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I. Introduction 

The object of this paper is to prove a new type of estimate for isogenies between 
elliptic curves. This has several diophantine applications (effective versions of 
Serre's Galois irreducibility theorem and Shafarevich's theorem, for example) 
which are presented in another paper [MW3].  Later articles will deal with 
the corresponding problems for abelian varieties of arbitrary dimension. 

Right at the beginning we emphasize that we are identifying elliptic curves 
E with Weierstrass equations 

y2=4X 3_g2 x- -g3 .  

Thus, for example, to say that E is defined over a field k means that its invariants 
g2 and g3 lie in k. 

We will be dealing with isogenies tp between E and a second elliptic curve 
also defined over k. For  the purpose of this paper it is not usually convenient 
to specify the field of definition of ~o. However, we may note that ~o is necessarily 
defined over a finite extension of k (see Lemma 6.1 below). 

Suppose E is defined over a number field k. We shall measure E somewhat 
crudely by the quantity 

w(E)=max{1,  h(g2), h(g3)}, 

where h denotes the absolute logarithmic Weil height (see for example IWa] 
p. 19). We can now state our main result. 

Theorem. Given a positive integer d, there exists a constant c, depending effectively 
on d, with the following property. Let k be a number field of  degree at most 
d, and let E be an elliptic curve defined over k. Suppose E is isogenous to a 
second elliptic curve that is also defined over k. Then there is an isogeny between 
the two elliptic curves whose degree is at most c(w(E)) 4. 

The proof will be by transcendence techniques. These were already used 
by D. and G. Chudnovsky [CC-1 (see also [La]) to obtain some results of the 
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above type. Their Corollary 2.2 (p. 2214) implies that when k is the rational 
field Q there is an effective bound for the degree of the isogeny. In Proposition 2.3 
(p. 2214), stated without proof, they announce an explicit bound, still for k = Q .  
However, it is exponential in w(E) and it depends also on the second elliptic 
curve. 

More significantly, their Theorem 4 (p. 2215) implies that when k is real 
there is an effective bound for the degree of the isogeny depending only on 
k and E. The idea of the proof can be sketched as follows. Suppose q~ is an 
isogeny from the second elliptic curve E* to E. Then q~ corresponds to multiplica- 
tion on the tangent spaces by some algebraic number ~ satisfying 

7 f2* ___ f2 (1.1) 

for the associated period lattices 12", 12. Thus for any 09* in f2* there is 09 
in 12 such that 

09* = 09. (1.2) 

Now the assumption that k is real enables us to choose co and 09* in (1.2) 
independently of the isogeny q~. Then transcendence techniques can be advanta- 
geously applied to the vanishing linear form ~09"-co. More specifically we 
can use Gelfond's method with two elliptic functions to obtain a new isogeny, 
generally of much smaller degree, between E and E*. 

If k is not real, the inclusion (1.1) has to be expressed in the form 

~ 0 9 ~ = m l l  091+m12 092, ~ 09~ = m21 091 + m22 (-02 (1.3) 

for fixed basis elements COl, co2 of f2 and 09*, ~o* of f2*. Thus it is now Baker's 
method that we should use, as in Baker's own paper [Ba] or Wiistholz's general- 
ization [Wfi2]; and moreover the version for simultaneous linear forms (see 
for example [Lo]). In particular we need multiplicity estimates in the style of 
[Wii 13 or [P]. 

The plan of this paper is as follows. In Sect. 2 we prove an effective version 
of a theorem of Kolchin for products of elliptic curves. This will be required 
to supplement the information provided by multiplicity estimates. 

Then in Sect. 3 we prepare for the transcendence argument by recording 
a number of analytic and algebraic estimates, mostly of a familiar kind, for 
a single elliptic curve. 

Next, in Sects. 4 and 5 we state and prove a Proposition essentially of the 
same depth as the Theorem. The proof, by transcendence techniques, is divided 
as usual into two parts: in Sect. 4 we do the "construction", and in Sect. 5 
we do the "deconstruction". The Proposition actually applies only to isogenies 
that are normalized in the sense that ~=  1 in (1.1), and in Sect. 6 we show 
how this restriction can be eliminated. 

Finally in Sect. 7 we complete the proof of the Theorem. We also make 
some additional remarks about the proof of the Proposition in the case of 
complex multiplication. This is not quite covered by the arguments of the earlier 
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sections. We end the paper  by showing that our estimates of Sect. 2 are essentially 
best possible. 

Acknowledgements. This research was begun at the 1986 Durham Conference on Transcendence, 
and we would like to thank the organizers, Professor A. Baker and Dr. R.C. Mason, for providing 
such a stimulating yet relaxed environment. The first author was supported in part by the National 
Science Foundation. 

2. Isogenies and subgroups 

Throughout  this section, all varieties will be assumed without further reference 
to be defined over the field ~ of complex numbers. 

Let E~ and E2 be elliptic curves, and for positive integers nl and n2 write 
G for the algebraic group E] 1 x E~ 2. We say that a connected algebraic subgroup 
H of G is split if it has the form H=H~ • H2 for algebraic subgroups H~ of 
E] 1 and H 2 of E~ 2; and otherwise we say that H is non-split. 

Suppose G has a non-split connected algebraic subgroup. Then it follows 
easily from a result of Kolchin I-K] (see also Lemma 7 (p. 262) of I-MW2]) 
that Ex and E2 must be isogenous. In this section we will prove a quantitative 
version of this observation (the Isogeny Lemma below). 

We start with two lemmas on degrees in projective space. For  a closed 
irreducible projective variety X and a non-negative integer t let 9r t) denote 
the usual Hilbert counting function. Recall that as t ~ ov we have 

9~ v (X ; t)/t d -o (deg X)/d !, 

where d is the dimension of X and deg X denotes its degree. 
For  positive integers n and m let k + 1 = (n + 1)(m + 1), and identify the product  

• of projective spaces as a subset of IP k by means of the Segre embedding. 
Let rc be the projection from P~ x lPm to F,. By the fundamental  theorem of 
elimination theory, this is a closed map. 

Lemma 2.1. Suppose X in ~, x IP,, is irreducible, and that X and ~(X) have the 
same dimension. Then deg 7z (X) < deg X. 

Proof. Fix a large positive integer t, let 

h = ~ ( n ( X ) ;  t), (2.1) 

and denote by M1 (x) . . . .  , Mh(x ) the corresponding monomials  in x = (Xo . . . .  , x,) 
that are linearly independent modulo  the prime ideal I(n(X)) of re(X). Let y 
=(Y0 . . . . .  Ym) be variables on Pro, so that each Mi(x)y~(l<i<h, O<j<m) can 
be written as a monomial  of degree t in the variables of Pk. Call these monomials  
Mij( l<i<h,  O<j<m). We claim that  there exists j with O<j<m such that 
Ml i  . . . .  , Mhj are linearly independent modulo the prime ideal I(X) of X. 
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If not, then we have a collection of relations 

h 

~, 12ij M i j -  0 (rood I (X)) (0 < j  __< m) (2.2) 
i = 1  

with/~1~ . . . . .  /~hj not all zero (O<j<m). Let Hj be the hypersurface of F, defined 
h 

by the vanishing of y'l~oMi(x)(O<j<m). Pick any ~ in n(X). Then (3, q) is 
i = 1  

in X for some q in F,,, and there exists j with 0 < j  < m such that the j th projective 
coordinate qj of r/ is non-zero. Since Mij(~, q)=Mi(~)q'.  j we deduce from (2.2) 
that ~ lies in H r. Since r was arbitrary, this shows that n(X) is contained in 
the union of Ho . . . . .  Hm. But because n(X) is irreducible, we conclude that 
n (X) must be contained in Hj for some j with 0 < j  < m. However, this contradicts 
the linear independence of M1 . . . .  , M h modulo I(n(X)). 

Thus the above claim is established, and we deduce that 

~ ( S ;  t)> h= ~ ( n ( X ) ;  t). 

Since X and n(X) have the same dimension, the present lemma follows on 
making t ~ 0o. 

Lemma 2.2. Suppose X is an irreducible variety, and H~, ..., Hm are hypersurfaces 
in projective space of degrees at most D > 1. Then Y= X n H1 c~ .. . ~ H,, satisfies 

D e deg Y< D a deg X, 

where d and e are the dimensions of X and Y respectively. 

Proof. This kind of estimate is implicit in [MW2]  (pp. 249, 250), but we will 
deduce it from Proposition 3.3 (p. 365) of Philippon's paper l-P]. In the notation 
there, take p = 1 and P~, ..., P,, as the defining polynomials of H~ . . . . .  H,,, with 

Io=I(X)  the prime ideal of X. Then SH(]//]; O)>=D e deg Y while SH(]~oo; D) 
= D n deg X; so the present lemma is immediate. 

From now on, we shall assume that E~ and E2 are elliptic curves embedded 
in •2 by means of Weierstrass equations, and that any product G = E] 1 • E~ 2 
is embedded in Fk using the Segre map. Here k + 1 = 3"' +"2. Thus any subvariety 
H of G has a well-defined degree. 

Lemma 2.3. Suppose nl and n2 are positive integers with n~+n2>2 ,  and let H 
be a non-split connected algebraic subgroup of E] 1 x E"2 2 of dimension d. Then 
there exist positive integers n'~ and n'2 with n'x +n'z < nl + n2, and a non-split con- 
nected algebraic subgroup H' of El; x E"2 ~ of dimension d', such that 

3 d' deg H' _<_ 3 d deg H. 

Proof. Let E be any of the simple factors of G = E] 1 x E~ 2, let G' be the natural 
complementary factor, so that G = E x G', and let n be the projection from G 
to G'. Suppose the dimension of n(H) is strictly less than the dimension of 
H. Then the kernel of n restricted to H has positive dimension, and it follows 
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that H = E  x n(H). From this we can deduce two things. Firstly, since H ~ G  
there must  exist E such that H and n(H) have the same dimension, and without 
loss of generality we can suppose E = El .  Second, since H is non-split we must 
have nl _-> 2. 

Thus n is the projection from G=Eq ~ • E 1 x E~ ~ to Eq ~-~ • E~ 2. Since H and 
n(H) have the same dimension, they are isogenous and so there exists an  isogeny 

from re(H) to H which is an inverse of n up to multiplication by  some non-zero 
rational integer. 

We can now identify the group H '  of the present lemma. Let O be the 
zero of E'~ ~ - 1. We claim that either 

(a) K = n(H) is non-split in E~' - ~ • E~ 2, or 
(b) Lis  non-split in E1 • E~ ~, where O • Lis the maximal connected subgroup 

of the intersection of H with 0 x E1 • E~ 2. 
Let us assume on the contrary that (a) and (b) are bo th  false. Then 

K = K 1  xK2 ,  L=LI x L  2 

for Klc_E~I 1-1, Lie_E1 and K2, L2~E~2L Write J = ~ ( O x K 2 ) .  Since n(J)= 
O • g 2 ,  it follows that Jc_O x E1 • E~2 2. Because J is a connected subgroup of  
H, we even have J c_O • L. Applying n again, we get O x K 2 GO • L 2 and so 
KEC_L 2. Since H already contains O x L 1 • L2 ,  it therefore contains 0 • O~ x K 2 

(where O1 is the zero of El). But because K2 is the projection to E~ 2 of H,  
it follows easily that H is split in E~ 1 x E~ 2. This contradicts one of our hypothe-  
ses, and thereby establishes the validity of  either (a) or (b). 

Finally, if (a) is true, then the present lemma holds with n'~ --n 1 -  1, n'E=n2 
and H ' = K  using Lemma 2.1. And if (b) is true, then the present lemma holds 
with n ' l= 1, n'2=n2 and H ' = L .  For  since Z = O x E 1  • 2 is defined in G by  
equations of degrees at most  3, we see f rom Lemma 2.2 that 

3 # deg(Z n H) < 3 d deg H. 

Also deg(O x L ) < d e g ( Z n H ) ,  and since O x L projects down to  L in the  sense 
of Lemma 2.1, we have d e g L < d e g ( 0  x L). These inequalities combine to give 
the desired estimates for deg H' in case (b), and  this completes the proof of  
the present lemma. 

We can now prove the main result of this section. 

Isogeny Lemma.  For positive integers nl and n 2 suppose E~ 1 x E~22 has a non-split 
connected algebraic subgroup of dimension d and degree A. Then there is an 
isogeny between E 1 and E2 of degree at most 3 TM A ~. 

Proof. Actually we shall need this result only for n~=n2=2 ,  bu t  it is n o  harder 
to establish it in general. We start with the case nl = n2 = 1. 

Let H be a non-split connected algebraic subgroup of E1 x E 2 o f  degree 
A in ~8. Then H has codimension 1 in Ea x E 2. Let O~ and 0 2 be the  zeros 
of El  and E2, and define algebraic subgroups H1 of E1 and  H2 o f  E 2 by 

H l x O 2 = H n ( E l x 0 2 ) ,  O l x H 2 = H n ( O l x E 2 ) .  
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Since Et x 02 and O1 x E 2 are defined in P8 by equations of degree at most 3, 
we find from Lemma 2.2 that 

deg(H1 x O2)<3A, deg(O1 x H2)<3A. 

Because H1 x 02 and O1 x H 2 project down to H1 and H 2 in the sense of Lem- 
ma 2.1, we deduce that 

d e g H l < 3 A ,  degH2<3A.  

But since H is non-split it is easy to see that H~ and H 2 a r e  finite. Therefore 
their cardinalities hi and h 2 satisfy 

hl <3A, hz<3A.  (2.3) 

We can now define an isogeny q~ from E~ to E 2 by ~o(x0=hz x2, where 
x2 is any element of E2 with 

(xl, x2) in H. (2.4) 

The degree N of q~ is the cardinality of the kernel �9 of qg. To estimate this, 
note that each xt in �9 gives rise via (2.4) to an element x2 of the kernel Fz 
of multiplication by h 2 in E2. But for each x2 in E z the set of xl in E1 satisfying 
(2.4) is a coset C(x2) of H1. Also if x'z=-x'~(modH2) then (xl,x'z) 
-=(xl, x~)(modH), so that C(x~)= C(x'~). Hence as x2 runs over Fz the number 
of different cosets arising in this way is the index [1:2 : H2] of H2 in Fz, which 
is hZz/hz=h2. Each coset has cardinality h~, so we get N < h l  h 2, which by (2.3) 
is at most 9A z. This proves the Isogeny Lemma for nl =n2 = 1. 

The general case can be reduced to this case by repeated applications of 
Lemma 2.3. Eventually we must end up with a non-split connected algebraic 
subgroup/-7 of E1 x E2 ,  of dimension 1, satisfying 3 degH<3nA. By what has 
just been established, this yields an isogeny between E~ and E2 of degree at 
most 9(deg/~)2 < 32a dz. The proof of the Isogeny Lemma is therefore complete. 

We shall see in Sect. 7 that the exponent 2 of A 2 in this result cannot be 
improved, whatever the values of nl, n2 and d. 

3. Preliminary estimates 

Let f2 be a lattice in the complex plane. We can choose basis elements col, 
co2 of f2 in such a way that the ratio z=co2/col lies in the standard fundamental 
region for the modular group. Thus we have t z l>  1 and z = x + i y  for real x, 
y satisfying 

Ixl<�89 

Also the determinant A of fl is given by A = y  t~o 112. 

(3.1) 
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Let g2 and g3 be the invariants of f2, and let go(z) be the corresponding 
Weierstrass function. Write 

7=max {1�88 g2l ~/z, 1�88 g31~/3}. (3.2) 

Lemma 3.1. There exists an absolute constant cl and a function 0o(z), such that 
~9(z)=y0o(Z) and ff(z)=go(Z)0o(Z) are entire functions, with no common zeroes, 
that satisfy 

Ilog max {I 9(z)t, I ~(z)l}-r t  Izl2/AI <=cl y 

for all complex z. 

Proof. This is just Lemma 3.1 of [M]. 
We shall also need the following estimate for go(z) itself, which is not a 

direct consequence of the preceding result. Let (Izll denote the distance from 
z to the nearest element of ~2. 

Lemma 3.2. There exists an absolute constant c 2 such that 

I go(z)- go (�89 092)1 < c~ Ilzl1-2 

for all complex z not in (2. 

Proof Let q=e 2"i~, w=7~ z/091, Q=e iw and 

F ( v ) = ( l _ q ,  Q2)2(l _ q~ Q-  2)2(1 _ qV)-4 (v*  0). 

The identity 

go ( z ) -  go (�89 092) = z -  2 (w-1 sin w)- 2 f i  {F(n- �89 
?1=1  

(3.3) 

is most easily verified by comparison of poles and zeroes. 
By periodicity it is enough to prove the lemma when z=t109~+t209 2 for 

real tl, t2 with [tl l<�89 It21<�89 Then lQI--e -"'2., Iq l=e  -2"y. So for v>�89 we 
have 

Ii-qVQ• , I i - q ~ l ~ l - l q t  ~. 

o o  

Since Iql~e-=V:~<l it follows without difficulty that F[ IF(n-�89 is bounded 
n = l  

above by an absolute constant. Similarly for v > 1 we have 

[ 1 - q V Q •  v-~, I I - q V l < l + l q [  ~, 

and it follows that f i  LF(n)I is bounded below by a positive absolute constant. 
n = l  

Finally for w=nz/091 we have z#O and 

IRewl = z ( t j  +Xtz)<3rc/4. 
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Since Iz[ -2~ Ilzll- 2 in (3.3), it suffices now to verify that Iw-1 sin w l is bounded 
below by a positive absolute constant whenever I Re w l ~ 3 ~z/4. For this we may 
suppose t = Im w > 0. If t < 3 7t/4 the assertion is true by compactness. If t > 3 7t/4 
then I w l < t ] / 2  so 

Isin wl >= �89  t > lw[/l/2. 

This completes the proof.of the lemma. 
It is perhaps interesting to note that an application of Cauchy's Integral 

Formula to Lemma 3.2 yields the inequality 

I~'(z)}~c Ilzl1-3 

for an absolute constant c. 
For  the rest of this section we let d be a positive integer and we let k 

be a number field of degree at most d. We assume that the invariants g2 and 
g3 of • lie in k, and we use the notation 

w = max { 1, h (g2), h (g3)} 

as in Sect. 1. Recall that h is the absolute logarithmic height. 

Lemma 3.3. There is a constant c 3 > 1, depending only on d, such that 
(i) c3W<~<c~, 

(ii) �89 w, 
(iii) A > c~- ~, 
(iv) 1r > Ca w (i = 1, 2), 
(v) A -1 Icoi[2<caw(i=l, 2). 

Proof The first of these is immediate from the Definition (3.2) together with 
elementary properties of heights. The second follows in a similar way after 
using the estimate (see [FP] p. 187) 

y<(2  ~) -1 log([jl + 1193), 
where 

j = j (z)=  1728 g3/(g3 _ 27 g~). 

The third was proved in Lemma 4.3 of [M]; and the fourth is then clear using 
(ii) and the fact that [a~l 12 = y - 1 A .  Finally the fifth inequality is a consequence 
of the equation 

A -1 ]c~212=y-X(x2+y 2) 

together with (ii) and (3.1). 

Lemma 3.4. There is a constant c4, depending only on d, and a positive integer 
b < c'~, with the following properties. Suppose n is a positive integer, ~ is an element 
of O/n not in O, and write ~ = ga ((). Then 

(i) ~ is an algebraic number of degree at most c4 n2 with h ( ~ ) < c 4  w , 

(ii) b n 2 ~ is an algebraic integer, and [ ~ [ < c~ n 2. 
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Proof Here c5, c6 . . . .  will denote positive constants depending only on d. We 
assume first that �88 g2 and �88 ga are algebraic integers. The classical multiplication 
formulae (see IS] p. 105 or [Ba] p. 158) show that there is a polynomial 
B,(x, Y2, Y3), with rational integer coefficients, and leading term n 2 x n2-1 as a 
polynomial in x, such that B,(4, �88188 Thus 4 clearly has degree at 
most d(n 2 -  1)< c 5 n 2, and n 2 ~ is an algebraic integer. 

To estimate h(~) we observe that the N6ron-Tate height q(P) of the corre- 
sponding point P in P2 with projective coordinates 1, ga ((), p ' ( ( )  satisfies q(P) = O. 
Then from Lemma 4.1 of I-M] we deduce that the absolute logarithmic height 
h(P) satisfies h(P) < C 6 W. But h(r < h(P). 

Finally from Lemma 3.2 we have 

I~1~1 go (�89 09=)1~- c? IICli -~ (3.4) 

Now ~(�89 is one of the zeroes of 4x3--g2x--g3; SO clearly Iga(�89 
And since r is in the fundamental domain of the modular group we know 
that every non-zero period 09 of f2 satisfies 109 [ > [09 1 I. It follows that II (LL > I ~ I/n. 
This together with (3.4) and (iv) of Lemma 3.3 show that 141 < c~ n 2 as desired. 

This proves the present lemma when �88 and l g 3 are algebraic integers. 
The general case follows on noting that we can find a positive integer bo < C7o 
such that �88 and l b 6 g  3 are algebraic integers. These correspond to the 
lattice g2 o = f2/bo with Weierstrass function go 0 (z)= b g ga (bo z). Thus all the state- 
ments of the lemma hold for 4o = gao(~/bo) with 

Wo = max {1, h(b 4 g2), h(b 6 g3)}. 

But since 4o = b g ~ and 

Wo <W+61ogbo <cal w 

we deduce everything at once for 4 as well. This completes the proof. 

4. The Proposition: construction 

Let E and E* be elliptic curves defined over ~. As emphasized in the introduc- 
tion, we are identifying these with their Weierstrass equations, and consequently 
we have associated period lattices f2 and f2*. 

Let q~ be an isogeny from E* to E. There is a unique complex number 
such that q~ corresponds to multiplication by ct on the tangent spaces; thus 

f2* ___ f2 and the relative index [f2 : ~ I2"] is the degree of ~o. We shall say that 
~o is normalized if a = 1. We also say that q~ is cyclic if its kernel is a cyclic 
group; that is, the quotient f2/a f2* is cyclic. 

Of course any given isogeny can be normalized by a suitable change of 
scale. But this changes the invariants. In Sect. 6 we will show how to keep 
track of such a change. Meanwhile the present section and the next section 
are devoted to a proof  of the following result. 
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Proposition. Given a positive integer d, there exists an effective constant c, depend- 
ing only on d, with the following property. Suppose E and E* are elliptic curves 
defined over a number field k of degree at most d, and that there is a normalized 
cyclic isogeny from E* to E of degree N. Then there is an isogeny between E 
and E* of degree at most c {w(E) + w(E*) + log N} 4. 

We embark straightaway on the proof of this Proposition, with ~o as the 
normalized cyclic isogeny. Then f2*~ f2 and [O:f2*] =N.  Introduce basis ele- 
ments o91, 0;2 off2 and ~o*, ~o* oft2* as in Sect. 3, so that the numbers z=o~2/~ol 
and z =o92/o h lie in the usual fundamental region. Then there are rational 
integers mij (i, j = 1, 2) such that 

0)1" ----- m l l  0)1 -[- m12 (02, 0)~ = m21 (D1-1- m22 (D2 (4.1) 
and also 

mll mE2-ma2 m21 = +_N. (4.2) 

We shall apply transcendence techniques to the simultaneous linear forms (4.1). 
Write 

h= w(E) + w(E*) > 2, 

and let cl, c2 . . . .  be positive constants depending only on d. 

Lemma 4.1. We have 

Imijl<clN�89 ( i , j=  1, 2). 

Proof The equations (4.1) yield the relation 

Z* =(m22 z + m2t) / (m12 "c + ml 1), (4.3) 

and by taking imaginary parts we deduce 

Y* =(mx 1 mEE-m12mE1)Y [m12z+m111-2, (4.4) 

where y =  Imz and y* = I m  z*. This shows incidentally that the right-hand side 
of (4.2) should be + N. Now with x = Re z we get 

(m12 X + m l  1) 2 +(m12 y)2 = Im12 z + m l t l  2 = Ny/y*. (4.5) 
In particular 

l m121 < c2 {N/(yy*)}L (4.6) 

Also (4.5) leads to 

which by (4.6) gives 

[mll l <- lmlz xl + {lm~2 ytZ +(N y/y*)} ~ 

[ml t[ --<- ca (N y/y*)~ (4.7) 

using Ixl~�89 y_->�89 
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Next from (4.3) we get 

lm22 v+m21 ]2 = l z ,  lz [ml2z+ml 1 [2. 

Since y * >  �89 and iRe z*]< �89 we see that }z*[< c4 y*, and thus by (4.5) 

(m22 x + m 21) 2 + (m22 y)2 = [m22 .~ + m21 [2 ~ C5 N y y*. 
Therefore 

I m22 [ < c6(N y*/y)�89 
and 

[mEl J <~lm22 xl + {}m22 ylE + csN y y*}~ ~ c v ( N  y y*) ~. 

(4.8) 

(4.9) 

The present lemma, in slightly sharpened form, now follows from the inequalities 
(4.6), (4.7), (4.8) and (4.9) together with the bounds y <  c8 h and y* <c8 h arising 
from (ii) of Lemma 3.3. 

We now let C be a sufficiently large constant depending only on d, and 
we put 

L=h+logN>2 .  

We define positive integers D and T by 

D = E C2~ L23, T= E C39 L43. 

Let ~a(z) and ga*(z) be the Weierstrass functions corresponding to (2 and t2* 
respectively. For t > 0  and independent variables z~, z2 left ~( t )  denote the 
set of differential operators of the form 

O-~(t;3/OZ1)t~(C3/OZ2)t2(tl ~0,  t 2 ~0,  t 1 +t  2 <t). 

Lemma 4.2. There is a non-zero polynomial P(X1, X2, X~, X~), of degree at most 
D in each variable, whose coefficients are rational integers of absolute values 
at most exp(c 9 TL), such that the function 

f (z l ,  zE)=P(~o(zl), ~a (z2), ga* (rnl 1 zl +ml2 z2), ~a*(m21 zl +m22 z2)) 

satisfies 

for all 0 in 9 (8  T). 
t~f(�89 ~o,, �89 0 

Proof This runs along standard lines. Let M denote any monomial of degree 
at most D in each of the four functions appearing in f, and let 0 be any operator 
of 9 (8  T). Then 0 M can be written as a polynomial in the four numbers mi~ (i, j 
= 1, 2) as well as the twelve functions obtained from the above four by replacing 
the Weierstrass functions by their first and second derivatives. From Lemma 3 
(p. 157) of [Ba] it is easily seen that this polynomial has total degree at most 
Clo(D+T) and that its coefficients are rational integers of absolute values at 
most T 8 ~ e~ + 7. 
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Now by Lemma 4.1 we have log [ mijl <= ca 2 L for each non-zero mij (i, j = 1, 2). 
Also from (4.1) the twelve functions at (z~, z2)= (�89 COl, �89 co2) take the values 

go(~189 coj), go*(~189 co *) ( t=0,  1, 2 ; j =  I, 2). 

Since the invariants g2, g3, g~, g* have heights at most h < L, it follows easily 
that these values also have heights at most c I3L.  They lie in an extension 
k' of k of relative degree at most 34. 

Finally the conditions of Lemma 4.2 amount to R< ( 8 T)  2 homogeneous 
linear equations in S = ( D + I )  4 unknowns with coefficients in the field k' of 
degree at most 81d. Since S> CR these can be solved in rational integers using 
some form of Siegel's Lemma (see for example [AM] p. 26). We find the upper 
bound --T8T~L~D+T)~4 for the solution, and since D<___ T this completes the proof 
of the present lemma. 

Let now 9o(Z) and O](z) denote the functions in Lemma 3.1 corresponding 
to go (z) and go* (z) respectively. Thus the function 

6)(zl, z2)= {0o(Zl)Oo(Z2) 0'~(mll zl +m12 z2) O*(m2, z l  +m22 z2)} D 

is entire. We also define 

F(Zl, z2)= O(z~, z2) f (z~, z~). 

Lemma 4.3. The function F(zl, Z2) is entire. Further, for any complex number 
z and any operator ~ in ~ ( 4 T +  1) we have 

[ 3F(col z, co2 z)l~exp{cls L(T+D IzlZ)}. 

Proof Let 7, 7*, 3, 3*, ~, ~* be as in Sect. 3 corresponding to go, go*. Then 
F(Zl, z2) can be expressed as a polynomial in the eight functions 

3)--1 0(Zi), ~(Zi), 7•--1 0,(roll Zl +mi2z2), ~*(mll zl +mizz2) (i= 1, 2), (4.10) 

and it is therefore entire. Note that the polynomial appearing here is just the 
quadrihomogenized version of the polynomial P constructed in Lemma 4.2. 

Now write 

and 

M = max Imijl 
i , j  = 1,2 

A = min(A, A*) 

for the determinants A and A* of the lattices f2 and f2* respectively. Define 
6 = M  -~ AL For any complex number z let z~ and z2 be complex numbers 
satisfying 

We claim that 
]zi-ooizl =6  (i= 1, 2). (4.11) 

[F(zl, zz)[ <exp {c~6 L(T+ D [z[Z)}. (4.12) 
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For we have I z~[ < 6 + [cot z I, and so Lemma 3.1 leads to 

log max {]0(z,)l, 13(z31} <CxT{y-k -h-1 ~ 2 - 4 - h - 1  ]toll 2 Izl z} (i= 1, 2). 

Now A - 1 6  2 < M - 2 <  1, and from the estimates (i), (ii) and (v) of Lemma 3.3 
we find that the first two expressions in (4.10) have absolute values at most 

exp {c18 L(1 +1zl2)}. (4.13) 

The last two expressions are estimated in a similar way. The numbers z* 
=m~l Zl +m~2 z2 satisfy 

I z* - -09~z l<2M6 (i=1, 2) 

from (4.1) and (4.11). Thus we obtain this time 

log max {[ 0* (z*) I, I~* (z*) I} 
<c17{y*+4M2A*-Xf2+A*-~109* lZ l z [2  } (i= 1, 2). 

But 4 M 2 A * - 1 0 2 < 4 ,  and so, using Lemma 3.3 for E*, we end up with the 
upper bound (4.13) for the absolute values of all the expressions in (4.10). 

The inequality (4.12) now follows immediately from the estimates for the 
polynomial P given in Lemma 4.2. 

Finally the Cauchy Integral Formula expresses 

as the integral of 

(2 n i) 2 (tl ! t2 !)- 1 O F(09 1 z, 09 2 z) 

(zl-091 z)-"-~(z~-092z) -'2-1 V(z~, z2) 

around the circles defined by (4.11). So using (4.12) we find that 

]0F(091 z, 092 z)[ < t l !  t2! 6-(t'+t2)E, 

where E is the expression on the right-hand side of (4.12). By Lemma 4.1 and 
(iii) of Lemma 3.3, we have 6 > ei-9 h > c~-9 L, and the inequality of the present lemma 
follows immediately. This concludes the proof. 

Next we denote by Q the unique integral power of 2 that satisfies 

C'7/8 <Q<2CtV/8  

Lemma 4.4. For any odd integer q and ( =  q/Q, we have 

IO(091 ~, 092()l>=exp(-c20DLQ2). 

Further, for any 0 in ~(4  T+ 1) such that 0f(091 (, 032 ~) =~ 0, we have 

I0f(091 ~, 092 01> exp(-- C2o T LQ8). 
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Proof. We start by noting that for zl =(01~, z2=(02(  the functions appearing 
in f take the values 

~((01 ~), ~O ((02 ~), ~O*(O)l ~ ~), ~0"((0~ if). (4.14) 

By (i) of Lemma 3.4, these are algebraic numbers of degrees at most c21 Q2 
with heights at most c21 h. In particular 

max{y, 1~((0,01}__<c~ 2 (i=1, 2). 

It follows from Lemmas 3.1 and 3.3 that 

lO0((0i~)l>= "-ho2-y>'-hQ2~23 = ~24 (i= 1, 2); 

and a similar bound holds for 1~*(o9" 01 ( i= 1, 2). These together imply the first 
inequality of the present lemma. 

The second inequality follows rather as in the proof of Lemma 4.2. We write 
a=0f( (01  ~, co20 as a polynomial in the mij( i , j= 1, 2) and the twelve numbers 
obtained by replacing the Weierstrass functions in (4.14) by their first and second 
derivatives. We find without difficulty, again using (i) of Lemma 3.4, that 
has degree at most c25Q 8 and height at most c25TL. If a ~ 0  the required 
lower bound for I~1 follows at once. This completes the proof. 

Lemma 4.5. For any odd integer q and any t3 in 9 ( 4  T+ 1) we have 

O f (q (01/Q, q (02/Q) = 0. (4.15) 

Proof. Assume that this is not so. Then there exists an odd integer q and an 
operator d in 9 ( 4  T+ 1) such that 

~x- cqf((01 ~, (02 ~)~0 

for ~ =q/Q. Since f((01 z, 092 z) has period 1 we may suppose that 0 <  ( <  1, and 
by choosing a of minimal order we can also suppose that 

0~ 0((.01 (, (0 2 ( ) =  G(0, (4.16) 
where 

G(z) = OF((0t z, 09 2 z). 

We shall estimate G (0  by the usual Schwarz Lemma. 
N o w  any derivative G~~ can be written as a linear combination of the 

O'f(co~ z, COz z) for 6' in ~ ( t  + 1 + 4  T). Consequently by Lemma 4.2 and periodici- 
ty we have 

G~')(s+�89 (4.17) 
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for any integer t with 0 < t < 4 T and any integer s. We apply the Schwarz Lemma 
to (4.17) for O<s<S, where 

S=[C18L]. 
We find that 

IG(~)l<=2-4rS M, 

where M is the supremum of I G(z) l for I zl _-< 5 S. From Lemma 4.3 we get 

M < exp {Cz 6 L(T+ D $2)} =< exp (c27 LD $2). 

It follows that I G(01 < 2-z rs. Finally using (4.16) and Lemma 4.4 we see that 

I~1 ~ 2 - 2 r s  exp(c2oDLQ2)<= 2-Ts. 

But also from Lemma 4.4 we have the lower bound 

1~1 > exp(--C2o TLQS). 

These contradict each other; and so the present lemma is proved. 
This completes the constructive part of the proof of the Proposition. 

5. The Proposit ion: deconstruction 

We next interpret the equations (4.15) on the algebraic group G=EE• .2 
embedded in projective space as in Sect. 2. At one place in this section (Lem- 
ma 5.2) it will be necessary to assume that neither E nor E* has complex multipli- 
cation. In Sect. 7 we indicate how to eliminate this assumption. 

Let ~ be the usual exponential map from ~4 to G obtained from the functions 
ga(Zl), go(z2), ga*(z*), go*(z~) (and their derivatives) for independent complex 

* * Define a subspace Z of I/2 4 by the equations variables z~, Z2, Z1, Z 2. 

z*=ml lz l+m12z2 ,  z~=m21zx+m2zz2 (5.1) 

corresponding to (4.1). Write O, O* and OG for the zeros of E 2, E .2 and G 
respectively. 

Lemma 5.1. The intersection of e(Z) with 0 • E .2 is a finite group of cardinality 
at least N. 

Proof Let d be this intersection. Since N O _  ~2", it follows easily that N J  = OG, 
so J must be finite. Now recall that the isogeny ~o is cyclic. This means that 
we can find co in Q generating Q over ~*. Consider the homomorphism q; 
from Z 2 to d defined for integers al, az by 

O(al, d2) = ~ { a l  6.o, a2o~, (roll al +mlza2)~o, (m21 ax +mzaa2)o~}. 

Its kernel ~ may be identified in the usual terminology of the geometry of 
numbers (see [Ca] pp. 23, 24) with the polar lattice of N-~M,  where M is 
the lattice generated in 7. z by (rnl ~, m 12) and (m21, m22). Since M has determinant 
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N, we see that ~ has determinant N 2 N-1 = N  as well. Hence the cardinality 
of J is at least as large as that of ~(Z2), which is N. This proves the lemma 
(actually it can be shown that J has cardinality exactly N). 

Next let E be the set of even multiples~of the point 

cr=e(col/Q, co2/Q, co*/Q, og*/Q) 

in G. This has cardinality �89 Q. 

Lemma 5.2. Suppose H ~e G is a split connected algebraic subgroup of G. Then 
the points of S, are distinct modulo H. 

Proof. It suffices to show that if 2 r tr lies in H for some integer r, then �89 Q 
divides r. Write H = K x K *  for K in E 2 and K* in E .2. Then either K~-E 2 
or K*~=E .2. Suppose first that K . E  2. Since we are assuming that E has no 
complex multiplication, it follows by Kolchin's Theorem [K] that there is a 
non-zero linear form kl nl +k2 re2 vanishing identically on K. Here nl and rt2 
denote the projections of E 2 onto its factors, and kl and k2 are rational integers. 
Since K is connected, we can even suppose that k~ and k2 are relatively prime 
(see for example Lemma 3 (p. 430) of [MW 1]). Thus if 2 r cr lies in H, we see 
that 2r(klCOl+k2co2)/Q lies in f2. Hence Q divides both 2rk l  and 2rk2, and 
so Q divides 2 r; which is what we wanted to prove. 

If instead we have K*4=E .2 then the argument is exactly parallel. This 
completes the proof of the present lemma. 

For the rest of this section c~, c2 . . . .  will denote positive absolute constants. 
Recall that any connected algebraic subgroup H of G has the form ~(W) for 
some subspace W of C 4. 

Lemma 5.3. There is a connected algebraic subgroup H=e(W):~G of G such 
that 

TP RA <cl D', (5.2) 

where r is the codimension of H in G, A is the degree of H, R is the number 
of points in F, distinct modulo H, and p is the codimension of Z n W in Z. 

Proof. Let %0 denote the set of odd multiples of the point tr in G. In the usual 
terminology of multiplicity estimates, the equations (4.15) imply that there is 
a polynomial, homogeneous of degree D, that vanishes to order at least 4 T+ 1 
along e(Z) at all points of So, but does not vanish identically on G. This is 
almost the situation (with p =  1, n=4)  of Th6or6me 2.1 (p. 358) of Philippon's 
paper I-P]. In the notation of I-P], our %o is not %(4) but its translate a+%(4). 
This makes no difference to the proof in lP], and the conclusion is unchanged. 
The inequality (5.2) follows at once, provided we note that translations on a 
single elliptic curve may be described by homogeneous polynomials of degree 
2 (see for example Lemma 1 (p. 427) of [MW 1]). 

We now proceed to derive the new isogeny required in the Proposition, 
taking each possible value of p in (5.2) in turn. 

The case p = 2 is ruled out at once. For then (5.2) gives 

R <=c 2 C2 D r-4. (5.3) 
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Hence r = 4 ,  or H=Oo. So R=�89 but now (5.3) contradicts the definition 
of Q. 

Next consider the case p = 1. Then Z c~ W has dimension 1, so that r < 3. 
If H is non-split, the Isogeny Lemma provides an isogeny of degree at most  
c3 A 2. But (5.2) now implies A <c4C 2~ L 2. Thus we get our desired conclusion. 
So we may assume that H = K x K* is split. 

First suppose r = 3. Then Z c~ W and W both have dimension 1, so 

W ~  Z. (5.4) 

But also we must have K = O or K* = 0" .  If K = O, then (5.4) leads immediately 
to K * = O *  using (5.1), which is impossible. If K * = O * ,  we get similarly K=O, 
since the determinant in (4.2) is non-zero. So we cannot have r = 3. 

Next suppose r < 2  (and still p =  1). From Lemma 5.2 we have R=�89 but 
(5.2) now implies R < c5 C, again contradicting the definition of Q. 

This finishes the case p = 1. It  remains to consider the case p = 0. Now 

z _  w (5.5) 

and so r < 2. 
First suppose r = 2. Then Z = W, so that by Lemma 5.1 the intersection J 

of H with O • E .2 is a finite set of cardinality at least N. Therefore d e g J  > N. 
On the other hand, since O x E .2 is defined by equations of degree at most  
3, we find using Lemma 2.2 that d e g J ~ 9 A .  Thus N<9A. But (5.2) now implies 
A < c l  D:. So N<9cl  D2<c6C4~ 4, and we see that the degree of the original 
isogeny q~ satisfies the required estimate. 

Next suppose r =  1. Then by (5.1) and (5.5) we see that W is defined by 
a single equation of the form 

21 (mll Z1 + m i 2  Z2--z~)"~,~2(m21 Z1 q-m22 z2--z~) = 0  (5.6) 

for complex numbers 21, 22 not both zero. The left-hand side of (5.6) clearly 
must involve either z* or z*; and since the determinant in (4.2) is non-zero 
the same holds for Zl and z2. It  follows easily that H = e ( W )  is non-split. Now 
(5.2) implies A<ClD, and therefore the Isogeny Lemma gives us our desired 
isogeny of degree at most c3 A 2 _-<c7 C 4~ L 4. 

This finishes the case p = 0, and thereby completes the proof  of the Proposi- 
tion, at least when there is no complex multiplication. 

6. Normalizing the isogeny 

In order to apply our Proposition, we have to show how our isogenies can 
be assumed to be both cyclic and normalized. The arguments of this section 
will hold even in the case of complex multiplication. Let K be a subfield of 
C. 
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Lemma 6.1. Suppose Ex and E 2 are  elliptic curves defined over K and q~ is an 
isogeny between them. Then q~ is defined over an extension of K of relative degree 
at most 12. 

Proof Suppose ~o corresponds to multiplication by ct on the tangent spaces. 
Let a be any automorphism of ~ fixing K. Then a q~ is also an isogeny between 
E1 and Ez, and it corresponds to multiplication by a~. Composing rr~0 with 
the dual of ~0, we must end up with an endomorphism of one of the elliptic 
curves. It follows that (rrct)/~ lies in some complex quadratic extension F of 
Q not depending on a. In particular, as a varies we obtain at most countably 
many a ~, and so ~ must be algebraic over K. 

The minimal equation for ~ over K may be written in the form 

xe + al x ~-~' + ... +a, ,  = 0  (6.1) 

for non-zero al,  ..., an in K and integers e, e~, ..., e,, with l < e ~ < . . . < e , , = e .  
Then the roots of (6.1) are the different a~. Since (a~t)/~ lies in F, it follows 
that for each i with l < i < m  the ei-th symmetric function +a i  of these roots 
is a multiple of ~e, by an element of F. Thus each ~ '  lies in the compositum 
K F  of K and F. Consequently /3=~ h also lies in KF,  where h is the highest 
common factor of el, ..., e,,. 

However, the left-hand side of (6.1) can be written as a polynomial in x h, 
and therefore e2~/h~ is also a root  of (6.1). Thus e 2ni/h lies in F. As F is complex 
quadratic, this implies h<6 .  It follows that ~=fla/h is of degree at most 6 over 
KF, and therefore of degree at most 12 over K. So there are at most 12 possible 
values of a~. Hence there are at most 12 possible conjugate isogenies rr~0; 
which means that ~o must be defined over an extension of K of relative degree 
at most 12. This completes the proof  (actually it can be shown that the number 
12 here is sharp). 

Lemma 6.2. Suppose Ea and E 2 are  elliptic curves defined over K and ~o is an 
isogeny between them also defined over K, of minimal degree among such isogenies. 
Then ~o is cyclic. 

Proof This is just group theory. Suppose to the contrary that ~o maps E~ to 
E 2 and that its kernel �9 is of order N but is not cyclic. Writing �9 as a product 
of cyclic groups of prime-power order, we see that there must be at least two 
factors of orders pa and pb for some prime p and some positive integers a and 
b. In particular �9 contains a product  of two cyclic groups of order p, and 
it therefore contains the kernel of multiplication [p] by p on E x. Since [p] 
is defined over K, we deduce from Corollary 4.11 (p. 77) of [S] that ~o factorizes 
through [p] to give an isogeny from E1 to E2, still defined over K, of degree 
N/p 2. This contradicts minimality and thereby proves the lemma. 

Lemma 6.3. Let • and •* be lattices with Weierstrass functions fa(z) and ~a*(z) 
respectively, and suppose ~ is a sublattice of ~* of index N. Then 

(i) ~a* (z) = ~a (z) + Y, {ga (z + o~*)- 8a (co*)} 

where the sum is over representatives in* of non-zero elements of O*/Q, 
(ii) ga* (z) is a rational function of ~o (z) of degree N. 
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Proof. The difference between the two sides in (i) is readily seen to be an entire 
function periodic with respect to f2*; and it vanishes at z =0.  This gives (i). 
And (ii) follows easily from standard arguments; for example the denominator 
of the required rational function can be taken as the product H {ga (z)-ga (co*)} 
over all o~* as in (i). This completes the proof. 

Lemma 6.4. For B > 1, S > 1 let ~ be an algebraic number such that 
(i) there is a positive integer b < B such that b ~ is an algebraic integer, 

(ii) all conjugates of  ~ have absolute values at most S. 
Then h(~) < log(BS). 

Proof Let F be any number field, of degree m say, that contains e. Then 

m h(ct)=~, log max(l ,  Icily) 

where the sum is over all suitably normalized valuations v on F. For  non- 
archimedean v we have 

I~lv=lb -~ Iv Ib ctlv~ I b - '  Iv 

and so this part of the sum contributes at most m log b < m log B. For  archime- 
dean v we have [~ Iv < S, and so this part contributes at most m log S. The lemma 
follows at once. 

We can now effectively normalize our given isogeny. 

Normalizing Lemma. Given a positive integer d, there exists a constant c, depend- 
ing only on d, with the following property. Let k be a number field of  degree 
at most d, let E and E* be elliptic curves defined over k, and let qo be an isogeny 
from E to E* of  degree N. Suppose k' is the smallest extension field of  k over 
which q~ is defined. Then k' has relative degree at most 12 over k, and we can 
find an elliptic curve E*, defined over k' and isomorphic over k' to E*, such 
that the induced isogeny from E to E* is normalized. Further we have 

w(E*) < c w(E) + 13 log N. 

Proof By Lemma 6.1 we have [k ' :k ]  < 12. Let O be the period lattice of E 
and let O* be the kernel of ~0 composed with the exponential map on E. Thus 
(2 is a sublattice of O* of index N. By Lemma 6.3, the Weierstrass function 
corresponding to t2* is given by 

* (z)  = (z)  + { ( z  + - go (6.2) 

where the sum is over all representatives co* of non-zero elements of f2*/f2. 
Now recall that if g2 and g3 are the invariants of f2 we have the Laurent 

expansion 

fo (z) = z -  2 + (g2/20) z z + (g3/28) z 4 + .... 
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with a similar expression for ~*(z) involving the invariants g~ and g* of O*. 
Multiply (6.2) by z 2, differentiate four times and then six times, and put z =0. 
We find that 

g* = g2 + 10~  ga" (co*), g* =g3 + (7/6) ~ fattv)(e~*). (6.3) 

The differential equation for go (z) gives also 

go"(z) = 6 (go (z))2 - �89 g2, gotiV)(z)=120(fo(z))3-18g2go(z)-12g3 . (6.4) 

Now let cl, c 2 . . . .  be positive constants depending only on d, and write 
w=w(E). Since Nf2*_~O, we see that each ~o* lies in O/N but not in t2. Thus 
from (ii) of Lemma 3.4 we obtain a positive integer b t < c'~ such that each 
bl N 2 ~o(~o*) is an algebraic integer. We may also suppose that bl g2 and bl g3 
are algebraic integers. It follows from (6.3) and (6.4) that bg* and bg* are 
algebraic integers for some positive integer b < B < c~ N 6. We also have the esti- 
mate I go (o~*)l < c~' S 2, and we deduce similarly that I g* ] < S, [g* I < S for some 
S <c'~ N 7. 

Next we claim that the same estimate holds for the absolute values of all 
the conjugates ofg~ and g*. For  these are given by expressions like (6.3) involving 
the conjugates of g2 and g3 and the corresponding conjugate Weierstrass func- 
tions; and since conjugate fields have the same degree, Lemma 3.4 applies to 
these conjugates as well (compare [Ba] p. 159). 

Now let E* be the elliptic curve with invariants g* and g]. The required 
estimate for w(E*) follows at once from Lemma 6.4 and the above bounds for 
B and S. Since ~p is defined over k' the coordinates go(og*) of the non-zero 
points of its kernel �9 form complete sets of conjugates over k', and it follows 
from (6.3) that g* and g* lie in k'. Finally E* can be identified with C/O* 
= (~/O)/(f2*/f2) and so with E/R; also the map tp factorizes through an isomorph- 
ism from E/~ to E* that is clearly defined over k'. And since f2___f2* and 
[f2* : f2] = N  the induced isogeny from E to E* is normalized. This completes 
the proof of the lemma. 

No particular significance attaches to the number 13 appearing in this result; 
it merely reflects our comparatively crude choice of measure w(E) for the elliptic 
curve E. 

7. Proof of Theorem 

Let ct, c2 . . . .  denote positive constants depending only on d. Suppose E is 
isogenous to some elliptic curve E* also defined over k. Let N be the smallest 
degree of any isogeny between E and E*. By Lemma 6.2 there is a cyclic isogeny 
from E to E* of degree N. We now use the Normalizing Lemma to construct 
an extension k' of k with [k ' :k]  < 12, and an elliptic curve E* defined over 
k' and isomorphic to E*, such that the induced isogeny ~p from E to E* is 
normalized, and we have 

w(E*)6Cl(W(E)+logN). 
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Since q~ is cyclic, we deduce from the Proposition that there is an isogeny between 
E and E* whose degree N1 satisfies 

N1 < c2 (w (E) + w (E*) + log N) 4 < c3 (w (E) + log N) 4. 

So there is also an isogeny of degree N1 between E and E*, and the minimality 
of N implies that 

N <= N1 < c3 (w(E) + log N) 4. 

Therefore N<c4(w(E)) 4, and this completes the proof of the Theorem, at least 
when there is no complex multiplication. 

We next show how to proceed when at least one of E and E* has complex 
multiplication. Of course in this case both curves must have complex multiplica- 
tion, and even over the same quadratic field F. Since the arguments of Sect. 6 
hold in general, it suffices to prove the Proposition in this case. 

All we need for this is a single relation from (4.1). Write this as co*=pl  co 1 
where #1 = ml 1 + m12 z. We can then construct an auxiliary polynomial involving 
just the functions fd(z) and ~a*(#l z) evaluated at rational multiples of Z=Ol  
(it turns out that there is no gain in considering multiples by irrational numbers 
in F). 

The only problem with this approach is to estimate the height of #1 in 
terms of N and the parameter h=w(E)+w(E*). In view of Lemma4.1,  it is 
enough to estimate the height of z. This can be done using a result of A. Faisant 
and G. Philibert [FP]  as follows. By (i) of Lemma 3 (p. 187) of [FP],  there 
is a positive integer b<(0.191)log]j(z)[ such that bz is an algebraic integer; 
at least provided z # e  2"I/3. From this it follows easily from Lemma 6.4 that 
the (non-logarithmic) absolute height of r is at most c h 2 for some c depending 
only on d (see also p. 192 of [FP] for the slightly sharper estimate c h3/2). This 
comfortably suffices for our purposes (in fact our proof would operate even 
with an exponential estimate ch). 

The constructive part of the proof of the Proposition now presents no difficul- 
ties; indeed we no longer have to use Baker's method or division values. The 
deconstructive part also simplifies considerably; we can show directly using 
the elementary results of [BM] that the auxiliary function must vanish identi- 
cally. Then a simple argument leads to the desired new isogeny. Because the 
proofs are much closer to the classical style, we excuse ourselves from giving 
any further details. 

Actually these considerations lead to a little more information. The new 
isogeny q~l constructed in this way clearly corresponds to multiplication on 
the tangent spaces by some rational multiple of #1- But we could equally well 
have argued with the second relation o*=/~2col from (4.1), where p2 = 
m21 +m22z. This yields a new isogeny q)2 corresponding to multiplication on 
the tangent spaces by some rational multiple of p2. Since #1/P2 = co*/~o* is irratio- 
nal, the isogenies ~ol, (~2 must be linearly independent over the rational integers. 

It follows without difficulty that by suitably adapting the arguments of Sect. 7 
we can prove that if E has complex multiplication and is isogenous to a second 
elliptic curve defined over k, then there are two linearly independent isogenies 
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between them of degrees at most c(w(E)) 4. It is amusing to note further, in 
the style of successive minima, that thanks to the use of the smaller periods 
~01 and o~*, the estimate for the degree of one of these isogenies can be improved 
to c(w(E)) 2. In particular, our Theorem for a single isogeny holds with c(w(E)) 2 
in place of c(w(E)) 4 in the case of complex multiplication. 

It is perhaps also worth remarking that in the case of complex multiplication 
it is easy to construct explicitly a complex number fl:~0 such that f l(Z+Zz)~_ 
Z + Z z * .  This corresponds to an isogeny from E to E*, and by using the esti- 
mates of [FP] for ~* as well as ~, we find that its degree is at most c h  6 for 
c depending only on d. So we obtain an estimate slightly weaker than that 
of the Proposition, but on the other hand it is independent of N. 

Finally, as promised, we show that the estimate of the Isogeny Lemma in 
Sect. 2 cannot be improved, except possibly for the constants. We need first 
a result about isogenies considered as projective morphisms. 

Lemma 7.1. Let El and E 2 be elliptic curves in ~2 and let 99 be an isogeny from 
E~ to E 2 of degree N. Then, as a morphism, tp can be described by homogeneous 
polynomials of degrees 8 N. 

Proof. By a change of scale we can suppose that q~ is normalized in the sense 
of the preceding sections. It follows from Lemma 6.3 that the Weierstrass func- 
tion go2(z) is a rational function of degree N in ~ ( z ) .  Differentiation then 
gives ga'2(z)/ga'~(z) as a rational function of degree at most 2N in gd~(z). The 
resulting expressions show that, at least on some non-empty open subset of 
El, the map ~0 can be described by homogeneous polynomials of degree 2N. 

Now, as remarked in Sect. 5, any translation Ta by a on E1 can be described 
as a morphism by homogeneous polynomials of degree 2. The present lemma 
follows easily by writing 

q~(x,) = Tb (~o (To (x,))) (b = - ~o (a)) 

for all a in E~. Actually it is not too difficult to reduce the degree 8N to 
N, by using the explicit formulae in [V] (p. 239) together with the considerations 
of [MW 1] (p. 448). 

Now let N = n  2 be any perfect square, and let E1 and E2 be the elliptic 
curves with period lattices 

O1 =~E+ iNZ,  f22 = Z + i ~ .  

The inclusion O1---O2 gives rise to a (normalized) cyclic isogeny q~ from E1 
to E2 of degree N, and it is easy to see that there is no isogeny of smaller 
degree. As usual embed G = El x E2 in ~8. We proceed to construct a non-split 
connected algebraic subgroup H of G with degree 

A ~ 24. 36 N �89 

This shows that for n l=n2  = 1 the exponent 2 in the Isogeny Lemma cannot 
be improved, and even that the constant 32 cannot be replaced by anything 
smaller than 2-  a. 3-12. 
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Consider first the algebraic subgroup H' of G defined as the set of (x~, x2) 
in G for which q)(x1)-~nx 2. Lemma 7.1 shows that ~0 is described by homoge- 
neous polynomials of degree 8N. Also Serre proves ([Wa] p. 195 - see also 
[MW 1] p. 447) that multiplication by n can be described by homogeneous 
polynomials of degree rt 2 = N. It follows that H' is defined in G by homogeneous 
polynomials of degree 8 N. Since already G is defined in ~8 by homogeneous 
polynomials of degree 3, we deduce from two applications of Lemma 2.2 that 

deg H' < 23. 36 N. 

Now H' is generally not connected. Indeed let ~b be the isogeny dual to 
q~, and define a function f from Ea • E2 to E~ by 

On H' we have 
f ( x , ,  x2)= n xl - ~b (x2). 

go ( f (x l ,  xz)) = n qo(x O -  N x2 = n(cp(Xl)-- n xz) =0. 

Therefore f(H') is finite. Let x~ be any element of the kernel ~ of q~. Since 
~o(xl)=0 and f ( x t ,  0 ) = n x l ,  we see that nxl  is in f(H'). Since ~ is cyclic of 
order n 2, we get exactly n different points nxl in this way. Thus the cardinality 
o f f (H ' )  is at least n. 

It follows that H' has at least n connected components. If A is the degree 
of the maximal connected subgroup, these components all have degrees at least 
�89 (see [MW2] p. 243 or l-P] p. 376). Thus, as promised, 

A <2n -~ degH'<=24.36n=24.36N �89 

This example for n l = n 2 = 1  can readily be extended to arbitrary nt and 
n2, and even to arbitrary values of the dimension d of H. We simply take 
any product of factors of E q ' - l x  E~ 2-1 and we multiply this by the above 
subgroup H of E~ • E2. 
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