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Abstract. It is shown that two canonical maps arising in the Poisson bracket 
formulations of elasticity and superfluids are particular instances of general 
canonical maps between duals of semidirect product Lie algebras. 

1. Introduction 

In the last years many models in classical physics have been shown to possess 
Poisson structures. In many examples this Poisson structure is the canonical one on 
the dual of a Lie algebra, sometime s supplemented by a two-cocycle. It turns out that 
in almost all such cases, the Lie algebra in question is a semidirect product. 

Quite often the same physical system allows descriptions in different sets of 
variables, thus obtaining two Poisson structures for the same model. These 
structures are not equivalent but connected. Such double descriptions commonly 
occur, e.g., in systems coupled to the magnetic field by introducing magnetic 
potentials; magnetohydrodynamics is such a system. The relation between the two 
descriptions, when linear, is produced by a Lie algebra homomorphism (like in the 
above-mentioned magnetic case of magnetohydrodynamics, see [5, 8]). In this case 
the dual map of the Lie algebra homomorphism is naturally canonical between the 
two Poisson structures. However, it was recently I-5, 6] observed experimentally that 
in two physical models, elastodynamics and superhydrodynamics, the transfor- 
mation between the two Poisson structures, even though non-linear, is still 
canonical. We hasten to emphasize that this is not the standard case in the theory of 
finite dimensional Lie algebras: given two general Lie algebras S5 and 15, there are no 
natural non-linear canonical maps from ~* to ~*. The problem of interpretation of 
the above-mentioned non-linear canonical maps is the topic of this paper. Our 
explanation turns out to be very natural and simple (see, e.g., Theorem 3.5 below): 
canonical maps with range the dual of a Lie algebra are realized as momentum 
maps. This underlying philosophy is closely related to [8]. 
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Let us describe briefly our set-up. In the final analysis, a simplified version of the 
problem boils down to the following question. Let 15, -~1, -~z be Lie algebras and 
~b:15~Der(.~ 0 O:15~Der(.~2) be Lie algebra homomorphisms, where Der 
denotes the Lie algebra of derivations. Let f :.~* ~ . ~  be a map. Under what 
conditions is the induced map id x f:(15 x ~1)* ~(15 x ~z)* between the duals of 
semidirect products canonical? Our answer, given in different versions needed for 
the treatment of the examples, is that f :.~* ~z must be a canonical map of 
Poisson manifolds compatible with the actions of 15 (see Theorem 3.3). 

The plan of the paper is the following. Section 2 recalls the definitions and 
formulas relevant for semidirect products of Lie groups and algebras. Section 3 
describes the general set-up for getting non-linear canonical maps between 
semidirect products and gives the general theorems to be used in the next section. 
Section 4 starts with four theoretical examples which together with the main 
theorems of the previous section enable us to show that the non-linear canonical 
maps coming up in elastodynamics and superhydrodynamics are particular 
instances of our general theorems. 

Throughout the paper we employ the following conventions and notations. 
For a manifold P, ~(P),  W(P) denote the ring of functions and the Lie algebra of 
vector fields respectively. A Poisson bracket on P is a multiplication {,} on 
~ ( P )  making (~(P),  {, }) into a Lie algebra and such that the map f ~ X i e W ( P  ), 
XI(g): = {f,g}, is a Lie algebra homomorphism of ~ ( P )  into 5e(P), i.e. X~s,g ~ = 
[X s, Xg]. A manifold P endowed with a Poisson bracket is called a Poisson manifold. 
a map a:(P~, {, }a)~(P2, {, }2) between Poisson manifolds is called canonical, if 

ct*{/, g}2 = {~*f, ~*g}l 

tbr any f , g ~ ( P 2 ) ,  where the upper star denotes the pull-back operation. 
A Lie group action on a manifold P is a group homomorphism 4):G ~ Diff(P), 

where Diff(P) denotes the group of diffeomorphisms of P, such that the map 
(g, p)~--~b0(p) is smooth. If P is a Poisson manifold, ~b is called canonical if all the 
diffeomorphisms ~bo, geG, are canonical maps of P. A Lie algebra action on a 
manifold P is a Lie algebra homomorphism qS:15o~r(P) such that the map 
(4, P)~--~ q~(~)(P) is smooth. If ~i happens to be the (left) Lie algebra of a Lie group G 
acting on P, then q~ = -  4~', where the upper prime denotes the Lie algebra 
homomorphism induced by ~.1 IfP is a Poisson manifold, the Lie algebra action q5 is 
said to be canonical if for any ~E~i and f l ,  f 2 ~ ( P ) ,  

6({){fl, f2} = {~b({)L, fz} + {fl ,  q~({)f2}. 

If the Lie group G with Lie algebra @ acts canonically on the Poisson manifold 
P, a momentum mapping J :P-+ 15" is a map satisfying 

¢(~) = x ~  

for all ~05,  where 3(~)e~(g) is defined by J(~)(p) = (J(p), ~), where ( , )  denotes 
the pairing between t5" and 15. J is said to be equivariant, if 

1 The reason for the minus in front of¢' is due to the fact that Y'(P) is the right Lie algebra of Diff(P). 
(See [1], ex. 4.1G, page 274.) 
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J o q~ = Ad* , o J 

for all g e G; here Adg :(5 ---} (5 denotes the adjoint action of G on (5 and Ad* :(5* ~ (5* 
is its dual map. If we deal with a canonical Lie algebra action gb of (5 on P, the 
definition of the momentum mapping is unchanged, but equivariance is replaced by 

TpJ(~(~)(p)) = (ad ~)*(J(p)) 

for all ~e(5, peP; here TpJ: TpP-~ (5* denotes the tangent map (differential) of J at 
peP. (The formula has no minus signs since ~b = - rb'.) Lie group (algebra) actions 
on a Poisson manifold admitting equivariant momentum maps are called 
Hamiltonian actions. 

The dual (5* of a Lie algebra (5 is a Poisson manifold with respect to the Lie- 
Poisson bracket given by 

for #e  (5" and f ,  g functions on (5"; here ( , )  denotes the pairing between (5 and (5". 
The "functional derivative" 6 f /6#~  (5 is the derivative D f(#)  regarded as an element 
of (5 rather than (5"*, i.e. 

D f ( # ) ' v =  v, 

for #, re(5*. For  infinite dimensional (5, the pairing is with respect to a weakly non- 
degenerate form and the existence of 6 f / 6 #  is a bona fide hypothesis on f .  The same 
formula defines the Lie-Poisson bracket on polynomial functions on the dual of a 
Lie algebra over any ring. 

The Hamiltonian vector field defined by the function h on (5* is given by 

/ ~h '~* 
Xa(#) = ad~ ~ ) ( # ) ,  

where ad (0 '~/= [~, r/] is the adjoint action of (5 on (5 and (ad (0)* (5* --* (5* its dual 
map. 

The following standard fact of great use in the paper can be found in the 
symplectic context in e.g. [-1, 3, 9]. 

Proposition 1.1. Let P be a Poisson manifold and ¢p :(5 --* 3F( P) a canonical Lie algebra 
action. The following are equivalent: 

(i) the action is Hamiltonian; 
(ii) there exists a Lie algebra homomorphism t~ :(5--* ~ ( P )  such that q~(() = X,I,(¢) 

for all ( e(5 ; 
(iii) there exists a rin 9 and Lie algebra homomorphism Z : Y  ((5 *) ~ ~ ( P) such that 

X(xoj)(o=rp(~) for all ~e(5, where j : (5--*~((5")  is the Lie algebra homomor- 
phism given by J ( O ~ ) =  ( # , ( ) -  

In fact, if J is the momentum map of the action (p, then q = 3 and ~( = J*. 
A second standard fact to be used later on is the following. 
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Proposition 1.2. Let (5,9 be Lie algebras and a:(5-~ ~ a linear map. The dual map 
a* : .~*~ (5* is canonical f and only if a is a Lie algebra homomorphism. 

For a study of the local structure of Poisson manifolds the reader is referred to 
[10]. 

2. Semidirect Products of Lie Groups and Lie Algebras 

Let G, H be Lie groups with Lie algebras (5 and .~ respectively. Denote by Aut (H) 
the Lie group ofautomorphisms of H and by Der (.~) the Lie algebra of derivations of 

5. 
Let ~ : G - , A u t ( H )  be a Lie group homomorphism. The semidirect product 

G x H of G with H by • is a Lie group with underlying manifold G x H, composition 

law 

(gl, h0(g2,/12) = (g,92, hi ~(gl)(h2)), (2.1) 

identity element (e, e), and inverse (g, h)" 1 = (g- 1, ~(g- 1)( h - 1)). 
The homomorphism ~ induces a Lie algebra homomorphism ~b :(5 -~ Der(~) in 

the following way. For every gEG, cb(g):H-oH is an automorphism which thus 
induces a Lie algebra automorphism ~(g) :=cb(g) ' : .~ .~ .  In this way ~ : G ~  
Aut(.~) becomes a Lie group homomorphism whose induced Lie algebra 
homomorphism q~:= $ '  :(5 ~ Der(.~) allows one to define the semidirect product 
(5 x 5 as the Lie algebra with underlying vector space 15 x .~ and bracket 

0 

[(~1, rh), (~2, q2)] = ([~1, ~2],¢(~0r/z - ~b(~2)r/1 + [ql,q2])- (2.2) 

where ~1, ~2 e(5, q~, q2 ~-~. It is well known that the Lie algebra of G x H is (5 x~b 

(see [t4]). 
Let ~(Aut(H)) denote the Lie algebra of Aut(H). To identify elements of 

A°(Aut (H)), let c:( - e, e) ~ Aut(H) be a smooth curve with c(0) the identity map of 
H. Then for any heH, d/dtlt=oC(t)(h)~ThH, i.e. c'(0) defines a vector field 
on H by h~--~c'(O)(h). Thus, if ~Y(H) denotes the vector space of all vector fields 
on H, A°(Aut(H))~ Y'(H). It can be shown from the fact that c(t)EAut(H), that 
c'(O)(e) = 0, but this fact will not be used in the sequel. If <b': (5 --, L~°(Aut (H)) is the Lie 
algebra homomorphisrn induced by 4~, we have ~b'(~)eX(H) for all ~e(5. With these 
notations, the adjoint action of G x H on (5 x l~i is given by 

Ad(o,h)(~,r/) = (Adam, (Adho $(g))(r/) + 7~_ ,Lh([~'(Ad0~) ] (h- 1))), (2.3) 

where ~ ( 5 ,  r/~.~, geG, h~H and T~_,Lh:Th-~H-o~ is the derivative of the left 
translation Lh on H at h -  ~ ~H. To compute the coadjoint action, more notation is 
needed. For any Lie algebra homomorphism F:(5~5°(Aut(H))  and any h~H, 
denote F¢(h):(5 ~ ThH the linear map given by F4(h)(~)= F(~)(h). Thus the dual 
map F4(h)*:T~H-~ (5". With this notation the coadjoint action is given by 

Ad~,h) ,(/2, v) = (Ad*_ ,/2 + (~' o Ad 0- ~)e(cb(g-1)(h- 1))* (T~(,q- ,,h)L~(0- ')~h- ~))*v, 

~'(9- X)*Ad,~(0 ')~h-~)V). (2.4) 
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The Lie-Poisson bracket of FI, F 2 :(6i ~ .~)* ---, R, becomes with the use of (2.2) 

v / VfF1, ~F2-]\ / ['6Fl'~bF2\ 

/ 
- \ ~ ' 4 ~ , ~ - ~ ) - g - ~ / + X  L a, a, J /  (2.5) 

functional derivatives aF~/a#em, aFdave~ for # e ~ * ,  ve~*. The where the 
Hamiltonian vector field of F :(qJ x Ib)* ~ R equals 

Xe(#,v)= ad ~ -  #-¢o*/a~v, \~#]  + a d  -~v v , 

where #e(5*, ve~*, and for r/~.~, q5,:15 ~I~ is given by qS~(~)= q~(~).q. 

(2.6) 

Let us specialize the foregoing definitions and formulas to the case H = V, 
a vector space, regarded as an abelian Lie group under addition, and • :G ~ Aut (V) 
a linear representation. Since the Lie algebra of V is V itself, $ = 4~, and q5 = ~' :  
G~End(V) ,  where End(V) denotes the algebra of endomorphisms of V. The 
composition law in G × 1/" is hence 

(,ql, Vl)(g2, V2) = (gig2,1)1 + qb(gl)v2), 

the bracket in 15 x V is 

[ (~ .  vl), (42, vg] = ( [~ .  G], ~(¢,)v~ - ¢(¢2)v,), 

and the adjoint and coadjoint actions are given by 

Ad(~.,)(~, v) = (Adg~, ¢(g)v - ~b(Adg~)u), (2.7) 

Ad~,~)-, (#, a) = (Ad*-,p + ~b*~(9- l)*a, ~(g-  1)*a), (2.8) 

where 9eG, u, veV,~eff~,#efb*, aeV*, Finally, the Lie-Poisson bracket and 
Hamiltonian vector field take the form 

{Fa'F2}(#'a)=\#'L-~p' ~# J / + \  \ 6 # ]  6a / -  \-6/t-J-~a / 
(2.9) 

: ( a d ( b F ~  * ?pdbF~*a~, (2.10) xA#,a) \ \a#)#-¢~%oa, \a#) ) 

where # e ~ * ,  aeV*, F1,F2,Fe~'~((q) ~ V)*). 

3. Canonical Maps Associated to Semidireet Products 

Let G be a Lie group with Lie algebra (5, V, W vector spaces and 4~:G ~Aut(V),  
T:G ~ Aut(W) two linear representations. Let f:  V* --. W* be any map compatible 
with the representations, i.e. 

f o @(g)* = T(g)*o f (3.1) 
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for all geG. If instead of the group representations one works with Lie algebra 
representations, this relation is replaced by 

Df(a)(O(~)*a) = O(~)*(f(a)) (3.2) 

for all ~ ( 5 ,  a~V*, where qS :(5 ~ End (V), ~ :(5--* End (W) are Lie algebra repre- 
sentations. If (5 is the Lie algebra of G, then ~ = q~',O = ~P'. Guided by the formula 
(2.8) of the coadjoint representation, define an action of G x W on ((5 x V)* by 

, 7 /  - 1  , a ,  (g,w).(#,a)=(Ad* ~ # + ~  (g ) f (  ) q~(g-~)*a) (3.3) 

for geG,w~W,#~(5*,aeV*; recall that q~w:(5 ~ W is given by 0w(~) = 0(~) "w- It can 
be shown quite laboriously that this action is canonical. We shall not do this here 
since it will follow trivially later on. It is convenient to give a different formula for this 
action. 

L e m m a .  For weW, a~V* we have 

* a 
~* f (a) = ~ ~o~>Slo, ' 

where on the right hand side w is thought of as an element of W**. 

(3.4) 

Proof For ~e(5 we have 

(~wf(a)~ g ) = f(a)" ~(~)w = ~(~)* f(a). w ~2~Df(a) (O(~)* f(a))'w. 

Thinking now of w as a linear functional on W* this equals (w oDf(a)),(o(~)*f(a). 
Thus w oDf(a)sW**; denoting by the same symbol the corresponding element of V, 
the above equals 

f (a)'O(~)(wo D f (a)) = f (a)'(b oD,~(Q = ( 4) *oOSt~lf(a),~). [] 

Replacing a by ~(9-1)*a in (3.4) and taking into account (3.1), we get 
* - ~* ~b(~ ~*a Thus an alternate expression of (3.3) is Owq'(g 1)* f(a)=,~oOil~lo_,~.~) ,y ~ • 

* -1  * (g,w)'(#,a) = (Ad*_ ~# + 4~oOjl,~g_,~.,~(g ) a, ¢P(~I- ~)*a). (3.5) 

The corresponding Lie algebra action of (5~ W on ((5~ V)* thus has the 

expression 

(~, w)'(#, a) = ((ad ~)*# - ~ f ( a ) ,  qS(~)*a) 

= ((ad 3)*# - ~b*oOil~)a, qS(~)*a) (3.6) 

for ~ ~ (5, w ~ W, # ~ (5", a e V* ; recall that the Lie algebra action is minus the derivative 
of the Lie group action. 

Let us compute the momentum map J :((5 ~ V)* ~ ((5 ~ W)* of this action. By 

definition we must have 

Xy¢~, w)~, a) = (~, w)'~, a) 
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for all ~15 ,  w~W, #~15", a~V*. A comparison between (3.6) and (2.10) shows that 

aJ(~, w) a3(~, w) 
- -  = 4, - w oDf(a) = D(w o f)(a), 

3# 6a 

whence J(~, w).(#,a) = (#,  ~ ) + f(a)(w), i.e. 

J (#, a) = (#, f (a) ). (3.7) 

Since the action of 15 × W on (15 x V)* has a momentum mapping, this Lie algebra 

action is canonical. Hence the action of G x W on (15 ~ V)* is also canonical, thus 

proving our earlier claim. 
Finally, note that J is equivariant. Let us verify this for the group actions, the 

proof for the Lie algebra actions being similar. We must verify that 

Ad(0,w)- ~ (J(#,a)) = J((g, w)'(#, a)) 

for all g~G, w~W, l~O*,  a~V*. We have by (2.8), (3.1), (3.3), and (3.7) 

Ad~0,w)_ ~ (J(#, a))= Ad~.~)_, (#, f(a)) 
• 1[/ - 1  , a = ( a d *  , # + ~  ( g )  f ( ) ,TJ(g-1)*f(a) )  

= (Ad*_ ~ # + ~p* 7J(9- l)*f(a), f(q~(9- X)*a)) 

= J(Ad*-, # + ~p* ~(0-1)*f(a),  q~(g- 1) *a) = J((g, w)" (#, a)). 

and equivariance of J is proved. By Proposition 1.1 J preserves Poisson brackets. 
We summarize our results in the following. 

Theorem 3.1. Let ~ :G ~ Aut (V), 7J:G-~ Aut (W) be linear representations on the 
vector spaces V and W and let f :V* ~ W* satisfy fo~b(g)* = 7J(g)*o f for all 9~G. 
Then the mapping 

j:(15 ~ v)*-~(15 ~ w)* 

given by J(#, a )=  (#,f(a)) is canonical. 
The Lie algebraic version of this theorem is the following. 

Theorem 3.2. Let ~b :15 ~ End (V), ~b :15 ~ End (W) be linear representations of the 
Lie algebra 15 on the vectors spaces V and W. Let f :  V*-* W* satisfy D f (a)(fp(~)*a) 
--~(~)*(f(a))for all (eff~, a e V*. Then the mapping 

J :(15 × V)* ~ ( ~  × W)* 

given by J (#, a)= (#, f (a) ) is canonical 

Corollary 3.3. Let ~b :151 ~ End (V), ~ :(52 ~ End (W) be Lie algebra representations 
and ~ :ff) 2 -~ 151 a Lie algebra homomorphism. Assume that f : V* ~ W* is compatible 
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with ~,~, and O, i.e., it satisfies Df(a)(~(e(q))*a)= O(q)*(f(a)) for all rleff~2, 
ae V*. Then the map 

j:(15  w)* 

given by J(l~, a)= (a*(#),f(a)), #~15", ae V* is canonical, where c~*:15"--* 15" is the 
dual map to ~. 

Proof. Let Z = ~b o~:152-0 End(V). Clearly f satisfies (3.2) with respect to Z and ~b 
so that the map (v,a)e(15 2 ×~ V)*w-,(v,f(a))~(15 z >~ W)* is canonical. But since 

the map (q, v)~15 z x V~-*(~(q), v)~151 x V is a Lie algebra homomorphism, the map 

(#,a)e(151 ~ V)*~+(a*(#),a)~(t5 2 x V)* is also canonical. The composition of the 
x 

above mappings equals J. [] 
We turn now to the generalization of this result to the case of semidirect products 

of Lie algebras. If one replaces the vector spaces V and W in Theorem 3.2 by Lie 
algebras .~ and R, the mapping J is in general not canonical as the following example 
shows. If 15 = {0} condition (3.2) is obviously satisfied and thus the mapping d is 
canonical if and only if f : ~ * ~  R* is canonical. It turns out that this necessary 
condition is also sufficient. We formulate the next result only in Lie algebraic terms 
having the applications in mind. 

Theorem 3.3. Let 15,~,~ be Lie algebras and ~b:15 + Der (.~), ~0:15 +Der(R)  be Lie 
algebra homomorphisms. Let f :~* --* R* be a canonical map compatible with (a and ~b, 
i.e. 

Df(v)(~(~)*v) = tp(~)*(f(v)) (3.8) 

for all ~e15, ve~*. Then the map 

given by 

is also canonical. 

]:((5 x 

J(#, v) = (#, f(v)), pe 15", ve.~* (3.9) 

Proof. A comparison between (2.5) and (2.9) shows that the first three terms in the 
Lie-Poisson bracket of(15 ~ -~)* coincide with the Lie-Poisson bracket of the dual of 

the semidirect product of ffi with the vector space .~. Hence by Theorem 3.2, J 
preserves these three terms. The fourth term is the Lie-Poisson bracket on ~*. Since 
f :~* -0 R* is by hypothesis canonical, J also preserves this term. []  

Remark. One can further notice that in the above case J is also a momentum map. 
The action of 15 x ~ on (15 ~ .~)*, which has J as an equivariant momentum map is: 

q, 
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(~, Z)'(#, v) = ( - (ad~)*# + ¢*S(,),xv, - q~(~)*v - ad(Df(v)*z)*v) 

= ( - (ad~)*# + g,*f(v), - q~(~)*v - ad(Df(v)*z)*v), 

where ~15 ,  ~eR, #e15", ve.~*. 

The following is proved in a similar way as Corollary 3.3. 

Corollary 3.4. Let Ib,, 152, ~, R be Lie algebras and (9:15x ~ Der (~), ~b :(52 "-~ Der (R), 
:(b2 -~ 151 be Lie algebra homomorphisms. Let f :  ~* ~ ~* be a canonical map com- 

patible with q~,~, and ~, that is, satisfying Df(v)((a(ct(~l))*v)=~(q)*(f(v)) 
for all r1~(52, v6~*. Then the map 

J:(15  $:,)*-+(% m* 

given by J(#, v) = (ct*(#), f(v)), #E 157, v ~ *  is canonical, where ct*:15" ~ (5~ denotes 
the dual map to ~. 

So far all Lie algebras under consideration could have been also over rings, if we 
replace everywhere the functions on the dual by polynomials on the dual. The next 
corollary however deals explicitly with Lie algebras over rings. It is needed in 
example 6 of the next section. 

Let ~R be a Lie algebra and q~ :R ~ End (V), ~b :R ~ End (W) be linear represen- 
tations. Let f : V * ~  W* be compatible with ~b and ~, i.e. satisfying (3.2). Then 
(#, a)w+(#, f(a)) is a canonical map of (R ~ V)* ~ ( ~  ~ W)* by Theorem 3.2. Let R 

be a ring containing the field of scalars of R. Then R ® ~ is a Lie algebra in the 
obvious way [r ® ~, s ® q] = rs ® [~, q] for r, s~R, ~, q ~ .  Let A be an R-module and 
form A ® V, A ® W, the tensor product being over the field of scalars of R. Then 
there are linear representations CR, A :R ® R ~ End(A ® V), ~I R, A :R (~.q{---~ 
End(A ® W) given by 

(~R,a(r, ~)'(~, V) = r~o ®qS(~)(v), 

~R,a(r, ~)'(0~, W) = r~o @ ~b(~)w, 

for r~R, ~ R ,  (n~A, w V ,  w~W. The map (~2,a)~(A®V)*~-+(O,f(a))~(A®W)*, 
(2~A*, aE V* is easily seen to satisfy (3.2) with respect to CR,A and ~R,A" Thus the map 

(A ®v, f2 ®a)e [(R (~)¢a~A(A (~ V)]* t---~ 

(A ®v, (2 ® f (a) )6[ (R @ ~) XR,A(A ~ W)]* (3.10) 

is canonical by Thoerem 3.2. 
Now let .~ be another Lie algebra and p :~ ~ End (R), a:.~ ~ End (A) be linear 

representations, where End (R), End (A) denote the algebras of endomorphisms of R 
and A as vector spaces over the field of scalars of~.  In addition assume that p, a are 
compatible with the R-module structure of A, i.e. 

p(~) (re3) = p(~) (r)~ + ro-(~)(~o) 
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for ~e~, reR, coeA. Then there are Lie algebra homomorphisms Zv:S3~ 

Der ( (R®R x (A®V)), Z w : ~ D e r ( ( R ® R )  x (A ®W)) given by 
d)R,A ~R,A 

ZV(~) (r ® ~, CO ® V) = (P('l)(r) ® ~, a(~)(CO) ® V), 

Zw(r/) (r ® ~, co ® w) = (p(q) (r) ® ~, a(tl)(co) ® w), 

for t/~.~, r e R, ~ e R, o~ e A, v ~ V, w ~ W. It is easily seen that the map (3.10) is compatible 
with the duals of ~v and Zw in the sense of (3.8). Thus by Theorem 3.3, the map 

(mA ®v,O f x ( (R®R)  × (A®W))]* 

is canonical. We summarize this result in the following 

Theorem 3.5. Let ~, R be Lie algebras, V, W vector spaces, R a ring containing the 
field of scalars of ~3 and R, and A an R-module. Let q5 :R ~ End (V), ~b :R--+ End ( W) be 
linear representations which naturally induce the linear representations 

q~R,A :R @ R -~ End (A ® V), ~bR, a :R ® R ~ End (A ® W). 

Let p :.~ --+ End (R), a :.~ -~ End (A) be linear representations compatible with the R- 
module structure of A. Finally, let f :  V* ~ W* be a map satisfying (3.2). Then the map 

J :[~ x ((R ®~)  x (A ® V))]* --~ [~ x ((R ®~)  x (A ® W))]*, 
Zv ~R,a ~w ~R,A 

given by 

J (#,A ®v,£2 ®a) = (#,A ®v,(2 ® f (a) ) (3.11) 

is a canonical mapping; here IUe~*, AeR*, veR*, (2eA*, aeV*, and gv,•w are 
the Lie algebra homomorphisms of ~ in Der((R®R) × (A®V))  and 

~R~A 

Der((R ®R) × (A ®W)) cononically induced on the first factors of the tensor 
'PR,A 

products by p and a respectively. 

4. Applications 

In this section we consider two physical models: elastodynamics and anisotropic 
superfluids in the presence of spin. We break up the presentation by treating four 
mathematical examples first, and then using them in the analysis of the physical 
systems. 

1) Let 171, V 2 be vector spaces and ~b 1 :(~1 ~ End (V 0 ~b2 :(~ 2 -~ End (V2) be linear 
representations of two Lie algebras (~1 and (~2- Then there are induced 
representations 

:(~1 • (~2 - '  End (V~ • V2) given by 

(~(~1' ~2)(V1' V2) = ((~I(~I)Vl' (~2(~2)V2)' 
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and 

~t:151@152-*End(V 1 ®V2) given by 

@(~1' ~2)(/)1 ®V2)~" ~bl(~l)U1 ®u2 ~- u1 @(]~2(~2)~)2 

for ~i~15i, vieVi, i = 1 ,  2. The map f : (VI@Vz)*-*(V ,®V2)* ,  f(al ,a2) = 
a t ®az,afiVi,  i =  1, 2, is easily seen to be compatible with the duals of the 
foregoing actions. Consequently, by Theorem 3.2 the map 

J:[(15, ® 15=) × (v,® v=)]*-* [(15, ¢ 159 × (v, ® v=)]*, 

given by 

J(#1, #2,al,a2) = (#1, #2,al ®a2)  (4.1) 

tot #i~15", ai~ V*, i = 1,2, is a canonical mapping. This example can be generalized 
to any number of factors. 

2) A related example occurs when 15t = 152 = 15. Composing the actions ~b and 
¢ with the diagonal homomorphism 15-.15@15, we get the actions q~ @ ~b 2:15 
--,End(V 1 @ I/2)and ~b 1 ®(b2:15-*End(V 1 ® V2). As before, the map f : ( V  1 • V2)* 
-*(V 1 ® 1/2)* given by f (a l ,  a2)= a I ®a  2 is compatible with the duals of the above 
actions. Consequently, by Theorem 3.2, the map 

J:EO~,x~2(v~®e v2)]*-÷[15 × (v~ ®v2)]*, 
6~ ® 62 

given by 

J(#, al, a2) = (#, a 1 ®a2) (4.2) 

for #~15", a ~ V * ,  i=  1, 2, is a canonical mapping. As before, this example has a 
straightforward generalization to any number of factors. 

3) Let S 2 V ~ V ® V denote the symmetric homogeneous polynomials of degree 
two on V. The canonical map (4.2) for V = 1/1 = 1/2 induces another canonical map 

j:(15 ~ v)*-.(15 × s~v) *, 
,~®4) 

given by 
J(#, a) = (#, a ®a) (4.3) 

for #E15", a~ V*. In fact, the following diagram of canonical maps commutes 

(15 ~ v)* 4(15 × s 2 v)*, 
~®~ 

where c~ is the dual map to the Lie algebra homomorphism (~, v, w) EI5 x (V ® V) ~ 
(~, v + w)e f5 x V and fl is the dual map to the canonical inclusion 15 x S 2 V-* t5 
x (V ® V). Similarly, the map J :(i5 x V)* -* (15 x S k V)*, where ¢ = q5 ®.-- ® 6, 

6 ~ 
given by J(#,a) = (/~,a ®-.. ®a) is canonical; SkV denotes the space of homogeneous 
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polynomials of degree k on V and is regarded as a subspace of V®.- .  ® V(k factors). 
4) Let f~:V*--* W *  be compatible with the duals of the representations 

~bi:15~End(V~), O,:15~End(Wi) for each i =  1 . . . . .  n. Since the map (a t . . . . .  a,)~-+ 

( f~(a  0 . . . . .  f , (a , ) )  of (~ V* to + W* is compatible with the duals of q~= 
i = 1  i = 1  

q~lo-.-@q~, and ~ = ¢ ( ~ - . . O 0 , ,  the mapping of t5x_ • V, to 
4) i = l  (+)" t5 x_ W i given by 

~ i = 1  

(U, a~ ..... a , )~(u,f~(a , )  ..... L(a , ) )  (4.4) 

is canonical. 
Assume now that all W~ = W, ¢i = ¢, i = 1 .... ,n and compose the mapping (4.4) 

with the dual of the Lie algebra homomorphism 15 x W--.15 x @W~, 
o ~0 

({,w)~-~(~, w,. . . ,w). In this way we get a canonical map 

J: 15x v, -.(15~w)*, 
4, i 

given by 

J(# ,a  1 . . . . . .  a,) = (12,fl(al) + " "  + f , (a , ) ) ,  (4.5) 

#~15", ai~ V* , i =  1 .... ,n. 

5) Elasticity. The map (4.5) arises in the Poisson bracket formulation of 
elasticity. The following is the relevant material from [53. The equations of 
elastodynamics in N" are Hamiltonian on the dual of the semidirect product Lie 
algebra 

n 

~r(~") x [y(~")¢ ~(~.) @ A"-I(~.)(/)] 
i = 1  

where a vector field in X([~") acts by Lie derivative on every factor. The 
corresponding duals are: 

- -  ~(~") has as dual the one-form densities; the pairing is the action of one-form 
densities on vector fields followed by integration; the physical variables are Mi, i 
= 1 . . . . .  n, the components of the momentum density, which as vector field equals pv, 
p being the density of the material and v the velocity field of the displacement; 
- -  ~(~" )  has as dual the densities on [~"; the pairing is multiplication of a function 
by a density followed by integration; the physical variables are the density of the 
material p for the first factor and the entropy density o- for the second factor; 

n n 

- -  @ A"-I(~")(/) has as dual • AI(~")(i); the pairing on each summand is the 
i = 1  i = 1  

wedge product of an ( n -  i)-form with a one-form followed by integration; the 
physical variables on the t ~ summand are the n components F u of the deformation 
gradient F , j  = 1 . . . . .  n. 

The bracket of two functions f ,9  depending on the variables Mi, p, a, F u is given 
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by (see (80)-(86) in [5]) 

{f,g}(Mi, p,a, Fii)= ' d " x { ~ ( M / ' ) i  + O~Mi) o6~fMi 

+CMi.\Pgiop+"ClO~/ \op 6tr .]6M i 

where O k = O/c~x k and ('),k = C~(')/C~Xk" 
If one uses the standard hypothesis of material frame indifference, then 

the stored energy function, and hence the Hamiltonian, depends only on the 
Cauchy stress tensor e = UF (see e.g. [2]). In this case the equations of elasto- 
dynamics become Hamiltonian on the dual of the Lie algebra X(N") x [~(~")@ 
~'(E n) I~(S2(X(Rn))NAn(~n))], where 5~(R") acts by the Lie derivative on every 
factor and $2(~(~")) ® A"(N") are the contravariant symmetric two-tensor densities 
on R". The dual of this space is the vector space of covariant symmetric two-tensors 
S2(AI(R")) and the corresponding physical variable is the Cauchy stress tensor e. 
The bracket of two functions f ,  g depending on the variables (Mi, p, a, e i j) is given by 
(see (88) in [5]) 

{f,g}(Mi, P,~r, eij)= {f,g}M.o,~ + ~d"x { ~(2Okei,--ekg i) ~6~f 
' oek~ 

+6~q--9 (2e~kOi+e~i,k)og~fMk}, (4.7) 
oei~o 

where {f, g}M,p,~ denotes the part of the bracket (4.6) independent of F~j given by its 
first two rows; the corresponding bracket in terms of the finger deformation tensor is 
given in [8]. 

The passage from (4.6) to (4.7) is achieved by the map 
n 

el j= ~ F k f  kj, i.e., e= UF, (4.8) 
k = l  

defining the Cauchy stress tensor in terms of the deformation gradient. Denoting 
by A k the one-form on ~" having components Fk~, i= 1 .... , n, (4.8) is a map of 

[,1 }* A"-a(R")(i) ~$2(AI(~")) given by (A~ .... .  A.)F--~Aa ®A~ +.. .  + A.®A. .  
i 

Take now in (4.5) t5 =Y'(N"), V~ . . . . .  V.=A"-~(R"), W=SZ(W(R"))®A"(R"), 
fa . . . . .  f .  =f, f (A)= A ® A, A eA~([R"). By (4.5) the mapping (M~, F~i)~-~(M ~, e~j) 
is canonical. Hence by (4.4) the map (M~, p, tr, FiS)~--~(M~, p, a, e~) is also canonical. 
We summarize this result in the following. 

Theorem 4.1. The mapping (Mi,p,a, Fij)~-~(Mi,p,a, ei~ =(UF)ij), which on the last 
component represents the definition of the Cauchy stress tensor, is a canonical mapping 
between the Poisson structures (4.6)and (4.7) associated to the equations of 
elastodynamics. 
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6) Anisotropic superfiuid with spin. In [6] it has been shown that the equations of 
motion for an anisotropic superfluid with spin are Hamiltonian on the direct sum of 
two Lie algebras whose description follows. We shall use the notations of Theorem 
3.5. 

The first summand is a semidirect product ~ x [(R ®R) x (A ® V)], where 
Zv 6R,a 

= ~(~'~), R = J (~") ,  A = A"(~"), R = 15 q) 15 • ~q, where 15 is a finite dimensional 
Lie algebra representing the internal symmetry algebra of the superfluid 
(for 3 H e - A ,  15=s0(3)), and V=15015@15. The relevant actions are the 
following: R acts on Vby 

(41,42, ~)" (t/1, ,2, t/3) = ([~1, q 1], [¢2, r/2] + 2m~r/3, [42, q 3] - 2m~q 2) 

for ~1,42,q1,qz,r /3~15,0~6~,  where m is an arbitrary constant (the mass of the 3He 
atom in physics). Finally, ~ = 2~'(R") acts on R and A by Lie derivative. 

The second summand is the semidirect product ~ × R = ~c(R") × J~(R"), where 
S5 acts on R by Lie derivative, o 

The description of the dual of this Lie algebra is the following. The first 
summand: 

- -  ~(R") has as dual the one tbrm densities; the pairing is the action of one-form 
densities on vector fields followed by integration; the physical variable is the 
momentum density M of the superfluid; 

- -  in (R ®~!)* the three summands have the following interpretation: 

a) R ® 15 has dual A"(~") ® (5* ; the physical variable S is called the orbital spin 
density; 

b) R®15 has dual A"(N")®15*; the physical variable L is called the orbital 
angular momentum density; 

c) (R®R)* has dual A"(R'); the physical variable is the density p of the 
superfluid. 

- -  in (A ® V)* the three summands have the following interpretation: 

a) A ®15 has dual ~(N ' )  ®15"; the physical variable n is called the spin vector; 
b) The following two summands in the dual are again J(N") ® 15" and the two 

physical variables are the first and second order parameter ~91 and O 2. 

The second summand: 
- -  ~(N") has as dual the one-form densities, and again the physical variable is the 
momentum density; 

- -  ~(R") has as dual A"(~"); the physical variable is the entropy density s. 

The Poisson bracket of two functions F, G depending on (M, S, L, p, n, ~91, ~,2, s) 
equals (see (23) in [6]) 

{ F , G } = ~ d , x { [ ~ O l s +  6G 6G 1 6G 2 

6G 0 L 6G 3G 6G ] 6F +  L--2 "+ - o ' s "  + + + 
J 6MI 
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6G ~sO OF 6F ~ 6F ,z 6F L O 3F 

6F 6F S.~k~_~+pOkTpp] + ~  f a g  , 6G z \ 6 F  

f iG/  2 6F 6F "~ <~ F ('6G 6F 6G 6F'~ 

( 6 G  ~ 6G t)2~ 6F 6G [/ 1 6F 6F +C 
,$F + L , - -  ~ 6G 6F G] (4.9) 

where t~u are minus the structure constants of (5. 
The order parameters ~ and [//2 are the real and imaginary parts of the complex 

order parameter ~ =~1  +i@2 used in physics. However, other order para- 
meters are sometimes in use in the description of superfluids (see e.g. [7]): 
A~ = nu~ ,  A~ = n . ~ .  As was observed in [6] there exists a counterpart of 
the bracket (4.9) in terms of the variables A~,A z instead of n, 0 l, ~s 2 (with all 
other variables unchanged). Let us show that this fact follows directly from 
the theorems of Sect. 3. The map V* --+ W* = [(5 ®((5 ®(5)]* = 
((5* ®(5")®((5"®(5") ,  such that the associated map ~ ( i ~ ' ) ® V *  
~(N")  ® W* is given by (n,O ~ ,O2)~-+(Aa ,A2), A 1 = n ®I / /a ,A 2 = n ®1//2 is canonical 
by Theorem 3.2 and formula (4.4). Now apply Theorem 3.5 to get a canonical map 

[ - .~x((R®R) x (A®V)) ]* -* [ .~x  ( (R®R) x (A®W))]*,  
Z]," ~)R,A Z W ~]R,A 

(M,S,L,p,n, ~tl, O2)F--*(M,S,L,p, AI,A2). 

Finally apply (4.4) to conclude that (M, S, L, p, n, qjx, ~2, s)~-,(M, S, L, p, A 1, A 2, s) is 
canonical. The bracket in these new variables being a Lie-Poisson bracket can be 
now written directly for any two functions F, G depending on (M, S, L, p, n, A a, A 2, s): 

. . ( F 6 G o s  6G i 6G 2 

6G 6G 6G 6G -] 6F +  m k(m Qk + a mD J 
LeO 6F 6G [- OF ~ 6F 6F k . k - - -  

S e 6F O 6F~ ( 6G ~ 6G a2 ~6F 

6G/  2 6F 1 6F \ 
+ 2 r n - - I A u ~ -  i @ \ 6A.. A . . , ~ )  
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. t - f i G /  6 F  A I  3F  -2 3 F  \ + t ~ l - - I S , - -  + A~g-~21 + 

~G 1" 6F 1 6F A2 ~F 
+-~-~ t L * ~  + au* 3A~---~ + ~ ] 

6F / 1  6G A2 6G ~ 6 F ( A  1 6G A2 6G ~]~ 
6 S , \  6 A , ,  b A , , / j J  

(4.10) 

T h u s  we h a v e  p r o v e d  t h e  fo l lowing.  

Theorem 4.2. With the foregoing notation, the mapping ( M, S, L, p, n, ~1, Cz, s)~-~( M, 
S, L, p, A 1, A 2, s), A i = n ® 0  i, i = 1, 2 is a canonical mapping between the Lie-Poisson 
structures given by (4.9) and (4.10) describin9 the Hamiltonian structure of the 
equations of motion of an anisotropic superfluid with spin. 
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