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Abstract. We study the effective actions S (k) obtained by k iterations of a 
renormalization transformation of the U(1) Higgs model in d = 2 or 3 space- 
time dimensions. We identify a quadratic • c(k) approximation ~,~ to S (*) which we 
call mean field theory, and which will serve as the starting point for a 
convergent expansion of the Green's functions, uniformly in the lattice spacing. 
Here we show how the approximations S~ ) arise and how to handle gauge 
fixing, necessary for the analysis of the continuum limit. We also establish 
stability bounds on S~ ), uniformly in k. This is an essential step toward proving 
the existence of a gap in the mass spectrum and exponential decay of gauge 
invariant correlations. 
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1. The Model 

We study the Higgs-type model of a U (1) gauge field u coupled to a complex scalar 
field ~b with a quartic self interaction. The total action functional is given on the unit 
lattice as 

S(u,~b)= 2 e ( e ) - 2 ( 1 -  Reu(p)) + ½Y~l(D,~b)bl2 + Y ' . P ( ~ x ) + E .  (1.1) 
p b x 

The relation between the e-lattice and unit-lattice actions is described in the 
Carg6se lectures [1], as well as a general introduction to mass generation in this 
model. This approximation with Reu is called the Wilson approximation to the 
continuum action. 

The lattice points x ~ Z a are endpoints of directed, unit length lattice bonds 
b = (b_, b +) which bound unit squares (plaquettes) denoted by p. The gauge field u: 
bonds --+ U(1), and 

u(p)- 1~ ub. 
beOp 

Furthermore, we assume b-  1 = (b +, b_) and u;- 1 = ub 1. The covariant derivative 
D,~b is defined by (D,O)b=Ub~b+--Ob_, and the coupling constant e(e) is 
e(e) = ee (4-a)/z. We consider d = 2 or 3 space-time dimensions, in which case the self 
interaction is 

N({) = 2(e)1414- ¼(m 2 + amZ)e 2 I{I a , (1.2) 

where 2(e)= 2g 4-d. The mass shift is consistent with perturbation theory with 

~O(lne-1),  d = 2 ,  (1.3) 
6m2(e) = {O(e-  1), d = 3. 

The constant E = E(e, 2, e, A)  is chosen to include vacuum energy normalization 
and renormalization counterterms from perturbation theory. 

The continuum limit of the model with the action (1.1) has not yet been proved 
to exist, but our methods should lead to that result. The continuum limit of 
another action, the so-called Gaussian action, has been extensively studied. The 
Gaussian action is obtained by replacing Reu(p) in (1.1) with its quadratic 
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approximation in Lie algebra variables. In two dimensions the existence theorem 
for the Gaussian action was established in [2]. In three dimensions and with a 
massive gauge field, the fundamental stability bounds were proved in [3] and the 
existence theorems based on these bounds are deduced in [4]. The infinite volume 
limit in these papers was analyzed using correlation inequalities, a method which is 
well suited for establishing existence theorems but which has not yet led to results 
on the nature of the spectrum in the resulting model. A lattice cutoff version of our 
spectral results is given in [5], where we also discuss the connection between 
Gaussian and Wilson actions on a lattice. 

Our program is to study the Wilson action using a cluster expansion method. 
In this way we expect to both prove the existence of the theory and to establish 
properties of the particle spectrum. We expect that the Wilson action yields the 
same limiting continuum field theory as the Gaussian action. Hence the resulting 
invariance properties of the ground state and the properties of the particle 
spectrum which are consequences of the cluster expansion will also extend to the 
Gaussian model constructed previously. The Wilson action furthermore gives a 
natural setting for a possible generalization of these results to a nonabelian gauge 
model. 

The basic strategy to gain control over the spectrum is to establish exponential 
decay of gauge invariant correlations. We develop a method of steepest descent to 
study integrals of the form 

S ~e- S~u@~/S e - S @ u ~ ,  (1.4) 

where tp is a gauge invariant functional of ~I and ~b. Thus we need to define an 
expansion S(u,O)=S(ud, Oa)+... in terms of a classical field (ucl,~bd) and a 
fluctuation field (uu[11 O-  (~d). We obtain this expansion in a sequence of steps, by 
studying block spin renormalization transformations of S(u, ~). 

For most of this paper, we are concerned with identifying S(uc~, Oa) and 
determining its properties. In particular, we find a quadratic action S o which is 
close to S(ua, qka). The transformation S-~SQ is an approximation to our 
renormalization transformation. We study the quadratic terms which arise by 
iteration of the renormalization transformation, yielding SQ1, Se~,..., SQ~, and 
establish uniform stability estimates (strictly positive lower bounds) on the SQ's. 
These quadratic forms dominate the action in the "small field" region. In other 
papers we estimate the corrections due to large fields and show that they do not 
affect the basic picture. The end result is exponential decay of gauge invariant 
correlations, and a mass gap for both the Higgs particle and the photon. 

Let us return to the action (1.1). The formal picture depends upon relating the 
action S to quadratic actions SQ. Note that we can define the plaquette field 

fv = (ie(~))- i lnu(p), 

so for small fp, 

Z e(Q- 2 (1 -- Re u(p)) = Z ½fv 2 + O(e(Q2) • 
p p 

The error term vanishes pointwise as e ~ 0  for d < 4, and shows that the action (1.1) 
is the formally correctly scaled unit lattice action to study the continuum limit 
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e~0.  In this paper we establish stability properties of various quadratic ap- 
proximations to S. We use these later to establish properties of integrals (1.4). 

2. Block Fields and Scaring 

We study block spin renormalization of the Wilson action. This involves defining 
averages of u and q~ in lattice blocks, and performing the integral (1.4) conditioned 
by the block averages taking given values. In physics terminology we integrate 
high momentum degrees of freedom while fixing low momentum degrees of 
freedom in each block. If the blocks have side length L, a small positive integer, 
then we obtain functions on an LZ ~ lattice. Repeating this process leads us to study 
lattices Z d, L Z  d, L2Z d . . . . .  LkZ d . . . . .  Since after each step it is often convenient to 
scale the L Z  d lattice back to the unit lattice; we consider lattices with spacing a, 
with 

a = e  . . . . .  L -k  . . . .  , L  1 ,  1 , L .  (2.t) 

The natural L 2 inner product for spacing a comes from the norm (for scalar 
functions on the a-lattice), 

LI~II.~--- y I~b/[2a a . (2.2) 
i~Ta 

Here T~ denotes a lattice with spacing a and periodic (toroidal) boundary 
conditions. Generally we take a =  1, L, or L -k, the latter arising from k-fold 
scalings of an L-lattice to a unit lattice, following a block spin transformation. We 
also use lattices 

Ta(k)= T~,L_~aZ d . (2.3) 

Averaging operators map functions on the Ta lattice to functions on the T~ 
lattice. We specify the map from the unit-lattice to the L-lattice, but this definition 
extends naturally from an a-lattice to an La-lattice. We assume this extension in 
dealing with powers of averaging operators, etc. 

Consider the example of a scalar field. Imbed the unit lattice in an L-lattice of 
block B(y). Here y = Ln denotes a corner of a block, and n s Z a. Then B(y)  consists 
of points x = ( x  1, ..., Xd) such that 

L n j < x j < L ( n j + l ) ,  j = l , 2  . . . .  ,d .  (2.4) 

Let F denote a path (contour) composed of bonds, and define 

u(C) = ITl u b . (2.5) 
bsF 

Contours F1, F2 can be composed if the endpoint of F2 coincides with the starting 
point of F1, so u(F1 o F2)=u(F1)u(Fz) .  

We require a set of standard contours Fyx from corners y of blocks B(y)  to 
points x e B(y). Define Fyx as the path obtained by following the coordinate axis 
one, then axis two . . . .  , etc., in going from x to y. For example, if x ~ B(y),  then 

d 

x - - y =  Z niei, 
i = 1  
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where e~ denote unit vectors in the i th coordinate directions [and n~ > 0 as x ~ B(y)]. 
The path Fyx is the path of length nl in the direction - e l  followed by n2 bonds in 
direction - e2, etc. Let F -  1 denote the reverse of the path F. For a point y'  which is 
a corner of an adjacent block, let Fyy, denote the L-lattice bond from y to y'. 

The average Q~b of ~b is defined by 

(Q~b)y=L -d • u(F,,~)O~. (2.6) 
x~B(y) 

An important property of the average is that Q commutes with gauge trans- 
formations. In other words, let h denote a map from the unit lattice to U(1). 
Then h defines the gauge transformation 

- -  h ~,~h(y)~,  = ~b~,, ub-~h(b _)h(b +) - tu b = u~. (2.7) 

Clearly 

(Q(b)"= Q~ h . (2.8) 

A further property of Q is that 

QQ* = I ,  (2.9) 

where Q* is the adjoint in the scalar product (2.2). Thus Q* maps functions on the 
a-lattice into functions on the L - t a  lattice. Furthermore Q*Q is an orthogonal 
projection. In other words Q is a partial isometry. 

One choice of gauge is especially good for algebraic operations, namely axial 
gauge. In axial gauge we choose h in order to set u b = 1 for every b which occurs in 
some Fyx. In other words, we specify a maximal tree T(y) in each block B(y) 
composed of bonds in any Fy x, x ~ B(y). 

In the axial gauge, Q~b reduces to the ordinary average of q~, and Q*Q is the 
projection onto ~b which are constant on blocks B(y). 

Let us next consider the average of a gauge field u. If b '=  yy' is a bond on the 
L-lattice, then Fyy, = b' and we average over contours F~,  which are translates of 
Fyy,, i.e. x -  x' = y -  y'. More specifically, define Q on gauge fields on the unit lattice 
by 

( Q u ) " = u ( F ' " ) e x p [  L-d x~,(,) ~-" lnu(F,~ o Fx,,o F,-~ o Fy,) 1 . (2.10) 

In (2.10) choose the logarithm so that 

- n < a r g l n u < n .  (2.11) 

With this choice, the discontinuity of lnu occurs at u = - 1, namely the region of 
largest action. This is also the region of maximum suppression of probability, and 
hence the discontinuity will be seen not to affect integrals (1.4) in an important 
manner. 

The average (2.10) is highly nonlinear. We also desire a linear average, defined 
on Lie algebra variables. Suppose that we can define 

Ab = (ie(e))- a lnub" (2.12) 
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t : : . • 
y"' ~ I Y "  . - _ 

~--~ Edge Plaquette B e (p') 

Block B (y l 

Fig. 1. Block variables for gauge fields, drawn in d = 2. Four blocks are illustrated. Let B(y) denote 
a block with L=4. The L-lattice bonds illustrated are b'=yy', y'y", y"y'", and y'"y'. These four 
L-bonds bound a plaquette p'. The corresponding edge plaquette Be(p) is indicated. The bond b' 
has associated surface bonds BS(b ') which connect B(y) and B(y'). A few bonds connecting distinct 
blocks are indicated by wavey lines 

For  b ' =  (b t ,  b%) a (directed) L-lattice bond from b2 to b%, we define the average 

(QA)~ ,=L-('~+I) 2 2 Ab, (2.13) 
xeB(b'- ) beFxx '  

where Fxx, is the special contour from x to x '  and xx" is the parallel t ransport  of the 
bond b' to start at x. Thus the bonds b which enter the sum (2.13) range over the 
interior of the two L-blocks B(b2) and B(b'+), as well as the (surface) bonds 
connecting these blocks. 

The natural  inner product  on functions on bonds is 

(A, B>, = ~ adAbBb. (2.14) 
b 

We do not explicitly compute the adjoint Q*. However, we now study related 
averages on surface bonds which connect adjacent blocks and on edge plaquettes 
which intersect four blocks. 

Define the set of surface bonds B~(b9 for an L-lattice bond b' as follows: 

l~(b") = {b : b = (b_, b +), b_ ~ B(b'_), b + ~ B(b'+)} (2.15) 

(see Fig. 1). Associated with the surface is the average 

(QM)b ,=L-(d-1) Z As. (2.16) 
beBs(b ') 

Then 
~LAb,, if bsB~(b'), 

(Q~*A)b = ( 0 ,  otherwise, 
(2.17) 

using the inner product  (2.14). Also 

QSQ~, =LI ,  Q~*Q~=LW, (2.18) 
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where ps is the projection onto configurations which are constant on surface bonds 
and zero on interior bonds. Furthermore, by (2.13), 

QQS*=I. (2.19) 

Finally, we define an edge average Qe associated with lattice plaquettes. The 
natural scalar product for functions on lattice plaquettes is 

( f ,  #) ,  = Z aa fvgp, (2.20) 
p 

where p is a plaquette on the a-lattice. Let p' denote an L-lattice plaquette. The set 
of edge plaquettes B"(P3 are defined as those unit plaquettes p which (i) are parallel 
to p', (ii) whose bonds touch four distinct L-blocks, and (iii) such that these 
L-blocks contain the corners of p' (see Fig. 1). The edge average Qe is defined by 

(Qef)~ ' )=L-(a-2)  2 f ~ ) .  (2.21) 
p~B(p ' )  

Then ~L2f(ff) ,  if p ~ Be(p), 
(Qe,f)  (p) = [0 ,  otherwise. (2.22) 

Also Q~Qe, =LZI, Q~,Q~=L2pe, (2.23) 

where P~ is the orthogonal projection onto configurations which are constant on 
edge plaquettes and zero elsewhere. 

We also need the k-fold averaging operators Qk-(Q)  k, etc. Especially 
important are Q~,-(Qe)k and Q[ = (Q~)k which satisfy 

Q e t o e *  __ l 2 k T  __ ~ - 21" k~k . . . .  't ", Q~Q~,* = LkI = t/- t I ,  (2.24) 
where q = L- k. 

Finally we consider a scale transformation 5e/~_1 which maps L-lattice fields to 
unit lattice fields. The canonical scaling for scalar fields 

(SeL -1 ~)x = L-(d- 2)/2 (~Lx. (2.25) 

For  gauge fields, the L-lattice action 

~_.L"(fp, afp) 
P 

can be written in terms of a unit lattice action with 

(SeL i f )p=  Ld/2 fLp, (2.26) 

SO for a quadratic form o-, 

Z Ld(fp, afv> = Z ((Set - if)p, a(Se L- if)p>. (2.27) 
p ¢ T L  p e T 1  

Then the e-lattice action 

S~= ~, e-Ze d 4 ( 1 - R e u ( p ) ) + ½  Z edlDu~[ 24- ~,, aag°~(Ox)+E, (2.28) 
p~T~  b~T~ x ~ T ~  

where ~ ( ~ ) =  2t~[ 4 -  ¼(m2+ 6m 2) [~[2 is related to the unit lattice action (1.1) by 

S~ = S(Se~b, 5~,u). (2.29) 
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3. The First Renormalization Step 

The renormalization transformation R defines a mapping 

R: S--* S (1), (3.1) 

where S, S (1) are both unit lattice actions. This transformation involves two steps: 
(i) Integrate high momentum degrees of freedom while fixing block spin 

averages. 
(ii) Rescale the resulting L-lattice action to the unit lattice. 
Thus we can write 

R = AeLg-, (3.2) 

where ~-- is defined by 

( J e  -s) (v, ~) = ~ e-S(~'*)C~Ax(U)6(v/Qu)fnO p -- QO)~u~¢. (3.3) 

In (3.3) we specify the axial gauge with 6Ax(U) which sets Ub = 1 on the set of 
bonds chosen as follows: Within each L-block B(y) with corner y in the L-lattice, 
let T(y) denote the tree composed of unit bonds in Fr~. Here x ranges over B(y), 
and TOO is maximal - in the sense that adjoining any additional unit bond b in 
B(y) to r(y) makes r(y) multiply connected. Then 

(SA~(U)= FI I-I 6(Ub). (3.4) 
yeTL beT(y) 

Let go denote the subgroup of gauge transformations which are specified by h's 
in (2.7) which are constant on each L-block B(y). These gauge transformations 
preserve the axial gauge and affect only bonds on the unit lattice which connect 
different blocks. They generate the gauge group of the integral ~-(exp -S) .  

The factor ~(v/Qu) is a delta function which specifies that the average gauge 
field in each block B(y) is v. Thus for b' an L-lattice bond, 

6(v/Qu)= I7t fi(G,/(Qu)y). (3.5) 
b'~TL 

The factor ~n is an approximate delta function which specifies that the block 
averages of the scalar (Higgs) field equal tp. In particular, if y denotes an L-lattice 
site, 

6 n ( ~ -  QO) = lq [(a/2rc) exp(-(1/2)alho- Q(u)~[2)]  . (3.6) 
yETL 

The integral (3.2) therefore has the normalization property 

[. J e - S ~ v ~ t p  = ~ e-S~u~(~, (3.7) 

where NvN~p is a measure corresponding to (3.3) but on the L-lattice. 
Having defined the renormalization transformation, we now analyze its 

behavior for small fields. This will yield a Gaussian approximation to the integral 
(3.1) and a corresponding quadratic form for S (1). The quadratic form has the 
structure 

S~)= ½(f(1), o.1 f r o )  + ½(~, A1 (Ul)~p), (3.8) 

which we now derive and analyze. In particular we will establish strict positivity of 
a~ and Al(ul) in (3.8). 
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We begin the study of (3.1) by rewriting the Wilson action contribution to 
S(u, ~). First define a unit lattice field u; with block averages equal to 1. In this way 
we can write the resulting u; in terms of a vector potential which fluctuates about 
zero. Let 

~u b , if b ¢ B'(b'), 
(u')b= (UbVb, 1, if b eBS(b ') (3.9) 

be given in terms of the averaging operator Q of (2.10), where 

It then follows that 

vb,=(Qu)b,. (3.10) 

(QU')b, = 1 (3.11) 

for all L-lattice bonds b'. Now define A; by 

(U')b = exp(ie(e) A'b). (3.12) 

Then the Wilson action can be written 

2 e(O-2(1-Reu(p))=½ 2 I(?A'+ L a/2Qe*Ft2-}-O(e(e)2). (3.13) 
p~T1 p~T1 

Here we define the L-lattice field F(p') in terms of v(p'), where 

v(p') = I~ Vb,-- exp [ie(Le)F(p')]. (3.14) 
b' ~c~p' 

The factor L-a/2 in (3.13) then arises from combining the factor L-- 2 from (2.22) with 
L - ( a -  4)/2 = e ( e ) / e (  Le ) .  

The quadratic form in (3.13) can be reexpressed by translating to its minimum. 
By the Appendix, with ~ = 0 and B = L-a/ZQ~*F, we have 

Act = - U d/2 CO* Q~* F . (3.15) 

Here C = (0"~)- 1, restricted to the subspace of A satisfying both QA = 0 and the 
axial gauge condition. Then by Corollary A2, and 

A '=A + Ac~, (3.16) 

½ Z [~A'+L-d/zQe*FI2=½ Z [OA[Z+½(F,Y'~F}, (3.17) 
peiTl pETI 

where 

Z = L-aQe( I -  OCt?*) Qe*. (3.18) 

The fluctuation field A lives on the unit lattice, and will be integrated. For small 
fluctuations we use this Gaussian approximation to yield a perturbative ex- 
pression for the integral. Large fluctuations will lead to small probabilities. 

The quadratic form (F, ~2 F} provides the formula for the background field 
and it will come outside the integral, since the average fields v and hence F are fixed. 
This form will be scaled to the unit lattice. This scaling absorbs the factor L -d, so 

5~L(F, ~ F} = (f(t),  ~ f(~)}, (3.19) 



308 

where 

T. BMaban, J. Imbrie, and A. Jaffe 

1 
a t = Q e ( i _ a C a , ) Q e , ,  f(1)(p) = / e _ ~ )  in v(p)" (3.20) 

Here Qe* maps the unit lattice to the L-1 lattice, and 8CO* is an L-~ lattice 
operator. 

Define the unit lattice field 

u O) = u exp ( -  ie(e) A ) ,  (3.21) 

with A the fluctuation field defined by (3.i6). Then after scaling back to the L- 
lattice, 

u 1 = ~ L * U  (;t) 

is the gauge field on the L- * lattice on which the unit lattice renormalized action 
depends. 

Let us now direct attention to the boson part of the integral (3.1). We expand 

S(u, O) + ½a II*P - Q (u)~ l[ 2 (3.24) 

to identify the quadratic terms in ~b. Using (3.23), we also expand u about its 
background value u 1, yielding additional contributions from A which are 
accompanied by (small) factors O(e(e)). Thus the leading terms in the Higgs action 
are  

½a tl Q(u (1)) ~ - ~ II 2 + ½@, A, , , (b) ,  (3.25) 

with all corrections included in the potential I71 (A, ~b, fl) which have coefficients 
o(~). 

Define 

G = ( -  A,(I, + aQ(u(1))*Q(u(1)))- 1 (3.26) 

The quadratic form (3.25) is minimized by 

ckc, = - aGQ(u')**p . (3.27) 

See Appendix A. Writing ~b=Ocl+q~yz, expand (3.24) into background and 
fluctuation parts, yielding 

½@:,, G-* ~:,) + ½a (*p, [ I -  aQGQ*] tp) .  (3.28) 

In (3.28) the field ~b:~ is a unit lattice field but ,p is an L-lattice field. The scaling to 
the unit lattice will rewrite the second term in (3.28) in terms of a unit lattice field 
~p(1) = 5:**p. Let G, = 5:i* GS: L = Gl(u~) denote the scaled Green's function, which is 
expressed in terms of the L-* lattice gauge field u,. 

4. Form of the k th Effective Action 

In this section we state the quadratic or mean field approximation to the action 
which is produced after k renormalization transformations. We define the basic 
objects and give some detailed formulas for the quadratic action. Basically the 
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action is the sum of two parts: a gauge field action and a scalar field part which is 
quadratic in ~b and depends on an average value of the gauge field. There are further 
interaction terms between the gauge field and the scalar field, but these interactions 
yield small corrections to our mean field action and are not considered here. 

We begin with a discussion of the gauge field terms. The scalar field is more 
straightforward and is postponed to the final subsection. The formulas which we 
give here are justified in Sect. 6, when we show that renormalization of the k th 

effective action yields the quadratic form for the (k + 1) s* effective action. The action 
has the form 

Sk(V, tp) = ½(f(k), akf(k~) + ½(tp, Ak(Uk)tp) + interaction terms, (4.1) 

where the interaction terms will be considered in detail in a later paper. 

4.1. The Axial Gauge Propagator and Minimizer 

We require an axial gauge propagator to express the effective action. Define Gk, Ax 
by the functional integral 

exp(½ (J ,  Gk, AxJ)) = Z~,,]x ~ ~Af(QkA)6k, Ax(A ) exp( -- ½ t[8A I] 2 _~ <A, J>). 
(4.1.1) 

Here the normalization factor Zk, A~ can be computed by setting J = 0 .  The 
averaging operator Qk is the k-fold composition of the 1-step averaging operators 
Q for bond variables, Qk=(Q) k. It follows that Qk is given by the formula (2.13), 
where L is replaced by L k. Finally, the axial gauge is fixed by the delta function 

k-1  
Ok,ax(A) =-- ]-I 6Ax(QjA) • (4.1.2) 

j=o 

Thej  th factor in the product acts on the LJq = U -k lattice. It sets bond field averages 
Q~A to zero on contours Fyx defined in the/Jq lattice in the same way that the axial 
gauge was fixed in Sect. 3 on contours in the unit lattice. 

The reader may wonder whether ~ has zero modes on the subspace of gauge 
fields satisfying QR A = 0 and satisfying the axial gauge condition. Such zero modes 
do not occur, and as a consequence the integral (4.1.1) is convergent also for 
noncompact gauge fields. A proof of this fact for k = 1 follows by considering on 
each plaquette in a lattice block the condition 0A=0  and the axial gauge 
condition. This shows that A can be nonzero only on bonds connecting different 
blocks, and it must be constant on the bonds connecting two given blocks. The 
condition QA = 0  then ensures that A is everywhere zero. Similar, elementary 
reasoning yields an inductive proof for k > 1, but we leave out the details. 

The propagator Gk, Ax itself is the second moment of the measure 
exp(-½11 ~A II 2), restricted to the space of gauge fields which satisfy the k th axial 
gauge condition and condition on the k th average fields vanishing. We do not know 
a simple operator theoretic definition of Gk.Ax, and we generally establish the 
properties of the propagator by appealing to the definition (4.1.1). 

Another aspect of the action Se(A)=½tIOAlt 2 concerns what configurations 
minimize Se(A) subject to the constraints of a gauge condition and a condition 
that the average field QkA equals a given value B. We introduce a transformation 
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Hk, Ax which maps B into such a minimizing configuration for axial gauge, and we 
call Hk, Ax the axial gauge minimizer. Explicitly, 

Hk,AxB = Zk, Ax(B)-- 1 ~ ~Ab(QkA  - B)3k, Ax(A)A e x p ( -  ½ II 0A II z), (4.1.3) 

where 

Zk, Ax(B)= S ~A~(QkA--B)fk, A~(A)exp(--½J]~AH2). (4.1.4) 

Note that by definition 

QkHk,AxB = B . (4.1.5) 

4.2. The Quadratic Action and Ptaquette Fields 

We begin with the definition of the basic quadratic form 0"k. Again we use a 
functional integral definition 

1 (7 Z - - 1  e x p ( - g ( f ,  k f > ) =  k, AxI@Af(QkA)fik,Ax(A)exp(--½llOA--Q~,*f]]2). 
(4.2.1) 

Here f is any real (Lie algebra) valued field defined on unit lattice plaquettes. 
Clearly o.k is related to the propagator Gk, A~ of Sect. 4.1. Comparing (4.2.1) with 

(4.1.1) we find 

o.k -~- Q~(I - C~Gk, Ax O*) Q~* = ~1 - 21 - Q~c~Gk, AxO*Q~ * . (4.2.2) 

e e~ Here we have used QkQk =/1-2, see (2.24). Note  that if k =  1, then Gk,Ax = C and 
(4.2.2) agrees with (3.21). 

The right side of (4.2.2) involves the combination OGk, ax8* which is invariant 
under a change of gauge. Hence the gauge chosen to define o.k is irrelevant, and the 
quadratic form o- k is gauge invariant. We use this property in Sect. 7 when we 
derive an explicit momentum-space representation for o.k. Using that represen- 
tation we also establish a uniform, positive lower bound 

0 < C ~ o.k" (4.2.3) 

The quadratic part of the effective action is obtained by evaluating o.k on a 
special field configuration f(k) related to the gauge field after k renormalization 
steps. Let v be defined for unit lattice bonds, with values in the group U(1). Define 
the plaquette field f(k) on the unit lattice by 

f(k)=(iek) -1 lnv(0p), p ~  T~ k), where ek=e(Lke) (4-d)/2. (4.2.4) 

The quadratic part of the action for the gauge field is then 

½ (f(k), o.kf (k)). (4.2.5) 

We also use a field fk which lives on the t / = L  -k lattice and is defined by 

A = ( I  - -  Oak ,  Ax O*) Q ~ , f ( k ) .  (4.2.6) 

Thus fk(P) is a function with p ~ T~. The action (4.2.5) also can be written 

½ (f(k), o.kf(g)) = ½ II f~ II 2. (4.2.7) 
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This identity is a consequence of the fact that OGk, AxO* is a projection operator. 
Alternatively, we compute from (4.1.1) and (4.2.1) that 

e x p ( - ½ ( f ,  1 . e. , e. 1 e* akf ) )=exp(~(O Qk f,  Gk,a~9 Qk f ) )exp( - -y l lQk  fl12), 

from which (4.2.7) follows. 

4.3. Quadratic Action for Curls 

The quadratic form a k simplifies on curls, namely for fields f of the form f = 0B. In 
particular 

( ~B, akOB ) = ( B, AkB) , (4.3.1) 

which defines an action Ak. To give a functional integral representation for Ak, we 
note that 

e x p ( -  ½(~B, akdB)) = Z[,~x ~ NZ6(QkA)6k, Ax(Z) exp(-- ½ II OZ -- Q~*~B II z) 

= Z[, ~ ~ ~ A 6  (Qk A -- B) 6k,Ax(A) exp (-- ½1[ OAll 2) 

= e x p ( -  ½(B, AkB)). (4.3.2) 

Here we have performed a translation of A on surface bonds A ~ A  + Q~k*B. We use 
the fact that the axial gauge condition is independent of the surface bonds, we use 
aQ~*= Q~*O, and we also use (2.19). 

The action A k yields the unit lattice propagator C (k), defined as follows: 

exp(½(J, c(k)J) ) = ( Z (k)) - ~ ~ ~ B f ( Q B )  f A~(B ) e x p ( -  ½ ( B, AkB ) + ( B, J ) ) . 
(4.3.3) 

The actions Ak and propagators C (k) were studied by Balaban [611] who 
established that C (k) is well defined and is bounded in norm 

tl C(k)tt < c (4.3.4) 

Furthermore C (k) has a kernel which decays exponentially, uniformly in k. 
uniformly in k. 

I c(k)(x, y) l=< a exp(-- b lx - yl). (4.3.5) 

4.4. Landau Gauge Propagator and Minimizer 

The axial gauge has many useful properties, especially in providing convenient 
definitions of Green's functions, and for establishing many algebraic identities in 
Sect. 5. However, the axial gauge does not provide either good regularity or good 
decay properties for the Green's functions. These are much better in Landau 
gauge. 

Landau gauge is defined for our lattice theory in a complicated way, because of 
the restrictions on gauge transformations. We introduce a gauge fixing function 
fq(O*A). The exact form of f9 is important for the proof of estimates. An 
appropriate choice is 

f#(~*A)=exp(-½11~*AIL2)/(~ d26(Q'2)exp(-½1t~*A-A2tt2)) ,  (4.4.1) 
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where Q' denotes the ordinary average over k-blocks. Such a Faddeev-Popov type 
choice leads to the formula for the Landau gauge minimizer 

nkB=Zk(n)- I  I ~Z~(QkA--B)fq(O*h)Zexp(--½ll~3AII2), (4.4.2) 

where 
Zk(B)= ~ ~ A  r(QkA--B)fq(~?*h)exp(-½[l~3h[12). (4.4.3) 

We could define a well-behaved, Landau gauge propagator Gk by a formula 
similar to (4.4.1), but with f#(O*A) replacing 6k, Ax(A). However, we do not use this 
propagator in our consideration of the Higgs effect. Rather, we define a propagator 
Nk in terms of minimizers Hj and the covariance operators C ~j) of Sect. 4.3. Let 

k -1  
~k-- ~ Hi C(j)H*, (4.4.4) 

j=0  

Here the transformations Hj are now defined by the same formulas as (4.4.2); 
however, they act on the t/= L -k lattice instead of the L - j  lattice and they involvef h 
order averages Qj. Similarly the propagators C (j) are defined by the formula (4.3.3) 
but on the LJr/=/j-k lattice, rather than on the unit lattice. They still involve one- 
step averages Q. 

We remark that @k, Gk.A~, and Gk are related by change of gauge formulas, 
some of which we establish in Sect. 5. 

4.5. Bond Fields 

The first renormalization step in Sect. 3 yielded an effective action S(1)(v,~p) 
depending on a unit lattice field v, through the L 1 lattice field Ul. We need to 
generalize this picture to the k-step action S (k). After k renormalization steps we 
again have as independent variables the gauge field v defined on the unit lattice. We 
introduce a generalization of the configuration us denoted uk. To begin, we have to 
define a transformation Q~* from unit-lattice, group-valued configurations v to 
~/-lattice, group-valued configurations. 

We can represent an arbitrary v as 

v b = exp (iekBb), (4.5.1) 

where Bb = (iek)- 1 lnvb, and the branch of the logarithm was chosen in (2.1 I). Then 
we extend the definition Q* from the Lie algebra to group variables v by the 
definition 

(QSk*V)b - =  exp((iektIQSk*B)b), b ~ T,. (4.5.2) 

This raises the question of what happens if we choose another branch of the 
logarithm. The independence of the resulting transformation on this choice follows 
from the equivalent definition: 

l l if b is strictly contained in a k-block 
(both endpoints belong to the block) 

(Q~*v)b = Vc if the I/-tattice bond b belongs to the corridor (4.5.3) 
of bonds connecting the two blocks Bk(c_) and 
Bk(e+). Here c is a unit lattice bond. 
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Now we define 

(Uk) b = (QT,*V)b exp [ -- ie k t 1 (@k~?* Qf,*f(k))b ] . (4.5.4) 

This field configuration Uk is the minimal configuration for the approximate action, 
up to a gauge transformation. It serves as the background field (external gauge 
field) in the expressions for the scalar field action and propagators. 

4.6. The Scalar Field Action 

The fundamental propagator  Gk(Uk) for the scalar field in this theory can also be 
defined by a functional integral, 

exp ( l ( h ,  Gk(Uk) h) )  = Zk(Uk) - 1 ~ ~ exp [ -- ½ tl Ou~b ]l 2 _ ½a k I1Qk(Uk) ~ II 2 + (~, h ) ] .  
(4.6.1) 

Since no restrictions on ~b occur in the Gaussian integral (4.6.1), we can also write 

Gk(Uk) = [ * - t 
- -  Zl uk q- akOk (Uk) Qk(Uk)] , (4.6.2) 

where 

A - * . (4.6.3) - u - D , ~ D u k  

The coefficients a k are produced by iterating one-step renorrnalization trans- 
formations which use a constant a in the Gaussian. This yields 
a k = a(1 - L-  2) (1 - L-  2k)- 1 in the k-step transformation [3]. 

The quadratic form which arises for the scalar field is (lp, Ak(uk)~p), where q~ is 
the unit lattice scalar field and where 

Ak(Uk) = ak I Z , -- ak Qk(Uk) Gk(Uk) Qk (Uk). (4.6.4) 

The scalar field action depends on the unit lattice field ~p through the q-lattice 
minimizer lpk, where 

IPk = akGk(uk) Q*(Uk)~p . 

The other propagators such as C(k)(Uk) are defined as in [3] with the only change 
that the background gauge field is Uk. 

5. Relations Among Minimizers and Propagators 

5.1. Change o f  Gauge for  Minimizers  

In this section we discuss relations among the operators H and G. We begin by 
relating Hk, ax and Ilk. Recall that HkB is the configuration which minimizes the 
action 110All 2, subject to a gauge condition as well as the restriction QkA = B  on 
field averages. We claim that Hk,AxB and HkB differ by a gauge transformation, 

Hk, AxB-- HkB = 02. (5.1.1) 

We show that 2 is an explicit, linear function of HkB. In order to specify 2, we 
choose a sequence of points Xo . . . .  , Xk, where x = x0, y = Xk, and where 

T(i) (5.1.2) x ~ BJ(xj), x ~  ~L~., 
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that is 

x ~ B % + i ) .  (5.1.3) 

The contour Fxj,x runs from x to xl in B(xx), from xl to xz in B(xz), etc, 

Proposition 5.1.1. The relation (5.1.1) holds with 

k - 1  

2(x )=- -  Y U - k [  o x'~B(xj2 + ~) (L-eQjHkB)(Fxj+I,x,)]. 

(5.1.4) 

Here we use (QjHkB) (F)= ~ (QjHkB) (b), with no factor of  the lattke spacimd 
beF 

for F. 

Proof. The definition of Hk, A~B is 

Hk,A~B = Zk, Ax(B)- 1 f d A J ( Q k A -  B) bk, A~(A) exp(-- ½ II 0N 115) A, (5.1.5) 

where k- 1 
~k,A~(A) = I-I 6A~(QjA) . (5.1.6) 

j=O 

Furthermore, 

UkS=Zk(B)  -1 ~. dA6(QkA-S)~(O*A)exp(-½[1OA[[2)A, (5.1.7) 

where ~(0*A) is a gauge fixing term, and where both integrals are normalized so 
that without the final factor A they equal 1. We use a variant of the Faddeev-Popov 
procedure and insert the factor 1 in the integrand (5.1.5), expressed as 

1 = Z ;  11 d2b (Q~2) ~ (0*A - A 2). 

Therefore, 

Zk, a~(B) = .[ dAb(Qk A -- B) 6k, a~(A) exp( -- ½110A 1] 5) 

= Z ;  1 ~ dAd/~ b (Qtk/~) (ff (0"  A - A )c) i~ (Qk A -- B) bk, Ax(A) exp ( -- ½ [I 0A II 2). 

Making the gauge transformation A ~ A  + 02, and using QkA-~QkA + Q,02 
= QkA + OQ'k2 = QkA, on account of the 6 function yields 

Zk, A~(B) = Z [  ~ ~ dAfq(O*A)6(QgA - B) exp( - 11[ ~A ]12) ~ d2 6(Q'k2)6k, A~(A + 02) 

=Zk~dAN(O*A)b (QkA-B)exp ( -½I I (bAI I z )=z ;~Z~(B) .  (5.1.8) 

If we perform the same steps leading to (5.1.8) in (5.1.5), we obtain by (5.1.8) 

Hk, A~B = Zk(B) - ~ ~ dAb(QkA - B)N(O * A) exp ( - ½ t] 0A I I 2) 

• (. d2b(Q'k2)bk, ax(A + 02) (A + (?2). (5.1.9) 

In order to evaluate (5.1.9), we solve the system of linear equations for 2 which 
result from the delta functions b(Q~) and bk,A~(A+02 ). Using this value of 
)o = 2(A), we have 

U~, AxS = Zk(B)- I (. dA 6(Qk A -- B) ~(O*A) e x p ( -  ½ II 0A II 2) (A + 02(A)). 
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We now study the equations which determine 2(A). The axial gauge fixing 
conditions in (5.1.9) entails 

(QjA) (F~, ~,) = - (Lit/)- 1 [(Q~2) (z') - (Q}2) (z)], 

where z and z' are endpoints of a bond in B(xj+ 1) which lies on an axial gauge 
fixing contour. Since every point in B(xj+ ~) lies on some such contour, we can sum 
these identities to show that for all x 'e  B(x~+ O, 

(Q A) (rx, . . . .  ,) = - (Lb/)-~ [(O~2) (x') - (Q~2) (xj + 0 ] .  (5.1.1 o) 

Summing over x' ~ B(xi+ 1) yields 

(Q~2) (xj + 1) = (Q} + x2) (xj + 1) + LJt/Q'(Qj A) (Fx,+l,"). (5.1.11) 

We use the fact that (Q~2) (x j+ 1) is constant in this sum, and the final Q' acts on " . "  
Substituting (5.1.11) in (5.1.t0) with x'=x~ then gives 

(Q}2) (xs) = (Q~ +12) (x~ +~ ) - L~t/[(QjA) (Fx~+, ' x) - Q "(Qs A) (Fxj+~,.)]. (5.1.12) 

The identities (5.1.12) hold for j = 0 ,  1, ..., k - 1 .  Setting j =  0 we have 

,Z(x) = (Q;,~) (x0) = (Q'2) ( x 0 -  t / [A(F~, ,~)-  (Q'A) (F,q, .)]. 

Furthermore, summing (5.1.12) from j = 0 to j = k -  1, the factors (Q~2)(x j) cancel 
except for j = 0 and j = k. Thus 

k-1 
2(x) = (Q~2) (Xk)-- Z Utl [(QjA) (r~,+ ,,~) - O'(Qy4) (F~s+ ~ ' .)]. 

j=0  

Using the 3 function for Q~2, and t / = L  -k gives 

k-1 
2(x) = 2 (A, x) = - ~ L j -  k [(QjA) (F,,~+,, ,,) - Q'(QjA) (F,,~+,.)]. (5.1.13) 

j=0  

We now notice that 2=2(A)  is a linear function of A. Thus we can write 
2(A, x) =)~(HkB, x ) - 2 ( A  -HkB,  x). The term 2(HkB, x) is independent of A and 
comes outside the A integral. Thus 

Hk, axB = HkB + ~2(HkB) + Zk(B)- 1~ dAb(Ok a _ B)(C( O* A) 

• exp(-½[[0A][2)0,~(A- HkB ) . (5.1.14) 

Since HkB minimizes the quadratic form ]1 aA ]12 subject to the restrictions imposed 
by 6(QkA - B) and f¢, the term in (5.1.14) involving 02(A -HkB)  is linear in A --HkB 
and hence its integral vanishes. Thus Hk, AxB=HkB+C3)~(HkB), and the proof of 
Proposition 5.1.1 is complete. 

5.2. Decomposition of Axial Gauge Green's Functions 

Let C (k) denote the unit lattice propagator defined in (4.3.3). Here we give a simple 
relation between C (k) and the axial gauge propagator Gk, Ax of  (4.1.1). This relation 
is similar to the definition (4.4.4) of the Landau gauge propagator ~k in terms of the 
C (/). The algebraic identity for Gk, ax will be very useful, especially in computing the 
form of the action after renormalization, even though the axial gauge propagator 
has poor regularity and decay properties. 
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Propos i t i on  6.2. The Gk,Ax satisfy the recursion relation 

Gk, Ax = Hk- 1, A x  C ( k  - 1)H,_ 1, A~ + Gk- i, Ax , 

with the solution: 

(5.2.1) 

k -1  
Gk, a~ = Z Hj, AxCU)H*A~ • (5.2.2) 

j = 0  

Proof Clearly (5.2.1) and (5.2.2) are equivalent. We prove (5.2.1) starting from the 
definition of Gk,Ax, namely (4.1.1). Write Qk = QQk- 1, and expand the integrand of 
(4.1.1) using 

6(QkA)bk, Ax(A ) = ~ ~ B  (~(QB)t~(Q k_ 1A-B)6Ax(B)b  k_ 1,Ax(A). 

Then translate the integrand with respect to A to the minimum of the quadratic 
form 5 [l aA ]l 2 (A, J) ,  under the restriction Qk-1A = B and the appropriate axial 
gauge. The minimum is achieved at H k_ 1,Ax B,  SO we write 

A = A ' + H  k 1,Ax B . (5.2.3) 

Inserting this and using (4.1.5) gives 

exp (5 ( J, Gk, AxJ ) ) : Z - 1  f ~ B3( Q B )6 Ax( B) 

• e x p ( - 5  I/~H~- t,AxBII 2 + <B, H*_ 1,AxS>) 

"~ ~ A" 6( Qk - 1A')bk- 1, Ax( A ') 

• exp(--5 II OA'I] 2 + (A', J)) .  (5.2.4) 

The A' integral yields Zk-i ,a~ exp(5(J, Gk-1,AxJ)), while the B integral gives 

- I  X 1 * Z Z k -  a,ax e p(~(H k_ 1,Ax J ,  C (k- 1)H~_ 1,axJ)) . (5.2.5) 

Thus (5.2.2) holds and the proposition follows. 
Now that we have related H k and Hk,Ax , w e  can find the relation between ~k 

and Gk, A~. In fact we need only the compositions @k0* and Gk,A~*, since only 
these products occur. 

P r o p o s i t i o n  5.2.2. There is a gauge transformation D such that 

Gk, Ax ~* - -  ~ k  ~ *  : 3D . 

Explicitly 

(5.2.6) 

where 2j is the function of Proposition 5.1.1 with k set equal to j. Here we write the 
operator identity, rather than the identity Gk, A~8*B=~kO*B+ODB for 
configurations. 

Proof We use three facts: the formula (5.2.1), the fact that 

H* j, Ax ~* =H*~*,  (5.2.8) 

k - 1  
D =  Z 2/H2CU)H*O*), (5.2.7) 

1=0 
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is gauge invariant, and formulas (5.1.1), (5.1.4) for the factor Hj, A x - H j  in the 
expression 

k - 1  

Gk,AxO* -- ~ k  0 .  = Z (HL Ax -- H j) C(J)H*O * . (5.2.9) 
j = O  

Substitution then yields (5.2.7). 

Remark 1. A consequence of the proposition is 

OGk, a~* = ONkO* . (5.2.10) 

Remark 2. The gauge field quadratic form (f(k), akf(k)) can now be written entirely 
as a function of the q-lattice gauge field Uk. In fact 

( f (k ) ,  tTkf(k) ) = E tl a I f~ (P) l  2 , ( 5 . 2 . 1 1 )  

pe  T n 

where 

fk(P) = (iekq 2) - 1 In uk(Op). (5.2.12) 

This follows from the definition (4.5.4) of u k, giving 

Uk( Op) = exp [ iek~lZ Q~* f (k) -- iek~lZ a~  k~* Q~* f(k)] . 

From this and (5.2.10) we get 

(iektT2)- 1 lnuk(~p) = Q~, f ( k ) _  OGk, AxO,Q~,  f(k)  , 

coinciding with (4.2.6). 

5.3. Minimizers and Green's Functions 

To help define the fluctuation field in the (k + 1) ~t step, we need one more identity, 
namely 

s *  , e ,  Hk, AxB=Qk B--Gk, Axa Qk B. (5.3.1) 

This identity follows by inspecting the definition (4.1.3) after the translation 
s *  __ e *  A = A'+ Q~*B. Use the facts QkQ~k*= I and aQk B - Q k  ~B to obtain 

Hk, a~B = Zk, A,(B)- I S ~A'6(QkA3 fig, A~(A3 (A' + Q~* B) exp( - ½ ll ~ A" + Q~*OB II z) . 

The second term yields Q~*B. In the first term we translate to the minimum of the 
quadratic form which is Gk, A~*Q~*OB. We see this by integrating. 

6. Renormalization Transtbrmations Produce the Effective Action as Claimed 

In this section we study the renormalization of the quadratic part of the k th action 
S, in (4.1). This action depends on the plaquette field f(k) the (background) bond 
field Uk and the scalar field ~p. Under renormalization we prove that Sk~Sk+ 1. We 
exhibit this transformation by writing Sk as a sum of two terms: the first is Sk+ 1, but 
scaled from the unit lattice to the L-lattice. The second term is the contribution of 
the fluctuation field on the unit lattice. The fluctuation field will be integrated in 



318 T. Ba~aban, J. Imbrie, and A. Jaffe 

performing the renormalization transformation, while the remaining terms scale 
back to give Sk+ 1 on the unit lattice. In (4.1) we ignore the small corrections due to 
interactions and concentrate on the quadratic terms. Hence the result of this 
section is to justify our (otherwise ad hoc) choice of o- k and Ak(Uk) as the mean field 
quadratic forms for the k th effective action. 

In accord with the notation of Sect. 3 we denote the variables in Sk as u and 
which take their values on the unit lattice. Thus we study 

S @uNO 6 (v/Qu) 6ax(u) exp [ -  ½a It~p - Q (Uk) 0 l] 2 _ _  Sk(U ' @)]. (6.1) 

In this integral we perform a preparatory translation (the first translation in 
Sect. 3) to isolate the average gauge field on the k th length scale. Let v denote the 
average gauge field on the L-lattice, and on the unit lattice let 

The plaquette field 

u = u'QS*v, u' = exp(iekB 3 . (6.2) 

f(k)(p) = (iek)- 1 lnu(@), p e T1, (6.3) 

then decomposes as 

f (k)~)  = (iek)- 1 lnu'(@) + (iek)- 1 ln(QS,v) (Cp) = (OB') (p) + L-d/2(Qe*f (k + 1)) (p), 

(6.4) 

which is valid as long as u'(p) and (Q~*v) (p) are close to 1. The new field f(k+ 1) is an 
L-lattice field, but Q~,* maps it back (to edge plaquettes) in the unit lattice. 

The integral (6.1) will be studied in detail in later papers by dividing it into small 
and large field regions, defined by some restrictions on the range of ~b and u. In this 
paper we are concerned with the small field regions which give the dominant 
contributions to the integral. In this region the identity (6.4) holds. 

We will also see that the perturbative terms in the action are unaffected by the 
restriction to small fields, since these restrictions become trivial in the limit of zero 
coupling constants. In particular, this means that in the calculation of leading 
terms in the action Sk+ 1 we can assume that the integrations over fields in (6.1) are 
restricted only by the delta functions which appear in the definition of the 
renormalization transformation. 

6.1. o k = o k + 1 + Fluctuation Form 

The goal here is to show that 

( f ( k ) ,ak f (k ) )=~90Ll ( f ( k+t ) ,ak+l f (k+l ) )+(B ,  AkB) .  (6.1.1) 

In other words, the quadratic form ak in Sk which occurs in the integrand (6.1) can 
be decomposed into the sum of two independent forms: the (k + 1)-step quadratic 
form scaled to the L-lattice and the quadratic form for the fluctuation field B. 
Hence the fluctuation field can be integrated and, after rescaling to the unit lattice, 
we obtain the desired (k + 1)-step gauge field quadratic form. Using (6.4), 

(f(k), akf(k)) = @B', trkOB" ) + 2L-a/Z@B ", trgQe* f (k + 1)) 

_}.. L-d ( f (k  + i), QeakQe* f(k + 0 ) .  (6.1.2) 
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Use definition (4.3.1) of Ak and the representation (4.2.2) for o k. In addition, note 
e e e that Q Qk=Qk+I. Then 

(f(k), c~kf(k)} = (B', dkB" ) + 2L-a/2((I - t~Gk,Ax8*)Q~*OB ", Q~* i f  (k+ 1 ) )  

+L-a (Q~*+l f ( k+ l )  rr , ~  ~*~t~e* r(k+ , k x - - t ~ U k .  Ax  t/ ? .V . . k+lJ  1 ) ) .  (6.1.3) 

By (5.3.1), Hk, Ax = QSk*--Gk, Ax~*Q~*~. Apply 8 to this identity, and use the gauge 
invariance statement 

8Hk, Ax = 8H~ (6.1.4) 
e *  and the identity aQ~*= Qk 8. It follows that 

, e ,  8Hk=(I--SGk,Ax8 )Qk 8. (6.1.5) 

Substituting (6.1.5) in (6.1.3) gives 

(f(k), Crkf(k) > = (B', AkB'> ±,~ r-a/z / n, ~*  z*c~* T , .~  \,-,,l~k,~ ~ k + l f  (k+l)} 

+ L-a(Q~, lftk+ 1), (I--  8Gk, a~.,8*)Q~* i f  (k+ 1)) .(6.1.6) 

Consider the quadratic form (6.1.6) as a function of B' and subject to the axial 
gauge and averaging restrictions of the integral (6.1). The minimum of the form is 
given by Proposition A3 of the Appendix, namely 

B ' =  -- ~r "d/2t~(k)t-g*'q*~e*~ lXk tJ "~k + I f (k + 1) . (6.1.7) 

The proposition is applicable with ~o the subspace of axial gauge configurations 
defined by the k th axial gauge delta function 8k, Ax(B') and the delta function 6(QB'). 
The covariance C of the proposition then agrees with C (k) defined in (4.3.3), and this 
is also the covariance in (6.1.7). 

Furthermore, the translation 

B , - U  ]'-d/El"~(k)T-l*,~*g')e* ( ( k +  1 )  (6.1.8) 
- -  ~ "  - -  ~'~ ~ "  Z X k ~  .~xSk+lJ 

and the decomposition (A 16) yield 

( f(k), akf(k)) 

= (B, AkB} + L-  a(QT,* 1 f(k + 1), (I -- 8Gk,axS* -- 8HkC(k)H~O *) Q~,* 1 f(k + 1)}. 
(6.1.9) 

Using (6.1.4) and the representation (5.1.15), we can rewrite (6.1.9) as 

(f(k), akf(k)} = (B, AkB} + 5 f[  l(f(k+ 1), 6k+ 1 f(k + 1)), 

where the scaling 5f L absorbs the factor L -a and where 

e , e ,  ak+ ~ =Q~+ I(1--SGk+ ~,A~ ~ )Qk+ ~ . 

This verifies the inductive hypothesis. 

6.2. Uk =Uk + 1 • Fluctuation (Modulo Gauge Transformation) 

We now investigate the effect of the two translations defined in Sect. 6.1 on the field 
Uk. This allows us to separate a fluctuation field and a gauge transformation which 
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then leave Uk+ 1' Rewrite the definition of u k (with u in place of v), so 

Uk = Q~* u exp( - iekrt@k~* Q~* ftk)) . (6.2.1) 

By (6.2) we have Q~*u =(Q~* l v )d  e~'eeB" , (6.2.2) 

so substituting this and (6.3) into (6.2.1) we obtain 

_ s ,  • s,  , • , e,63 B Uk--Qk+ aVeXp[lekrIQk B- - l ekr l (~kO Qk ' ) - - iek t lL-d/Z(~k~*Qf ,* l f (k+ l))] 
(6.2.3) 

We have the identity Gk, ax~* =Nk0* + ~D to replace @k 0* by Gk,ax(~*. Then we 
apply again the identity (5.3.1) to replace the first two terms in the exponential by 
iektlHk,axB'. This takes care of the first translation. 

The second translation (6.1.5) then yields 

s* " " --d[2 (k) * * e*  ( k + l )  uk=Qk+lvexp[lektlHk, A~B--tekrl L Hk, A~C HkO Q k + i f  

_ iektlL-d/Z(~kg,Q~, lf(~+ 1))]. (gauge trans). (6.2.4) 

We make another gauge transformation to replace the axial gauge minimizers by 
Landau gauge minimizers, and we combine the second and third term into an 
operator Nk+ 1. After rescaling, the L a/2 factor is absorbed and we have 

Uk = eie~'H~BUk+ 1 (the gauge transformation), (6.2.5) 

where the gauge transformation is generated by 

exp [iekD(Q#* OB') + iek,~k(HkB ) -- iekL-d/2 )~k(HkC(k)Hk~,Q~,+ 1 f (k  + 1))]. 
(6.2.6) 

6.3. Scalar Field Renormalization 

In Sect. 6.2 we established the general decomposition (6.2.5) for uk, 

Uk = Ilk + 1 eielmHkB e~"°'° , (6.3.1) 

where co denotes the gauge transformation (6.2.6). This gauge transformation does 
not influence the gauge field quadratic form o k , since this form is fully gauge 
invariant. More generally, expressions involving only the gauge field are gauge 
invariant, so we must discuss the scalar field part of the action. 

In that case, the form Ak(Uk) does depend on the gauge transformation co. Our 
procedure for constructing Sk has the general invariance 

Sk(Uke- ~,0~, cite) = S'k (Uk, 4) (6.3.2) 

for a gauge transformation 2. While we do not prove this invariance here, it is clear 
in the case of the quadratic forms for which we write explicit formulas. 

The scalar field integral has the form 

.( ~ b  exp { - [Sk(Uk,  ~ )  "Jc l a II I]) - -  Q(Uk)  ¢ II 2] } .  ( 6 . 3 . 3 )  

If we apply the decomposition (6.3.1) for Uk, and the gauge invariance (6.3.2), then 
(6.3.3) becomes 

I N¢ e x p ( -  [Sk(Uk +1 ei~"~I~B, (b) + ½a I[ e-i~,~p _ Q(Uk +1 eie~"H~B) 0 II 2]). (6.3.4) 
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Here we use the gauge invariance of the measure ~ .  The resulting integral still 
depends on co. However, the integral of (6.3.4) over ~p is independent of m, since ~ p  
is also gauge invariant. 

We can either write the new action in terms of lp'= e-  i~p, or use this gauge 
invariance and the fact that we are only interested in integrals of (6.3.4) over p, 
times other gauge invariant functions of tp (as observables). We take the latter 
point of view and ignore co. 

Now we are in exactly the same situation as [3]. We expand the whole 
integrand with respect to HkB and perform the fluctuation field integral over 
boson fields as in that paper. It reproduces the (k + 1) quadratic form for the action. 

7. Positivity and Localization of the Effective Action 

Positivity bounds on ak and Ak(Uk) are a necessary step in proving that the 
renormalization transformation preserves stability of the effective action. The 
main difficulty centers on the quadratic form O-k, which arises from the gauge field 
action. In particular, ak comes from the Wilson form of the action. Unlike the 
"Gaussian" action for the gauge field used in earlier studies of the U(1) Higgs 
model, the Wilson action has rather subtle positivity properties. We study this 
question first, yielding the main result of this section, 0 < c < % We then finish by 
stating minor generalizations of known estimates which apply to the other 
operators Hk, ~k, and Ak(uk) introduced in this paper. 

7.1.  Positivity of  a k 

Theorem 7.1.1. There exists a constant c > O, independent of  k, such that 

c<o- k . (7.1.1) 

The strategy of the proof is to give an explicit formula for o-k, which we then 
analyze in detail. Since we study periodic boundary conditions, 0"k is translation 
invariant. Thus it is natural to study O-k as a multiplication operator O-k(P) in the 
Fourier transform representation. (Note that we now use p to denote a momentum 
variable, rather than a plaquette variable.) The momenta p have d components p~, 
and iPil <= n. 

We introduce a tensor notation with functions f~v on plaquettes given as 
antisymmetric functions on coordinate axes #, v which indicates plaquette 
orientation. They also depend on a lattice position. Then 

(f(k), akf(k)) = ] ... ] (f(k)(p), ak(p)f(k)(p)) dp, (7.1.2) 

where the momentum p inner product is defined by 

( f (P) ,ak( ,P)f (P))  = Y'. ~v(P)O-k;,~K(P)f~(P)" (7.1.3) 
It, V,~,K 

In order to study ak(P) we need standard momentum space operations such as 
derivatives ~ or Laplacians d. Since we have two special tattice scates, the unit 
lattice leading to momenta Ipit__<n and the ~l=L -k lattice leading to momenta 
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fPil < rc/~l = ~L k, we require operators on both scales. We use a superscript (1) to 
denote the unit lattice scale. 

With these conventions, the derivative 0 can be represented by a diagonal d x d 
matrix O(p) with eigenvalues 

au(p) = (exp(hlp,) - I)/~I • (7.1.4) 

The unit lattice derivative (?(~)(p) is a similar matrix with eigenvalues 

O(J)(p) = exp (ipu) - 1. (7.1.5) 

The corresponding Laplacians are 

A(p)=TrO(p)*~(p),  A(1)(p) = Tr ~(1)(p)*~(1)(p). (7.1.6) 

We require the operator V(p) defined by 

V(p) = - ' .  (7.1.7) 

Here and below we use the notation p'~ e [ -  re, ~] and 

p' = p  mod2r~, (7.1.8) 

so p' denotes a unit lattice momentum. The eigenvalues of V(p) are 
vu(p ) = O(J)(p')/Ou(p). In terms of V(p) we also define 

and u(p) = det V(p) (7.1.9) 

4o,(P') = Z [u(p'+l)vu(p'+l)iZA(p'+l) -~ .  (7.1.10) 
t ~ 2 n Z  a 
I ld  <=~l,l 

In terms of these functions we can express the averaging operators Q~, etc. For 
example 

t / ! t --1 (QT, f)2~,(p3 = Eu(p +l)~v(p +l)(vu@ +l)v,(p +/)) . (7.1.11) 
1 

The basic object we wish to study is cr k, defined in (4.2.2), 

ak = Q ~ ( I -  DGk, AxO*)Q~* . (7.1.12) 

The axial gauge Green's function Gk, ax has a very complicated momentum space 
structure. Thus we use gauge invariance of OGk,AxO* to replace it by the Landau 
gauge operator OGkO*. Here we emphasize that Gk is a slightly different operator 
from Nk introduced in Sect. 4. The transformation G~ is defined by replacing the 
gauge-fixing delta function 6k, Ax(A) in (4.1.1) by the Landau-gauge fixing function 
N(0*A) of (4.4.1). The operator Gk was given in the momentum representation in 
[6I, Eqs. (1.83) and (1.84)]. Starting from this expression, one can derive the 
following formulas for ak(p) by straightforward, algebraic manipulation: 

We express O-k as a sum of two terms 

~k = Zl + Z2. (7.1.13) 

Here zl vanishes on curls. Thus if f = O B ,  then z l f = O .  Explicitly 

_!~// I ulz [6 ~ j  [6~ 0 A ~ ] ) ( p ' + / )  (7.1.14) 
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and 
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(7.1.15) 

In the formula for zl(p'), each term on the right side is evaluated at momentum 
p '+  1. In the formula for %, the averaging only occurs in 

(1) , u 2 t , 

In both zl and z2 the expressions inside brackets [ ] are projection operators. 
Thus O-k has the general form of a sum of projection operators, or tensor products 
of projection operators, sandwiched between averaging operators. 

The fact that zl vanishes on curls can be established as follows: The general 
form of z~ in configuration space is evident from (7.1.11), (7.1.14) namely 

e e@ 1 = Qk(I-- Pe) Qk , (7.1.17) 

where Po denotes the orthogonal projection onto curls. (If P1 projects one-forms 
onto gradients, then P~®Pa projects two forms onto curls.) Furthermore 
Qe,,~ _ ~ s ,  

k t ~ - - t , ~ k  , S O  

zl ~ = Q~,(I- Po) 0Q~* = 0. (7.1.18) 

Let ~ ( p )  denote the space of momentum p lattice one-forms B. Write the two- 
forms ~;4~(p) as a sum of curls and an orthogonal complement, 

J(~ (p) = ~3¢r (p) + (0JYC(p)) ± . (7.1.19a) 

Here we now introduce the scalar product, 

(f ,9) = Z f,~(P)Ivu(p)v~(p)lZgu~(P) = ( f , I V I - z ® I V I - 2 9 ) ,  (7.1.19b) 

and the decomposition (7.1.t9) is with respect to this inner product. This 
decomposition is natural in the study of o-k~ ), since zl(p)0J{(p) =0.  

Remark that there are strictly positive constants c1, c2 such that 

cl ( f ,  f )  <= (f, f )  <= c2(f ,  f ) ,  

so the corresponding norms are equivalent. In fact 

F s i n e J 2 ) ]  [ ~ / 2 )  ] ,  
Iv.(p)t = [_ (.pu/2) ] [_sin(purl~2)] 

and since for Ix[ < ~/2, 

it follows that for [p~] < n, 

2 sinx 
_ _ < ~  < 1 ,  = 

X 

~ Iv~(p)l ~ ~. (7.1.20) 
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Proposition 7.1.2. Suppose there exists e > O, and zo(p) <= z 1 (P) such that for lpjl < re, 

e<To(p) I(O•(p)) ± and e<z2(p) rOX(p). (7.1.21) 

Then Theorem 7.1.1 holds. 

Proof. It is sufficient to show that there is a constant c > 0 such that 

c <= Ok(P) (7.1.22) 

for all tPil--< re. The inequality 

la~,(p)/ ~p ,(p) l /zl < c2 (7.1.23) 

is an extension of (7.1.20). As a consequence, 

tl% It N M ,  (7.1.24) 

where M is a constant independent of p and k. 
Let us now decompose ok(p) according to (7.1.19). For  f = O B + f ± ~  2f(p), 

write 

( f ,~rk f>=(f ,  ~lf> + ( f ,  Zzf> 

= <fi ,  rlf±> + <f, z2f> > <fl ,  z0f l>  + <f, % f >  

=> el[f'Ll[2 + ( f ,  z 2 f ) .  (7.1.25) 

Here we use ¢1~ = 0  and the hypothesis on z~. The idea is to bound ( f ,  % f )  using 
the positivity of %. In fact, 0 < % is evident from (7.1.15). Then for any 6 ~ [0, 1], 

(J; Ok f> > e[I fl[l 2 -t- 6<f~ Zzf>. (7.1.26) 

Note that by (7.1.24) and the positivity of %, 

<f, ~2f> = <~B, ~2~/~> + <0B, r 2 f l >  + < f t ,  ~ / 3 >  + < f L  r j l >  
__> <OB, m20B>-2MH~Bl] Itf ' l l .  

For any ;C > 0, we then have 

<f, "c2f > >_ @B, z2~B > - (M2) 2 It OB II 2 _ 2 -  211 f ±  II 2. 

Use the lower bound (7.i.20) on z21 ~:/f, and choose 2 so (M2) 2 =e/2. Thus 

<f, z2f> >½8ll~BH 2 - 2 M 2 e  - l llf±ll z. 

Inserting this in (7.1.26) yields 

<f, ak f )  >= (e -  2M26e - ~)llf 1 II 2 + ½~II~B II 2 > ½~11 f±  112 +½6~II~BII 2 
(7.1.27) 

where the last inequality follows for any 6 < (e/2M) 2 < 1. Let 6 > 0 and c = ½~e > 0. 
Then 

<f, Ok f> > c(ll f ±  II 2 + II 0B 112) _._ c It f I[ 2, 

as desired and completes the proof of the proposition. 
Let us now prove the lower bound (7.1.21) on %(p). Introduce the operator 

z0(p) obtained by restricting the sum in (7.1.14) t o / = 0 .  Clearly each term in the 
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sum over 1 is a nonnegative operator. Hence 

%(P) < ~I(P) • (7.1.28) 

Note that because f z  is defined with respect to the inner product (7.1.19b), Zo 
simplifies on fz .  In particular the 8 terms vanish and 

(f±,zof±)=½lu(P)] 2 Z If~(P)/(vu(P)Vv(P))I 2. (7.1.29) 

From (7.1.20) we then infer 

< ~o [ (~S)  ±, 

for some e>O, which with (7.1.28) yields the desired lower bound 

e<zl  I (~.X() ±. (7.1.30) 

Next we consider the bound on % 10Y. But since zl~=0, 

@B, "c2c3B ) = @B, ffkaB) = ( B, AkB) , (7.1.31) 

using the definition (4.3.1) of Ak. An explicit formula for Ak shows that 

which is bounded below by ellgBI] 2 (see also [61, 8]). This completes the proof of 
Theorem 7.1.1. 

7.2. Regularity and Decay of Propagators and Minimizers 

We are interested in Landau gauge propagators and minimizers, because they 
have good regularity and decay. The key objects are Hk and C (k), while estimates on 
Nk follow by (4.4.4). The minimizer Hk can be expressed as an integral kernel. For 
X~ T~ 

(HkB)u(x)= Z Hk,u~(x;y)B~(Y) • (7.2.1) 
y~Ti(k), v 

The kernel Hk, u~(x, y) and its gradient decay exponentially. In particular there 
exists 8>0  and for 0 N e <  1 a constant M=M(c0<  ~ such that for [x-x ' l  < 1, 

[Hk,~,~(x, Y)I + IVHk,u~(x, Y)[ 

+ Ix -- x'l-'1VHk,~,~(x, y) - VHk,u,(x', Y)I < Me ~lx-yl. (7.2.2) 

This inequality is a consequence of Proposition 1.2 and the representation (1.103) 
of [6I]. 

The unit lattice propagator C (k) also has exponential decay, 

(k) ~Me-Olx-yl IC,~(x, Y)I , (7.2.3) 

for x, y ~ T~ k). This inequality follows from the bound (2.157) in [6II] and from the 
general theorem on unit lattice operators in [7]. In fact this inequality also holds 
for propagators with Dirichlet boundary conditions outside a domain A, 
uniformly in A. 
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The gauge transformation 2 in (5.1.1) is bounded and depends on B through an 
exponentially decaying kernel Dk: 

2(x) = (DkB) (x), IDk(x, b)l _-< Me-  ~ dist (~.b). (7.2.4) 

This estimate follows from (5.1.4) and (7.2.2). 
The operators ~k have the same properties as the operators Gk in [6I], 

Proposition 1.2, with exponential decay but singularities on the diagonal. These 
properties follow from (4.4.4) and the above estimates on Hk, C (k). 

7.3. Positivity of Ak(uk) 

The scalar field quadratic form Ak(Uk) depends on the background field Uk. Hence 
we can only establish stability properties for Ak(uk) with some restriction on uk. In 
particular, let us assume that for the unit lattice field v, 

Iv(@) - 1] < ek/~(ek), (7.3.1) 

where/~(ek) = (1 + lnek-1)~. Then the stability estimate can be stated in two forms. 
For constants 7 > 0, e > 0, M < 0% 

(qJ, Ak(uk)•)>=7 ~. lUk(b)f~(b+)-~b(b-)[2-Me~ ~ Z I¢(x)?. (7.3.2) 
beT(k) xeTl(k) 

The second form of the inequality substitutes Vb for Uk(b) in the covariant derivative 
of ~b. These inequalities can be proved by an extension of the proofs of [7]. The 
propagators arising from Ak(U~), under the restriction (7.3.1) on the gauge field, 
also satisfy the regularity and decay estimates of [7]. In order to remain within the 
framework of this reference, we remark that by change of gauge uk can be 
transformed in a local region A into a configuration of the form exp [iektlA], where 
A is smooth and small. In axial gauge for the configuration v in a domain A'3A we 
can substitute Nk0*= Gk,Ax6~*q-~D in the formula for Uk, we use (5.3.1) to replace 
this by a minimizer in axial gauge. Then we use (5.1.1) to return the minimizers to 
Landau gauge. This is a local procedure since f(k) can locally be represented as a 
curl. 

Appendix. Quadratic Forms 

In the analysis of this paper we often wish to minimize a quadratic tbrm on a 
Hilbert space ~ ,  possibly subject to a constraint. We collect here a couple of 
elementary properties which we use, and which could serve as the start of a more 
general study of related problems. 

Since we work with lattice fields, our space Jt ~ is finite dimensional and all 
forms are bounded. Of course we may obtain limiting unbounded forms as dim~/g 
~oo  (e.g., as in infinite-volume or zero-lattice-spacing limit). Such forms are 
analyzed as limits of finite-dimensional approximations. 

As a first example, let 0_<_ A = ~ ~ be a self-adjoint transformation on ~ and let 
B E ~ .  Define the quadratic form 

h(A) = ½ tl c~A + B I[ 2 (A1) 

Let P denote the projection onto Range (e). 
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Proposition A1. Range e* = Domain A - 1, s o  P = e A  - l a , .  Furthermore 

h(A) >_ h(Aa) = ½ <B, ( I -  P)B),  (12) 

where 

Aa=--A t~*B (A3) 

is the unique minimum of (A 1). 

Proof. Note that Range e* = (Kernel e)± and Kernel a = Kernel A. By the spectral 
theorem J r=Kerne l (A)  ORange(A), so Rangec~*=RangeA=DomainA -1 
Therefore P = e A - l a  * exists, p 2 = p = p . ,  and Pc~=e. Thus P is the projection 
onto Range ~. Writing 

h(A) = ½1t A 1/2A + A - 1/2c~*B I12 + ½(B, ( I - P ) B )  

yields (12). Since h(A) is convex, the minimum is unique, to complete the proof. 
If we translate the quadratic form h, using the change of variables 

A=A'+Aa ,  

then as a consequence of (I-P)c~ = 0, and h(Acl)= ½(B, ( I -P )B) ,  h(A) decom- 
poses into a sum of independent quadratic forms. We state 

Corollary 12.  With h(A) given by (A1) and A= A" + A~I defined by (13), 

h(A) 1 , , = -~(A, AA ) + h(Ac~). (A4) 

We now specialize to the case where 2/f=L2(hRN, dx), with dx Lebesgue 
measure. We consider the Green's function C of A. Assuming 0 < A, then we have 
two convenient representations for C. First 

C=zl 2, (A5) 

by which we express C as the operator inverse of A. Secondly, we can express C as a 
moment of a Gaussian measure, namely 

exp(½(B, CB)) =Z-1 I exp(-½(x, Ax )+(x ,B) )dx .  (16) 
~e 

We are often interested, however, in the case of operators A with zero modes. 
Thus A has an inverse only when restricted to a subspace Yfo C W which does not 
contain zero modes. Likewise an integral such as (A6) converges only when 
restricted to such a subspace. In gauge theories it is often natural to choose various 
subspaces Jfo, and furthermore A is generally not diagonal under the decompo- 
sition o'40 = Jgo O ~fo I. Thus we are led to study quadratic forms A constrained to 
act on -'~fo. 

Define the transformation C on J f  by 

exp(½(B, CB)) =Z-1 S exp(-½(x, Ax )+(x ,B) )dx .  (17) 
~ o  

Clearly C is self-adjoint in the inner product ( , ) .  Furthermore, define 

Ao = A t2/fo. (A8) 
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In general ~"o 4= ~ and C[~fo4=Ao 1. Thus we ask 
(1) How are A o and C related? 
(2) What is the minimizer of the quadratic form ½(x, A ox) - (x, B) for x ~ JF o? 
Let us make the following assumptions: Let V be given and 

I<A  o on 9fo, (A9) 

I<=A+V on ~ ,  (A10) 

where ~o  =Null  V. With these definitions, define 

G = ( A + V )  -1 (All)  

and let ( , )  be the inner product 

(x, y) -- (x, (A + V)y ) .  (A 12) 

Then let P denote the projection of ~ onto Ho, where P is orthogonal in the inner 
product (A 12). 

Proposition A3. Under the assumptions above, 

C = P G ,  (A13) 

so Range C C ~o. Furthermore 

and CA oC = C, (A 14) 

HB = CB = Z -  1 S exp ( -  ½(x, Ax)  + (x,  B ) ) x  dx. (A 15) 
A¢o 

is the minimum configuration of 

~(x, Ax)-(x,13), x~:go. 

Thus with x = y + CB, 

½(x, A x ) - ( x , B ) = ½ ( y ,  A y ) - ½ ( B ,  CB) ,  x~:ggo. (A16) 

Proof. For x ~ ~t¢' o, note that 

½(x, & x ) -  (x, B) = ½(x, (A + V)x) + (x, (A + V)GB). 

Thus (A7) can be written 

exp(½(B, C B ) ) = Z  -I I e x p ( - ½ ( x - e G B , ( A  + V ) ( x - P G B ) )  
~o 

+½( PGB, (A + V)eGB))dx, (a 17) 
where we have used 

(PGB, (A + V)x )  = (PGB, x) = (GB, Px) = (GB, x) = < GB, (A + V)x) .  (a 18) 

Thus (A17) equals 

exp(½( PGB, (A + V)PGB) ) = exp(½(GB, (A + V)PGB) ) = exp(½(B, PGB) ) . 

Thus (B, CB) = (B, PGB), and (A 13) holds as claimed. To verify (A 14), note that 

CAoC = PGAoPG = PG(A + V)PG = PZG = PG = C. 
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Next  note  that  (A17) displays CB as the min imum of l ( x ,  A x ) - ( x , B ) ,  since 
linear terms in the f luctuation x -  PGB do not  occur. Also f rom (A 18) we have for 
X ~ o ~  

(CB, Ax) = (B, x)  , (A 19) 

so the integral in (A15) equals CB. Finally, for X e H o ,  so by (A19), (CB, Ay) 
- (B,  y) .  I t  follows that  

½(x, A x ) -  (x, B) = ½(y, Ay) + (Ay, CB) + ½( CB, A C B ) -  (y, B ) -  (CB, B) 

= ½(y, A y ) -  ½(B, CB), 

which is (A16). 
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