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Abstract. We study some systems of non-linear PDE's (Eqs. 1.1 below) which 
can be regarded either as generalizations of the sine-Gordon equation or as 
two-dimensional versions of the Toda lattice equations. We show that these 
systems have an infinite number of non-trivial conservation laws and an 
infinite number of symmetries. The second result is deduced from the first 
by a variant of the Hamiltonian formalism for evolution equations. We 
also consider some specializations of the systems. 

1. Introduction 

The title refers to the following system of equations for n unknown functions 
R 0 (x, t), ..., R,,_ 1 (x, t): 

Ri,x, = ci_ 1 exp (Ri_, - Ri) - c i exp (Ri - Ri+l) .  (1.1) 

The c i are constants, and the suffixes are read mod n where necessary. It follows 
from (1.1) that (SRi )  = = 0, and the most interesting case is when ZR i = 0 too, so 
that there are really only n -  1 independent unknown functions in (1.1), say 
R o , . . . ,  R,_ z- However, even in this case it is more pleasant to write the equations 
in the symmetrical form (1.1). 

These equations have been studied recently by several other authors (see 
[4, 9, 10]). The work [10] is in some respects more advanced than ours: we did 
not see either this paper or [9] until the present manuscript had been completed. 
We feel that since our point of view is rather different from that of [10], it is best 
to present our results without any alteration. However, at the end of the introduc- 
tion we have inserted a few comments comparing our results with those of [10]. 

Let us first explain how the Eqs. (1.1) arise from our point of view. In the simplest 
case n = 2 and R o + R 1 = 0, we have just one unknown R = R o, and the equation is 

Rxt = c 1 exp ( - 2R) - c o exp (2R). (1.2) 

For  suitable values of c~ we get the well known sinh-Gordon equation 

Rxt = sinh 2R. 

The factor 2 is of course inessential, and could be removed by rescaling. Replacing 
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R by JR, we could get the even more popular sine-Gordon equation 

Rxt = sin R. 

That is why we call the systems (1.1)'generalized sine-Gordon equations'. In this 
paper we are concerned only with purely algebraic properties of the equations, 
so the substitution R ~ iR is harmless. 

Now, it is well known that the sinh-Gordon equation, or more generally 
Eq. 1.2, is closely related to the Korteweg- de Vries (KdV) equation. The connec- 
tion is via the 'modified' KdV equation for the variable r = R~ : the modified KdV 
equation and the s inh-Gordon equation both have Lax representations 

= [ L , P ]  (1.3) 

with the same 'scattering operator' L (it is a first order operator with 2 x 2 matrix 
coefficients). On the other hand, the KdV equation itself has a Lax representation 
in which L is the Schr6dinger operator 42 + u (4 =- ~/?x). The position of the system 
(1.1) can now be explained as follows: it is related to the Lax equations based on a 
scalar n th order operator 

L = ~ "  * u  ;~.-2 - , - 2 ~  + " ' + u l ~ + U o  

in the same way that Eq. 1.2 is related to the KdV equation. The 'modified Lax 
equations' needed to make this connection were introduced in [6]. 

To avoid confusion, we point out that although we speak of a 'Lax representa- 
tion' for the system (1.1), this system is not what we call a 'Lax equation': as in, 
for example [6, 12], we reserve that term for equations having a representation (1.3) 
in which (at least) the entries in the coefficients of P are differential polynomials 
in those of L. A Lax equation is thus always an evolution equation for the entries 
in L. The operator P in the Lax representation for (1.1) is not of this kind (indeed, 
(1.1) is not even an evolution equation); however, we shall see that it is near enough 
so that we can handle the system (1.1) by only a slight extension of the usual 
algebraic machinery for Lax equations. 

Our two main results about the system (1.1) are simply extensions of the funda- 
mental results on Lax equations. They state that (i) all the (infinitely many) conserv- 
ed densities for the modified Lax equations are also conserved densities for (1.1); 
(ii) all the modified Lax equations are symmetries of (1.1) in a rather strong sense 
that is explained precisely in Sect. 4. We should like to emphasize that both these 
properties are of a purely algebraic nature: in our view it would be inappropriate 
to formulate or prove them in terms involving functions decreasing at infinity, 
transmission coefficients, or other irrelevant complications. The system (1.1) 
can be viewed algebraically as follows: it is an example of the class of what might 
be called 'quasi-evolution equations' of the form 

O,r = F(R); (1.4) 

here ri = R~,~, r and R are vectors, and F is a function of the R~ and (possibly) 
their x-derivatives RI i). The 0¢ in (1.4) can now be regarded as defining a derivation 
of the algebra of functions of r~ °~, with values in the larger algebra of functions of 
RI J). Studying the algebraic properties of the Eq. 1.4 amounts to studying this 
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derivation. The situation should be compared with the more familiar one of an 
evolution equation 0tr = f(r): here ~t can be viewed as a derivation of the algebra 
of functions of r} J) into itself. 

The paper is organized as follows. Section 2 summarizes the material on 
modified Lax equations that we need from our previous paper [6]: we refer the 
reader to [6] for proofs and more details. Section 3 derives the Lax representation 
for Eq. 1.1, following the example of AKNS [1] for the sine-Gordon equation. 
The formulation and proof of the two main results are in Sect. 4. The formulations 
are probably of more interest than the proofs, which we omit anyway, since they 
are exactly the same as for Lax equations. The two results can be proved inde- 
pendently of each other, but it is more interesting to deduce one from the other 
by Hamiltonian formalism: the necessary extension of the usual Hamiltonian 
formalism is explained in Sect. 5. Section 6 considers the 'specializations' of (1.1) 
obtained by making the basic operator L in the Lax representation skew-adjoint; 
this gives equations resembling (1.1), but in about half as many variables. The 
main problem here is to check which of the conservation laws for (1.1) remain 
non-trivial for the specialization. Finally, in an appendix we have discussed the 
relationship of the approaches of Lax [7] and AKNS [ 1] to 'integrable' equations. 
This will (we hope) be well known to many readers, and is essentially explained 
already in Lax's article [8]; nevertheless, we have the impression that the situation 
is not as widely understood as it should be, so it seemed worth while to set it out 
in black and white. 

To end the introduction we offer a few comments on the relationship between 
our work and the papers [9, 10]. These papers approach the system (1.1) from 
a different angle: they view it as a two-dimensional version of the periodic Toda 
lattice. Indeed, if in (1.1) we regard R i as functions of just one variable t, replace the 
left hand side by Ri,  . and take all the constants ci -- 1, we have exactly the equations 
of the periodic Toda lattice. (The finite non-periodic Toda lattice is also included 
as the case when c o = 0.) Now, as Bogoyavlensky first pointed out [2], the n- 
periodic Toda lattice is the special case A, _ 1 of a construction that can be carried 
out starting off from any irreducible root system: the paper [10] considers the 
two-dimensional versions of these generalized Toda lattices. The equations that 
we obtain by specialization in Sect. 6 are among these: for n = 2k we get the system 
corresponding to C k, and for n = 2k + 1 we get the system of [10] corresponding to 
the non-reduced root system B C  k (the possibility of the specialization A2k -~ B C  k 

is mentioned in [9, 10] ). However, the remaining irreducible root systems do not 
seem to arise so naturally from our point of view. In [10] the authors obtain 
'zero curvature' representations for these systems, and use them to construct 
conservation laws (though they do not state which of the conservation laws 
constructed are non-trivial). The papers [9, 10] do not contain any analogue of 
our second main result, concerning the symmetries; however, we note that pre- 
viously Zhiber and Shabat [13] had proved the existence of infinitely many 
symmetries for the equation 

R~r = ~ exp ( - 2R) + fi exp R. 
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This is our  specialized equat ion  in the simplest  case n = 3 (corresponding to the 
root  system BC~). 

We are grateful to A. M. P e r e l o m o v  for letting us see a prepr int  of  the interesting 
paper  [10]. 

2. Modified Lax Equations 

The modif ied Lax equat ions  of  [6] are evolut ion equat ions  for u n k n o w n  functions 
v 1 (x, t), . . . ,  v n_ 1 (x, t). They  have a Lax representa t ion  based on the following first 
order  n x n mat r ix  opera to r  L : let co = exp (2hi~n), let f2 be the d iagonal  matr ix  

f2 = diag (1, co, co 2 . . . .  , e)n- 1), (2.1) 

and let circ (a0, . . . ,  a ,_  ~) denote  the circulant  mat r ix  ~ whose first row is the vector  
indicated. Then  

L = g2. circ (~, v 1 . . . . .  Vn- 1 ) (2.2) 

(recall tha t  ~ - O/ax). 
Let  B = C[vlJ)],j > O, be the a lgebra  of differential po lynomia ls  in the v i with 

the usual der ivat ion o) (j+l) c~v i = v i . We denote  by  M,(B) the a lgebra  of n x n 
matr ices  with entries in B, and by  M,(B)[~,  ~ - 1 ]  the a lgebra  of formal  pseudo-  
differential opera to r s  with coefficients in M,(B). Each  element  X of  this a lgebra 
has  a unique decompos i t ion  X = X+ + X _ ,  where X+  and X are of  the fo rm 

r - I  
' i X+ = ~ x i ~ ,  X _  = ~, x~¢ i, x f iM,(B) .  (2.3) 

0 --oO 

Proposition 2.3. Let L be given by (2.2). Then there is a unique element 
X ~ M,(B) [~, ~-  1] with the following properties: 

(1) X commutes with L 
(ii) X is homogeneous of degree 1 with respect to the natural grading (deg ~ = 1, 

deg vl j) = j + 1) 
(iii) X = Id. ~ + (terms of negative order) 
(iv) X is a circulant. 
The modified Lax  equat ions  are now defined by 

c~qL = [Xq+, L]  = [L, X q_ ]. (2.4) 

Tha t  is, 0q is the 'c~/~ct ' of  the qth equa t ion  of the hierarchy.  The  equat ions  are non-  
trivial except when q is a mult iple  of n. 

The  connect ion of these equat ions  with scalar Lax  equat ions is as follows. Let  

s : (circulant opera tors)  --* B [~, ~ -  1 ] 

be the h o m o m o r p h i s m  tha t  adds  up  the entries in one row (or column)  of  a circu- 
lant. L e t / ~ =  s(L"),X = s(X). T h u s / ~ i s  a scalar opera to r  of  the form 

/ ~ = 4 " + u , _ 2 ~  " - 2 +  ... + u o ,  uleB. 

1 That is, the matrix whose (i,j) entry is aj.~ (indices run from 0 to n - 1, andj - i is read mod n) 
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Proposition 2.5. (i) The equations 3 ~E= [2q+ , I~] implied by(2.4)are just the usual 
Lax equations formed fi'om L. (ii) The operator L, factorizes 

E =  (4 + r._~)... (4 + r~)(~ + to), 

where we have set 

r, = y ~ o ' v j .  (2.6) 
J 

Remark 2.7. In the paper [4] the factorization of/~ is taken as the starting point. 
F rom this point of view our operator L arises as follows. There is a standard way of 
using the factorization of E to rewrite the n th order equation/Z~ = ,~"~ as a first 
order system; however, in the resulting system L~ = 2~b the leading coefficient of L 
is not diagonal (it is a circulant). If we diagonalize it, we arrive at the L in (2.2). 

Remark 2.8. It is sometimes convenient to consider slightly more general equations 
involving an extra variable v o : we start off from the operator 

L = f2.circ (4 + Vo, vl, .--, G -  1) 

and proceed as before. We have OqV o = 0 for all q, so the case %~= 0 is the one of 
most interest. In the general case v o 4 0, the roots ro, . . . ,  r n_ 1 of L are independent 
variables (% = 0 clearly corresponds to 2;r i = 0): that makes the Hamiltonian 
form of the modified equations a little more pleasant in this case. 

The Hamiltonian form is as follows. Define the 'Hamiltonians' HqeB by 

Hq = q-  ~ tr res X q. (2.9) 

(We recall that the residue of an operator is the coefficient of ~- ~.) 

Proposition 2.10. The modified Lax equations (2.4)can be written in the jbrm 

Oqvi -- - (1/n)c9 ~Hq 
OVn- i 

It will be useful to have the corresponding expression in terms of the variables 
r~ in (2.6). F rom [6], Sect. 6, we see that the skew matrix defining the Hamiltonian 
structure in terms of these variables is DdD*, where D = (co i j) is the (Fr4chet) 
Jacobian of r with respect to v, and d is the skew matrix for the variables v i. A 
short calculation gives the following. 

Proposition 2.11. When written in terms of the variables r i, the modified Lax 
equations take the form 

O qr = $0 6H 
~r ' 

where 
(i) in the case v o ~ O, r = (ro,...,  r n_ 1)~ and S = - Id 
(ii) in the case vo=O , r=(ro , . . . , r ,_2) '  and S = n - l E - I d ;  here E is the 

( n -  1) x ( n -  1) matrix with E~; = 1 for all i,j. 

Proposition 2.12. The Hamiltonians H ~ are conserved densities for all the modified 
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Lax  equations(2.4), that is, we have OrHqeOB for all r. Except when q is a multiple 
of  n, these conserved densities are non-trivial, that is, Hq~:CqB. 

It is clear that H o is homogeneous of degree q + 1 with respect to the grading on 
B (deg v~ ~ = j  + 1). Thus the modified Lax equations have a non-trivial conserved 
density of every degree not of the form an + 1. 

Finally, in Sect. 6 we shall use the fact that the Hq can be calculated from the 
scalar operator/~.  

Proposition 2.13. W e  have 

Hq =~ (n/q) res )~q mod OB. 

3. The Lax representation of (1.1) 

According to AKNS [1], the sinh-Gordon equation can be represented as the 
compatibility condition for the system 

- I 0  , 

where A is a matrix of functions and L is our operator (2.2) for n = 2. As Lax 
pointed out (see [8] and the appendix below), this means that the equation has a Lax 
representation 

= [L, P]  (3.1) 

in which P is a matrix of functions times L-  1. We shall now calculate the corres- 
ponding equations of this kind for any value of n, L being given by (2.2). For  (3.1) 
to be consistent, we want P to be a circulant" we therefore seek P in the form 

P = f 2 B L  -1 , B = circ (b o . . . . .  b,_ i); 

the b i are functions whose relationship to the v i is yet to be determined. Let us 
set V =  circ (v o . . . .  ,v,_ 1), so that L =  f2(~ + V); (the reader can set v o = 0 if 
he wishes). A short calculation then shows that (3.1) is equivalent to the equations 

c3B = (V - ~2-1Vf2)B'~ 
~tV = f2BO-1 _ B J. (3.2) 

(The first of these equations expresses the condition [L ,P]_  = 0.) Explicitly, 
Eqs. (3.2) say that 

Obi = ~ ( 1 -  cok)v~bi-k ; (3.3) 

c~,v i = ( c o - -  t)b i J 

(All indices and summations run from 0 to n - 1, and indices are read mod n.) 
Introduce new variables 

r i = ~,coiJvj, x i = ~coiJbj 
J J 
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(so the r i are as in Sect. 2). Then Eqs. (3.3) become 

Ox i = (r, - ri+ 1)Xi '~ 

Otr~ x i - l  - x ,  c). 

Introducing variables R o . . . .  , R _ ,  with 0R, = r,, we can 'solve' the first of these 
equations to get 

Xi = ci e x p  ( R  i - Ri+I ) ;  

putting this into the second equation yields the system (1.1). 

R e m a r k .  Some readers may wonder why we do not go further and consider equa- 
tions of the form (3.1) with P a polynomial in L -1 of order 2, 3, 4 . . . .  The reason 
is that the coefficients of such operators P (and the resulting equations) would 
involve increasing numbers of 'integrations' of elements of our original algebra 
of differential polynomials in the vi; we do not like that. 

4. Conservation Laws and Symmetries 

In order to discuss the algebraic properties of the system (1. t) without introducing 
irrelevant analytic considerations, we proceed as follows. Let 

B = C [v(~ ), . . . . . . ,  v0),-1 ] = C [r~ ), , " , -  1,1"x J) 1 

be as in Sect. 2. (For definiteness let us consider the general case v o ~= 0; the case 
v 0 = 0 is exactly the same: we then take B = C [@, "" ,  ",-2J'J'°) 1 ~ We form the larger 
algebra 

/~ = B[exp R i, exp ( - R~)], 0 _< i _< n - 1. 

Thus an element of/~ is a Laurent polynomial in the symbols exp R~ with coeffi- 
cients in B. The derivation 0 is extended to/~ by setting 

0 exp R~ = r~ exp R v 

(Naturally, we have in mind that OR i = r~, but at this stage we do not want to 
introduce the R~ themselves into our algebra.) The grading of B is extended to/~ 
by giving exp R, degree zero. The derivation 0 still increases degree by 1, and its 
kernel still consists just of the constants: these properties will ensure the validity 
of the arguments from [12] that we refer to below in the proofs of Theorems 4.1 
and 4.2. The algebra/~ is the smallest algebra containing all the expressions arising 
in our study of the system (1.1). 

We now let 

g t : B  -+ 

be the derivation defined by the properties 
(i) 0 t commutes with O 
(i) 0tr i = c , _  1 exp ( R  i_  1 - R , )  - c i exp (RI - R~+ 1)" 

It is clear that there is a unique 0 t with these properties. The derivation ~t embodies 
the algebraic properties of the system (1.1). 
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Theorem 4.1. The Hamiltonians H q for the modified Lax equations (see Sect. 2) are 
also conserved densities for Eq. 1.1 ; that is, we have 

c~tH q --- OJq for  some JqGB. 

Proof. Using the Lax representation for (1.1) given in Sect. 3, it is easy to check 
that the proof of the corresponding fact for Lax equations given in [12] is still 
valid. 

Next we formulate the result about  symmetries, which is the counterpart for 
(1.1) of the fact that the flows of Lax equations based on the same operator L com- 
mute. As in Sect. 2, let 0q : B ~ B be the derivations corresponding to the modified 
Lax equations. From the Hamiltonian form of these equations (see (2.11)), the Oq 
have the form 

aqr i = Oy i 

for some Yi e B (depending of course on q). It follows that ~q has a natural extension 
to an evolutionary 2 derivation of any algebra of C ~ functions of the variables 
R~J): the extension is determined by 

cgq Ri = Yi" 

In particular, we have a natural extension of 6q to a derivation ~q:/~ -~/3, with 

~ exp R i -- y~ exp R c 

Theorem 4.2. The modified Lax equations are symmetries of(1.1)in the sense that 
the Jbtlowin 9 diagrams commute: 

B - -~  ~ 

Proof. It is enough to show that 

(O, c3q - c~0,)L = 0 

where L is the operator (2.2). That can be done by the same argument as for Lax 
equations (see [12], Sect. 3). Alternatively, one can deduce (4.2) from (4.1) by (an 
extension of) the Hamiltonian formalism: we shall do that in the next section. 

Remark. Our introduction of the algebra/3 in this section was motivated by the 
desire to work in the smallest algebra possible (clearly, the smaller the algebra in 
which the 'fluxes' Jq can be asserted to lie, the more content theorem 4.1 will have). 
In the next section, however, for the sake of indicating a general theory we shall 
work with larger algebras: we shall regard 0~ as a derivation from the algebra of 
C ~ functions of r ]  ) to the algebra of C ~ functions ofRl J~. For the purpose of proving 
the commutativity of the diagrams in (4.2) it makes no difference which kind of 
algebra we work with, because in both situations evolutionary derivations are 
uniquely determined by their values on the basic variables r i. 

2 That is, commuting with O 



Conservation Laws and Symmetries 197 

5. Hamiltonian Formalism 

Let R 0 . . . .  ,RN_ ~ be independent  variables (in our  applicat ion we shall have 
N = n or  n - 1, but  for the momen t  we want  to describe some general machinery). 
Let A (R) denote the differential algebra of  C ~ functions of RIJ3,j >= 0 (with some 
domain  of definition that we need not  specify). We set r i = 0RI, so that  we have an 
inclusion of  differential algebras 

A (r) a A(R). 

Let S be a constant  symmetr ic  N × N matrix, and suppose we are given on A(r) 
the Hamil tonian  structure defined by the skew opera tor  S& That  means that  to 
each function f~A(r)  we assign the 'Hami l ton ian  vector field' (evolut ionary 
derivation) ~¢:A(r) ~ A(r) such that  

Olr = S~ 3]" (5.1) 
5r 

(vector nota t ion:  r = (% . . . . .  rN- 1)t, etc.). 
Now,  (5.1) can be written 

Hence we have the following. 

Proposition 5.2. Every Hamittonian vector field ~?I' f ~ A (r), extends to an evolutio- 
nary derivation ~I of A(R) defined by 

Now,  eachfsA(r)  can be regarded as lying in A(R), so we can form the varia- 
t ional derivatives bf/g~R i. I t  is easy to see that  we have 

6 f  _ c36f 
6R 5r" 

Thus (5.1) can also be written 

M 
~ r  = - S~R .  

In this form the formula  still makes sense forf~A(R). 

Proposition-definition 5.3. 
tionary derivation. 

defined by 

Let F~A(R). Then we assign to F the (unique) evolu- 

O F :A(r) -~ A(R) 

3F 
art = - S fiR" (5.4) 
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I f  it happens that FeA(r) ,  then this derivation takes values in A(r) and coincides 
with the 3v defined by (5.1). 

In contrast to (5.2), note that if F+ A(r), then 8r does not necessarily have any 
extension to a derivation of A(R) into itself. 

If now F ~ A ( R )  and g~A(r), we can define their 'Poisson bracket' by 

{F,g} = ~eg = - ~gF ~A(R) / Im  0. 

Then the main fact expressing the 'quasi-Hamiltonian' character of this bracket 
is as follows. 

Proposition 5.5. For any FeA(R) ,  geA(r),  we have 

~F,g~ = [~F, ~g]. 
(The last bracket means ~FO g -- ~o ~F, so both sides of the equation are derivations 
from A(r) to A(R.)) 

We omit the proof of (5.5), which is just like the proof that the operator S? 
is Hamiltonian in the usual sense (see, for example [5]). 

It follows in particular from (5.5) that if g~A(r)  is a conserved density for 
Eq. 5.4, that is, if Org~Im 3, then [0e, 0~] = 0; that is, the equation Otr = SObg/fir 
is a symmetry of Eq. 5.4 in the sense discussed in Sect. 4. Since the modified Lax 
equations have this form (see (2.11)), in order to deduce (4.2) from (4.1) we have 
only to check that our Eq. (1.1) can be written in the form (5.4), with S as in (2.11). 

Proposition 5.6. The system(1.1)can be written in the form 

6H 
c~tr = - S 6--R ~, 

where S is as in(2.11), and 

H = - tr res P = - Zc i exp (R i - Ri+ 1). 

That is most easily checked by direct calculation. 
The 'quasi-Hamiltonian formalism' that we have been using is a special case of 

a fairly general set-up: we end this section by sketching the general theory. Readers 
who find the following discussion too brief could consult [6], Sect. 5 and 6. Suppose 
we have two sets of variables (ui), (vi) , and an inclusion 

A(u) ~ A(v). 

(More generally, we could consider a homomorphism of differential algebras 
q~ : A(u) ~ A(v), but to simplify the notation we suppose ~0 injective and suppress it.) 
Let D be the Fr~chet Jacobian of u with respect to v. Let f be a skew matrix defining 
a Hamiltonian structure on A(u); and suppose that # has the form 

~f = CD* = - DC* (5.7) 

for some matrix C of differential operators (with coefficients in A(v)). Then for 
each f~A(u) ,  the Hamiltonian vector field ~ on A(u) determined by ~ has an 
extension to an evolutionary derivation ~s of A(v), defined by 

~sV= ,c~f - C 6uu' f~A(u) .  
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(That follows at once from the formula 

Otu = DOry , 

valid for any evolutionary derivation 0 t of A(v).) 
Now, for FsA(v),  we can define an evolutionary derivation 

0F:A(u ) ~ A(v) 

by the requirement 

The formula 

6F 
Ovu = C g)-~. 

= D * ~ u  f6A(u) ,  
by 

shows that ifFEA(u), then this g F agrees with our original one. We can now define 
Poisson brackets {F, 9} as before, and we say the triple (C,D, ~) satisfying (5.7) 
is quasi-Itamittonian if the bracket-preserving condition in (5.5) holds. Earlier, 
we were dealing with the special case E = SO, D = Id.0, C = - S .  Slightly more 
generally, arguments like those in [5] would show that any triple of constant 
coefficient operators (C, D, f) is quasi-Hamiltonian (also in the generalization to 
the case of more than one space variable). 

This set-up should be compared with the one discussed in [6], Sect. 6. There 
f had the form E = DE1D*, where Yl was a skew matrix defining a Hamiltonian 
structure on A(v). That is of course a special case of what we had above, where 
C has the form C = D~I. The effect of this special form for C is that all the deriva- 
tions O F : A(u) ~ A(v) defined above in fact extend to derivations of A(v) into 
itself (the extension is just the Hamiltonian vector field determined by E~). In the 
case where C is not of the form DE1, however, 0 v has in general no such extension, 
and we have, so to speak, only one and a half Hamiltonian structures rather than 
two. 

6. Specializations 

In this section we consider the specializations (sometimes called 'reductions') 
of the modified Lax equations, and of the system (1.1), obtained by requiring the 
basic operator L of (2.2) to be skew-adjoint) That has the effect of cutting down 
the number of independent variables v~ or r i to In/2],  that is, to n/2 if n is even and 
to (n - 1)/2 if n is odd. Of course we take n > 2, since for n = 2, L is already skew. 

In terms of the variables v i or ri, the skew-adjointness condition is 

v i = - o J v _  i or r i = - r _ ~ _  1 (6.1) 

(suffixes mod n as usual). As our basic independent variables we can take 

ro, rl , . ' . ,  tin~21-1" 

3 We always take adjoints in the 'real' sense; that is, the adjoint of a complex number is itself, not its 
complex conjugate 
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Our first task is to determine which of the modified Lax equations and conserv- 
ed densities Hq survive this specialization of L (see [6], Sect. 3). That is very easy. 
First, the extra consistency condition for the modified Lax equation ~ L  = [L, Xq_ ] 
is just that the right hand side should be skew-adjoint, that is, essentially, that X ° 
should be skew-adjoint, which happens only when q is odd (the skew-adjointness 
of L is equivalent to that of X). Thus only the modified Lax equations with q odd 
survive the specialization (remain consistent). The same happens for the conserved 
densities. 

Proposition 6.2. The conserved density Hq = q - i t r  res X q remains non-trivial 
when we make L skew-adjoint if and only if q is odd (and not a multiple of n). 

Proof First, if q is even, then X q is self-adjoint, so that H~ = 0. So now suppose q 
is odd; by (2.13), it is enough if we show that res )~q = res Lq/" is not in Im & Now, 
we have 

/~= ~" + u._2~"-2 + . . .  

where 

In/21- 1 

u,_ 2 = - ~ rz + (linear combination of 0r~). 
0 

We calculate what remains of ~q/n when we put all derivatives of r i, and also all 
coefficients of/~ except u,_ 2, equal to zero. Since killing the derivatives makes 
everything commutative, that can be done by the binomial theorem: we get 

(4" + u._2~"-2) ~/" = ~(1 + u ._2~-2)  ~/". 

Since a 'fractional binomial coefficient' is never zero, we see that (if q is not a 
multiple of n) res J~q contains a term that is a non-zero multiple of 2Jr~ + 1 ; hence 
obviously )~q~ Im ~?. 

Remark. This argument can also be used to prove the non-triviality of the con- 
served densities for (unspecialized) scalar Lax equations: indeed, it is the kind of 
argument that was originally used for the KdV equation (see [11]). However, it 
does not work for matrix Lax equations: that is why we preferred to give a different 
argument in [6], Sect. 7. 

Proposition 6.3. The generalized sine-Gordon equation (1.1) remains consistent 
under the specialization (6.1) if and only if the constants c~ satisfy the condition 

C i ~ C _ i _  2.  

That is trivial to check. Naturally, the condition on the c i is equivalent to the 
operator P in the Lax representation of (1.1) being skew-adjoint. The effect of (6.3) 
is that the specialized systems are obtained simply by writing down the first In/2] 
equations in (1.1) and substituting for the extraneous variables from the conditions 
R~ = - R_ ~_ 1. It follows automatically from (4.1) and (4.2) that these systems will 
have infinitely many conserved densities (the surviving Hq) and symmetries (the 
surviving modified Lax equations). 

Let us write out the simplest examples, for n = 3, 4, 5. For n = 3, we have 
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r o + r 2 = r I = 0; setting R ---- R o we get the equation 

Rxt = c z exp ( - 2R) - c o exp R. 

For  n = 4, we have r o + r 3 = r 1 + r z = 0, giving 

Ro,xt = c 3 exp ( - 2Ro) - c o exp (R o - R 1)~ 

Rl,x~ CoeXp(R o -  R 1 ) -  c I exp(2R1) j" 

For  n = 5, we have r o + G = rl + r3 = r2 = 0, giving 

Ro,x~ = c 4 e x p ( -  2 R o ) -  c o exp (R o - R 1)] 

Rl,xt C o e x p ( R o - R 1 ) - c l e x p R  1 J 

we get the following. From (6.2) 

Proposition 
even degree 

(6,4) 

(6,5) 

(6.6) 

6.7. (i) The equation (6.4)has a non-trivial conserved density of every 
not of the form 3a + 1. 

(ii) The system(6.5)has a non-trivial conserved density of  every even degree. 
(iii) The system(6.6)has a non-trivial conserved density of every even degree not 

of the form 5a + 1. 
Here it is understood that the conserved densities are polynomials in the 

rl j~, and we recall that rl J~ has degree j + 1. The equation (6.4) is first mentioned 
(as far as we know) in the paper [3] of Dodd and Bullough, who already noticed 
that it had many conserved densities. (They thought it had only a finite number, 
but as we have seen, that was not right.) 

Appendix: Lax and AKNS Representations 

In the AKNS approach to 'integrable' equations [ i ] ,  the equation of interest is 
represented as the compatibility condition for a system 

L6  = 2~ ~ (AI) 

Here L i s a  first order matrix ordinary differential operator with leading coefficient 
an invertible constant diagonal matrix, and A is a matrix of functions (not operators) 
depending rationally (often polynomiaUy) on the 'spectral parameter' 2. 

On the other hand, the Lax equation ~,L = [P, L]  can be viewed as the compat- 
ibility condition for the system 

L~ -- 2~ ~ (A2) 
p j 

Here P is an operator (differential or formal pseudo-differential) and does not 
depend on 2. 

The connection between the points of view (AI) and (A2) is very simple. Since L 
is of order 1 with invertible leading coefficient, it is clear that every (formal pseudo- 

r 

differential) operator has a unique expansion in the form ~ miE, the m i being 
- - o 0  
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mat r i ces  of  funct ions .  I n  pa r t i cu la r ,  the o p e r a t o r  P in  (A2) can  be wr i t t en  in  the 
fo rm 

P = X p i L  i. (A3) 

(If P is a differential  ope ra to r ,  on ly  n o n - n e g a t i v e  powers  of L will occur.)  The  
c o r r e s p o n d i n g  A ()0 in  (A1) is t h e n  jus t  

A(2) = Z p S .  (A4) 

Converse ly ,  g iven  A(2) in  the  fo rm (A4), we c an  wri te  d o w n  the c o r r e s p o n d i n g  
o p e r a t o r  P in  the fo rm (A3). T h u s  (in the case w h e n  L h a s  o rder  1) the  on ly  difference 
be t w een  the  Lax  a n d  A K N S  a p p r o a c h e s  is tha t  in  the  la t te r  one  chooses  a lways  to  
r ep resen t  the o p e r a t o r  P in  the fo rm (A3) (and  then  suppresses  it by  wr i t ing  (A4) 
instead).  
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Notes added in proof. (i) Everything in this paper can be generalized to the equations associated with 
simple Lie algebras studied in [10] : these equations all have infinitely many (non-trivial) conservation 
laws and corresponding symmetries. There is a symmetry of each degree congruent to an exponent 
of the relevant Lie algebra modulo the Coxeter number, and the degrees of the conserved densities 
are one more than these. Details will be given in a forthcoming p~tper by the second author (submitted 
to 'Ergodic Theory and Dynamical Systems'). 

(ii) Recent work of Drinfel'd and Sokotov (Dokl. Akad. Nauk SSSR 258:1, l l q 6  (1981)) alsocon- 
tains these results, and shows clearly that the affine (Kac-Moody, Euclidean) Lie algebras provide 
the correct setting in which to discuss these questions; for example, the equations described in [I0] 
as associated with the root system BC k are best understood as coming from the 'twisted' affine algebra 
A(2) Drinfel'd and Sokolov also have a far-reaching generalization of the results of our paper [6] 2h" 

concerning the Miura transformation. We are most grateful to Yu. I. Manin for informing us about 
this work. 


