 0 and t/(0)= 1. Let t/m(x ) = ~(m-ix). Let gm: IR--,IR 
be defined by 

s if lg(s)l < m ,  
gin(S)= ms/lsl if Isl>m. 

Then as rn~ov,  tl,,,(x)g,,,((oj)-~cpi in H1, so as m~oo,  

< l T m [ g m ( c p l )  - -  gm(cp2)], F(CP ~) - F(CP 2)} ~ <CPl - CP2, F(cP i ) -  F(CP2)>, 

since F(CPj)~tt_ 1. On the other hand, tlmgm(cpj)eLc°~ompact, and F(cpi)eL]o ~, so 

<t/~[gm(cp 1) - gm(cp 2)], F(CP 1) - F(CP 2)> 

= ~tlmEgm(cpl)- gm(cp2)] [F(CP 1) - F(CP2)] dx '  

and the integrand is nonnegative. It follows that the left hand side is nonnegative, 
so passing to the limit m ~ ov the desired inequality ( q~ 1 - ~°2, F(CPl ) - F(CP 2)} > 0 
follows. [~ 

We next prove assertion (ii) of Theorem 3. Formally, the proof is quite simple. 
This ideas needed to make the argument rigorous are similar to those just 
presented and those in the L p regularity theorem for p < o0. We present only the 
formal argument. 

Suppose 1 <p  < c~. Subtract the field equation for CP2 from the equation for CP,, 
multiply by I CPz- CPllP-;(CP2- CPl), and integrate over IR a to obtain 

~/x2ICP2 -- CPl I v + (P-- 1)1CP2 -- CPl I p- 21V(CP2 - CP 1)12 

+ Icp2 - ~ 11 ' -  20= - ~ ~)[FO =) - r o  1)]d~ 

= ~ICP=- c p ~ l ' - = O = - c p 0 ( f = - L ) d ~ .  

The left hand side is greater than or equal to #2tlcp2-cpll[~, and HSlder's 
inequality shows that the right hand side is less than or equal to 
(]tcp2--(plllLV)P/qllf2--flllLV. Dividing by (llq~2--cpll]Lp) p/~ completes the 
derivation. [] 

V. Dependence on i. 

Fix the integer s with s+  2 >d/2, and suppose that Fe  C°~(IR) is nondeereasing and 
F(0) = 0. To study the dependence of ~o on ~ and f ,  define 

G : [0, oo) x Hs+2(IR a) x Hs(IRa)~Hs(IR a) 

by 

6(,~, cp, f )  = a2cp_ ~ cp + ;~F(cp)- f .  
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A function q~e H~ + 2 (note that s + 2 > d/2, so (p is a continuous function vanishing 
at infinity) satisfies the field Eq. (1.4) if and only if G(2,cp,f)=0. The differentia- 
bility and analytic dependence results will be proved by applying the implicit 
function theorem, as in 10.2.1 and 10.2.3 of Dieudonn6 [13], to this equation. A 
critical ingredient is Schauder's lemma (see Sect. III.5), which implies that G is an 
infinitely differentiable map of [0, o o)x H.~+2 x H~ to H~, and that the partial 
derivative of G with respect to (p is the linear map 

H~+ 2(iRa)~g~--~ [# 2 - A + 2F'(cp)]g~H~(IRa). (5.1) 

By Schauder's lemma again, the function 2F'(cp)=-m(x) is in Hs+ 2. If 2 > 0  then 
m > 0  since F' >0. To apply the implicit function theorem we show that the linear 
map (5.t) is an isomorphism. That is the content of the next assertion, with 
or=s+2.  

Lemma 6. I f  m~ Ho(IRa), a > d/2, and re>O, then the map T : g-+(#Z-A + m)g is a 
continuous linear bijection of H~--+H~_ z. 

Proof. Since msHo  with o->d/2, Schauder's lemma implies that g~+mg is 
continuous from He to itselt; and therefore that T is continuous from He to H~_ 2. 
Since m is a bounded continuous function, the map g ~ m  9 is also continuous from 
H o = L  z to itself; so by interpolation, it is continuous from H~.~H¢, for all 
0_<a'_<6. 

Since m>0,  

(Tq), ~0)0 > 5#2(D2 -t-lV~ol2dx 

for all cP~H1, and standard elliptic theory implies that T is an isomorphism of 
H 1 ~ H _  1. To complete the proof of the lemma, it suffices to show that if k~H~_ 2 
and qoeH 1 satisfies Top = k  then (peH~; for then T is a 1 - 1 continuous linear map 
of H~---,Ho_ z and the open mapping theorem implies the continuity of T-1. 

Suppose k e H~_ z, cpe H1, and T o = k. Then a finite number of applications of 
the following bootstrap lemma leads to the conclusion cpeH,. 

Lemma 7. I f  keH,(iRa), cp~H~(IRa), a > 2 > 1 ,  and Top=k, then (p~ H2 +rnin(~,.~)(iRa). 

Proof of Lemma 7. (~2 __ Z])@ = k - m q o  and mcp~Hx since multiplication by m maps 
He. to itself for all a '~[0,a] .  Thus k-mq)~Hmin(~.z) SO (PGH2+min(~,,t). [] 

Given (20, (po, fo) E [0, oo) x H~ + 2 X M s with G(2o, cp 0, f0) = 0, the implicit func- 
tion theorem implies that for (2, f )  close to (20, fo) there is a unique cp(2, f )  close to 
Cpo with G(2, cp, f ) = 0 ;  and cp is a C OO function from [0, co)xH~ to Hs+ 2. This 
completes the proof of Part (i). 

We next prove the analyticity result that is Part (ii) of Theorem 4. Fix s as 
above and 2oe [0, oo), cpo , fo real solutions of G(2 o, (Po, fo)=0. Let 2/f~ be the space 
of complex valued functions on IR a whose real and imaginary parts lie in H~(IRa). 
Since F is defined on a neighborhood in C of the real axis, the function F defined 
by 

F(2, ~p) = G(2, cp, fo) 
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is a C ~° function on a neighborhood ~7/of 2 0 x Oo in t12 x ~ + z  with values in ._~. 
The partial derivative of F with respect to O is the linear map 

~f'~+ z 3g~-~[# "2 - A + 2oF'(~)]g~ J{~, 

and exactly as before this is an isomorphism of J(~+ 2 to ~ .  The implicit function 
theorem implies that there is a neighborhood ~ of 2oeG and a unique O : ~  
such that F[2,O()~)] = 0  and O : ' t / ' ~  is infinitely differentiable, the derivative 
being complex linear. By the characterization of analytic functions as functions 
differentiable over C as in 9.10.1 of E13] it follows that O is analytic on ~ with 
values in ~s,  so the restriction of O to Yfm[0, oo) is real analytic. Since the 
restriction of O to [0, oo) yields the real solution of the field equation (uniqueness !) 
and 2oe ~Ur~ [0, oo), this completes the proof of Part (ii). 

Finally, we discuss the dependence on 2 and f when f and O lie in the weighted 
spaces 5~k, s with s + 2 > d/2. The proof of both the differentiable dependence on 2, f 
and analytic dependence on 2 are exactly as above once one shows that the map T 
of Lemma 6 is an isomorphism of ~,~+2-~5~k, ~. 

The proof is like the proof of Lemma 6 with a few modifications. First one 
must show that multiplication by m maps ~ , ¢ ~ , ~  continuously if 0 < a < s + 2. 
For  a = 0 this is easy since m is bounded, and for o- = s + 2 it follows from Part (iii) 
of Lemma 3 (which serves as the natural replacement for Schauder's lemma). It 
remains to show that ~ ,  ~ is an interpolation space between 5fk, o and Yk, ~ + 2' To 
see this, norm 5~k, o by 

Ic~l _-<k 

Then Part (i) of Lemma 3 implies that 0~,~ is normed by 

(the last term is to make A, below, simple). With these choices of norms each 5Pk, ~ is 
a separable Hilbert space, and 5Pk, o is a dense subset of 5Pk, o with continuous 
inclusion. Consider the intermediate spaces between ~ , o  and 5k,~+ 2 in the 
framework of Sect. 2.1 of Lions and Magenes [14]. With X = 5e k ~+ z, Y=,(~ o, and 
the norms described above, their operator A is exactly (~2-A)~+z)?z and 
[~9°k,s+2,~'~k,o]o=D(A°)=5'~,(s+2~o [again, Part  (i) of Lemma 3]. Thus 5k,~ 

Thus T is a 1 - 1 continuous map of ,cf~,~+ 2 ~ ,  ~. To show that it is onto we 
must show that if t/~5~,~ and osH~+ 2 satisfies TO=t/ then 0~5~+2,s . This 
regularity result is analogous to Part (vi) of Theorem 2 and has a similar proof. We 
omit the details. 
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