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Abstract We used proportional myoelectric control of a
one-dimensional virtual object to investigate differences in
efferent control between the proximal and distal muscles
of the upper limbs. Eleven subjects placed one of their
upper limbs in a brace that restricted movement while we
recorded electromyography (EMG) signals from elbow
flexors/extensors or wrist flexors/extensors during isomet-
ric contractions. By activating their muscles, subjects
applied virtual forces to a virtual object using a real-time
computer interface. The magnitudes of these forces were
proportional to EMG amplitudes. Subjects used this
proportional EMG control to move the virtual object
through two tracking tasks, one with a static target and one
with a moving target (i.e., a sine wave). We hypothesized
that subjects would have better control over the virtual
object using their distal muscles rather than using their
proximal muscles because humans typically use more
distal joints to perform fine motor tasks. The results
indicated that there was no difference in subjects’ ability to
control virtual object movements when using either upper
arm muscles or forearm muscles. These results suggest
that differences in control accuracy between elbow joint
movements and wrist joint movements are more likely to
be a result of motor practice, proprioceptive feedback or
joint mechanics rather than inherent differences in efferent
control.
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Introduction

People routinely choose to use certain limb segments to
perform particular types of movements. For example,
people normally use their hands and fingers to perform
fine motor tasks such as writing, drawing, and typing. In
contrast, people primarily use proximal upper limb
segments for gross motor tasks such as lifting, throwing,
and swimming. This distal to proximal trend for fine to
gross motor movements largely results from the mechanics
of human anatomy. It is easier to thread a needle with
small movements of your fingers than it is to rotate your
whole upper limb about the shoulder. However, it is not
clear if this difference in normal motor behavior reflects
limitations of motor control between the distal and
proximal muscles of the upper limb.

Three factors could potentially lead to differences in
motor performance between distal and proximal joints:

1. Afferent feedback
2. Joint mechanical properties
3. Efferent control

Techniques have been developed to study these factors.
Potential differences in afferent feedback can be identified
by examining densities and sensitivities of muscle spindles
(Goodwin et al. 1972; Hall and McCloskey 1983; De
Domenico and McCloskey 1987; Jones et al. 2001), Golgi
tendon organs (Lundberg et al. 1978; Gregory and Proske
1979; Prochazka and Wand 1980; Crago et al. 1982; Jami
1992), joint proprioceptors (Macefield et al. 1990;
Gandevia et al. 1992), and cutaneous receptors (Moberg
1983; Rao and Gordon 2001). Joint mechanical properties
have been well quantified using system identification
methods (Hogan 1985; Mussa-Ivaldi et al. 1985; Gottlieb
1996; Stein et al. 1996; Kearney et al. 1997; Kirsch and
Stein 1997; Mirbagheri et al. 2000). Lastly, efferent
control is possibly the most difficult of the three factors to
study because it is confounded by the other two factors. To
study efferent control with limited effects from afferent
feedback and joint mechanical properties, neuroscientists
rely on techniques such as direct cortical recordings (Taira
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et al. 1996; Georgopoulos et al. 1999; Moran and
Schwartz 1999; Schwartz and Moran 2000; Reina et al.
2001) and functional magnetic resonance imaging or
positron emission tomography (Dettmers et al. 1996a,
1996b; Thickbroom et al. 1998; Nirkko et al. 2001).
However, these techniques record brain representations of
efferent control and bypass spinal effects on efferent
commands (Bizzi et al. 2000).

The purpose of this study was to quantify differences in
efferent control between proximal and distal muscles of
the upper limb using a novel method. Subjects completed
a series of tracking tasks by moving a virtual object on a
video screen. Subjects controlled movements of the virtual
object using proportional electromyography (EMG) sig-
nals from distal or proximal muscles of their upper limb.
An arm restraint prevented movement of the upper limb so
that subjects used isometric muscle activation to modify
EMG amplitudes. This setup allowed us to examine
differences in efferent control between muscle groups
independent of variations in joint mechanical properties.
In addition, this procedure may decrease potential differ-
ences in proprioceptive feedback in controlling the virtual
object movements during the task.

Based on behavior in everyday tasks, we hypothesized
that subjects would exhibit greater control over the virtual
object using EMG signals from more distal muscles of the
upper limb than when using more proximal muscles. We
based this hypothesis on the normal uses of proximal and
distal muscles during normal motor behavior. Humans
tend to use their distal joints for fine motor tasks and their
proximal joints for more gross motor tasks.

Materials and methods

Subjects

Eleven subjects (7 female and 4 male) participated in this
study (age: 24±4.6 years, mean ± SD). Subjects were
healthy and classified themselves as right arm dominant.
All subjects provided informed written consent. The
University of Michigan Human Subjects Protection Office
approved the protocol. All procedures were in accordance
with the Declaration of Helsinki.

Testing position

For all trials, subjects sat upright and placed their right
upper limb in a stationary brace, restricting movement at
the shoulder, elbow, and wrist joints (Fig. 1). We adjusted
the height of the brace so that each subject’s upper limb
was parallel to the floor. The subject’s shoulder was
horizontally flexed at approximately 20°. The elbow was
flexed at approximately 45° from full extension. The wrist
was held in the neutral position. An oscilloscope in front
of the subject provided visual feedback about the position
of the virtual object and tracking target.

Electromyography

We collected EMG data from four muscle groups of the
right upper limb. We placed rectangular bipolar silver–
silver chloride surface electrodes (1.0 by 0.5 cm, center-to-
center distance of 2.5 cm) over the following muscle
groups (Basmajian and Blumenstein 1989):

1. Biceps brachii
2. Medial head of the triceps brachii
3. Flexor carpi radialis and flexor digitorum superficialis

(forearm flexors)
4. Extensor digitorum

Electromyography signals were amplified with a signal-
conditioning amplifier (Konigsberg Instruments Inc.,
Pasadena, CA, USA) that had a 10–1,000 Hz bandwidth
and sent to a personal computer via an analog to digital
board (dSPACE Inc., Northville, MI, USA).

Virtual object interface

We used a real-time computer interface (dSPACE Inc.,
Northville, MI, USA) to control a virtual object on an
oscilloscope screen. Computer software sampled the EMG
signals at 1,000 Hz, high-pass filtered the signals with a
second order Butterworth filter (fc=20 Hz), rectified the
signals, low-pass filtered the signals with a second order
Butterworth filter (fc=10 Hz), zeroed the EMG signal that
was less than the level of background noise and normal-
ized the signal to an EMG amplitude recorded during a
maximum voluntary isometric contraction. The computer
then used the processed signals to generate virtual forces
to move a virtual object in one dimension. The forces
acting on the virtual object were proportional to the
amplitudes of the processed EMG signals. Flexor EMG
signals (biceps brachii or forearm flexors) provided forces

Fig. 1 Subjects sat with their right arm placed in a restraining
device that restricted motion at the shoulder, elbow, and wrist joints.
A computer processed EMG data from either forearm flexors/
extensors or biceps/triceps muscles to control one-dimensional
movement of a virtual object. An oscilloscope displayed the position
of the virtual object in front of the subject. A function generator
created a tracking target. The target was displayed on the
oscilloscope and recorded by the computer
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in one direction and extensor EMG signals (triceps brachii
or extensor digitorum) provided forces in the opposite
direction. The equation governing virtual object move-
ment was:

€x ¼ flexEMG� extEMGð Þ � c_xð Þ
m

where flexEMG was the high-pass filtered, rectified, and
low-pass filtered, normalized EMG signal from the
forearm flexors or biceps brachii, extEMG was the high-
pass filtered, rectified, low-pass filtered, normalized EMG
signal from the extensor digitorum or triceps brachii, m
was the virtual object mass, c was a damping coefficient
reflecting dynamic friction on the virtual object, and x was
the one-dimensional position of the virtual object. Thus,
the movement of the virtual object was a result of
antagonistic forces acting on a system possessing inertial
and damping characteristics.

We chose mass (0.5 unit-less) and damping coefficient
(0.5 unit-less) values such that subjects could perform the
tracking tasks while keeping EMG amplitudes lower than
25% of their maximum voluntary isometric contraction
EMG amplitude. This allowed the subjects to complete the
tasks without experiencing substantial fatigue. This is
important because EMG signal characteristics can be
affected by fatigue (Viitasalo and Komi 1977). Fatigue-
related changes could potentially increase the difficulty of
controlling the virtual object and would complicate the
results of this study. The threshold of the EMG processing
coupled with the low damping coefficient and mass
resulted in the virtual object being accelerated in response
to bursts of EMG greater than 5% of the maximum
voluntary isometric contraction (MVC). An effect of the

low damping coefficient was that it was difficult to bring
the virtual object to rest. Subjects could move the virtual
object to the target, but it was difficult to achieve a zero
velocity at any given point. The damping was not high
enough to quickly bring the object to rest. Subjects
typically moved the virtual object on or near the target and
then counteracted drift with small bursts of muscle
activity.

Tracking tasks

Subjects isometrically activated their flexor and extensor
muscles to position the virtual object over a target. In half
the trials, the target was stationary (static task). During the
static task subjects had to move the virtual object from a
baseline position of zero to a target dimensionless position
of 3, and then attempt to hold the virtual object motionless.
In the other half of the trials, the target moved in a sine
wave pattern (dynamic task) at 0.2 Hz with dimensionless
amplitude of 2.5. During the dynamic task the subjects had
to move the virtual object continuously in a sinusoidal
fashion. The frequency and amplitude of the sine wave
pattern were selected based on pilot studies. At the chosen
conditions, movement of the virtual object was found to be
initially challenging to subjects but not so challenging that
subjects became frustrated. When using frequencies of
target movement faster than 0.2 Hz we found some
subjects would give up midway through a trial if they were
unable to keep up or catch up to the target. When using
frequencies slower than 0.2 Hz the task became too easy to
allow us to make clear discriminations between control
ability. The target was produced using a function gener-
ator. The target position and virtual object position were
overlaid in real time on an oscilloscope.

Fig. 2a–d Each graph displays
the target position and the vir-
tual object position during the
initial and final trial for sub-
ject 4. a Static trials using
forearm muscle groups to con-
trol the virtual object. b Dy-
namic trials using forearm mus-
cle groups. c Static trial using
upper arm muscle groups. d
Dynamic trials using upper arm
muscle groups. For all static
trials the goal of the subject was
to move the virtual object from
position 0 to the target at posi-
tion 3 and hold it there for the
remainder of the trial. For all
dynamic trials the goal of the
subject was to move the virtual
object from position 0 to the
target and to trace the sinusoidal
oscillating target for the re-
mainder of the trial
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Protocol

Subjects performed the experimental design twice, once
using the distal muscles (forearm flexors and extensor
digitorum) as controllers and once using the proximal
muscles (biceps brachii and triceps brachii) as controllers.
The order of the two muscle pairs was randomized across
subjects. After placing their right arm in the restraint,
subjects performed three trials of a 5-s MVC for each of
the muscle groups. We high-pass filtered, rectified, and
low-pass filtered the EMG data as described previously.
Next, we searched for the greatest average amplitude
encompassed by a continuous 1-s period in each MVC
trial. We used the highest average amplitude for each
muscle group to normalize all further EMG signals from
that muscle group. We used the greatest average EMG
amplitude over 1-s of data rather than the entire 5-s to
ensure that we captured only the true MVC. This was
necessary because the amplitude fluctuated over the 5-s
period. For example, EMG amplitude typically increased
over the first second of data when subjects went from rest
to maximum activation. Next, we recorded three 5-s trials
in which subjects were instructed to completely relax their
muscles. These EMG data were processed identically to
those for the MVC. The average amplitude of relaxed
trials was used to determine the baseline noise levels.
Subjects then performed 20-s trials of static and dynamic
tracking tasks, alternating between the two tasks in that
order. Subjects completed ten trials of both static and
dynamic tasks. All subjects rested for a minimum of 10 s
between trials. We encouraged subjects to rest for longer
periods of time if they felt fatigued, but most subjects
declined to take longer rest periods.

Analysis

We analyzed the first and tenth trials of the static and
dynamic tracking tasks for both the distal and proximal
muscle groups. For each trial, we calculated the root mean
square error (RMSE) between the target and the actual
position of the virtual object. For the dynamic trials we
included all 20-s periods of each trial to calculate RMSE.
For the static trials, we included the time beginning when
the object first crossed the target position until the end of
the trial. If the subject did not move the virtual object
across the target position, we began calculating RMSE at
the time when progression toward the target first switched
from positive to negative (this was only necessary during
one trial for one subject). We used a repeated measures
ANOVA to test for significant differences in RMSE
between trial number (first and tenth), control group
(forearm and upper arm), and task (static and dynamic).
We set the significance level at P<0.05 and used Tukey
Honestly Significant Difference Post-Hoc tests where
appropriate.

We calculated root mean square (RMS) values on the
normalized filtered EMG over the full 20-s trials. We ran
two four-way ANOVAs to check for differences in RMS
EMG values between trial number, muscle, and task. We
set the significance level at P<0.05. In addition, for each
trial, we calculated the median power frequency between
10 and 500 Hz for EMG data that were band-pass filtered
with a second order Butterworth filter (fc=10–500 Hz). A
decrease in median power frequency of the EMG signal
with muscle has been shown to be associated with fatigue
(Ng et al. 1996). We used a four-way ANOVA to test for
differences in median power frequency between trial
number, muscle, test condition, and subject. We set the
significance level at P<0.05 and used Tukey Honestly
Significant Difference Post-Hoc tests where appropriate.

Fig. 3a–d Each graph displays
the target position during a static
20-s trial, and the mean and
standard deviation of the posi-
tion of the virtual object calcu-
lated from all 11 subjects. For
all static trials the goal of the
subject was to move the virtual
object from position 0 to the
target at position 3 and hold it
there for the remainder of the
trial. a The initial static trial
using the forearm muscle groups
to control the virtual object. b
The final static trial using the
forearm muscle groups. c The
initial static trial using the upper
arm muscle groups. d The final
static trial using the upper arm
muscle groups
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Results

During the initial trials, subjects appeared to have slightly
better control of the virtual object with their forearm
muscles than with their upper arm muscles (Figs. 2, 3, 4),
but this difference was not significant. Although the means
and standard deviations of the RMSE were larger for
upper arm control than for forearm control (Table 1), there
were no statistical differences for control group
(F(1,74)=2.4694, P=0.1204). This could be partly attributed
to the large inter-subject variation in upper arm control.
However, ANOVA results reveal an effect size of only
0.16 for muscle group. Thus, if there was a real difference
in control between the upper arm and forearm muscles
(Type II Error), the difference was small.

The control accuracy between the two control groups
was practically identical after the ten trials performed in
the experiment. Subjects substantially improved virtual
object control with practice (Figs. 2, 3, 4) and the
improvements were greater for upper arm control than for
forearm control (Table 1). The improvements with practice
resulted in a significant main effect for trial number
(F(1,74)=7.5271, P=0.0076). There were no significant
differences for task (F(1,74)=1.6635, P=0.2011).

Although the subjects improved their performance in
both tasks, there were no obvious changes in muscle
activation patterns for the dynamic task (Figs. 5, 6). There
appears to be a trend that subjects decreased levels of
muscle coactivation during the static task (Figs. 7, 8) but
statistical analysis revealed no differences. There were no
significant differences in RMS EMG values between the
initial and final trials for any muscle group during
performance in either the static (F(5,82)=0.8251,
P=0.5354) or dynamic task (F(5,80)=1.6699, P=0.1514).

There were no significant differences in median power
frequency with trial number (F(1,160)=1.2084, P=0.2733),
suggesting that subjects did not become fatigued during
the experiment. There were significant differences in
median power frequency between static and dynamic tasks
(F(1,160)=33.3602, P<0.0001) and between muscles
(F(3,160)=10.4585, P<0.0001). Post hoc tests revealed
biceps’ median power frequency was different from that
of the triceps and forearm extensors. Forearm extensor
median power frequency was different from forearm
flexors.

Discussion

Based on these data forearm efferent control is not more
accurate than upper arm efferent control. The initial mean
trajectory of the virtual object demonstrated differences
between forearm and upper arm control (Figs. 2, 3), but
the differences were not significant and variability
between subjects was high. With just ten trials of practice,
subjects were able to greatly increase virtual object control
with their upper arm muscles to match the control
accuracy of their forearm muscles. This finding suggests
that differences in control accuracy between the elbow
joint and the wrist joint are more likely to be a result of
joint mechanics, proprioceptive feedback, or motor prac-
tice, rather than inherent differences in efferent control.
Practice in the form of life experience might explain the
initial differences we observed between forearm and upper
arm control. It is possible that everyday tasks for the
forearm more closely resemble the tasks in this experiment
than everyday upper arm tasks. This everyday usage may
have given subjects an initial advantage using forearm
control. However, these differences did not last once the

Fig. 4a–d Each graph displays
the target position during a dy-
namic 20-s trial, and the mean
and standard deviation of the
position of the virtual object
calculated from all 11 subjects.
For all dynamic trials the goal of
the subject was to move the
virtual object from position 0 to
the target and to trace the sinu-
soidal oscillating target for the
remainder of the trial. a The
initial dynamic trial using the
forearm muscle groups to con-
trol the virtual object. b The
final dynamic trial using the
forearm muscle groups. c The
initial dynamic trial using the
upper arm muscle groups. d The
final dynamic trial using the
upper arm muscle groups
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subjects were given practice performing the task with the
upper arm.

The findings of this study are in agreement with
research demonstrating that the ability to control force
accuracy is no different between distal and proximal
muscle groups of the upper limb (Gandevia and Kilbreath
1990; Jones 2000). In these past studies, subjects
estimated the level of force being produced or maintained
specific levels of force to match a static target. In our
study, subjects were able to control the efferent output of
their forearm muscles and upper arm muscles equally well
after a very small amount of practice (ten trials). An
important difference between our study and the prior
experiments is that our study removed the potential effects
of muscle-tendon geometry and joint mechanics. Subjects
were only required to modulate muscle activation for
control rather than the mechanical output of force. In
addition, the present study also expands on the prior
research because our subjects performed dynamic mod-
ulations of efferent output as well as static modulations.

One limitation of the study is that proprioceptive
feedback was not entirely removed from the experiment.
Subjects had access to information from cutaneous
sensors, Golgi tendon organs, and muscle spindles in

their upper limb as they produced isometric contractions
against the arm restraint. The role of proprioceptive
feedback was limited in this study because it did not
provide direct feedback about the position of the virtual
object. Visual feedback was the only direct feedback
subjects received about the dynamics of the virtual object.
Future experiments could study subjects undergoing
temporary nerve block from ischemia or anesthetic agent
to truly isolate efferent control independent of proprio-
ceptive feedback.

Another possible limitation of this study is the specific
method used to process the EMG data. Converting EMG
to the position of a virtual object may mask differences in
efferent control. If EMG signals have similar spectral
content, the variance of linear envelope about its mean
would depend mostly on the processing. However, the
median power frequency results (Table 2) indicate there
were significant differences in spectral content between
muscle groups. Although there were no significant differ-
ences in median power frequency between the initial and
final trials, there were trends for higher median power
frequencies with practice. These results suggest that the
EMG processing method was not a limiting factor in this
study. It would be interesting to repeat a similar protocol

Table 1 Root mean square error (mean ± SD) of the virtual object position (dimensionless) relative to the target position for the four
tracking tasks. The only significant difference found was between the initial and final trials (P<0.05)

Static (initial) Static (final) Dynamic (initial) Dynamic (final)

Forearm 0.79±0.21 0.68±0.09 1.18+0.63 0.85+0.45
Upper arm 1.48±1.96 0.66±0.09 1.81±2.13 0.82±0.28

Fig. 5a, b Mean rectified and
low-pass filtered EMG from
subject 4 over the entire 20-s
period for the dynamic tasks.
Forearm extensor and triceps
signals were multiplied by –1
for display purposes. Target data
are displayed to indicate the
subject’s temporal goal
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using single motor unit EMG to remove most of the signal
processing effects.

Due to the nature of the tracking tasks in this study, it
was not possible to compare the variance of the linear
envelope with its mean for the different muscles. In the
static task, subjects produced one main burst of muscle
activity at the beginning of the trial and then produced
small, scattered bursts to correct virtual object drift. In the

dynamic task, subjects continually modulated muscle
activity amplitude. It would be necessary to have subjects
produce a constant low amplitude muscle activation (e.g.,
15% MVC) to compare the mean and variance in this
manner. Future studies could incorporate this procedure to
document differences in EMG envelope variance.

An interesting use of this testing protocol would be to
examine myoelectric efferent control of virtual objects
comparing upper limb muscles and lower limb muscles. If

Fig. 6a, b Mean rectified and
low-pass filtered EMG from the
11 subjects over the entire 20 s
period for the dynamic tasks.
Forearm extensor and triceps
signals were multiplied by –1
for display purposes. Target data
are displayed to indicate the
subjects’ temporal goal

Fig. 7a, b Mean, rectified and low-pass filtered EMG from
subject 4 over the entire 20-s period during the static positioning
task. Forearm extensor and triceps signals were multiplied by –1 for
display purposes. Target data are not displayed because the target is
constant

Fig. 8a, b Mean, rectified and low-pass filtered EMG from the 11
subjects over the entire 20-s period during the static positioning task.
Forearm extensor and triceps signals were multiplied by –1 for
display purposes. Target data are not displayed because the target is
constant
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there are inherent differences in efferent control between
any muscle groups, it would seem likely that lower limb
muscles might be the least accurate. Humans rarely
perform fine motor tasks with their lower limbs, instead
relying on them for gross power output during locomotion.

A practical application of myoelectrically controlled
virtual objects concerns motor adaptation to powered
prostheses. Engineers have dedicated an enormous amount
of effort to designing signal processing algorithms for the
myoelectric control of upper limb prostheses (Scott 1966;
Hogan 1976; Evans et al. 1984; Scott and Parker 1988;
Sears and Shaperman 1991; Hudgins et al. 1993; Gallant
et al. 1998; Zecca et al. 2002). Yet, there has been much
less effort dedicated to understanding the human side of
the human–machine interaction in powered prosthesis use.
A few studies have examined human motor adaptation to
myoelectric prostheses with static control (Gaines 1969;
Scott et al. 1978; Paciga et al. 1980; Lovely et al. 1990;
Morin et al. 1993; Dupont and Morin 1994), but we could
find no studies examining human motor adaptation with
proportional control. This is remarkable given that training
is one of the most important factors affecting acceptance
of the prosthesis (Millstein et al. 1986; Roeschlein and
Domholdt 1989; Gaine et al. 1997). While most
commercially available myoelectric prostheses use static
control, prosthesis engineers have long advocated propor-
tional control to increase function (Hogan 1976). One step
toward achieving a useful proportional myoelectric pros-
thesis would be to study how humans learn to control
virtual objects with proportional myoelectric signals.
Studying myoelectric control of virtual objects can even
provide additional insight into the basic processes of
motor control and learning (Manal et al. 2002).
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