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The problem of optimizing modular products in a reconfigurable manufacturing system is addressed.
The problem is first posed as a generalized subset selection problem where the best subsets of
module instances of unknown sizes are determined by minimizing an objective function that
represents a trade-off between ‘‘the quality loss due to modularization’’ and the cost of
reconfiguration while satisfying the problem constraints. The problem is then formulated and
solved as an integer nonlinear programming problem with binary variables. The proposed method is
applied to the production of a modular drive system composed of a DC motor and a ball screw. The
study is a first attempt toward developing a systematic methodology for manufacturing modular

products in a reconfigurable manufacturing system.

Keywords: Modular products, product design, reconfigurable manufacturing, optimization, integer

programming

1. Introduction

A new manufacturing paradigm called reconfigurable
manufacturing systems (RMS) is emerging to address
the needs caused by rapidly changing markets and
rapid introduction of new products (Koren et al.,
1999). A reconfigurable manufacturing system is
designed for rapid adjustment of production capacity
and functionality, in response to new circumstances,
by rearrangement or change of its components. These
new systems provide exactly the functionality that is
needed exactly when it is needed (Mehrabi et al.,
2000). Therefore, a RMS is designed to be easily
reconfigured such that it is able to process a family of
parts and accommodate new and unanticipated
changes in the product design and processing needs.

The utility of a RMS is greatly increased if it is
designed for production of modular products, where
the combinations of individual modules form the

product. The term modularity is used to describe the
use of common units to create product variants
(Huang and Kusiak, 1998). Through modularity, the
number of parts to be manufactured for a product
family may be significantly reduced while achieving
sufficient variety by combination of different modules
(see Fig. 1). In general each module may have more
than one instance. The different instances provide the
sizes and capabilities that are required by the desired
product variety, and together they form the part
family. The modular products in the part family are all
the variants (i.e., A; + B;; i=1,2,3; j=1,2) shown
in Fig. 1. A particular configuration of the RMS for a
particular module can then be used to produce a
particular instance of the part family (see Fig. 2). The
first production line (RMS-A) can be quickly and cost
effectively reconfigured, as needed in response to
market demand to produce any instance of module A
(i.e., A;;i = 1,2,3). Similarly, the second production
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Fig. 1. A typical modular product with two types of modules.

line (RMS-B) can be reconfigured to produce either
B1 or B2. This enables the manufacturer to be
responsive to changing and unpredictable demand. It
also requires that the product be designed in a modular
manner (i.e., as the combination of two modules A;
and B; in this example).

The Nippondenso panel meter design (Aoki, 1980)
is cited in Kusiak (1999) as a powerful example that
clearly illustrates the benefits of modularity. The old
panel meter was redesigned with six standard
modules. Through redesign the number of parts was
significantly reduced; e.g., the number of voltage
regulators was reduced from 20 to three, the number
of bimetals was reduced from eight to four and so on.
The combination of six modules resulted in 288
different models, of which 40 were produced. (With
the previously considered number of alternatives, the
number of possible models were 23040.) As this
example illustrates, the benefits of modularity
include: economies of scale; increased feasibility of
product/component  change; increased product
variety; reduced lead time; easier product diagnosis,
decoupled risks, maintenance, repair and disposal.

Despite these clear benefits, a formal theoretical
approach to modularity is still lacking (Kusiak, 1999),
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and designers are often skeptical regarding the
advantages of modularity. This is largely due to the
inferior performance obtained by modular designs
compared to their custom built optimal alternatives
(Cakmakci and Ulsoy, 2000; Ulrich and Seering,
1989). Recently, there have been some attempts to
address various issues in modular product design such
as planning for commonality, optimizing the degree of
commonality and finding the optimum settings for the
common modules (Fujita et al., 1999; Gonzales-
Zugasti and Otto, 2000; Martin and Ishii, 1997). Fujita
et al. (1999) proposed an optimization approach to
designing modular products from existing modules
using an integer-programming formulation. Gonzales-
Zugasti and Otto (2000) presented a general method
for designing families of products built onto modular
platforms. These modular platforms allow for the use
of both existing and new modules. Optimizing
modular products in a RMS has not been addressed
before. As mentioned above, in RMS each module
instance required for a particular product variant is
produced by a different configuration. Therefore, the
design of modular products should consider the cost
of reconfiguration, in addition to other issues related
to modularity.

This paper addresses the problem of manufacturing
modular products in a RMS environment. For a
modular product that is to be manufactured in a RMS,
the performance of a custom built alternative can be
approached if the number of module instances (i.e.,
different sizes or capabilities) is increased indefi-
nitely. However, this is neither practical, nor
economical since each instant requires a different
configuration. Therefore, a major issue in designing
and manufacturing modular products in a RMS is to
determine optimum number of module instances and
the selection of the optimum subset of module
instances from a large (possibly infinite) number of
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Fig. 2. Manufacturing a modular product on a reconfigurable manufacturing system.
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alternatives. In the current work this problem is posed
first as a subset-selection problem where the cost of
selecting a subset from the set of all possible
alternatives is to be minimized. The problem is then
transformed into a nonlinear programming problem
that can be solved efficiently to aid in optimum
planning for modular production in a RMS environ-
ment. This study is a first attempt in designing
modular products manufactured in a RMS environ-
ment. The proposed mathematical formulation is also
novel in the sense that it facilitates an efficient
solution through the use of binary variables.

2. General problem formulation

The basic design problem considered can be described
as a constrained optimization problem where the
design variables can be divided into a number of
groups which represent modules that then make up the
complete product. For example, a powertrain is
considered to be composed of the engine and
transmission, and the design variables can be grouped
accordingly. Let us assume, without loss of generality,
that the set of design variables is decomposed into two
groups represented by the vectors d; and d,. The
parameter set p represents the performance require-
ments specified by the customer. The custom-made
product is obtained as the solution to the following
optimization problem:

min W(d,,d;, p) (1)

subject to constraints
g(d;,dy,p) <0 (2)
and side conditions (bounds) on the design variables
di <d; <d} and dy<d,<df  (3)

Vectors of design variables and the parameter vector p
belong to the following finite or infinite vector spaces:

d;eS, d,eQ, peP 4)

The design task is to determine the optimum values of
design variables for a given parameter set, and a given
objective function W. This formulation assumes that
there is a single objective function, or a combined one
in the case of multiple objectives. In general, the
parameters may vary due to changing customer
requirements or preferences. In the case of a

custom-made product, the manufacturing system
should be set up to produce a different product for
each parameter set representing a different specifica-
tion. For example, based on customer preferences we
might custom design a drive system by designing both
a motor and transmission to meet those requirements.
In a RMS environment, this may lead to a large
number of configurations, which may not be practical
or economical to utilize the benefits of RMS.

If the product to be manufactured is modular in
nature, then, the number of configurations for each
module may significantly be reduced since modularity
provides desired variety of the product through
different combinations of modules. The modular
product is obtained by solving the following discrete
optimization problem:

min W(ala 827 p) (5)
d, d,

subject to constraints

g(alvabp) S 0 (6)

and side conditions (bounds)
I —u 1 = —u
d, <d, <d;, and d, <d, <d, (7)

In the modular product case, the design variables are
to be selected from among a finite number of discrete
sets

deS;, i=1,2,... N
deQ;, j=1,2,....N, (8)

where Ny, and NQ are the total numbers of all possible
subsets, S;, and Qj, respectively, which can be formed
from the sets representing the discrete design domain
for d; and d,, respectively. Thus,

SiES ngQ (9)

The percent quality loss due to modularization for a
particular parameter set can be defined as

w (pa Si7 Q]) - W*(p) )
W*(p)

where W+ and W* are the values of the objective
functions at the solutions to optimization problems
described by Equations (5)—(7), and Equations (1)—
(3), respectively. Clearly, different subsets will result
in different quality loss for a given parameter set.
Therefore, the subsets resulting in a minimum quality
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loss have to be selected. In general as the size of the
subsets increases the quality loss decreases. However,
this means increasing number of configurations for the
RMS, which has to be accounted for in optimizing the
overall cost.

The total number of possible subsets for a two-
module problem is given as

M

np=>Y_ Y C'cl (11)

i=1j=1

where N; and N, are the sizes of sets S and Q,
respectively, 77; and 71, are the maximum allowable
sizes of S;, and Qj, and C{ denote combinations of J
objects taken i at a time.

A subset-selection problem is usually formulated to
solve challenging routing and scheduling problems as
well as a class of regression problems. A subset
selection method was used to determine the optimum
number and location of actuators for controlling
structural vibrations (Ruckman and Fuller, 1995).
Various subset selection algorithms have also been
proposed to determine the optimum number of classes
and their intervals for selective assembly (Kwon et al.,
1999). A general approach to solve these types of
problems starts by determining a number of inter-
esting routes or subsets of customers (in case of a
routing problem), subsets of tasks (in the case of a
scheduling problem) or subsets of parameters (in the
case of regression analysis); then, selects, among
these subsets, a collection that allows optimization of
a given objective while satisfying the problem
constraints (Boctor and Renaud, 2000). In the
classical subset-selection problem, the size of the
subsets is usually known. Efficient algorithms which
consist of an exhaustive search constrained by
bounding rules and guided by a search-ordering
procedure have been developed to solve such
problems (Boyce et al., 1974).

The problem considered here differs from the
classical subset selection problem due to the
following reasons: (1) The sizes of the subsets (i.e.,
the number of module instances) are unknown, though
generally, an upper limit is imposed on the size of the
subsets. (2) The subset to be selected is a combination
of subsets of each module. Thus, the problem at hand
can be considered as a multidimensional (dimension
being equal to the number of modules) generalization
of classical subset selection. In the current work, this
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subset selection problem is formulated as a nonlinear
programming problem as described in the next
section.

3. Formulation as a nonlinear programming
problem

The problem of selecting the best subsets for each
module can be formulated as an integer nonlinear
programming problem by using binary variables, x,
and yj’?, which are defined as follows:

1 if the ith instant of module 1 is selected
,k = for the kth parameter set
0  otherwise

1
v =
0

Let the quality loss associated with the modular
product obtained by selecting the ith instant of module
1 and jth instant of module 2 for the kth parameter, be
denoted as ﬁ which can be determined as:

if the jth instant of module 2 is selected
for the kth parameter set
otherwise

lj’
k *
E=Wh—wH

where Wl" is the value of the objective function in
Equation (5) for the ith instant of module 1 and jth
instant of module 2 for the kth parameter set, and Wk
is the value of the objective function in Equation (1)
for the optimum custom design.

Let n; and n, denote the numbers of selected
instances for each module, respectively (the sizes of
subsets). Then, the problem to be solved can be

written as

P N N
mm ZZZ'BU Y+ Cinyg+Cony - (12)
k=1i=1j=1
subject to
i=12,....N,
gixy <0 j=12,... N, (13)
k=1,2,...,P
L <y (14)
ny, < i, (15)
N,
¥=1 k=1,2,...,P (16)
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N,
doyf=1 k=1,2,...,P (17)

j=1

where P is the number of different parameter sets
considered. Equations (16) and (17) guarantee that
exactly one module is selected for each parameter set.
The constants C1 and C2 are the relative costs of
reconfiguration for modules 1 and 2, respectively. The
objective function in Equation (12), represents a
trade-off between the average quality loss and the cost
of reconfiguration. In order to complete the formula-
tion, the subset sizes n; and n, must be expressed in
terms of the decision variables x{, and yf. This is
accomplished by defining the following auxiliary
integer variables

S}:fo? i=1,2,...,N; (18)

=~

»

=33 j=12....N, (19)
k=1

m,=1 ifsf>0 i=1,2...,N;, (20)

=1 if s >0 j=1,2,...,N, (21)

The auxiliary variables s} and sf are counters which
track how many times each module is selected. If a
particular instant of module 1 (model 2) is selected at
least for one parameter set, then it is strictly positive,
and hence, n;, = 1 (ny, = 1). If a particular module is
not selected for any parameter set, then, it is zero.
Thus, the subset sizes can be obtained as

Ny
n = Z”l,- (22)

i=1

NZ
= Z M (23)

j=1

In order to transform Equations (20) and (21) which
contain if statements into standard constraint form,
they can be equivalently written by the following
equations (Winston, 1994):

1 - nl, < szil

si1 < Km(l - Zl)

1

1— Ny, S KmZJZ
7 .
j=12,...,N, (25)
st <K, (1-z)

where z} and z} are binary variables, and K,,, is a large
number. For the problem considered K,, > P. Since
binary integer variables are used as decision variables,
the solution method is quite efficient in identifying the
best subsets for the given objective function. The
formulation is quite general to include such con-
straints as pre-selecting a particular module. For
example, if the manufacturer wants to include ith
instant of module 1, then, an additional constraint is
specified as x¥ =1, k = 1,2,...,P.

3.1. Special case: fixed subset size

Let the size of the subsets S;, and Q ; be fixed at / and J,
respectively. This situation arises when the manufac-
turer has a preference for the number of module
instances (equivalently number of different config-
urations for the RMS). In this case, the problem
reduces to that of finding the minimum cost product
for each parameter set. The complexity of the
problem, as measured by the number of possible
subsets to be searched is given as

np=C;'C (26)
3.2. Special case: fixed subset

In case the discrete design domain is small, the whole
sets S and Q can be selected as the subsets, and the
problem is reduced to custom-made design described
by Equations (1)—(4).

4. Tllustrative example: DC motor and
transmission system

In order to illustrate the proposed methodology a
simple modular assembly problem is studied. The
assembly considered is a drive system, which consists
of a DC Motor, a gearbox and a ball screw. The
objective is to assemble a system with minimum
power requirement (smallest size) while satisfying the
constraint that it is able to provide a maximum
acceleration for a given load mass subject to a given
load force. The maximum power required by the
motor-ball screw assembly is given by Fussel and Taft
(1995)
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27n,,
w,=T, P Vi (27)
where T), is the peak torque at the motor shaft, and V,
is the maximum velocity of the load. The peak torque
is given by

2
Pv ‘]s N P‘v
TP =S +tm (27‘5)’1g> + n_ ngesm + FfL <2nng>
P P
B =V F 2 28
+ L <2nng> m + L <2nng> ( )

where J,, is the motor inertia, P, the pitch of the ball
screw, my, is the load mass, n, is the gear ratio, 0,,, is
the maximum angular acceleration at the ball screw
axis, F s is the load friction, B; is the load damping,
and F; is the load force. For the purposes of the this
illustrative example, in order to keep the complexity
of the problem at a manageable level, the following
assumptions are made:

ESES]

(1) All module instances are compatible.

(2) The DC motor is selected by a single selection
parameter (design variable), which is the motor
inertia, J,. In general, at least another parameter
(e.g., width) has to be specified to select a DC motor
from a manufacturer’s catalog (Pacific Scientific,
2000). However, for simplicity and without loss of
generality, it is assumed that for the application
considered the width is fixed (82.55 mm, R30 series).

(3) The ball screw is also selected by a single
selection parameter (design variable), which is the
lead (pitch), P, of the ball screw. Thus, the ball circle
diameter, D, and the screw length, L, are assumed to
be fixed (D, =25mm, and L; =2m) (Thomson
Saginaw, 2000).

(4) The gear ratio is assumed to be fixed at n, = 1.
This reduces the number of modules to two, DC
motor, and the ball screw, each selected based on a
single design variable.

(5) It is assumed that the only parameter subject to
variation due to customer requirement is the load, F;,
which is assumed to take on only a finite number of
discrete values. All other parameters (0, m, , Fjy , and
B;) are assumed to be constant.

The associated custom design problem can be
expressed as follows:

‘Ilnll_l,l Wp(‘[m7Pv7FL) (29)

mls
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subject to

T
2 _1<0 30
1< (30)

max

and Equations (27) and (28), where T, is the
allowable peak torque for the motor.

In the modular design, the drive system is
assembled from a subset of available DC motors and
ball screws. The problem is to determine the best
subsets, which result in best possible matches for a
given load, F;. As the subset sizes increase the
performance of the modular design will approach that
of the custom design. However, the cost of reconfi-
guration, and production will also increase. The
objective function given by Equation (12) helps in
finding the optimum subsets. Here, C; and C, can be
considered as the relative costs of reconfiguration for
the motor and ball screw units, respectively. Note that
the capacity issue is not considered in the current
problem. Furthermore, it is assumed that all values of
parameter sets are assumed to be equally likely. If,
however, probability distributions of parameter sets
(i.e., customer preferences, or demand) are known, a
stochastic optimization problem can be formulated.

4.1. Solution by nonlinear programming

To illustrate the methodology, the proposed nonlinear
integer programming formulation is used to solve the
following modular assembly problem. Let’s assume
that a drive system has to be assembled from available
motors and ball screws. For simplicity and without
loss of generality, a limited number of motor and ball
screw units manufactured by leading manufacturers
are considered to be available for selection. The
objective of the modular assembly is to be able to
assemble near optimal drive systems for the load
values considered with a smaller number of motor and
ball screw units. It is assumed that a particular series,
which have high torque-to-inertia ratios, will be used.
There are four available motors with inertia values of
0.071, 0.093, 0.11, and 0.13 kgm2 x 1073 (labeled as
M1, M2, M3, and M4, respectively). It is also
assumed that cylindrical nut, ball screws with a ball
circle diameter of 25 mm are used. There are three ball
screws with pitch sizes of 5, 10, and 25 mm (labeled as
T1, T2 and T3, respectively). Thus, N, =4, and
N, = 3. The limits of subset sizes are the same as the
set sizes, i.e., i; =4, and i1, = 3. The load force is
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Table 1. Nonlinear programming results for various values of relative configuration costs

C1=0.0 01, C1=0.01, C1=0.01, Cl1=0.1,

C2=0.001 Cc2=10 C2=0.01 C2=0.01
Selected motors M2, M3, M4 M1, M2, M3 M3, M4 M4
Selected ball screws T1, T2 T1 T1, T2 TI1, T2
Average percent quality loss 7.4 22.6 7.5 8.1

due to modularization (%)

assumed to take on values of 1000, 2000, 3000, 4000
and 5000 N. Therefore, P =5. The rest of the data is
m; = 100kg, V, =0.254m/s, 0, = 3000rad/s>
Fyg =500N, B, =10Ns/m, L;=2m, p=
7800kg/m3 and the screw inertia is given by J, =
pnD?L,/32 where p is the density of ball screw
material.

The solutions obtained by using various values of
relative configuration costs are given in Table 1. The

average percent quality loss (APQL) is defined as

B P
-3
k=1

where ﬁk is the quality loss incurred by using the
subsets obtained from the solution to the modular
production problem for the kth parameter set, and can
be obtained from Equation (10).

If it is assumed that the DC motor and ball screw
units are to be manufactured in a RMS, a reference to
Fig. 2 can be made again to depict a particular
manufacturing strategy deduced from the nonlinear
programming solution. In this example, motor and
ball screw units are the modules of type A and B,
respectively. If the first set of weights is adopted, for
example, then, Motor units will be produced on the
first production line (RMS-A) with Configurations 1,
2, and 3, designed to produce M2, M3, and M4,
respectively. Similarly, Ball screw units will be
produced on the second production line (RMS-B)
with Configurations 1 and 2, designed to produce T1,
and T2, respectively.

As expected, as the relative configuration cost for a
module is increased, the number of required config-
urations for that module decreases. Clearly, this is
achieved at the expense of incurring some quality loss
due to modularization. However, by properly
adjusting the optimization parameters (i.e., relative
configuration weights) this loss can be kept at a

k

=

(31)

|

desirable level while reducing the overall cost of
manufacturing.

5. Summary and conclusions

The problem of optimum selection or design of
module instances for a modular product, manufac-
tured in a RMS environment, has been addressed. The
problem is first posed as a generalized subset selection
problem where the best subsets of unknown sizes are
to be found which minimizes an objective function
while satisfying the problem constraints. The problem
is then formulated and solved as an integer nonlinear
programming problem. The proposed formulation is
based on finding a trade-off between the quality loss
due to modularity and the cost of reconfiguration. The
method was applied to a modular assembly problem
of a drive system composed of a DC motor and a ball
screw, and found to be very efficient in determining
optimum subsets of each module from a given set.
With the methodology, an adequate trade-off between
the product quality and manufacturing efficiency can
be made since the quality loss due to modularization
can be controlled by adjusting the optimization
parameters. Thus, the proposed method can be used
as a systematic tool in selection of module instances.
The formulation can easily be modified according to
the needs. For example, it is straightforward to include
other cost elements such as economies of scale.

Integer nonlinear programming methods are in
general computationally expensive. Though the
computational efficiency is greatly enhanced by the
use of binary variables, for a large number of
modules, or parameter sets, the problem becomes
very complex and may require extensive computa-
tional resources. In this case, some heuristics may be
useful to speed up the solution.

The formulation can be generalized for products
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made up of more than two modules. Though the
complexity of the problem will increase significantly,
this extension is straightforward. The proposed
methodology can also be used in designing modular
products (i.e., breaking-up a product into different
modules). Once various alternative designs are
generated, examining the average percent quality
loss due to modularization can distinguish competing
modular designs for a given modular product. In the
current work, it is assumed that there is equal demand
for each parameter set (i.e., customer preference or
requirement). It is straightforward to account for
unequal, but deterministic demand by including
different weights for each parameter set in the
objective function. It will be interesting to re-
formulate the problem as a stochastic optimization
problem, which accounts for random customer
requirements.
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