Areas of Projections of Analytic Sets

H. Alexander (Ann Arbor), B. A. Taylor (Ann Arbor) and J. L. Ullman (Ann Arbor)

1.

If V is a pure 1-dimensional analytic subvariety of C^n , then the area of V is the sum of the areas, counting multiplicity, of the projections of V onto the n coordinate lines [5, 6]. If V is a pure 1-dimensional variety in the unit ball in \mathbb{C}^n which passes through the origin, then [5] the area of V is at least π . Together these theorems imply that a 1variety through 0 in the unit ball has the property that the sum of the areas of its projections on the coordinate lines, taken with multiplicity, is bounded below by π . We shall generalize this result by showing that the conclusion is valid without counting multiplicities. A similar property of higher dimensional varieties will also be obtained. The proof depends upon a one variable result (Theorem 1) which relates the area of the image of a function analytic in the unit disc to its L^2 -norm on the circle. As an application we extend a result of Nishino [4] to the effect that a family of varieties is locally finite if each family of coordinate slices is such. This in turn will be applied to complete a theorem of Rothstein [7] on characterizing analytic sets in C^n as those whose coordinate slices are analytic sets.

2.

We begin with the basic one variable result. Here D will denote the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$ and N the usual Nevanlinna space of analytic functions of bounded characteristic on D [2, p. 16]. For $f \in N$, f^* will denote the boundary function

$$f^*(e^{i\theta}) = \lim_{r \to 1^-} f(r e^{i\theta})$$

defined for almost all θ .

Theorem 1. Let $f \in N$ and f(0) = 0. Then

$$\frac{1}{2}\int_{0}^{2\pi} |f^*(e^{i\theta})|^2 d\theta \leq \operatorname{area}(f(D)).$$

This theorem follows by integrating, with respect to t, from 0 to $+\infty$ in the following inequality [3, pp. 421-422].

22 Inventiones math., Vol. 16

Lemma. Let $f \in N$, f(0) = 0. Then for t > 0, $t \notin \{e^{i\theta} : | f^*(e^{i\theta})| > t\} \le \ell(f(D) \cap \Gamma)$

where $\Gamma_t = \{w : |w| = t\}$ and ℓ is arc length measure.

Proof. Fix r, 0 < r < 1, and t > 0. Put $E_t = \{e^{i\theta} : |f_r(e^{i\theta})| > t\}$ where $f_r(z) = f(rz)$. Now let u(z) be the bounded harmonic function in D with boundary values equal to 0 if $e^{i\theta} \notin E_t$ and -1 if $e^{i\theta} \in E_t$. That is,

$$u(z) = \frac{-1}{2\pi} \int_{E_t} \operatorname{Re}\left(\frac{e^{i\theta} + z}{e^{i\theta} - z}\right) d\theta.$$

Note that $u(0) = \frac{-1}{2\pi} \ell(E_t)$, and that

$$|f_r(e^{i\theta})| < t \Rightarrow \lim_{z \to e^{i\theta}} u(z) = 0.$$
(2.1)

Now, define $\varphi(w)$ for $|w| \leq t$ by

$$\varphi(w) = \begin{cases} \min \{u(z): f_r(z) = w, z \in D\} & \text{if } w \in f_r(D) \\ 0 & \text{if } w \notin f_r(D). \end{cases}$$

We claim that φ is superharmonic in |w| < t.

We will assume that $E_t \neq \emptyset$, since otherwise (2.5) below is trivial. Therefore, since f_r is analytic on |z| = 1, the set

$$F_t = \{e^{i\theta} \colon |f_r(e^{i\theta})| = t\}$$

is finite. Now φ is continuous on $|w| \leq t$ except possibly for the finite set $f_r(F_t) \subset \{w: |w| = t\}$. Off the finite set X of critical values of f_r in $|w| \leq t$. (2.1) implies that φ is locally the minimum of a finite number of harmonic functions, hence superharmonic off X. Since φ is continuous in |w| < t and X is discrete, it follows that φ is superharmonic in |w| < t.

In particular, we have

$$\varphi(0) \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi(t \, e^{i\theta}) \, d\theta.$$
(2.2)

Now, $\varphi(t e^{i\theta}) = 0$ unless $t e^{i\theta} \in \overline{f_r(D)}$ in which case $\varphi(t e^{i\theta}) \ge -1$ because $u(z) \ge -1$ for $z \in D$. Thus, we get from (2.2),

$$\varphi(0) \ge \frac{-1}{2\pi} \frac{\ell\left(\overline{f_r(D)} \cap \Gamma_t\right)}{t}.$$
(2.3)

On the other hand, since $f_r(0) = 0$, we have

$$\varphi(0) \leq u(0) = -\frac{1}{2\pi} \ell(E_t).$$
(2.4)

From (2.3) and (2.4) it follows that

$$t\,\ell(E_t) \leq \ell\left(\overline{f_r(D)} \cap \Gamma_t\right). \tag{2.5}$$

But, $\overline{f_r(D)} \subset f(D)$, so

$$t \,\ell \,\{e^{i\theta} \colon |f_r(e^{i\theta})| > t\} \leq \ell \left(f(D) \cap \Gamma_t\right).$$

Letting $r \to 1^-$ gives the desired result because $f_r(e^{i\theta}) \to f^*(e^{i\theta})$ a.e., and therefore also in measure. Q.E.D.

Remark. The superharmonic function φ of the proof was essentially introduced by Nishino [4, p. 259] for a related problem.

In the next theorem, B denotes the unit ball in \mathbb{C}^n ,

$$\left\{z = (z_1, \ldots, z_n): \sum_{1}^{n} |z_i|^2 < 1\right\}.$$

Theorem 2. Let V be a pure 1-dimensional analytic subvariety of B containing the origin. Then the sum of the areas of the projections of V on the n coordinate lines is at least π .

Proof. We may assume that V is irreducible. Let V* be the normalization of V, $\tau: V^* \to V$ the associated projection. Since V* carries nonconstant bounded analytic functions, the uniformization theorem for Riemann surfaces implies that the universal covering surface of V* is D, the unit disc. Let $\Psi: D \to V^*$ be the universal covering map, chosen so that $(\tau \circ \Psi)(0)=0$. Now $\tau \circ \Psi$ is given by n analytic functions f_1, \ldots, f_n on D with $f_j(0)=0$ and $\sum_{i=1}^{n} |f_j(z)|^2 < 1$.

The f_i are bounded and have boundary functions f_i^* . We claim that: a.e. $d\theta$

$$\sum_{1}^{n} |f_{j}^{*}(e^{i\theta})|^{2} = 1.$$
(2.6)

In fact, let $S = \{e^{i\theta}: \text{each } f_j, 1 \leq j \leq n$, has a radial limit at $e^{i\theta}\}$. The complement of S is a null set as each f_j has a radial limit a.e. $d\theta$. We will show that (2.6) holds for $e^{i\theta} \in S$. Suppose not, then there is $e^{i\theta_0} \in S$ such that $\sum |f_i^*(e^{i\theta_0})|^2 < 1$. Then $\alpha = (f_1^*(e^{i\theta_0}), \dots, f_n^*(e^{i\theta_0})) \in B$ and for $0 \leq t \leq 1$, $t \to (\tau \circ \Psi)(t e^{i\theta_0})$ is a path in V from 0 to α . It follows that for $0 \leq t \leq 1$, $t \mapsto \Psi(t e^{i\theta_0})$ is a path in V* from $\Psi(0)$ to some point α^* with $\tau(\alpha^*) = \alpha$. This path, however, does not lift to a (compact) path in D, with initial point 0 and this contradicts the fact that Ψ is a covering projection. Thus (2.6) holds on S.

Now apply Theorem 1 to f_i :

$$\frac{1}{2} \int_{0}^{2\pi} |f_j^*(e^{i\theta})|^2 d\theta \leq \operatorname{area}\left(f_j(D)\right)$$

Adding for $1 \leq j \leq n$ and using (2.6) we get

$$\pi \leq \sum_{j=1}^{n} \operatorname{area} \left(f_j(D) \right).$$

But $f_i(D)$ is the projection of V to the *j*-th coordinate line. Q.E.D.

Remark. An alternate proof of Theorem 2 in the context of polynomial convexity and based upon the elements of Banach algebras will appear in [1].

Next we want to generalize Theorem 2 to higher dimensional varieties. If α is a k-tuple of integers $(i_1, i_2, ..., i_k)$ with $1 \leq i_j \leq n$, we denote the length, k, of α by $|\alpha|$ and by π_{α} the projection $\mathbb{C}^n \to \mathbb{C}^k$: $\pi_{\alpha}(z_1, ..., z_n) = (z_{i_1}, z_{i_2}, ..., z_{i_k})$. It is known that if V is a pure k-dimensional analytic subvariety through 0 in the unit ball in \mathbb{C}^n , then the sum of the 2k-dimensional measures of the sets $\pi_{\alpha}(V)$ counted with multiplicity and taken over increasing α 's is bounded below by $\pi^k/k! = \text{the } 2k$ -volume of the unit ball in \mathbb{C}^k . In fact, this sum is just the 2k-volume of V [5]. We would like to show that the result remains valid without counting multiplicity. We have

Theorem 3. There are positive constants C_k such that if V is a pure k-dimensional subvariety of the unit ball in \mathbb{C}^n passing through 0 then

$$\sum_{|\alpha|=k}' \lambda_{2k} (\pi_{\alpha}(V)) \ge C_k$$

where the prime denote summation over increasing α 's and λ_{2k} is Lebesque measure in \mathbf{C}^{k} .

Remark. The constants C_k are independent of *n*. A natural conjecture is that $\pi^k/k!$ can be chosen for C_k but we are unable to prove this unless k=1.

Proof. We proceed by induction on k, assuming the result for j < k (for k = 1 this is just Theorem 2). Let B(p, r) be the Euclidean ball about p of radius r and let $W = V \cap B(0, \frac{1}{2})$. Since W contains a 1-dimensional variety through 0, we apply the 1-dimensional result in the ball of radius $\frac{1}{2}$ (necessitating a scale change) and conclude:

$$\sum_{j=1}^{n} \lambda_2 \left(\pi_j(W) \right) \ge (\frac{1}{2})^2 \pi.$$
(2.7)

Consider $\pi_n(W)$. If $\zeta \in \pi_n(W)$, there is $\zeta' \in \mathbb{C}^{n-1}$ such that $q = (\zeta', \zeta) \in V$ and $||q|| < \frac{1}{2}$. Let $H_{\zeta} = \{z \in \mathbb{C}^n : \pi_n(z) = \zeta\}$ and consider the (k-1)-variety $H_{\zeta} \cap V$ (we may assume that V is irreducible so that dim $H_{\zeta} \cap V < \dim V$). Now $q \in H_{\zeta} \cap V$ and we may apply the (k-1)-dimensional result to $H_{\zeta} \cap V \cap B(q, \frac{1}{2})$ in $B(q, \frac{1}{2})$ and obtain:

$$\sum_{\substack{|\beta|=k-1\\n\neq\beta}}^{\prime} \lambda_{2k-2} \big(\pi_{\beta}(H_{\zeta} \cap V) \big) \ge (\frac{1}{2})^{2k-2} C_{k-1}.$$

This sum is over β with $n \notin \beta$ since $\pi_n \equiv \zeta$ on $H_{\zeta} \cap V$. Integrating over $\pi_n(W)$ we get

$$\sum_{\substack{|\beta|=k-1\\n\notin\beta}}'\int_{\pi_n(W)}\lambda_{2k-2}(\pi_\beta(H_\zeta\cap V))d\lambda_2(\zeta)\geq (\frac{1}{2})^{2k-2}C_{k-1}\lambda_2(\pi_n(W))$$

Applying Fubini's theorem to the integrals on the left yields

$$\sum_{\substack{|\beta|=k-1\\n\neq\beta}} \lambda_{2k} (\pi_{(\beta,n)}(V)) \ge (\frac{1}{2})^{2k-2} C_{k-1} \lambda_2 (\pi_n(W)).$$
(2.8)

Now the replacing in (2.8) of *n* by *j*, with $1 \le j \le n$, leads to *n* inequalities of the same type. Adding these and recalling (2.7) we get

$$\sum_{j=1}^{n} \sum_{\substack{|\beta|=k-1\\ j \notin \beta}} \lambda_{2k}(\pi_{(\beta,j)}(V)) \ge (\frac{1}{2})^{2k} \pi C_{k-1}.$$
(2.9)

For a fixed α with $|\alpha| = k$ there are at most k (β, j) 's such that $(\beta, j) = \alpha$ as sets of k integers. Thus each 2k-volume term in the left hand side of (2.9) is repeated at most k times. It follows that we may choose C_k to be $\pi C_{k-1}/k 2^{2k}$. Q.E.D.

3.

As an application we have

Theorem 4. Let \mathscr{V} be a family of pure k-dimensional analytic subvarieties in an open subset Ω of \mathbb{C}^n . Suppose that for every coordinate (n-k)-plane H (= an affine linear subspace of \mathbb{C}^n obtained by fixing k of the coordinates), the family $\mathscr{V}_H = \{V \cap H : V \in \mathscr{V}\}$ is locally finite. Then \mathscr{V} is locally finite.

Remark. This extends a result of Nishino [4] who treated the case of varieties of codimension 1.

Proof. We argue by contradiction. If \mathscr{V} is not locally finite then there is $p \in \Omega$ and distinct $\{V_j\}_1^{\infty} \subseteq \mathscr{V}$ with $p_j \in V_j$ such that $p_j \to p$. Choose r > 0such that $\overline{B(p, r)} \subseteq \Omega$. Let $W_j = V_j \cap B(p, r)$, and let α be a k-tuple. If $\zeta \in \mathbb{C}^k$, then $\pi_{\alpha}^{-1}(\zeta)$ is a coordinate n-k plane and so $W_j \cap \pi_{\alpha}^{-1}(\zeta)$ is empty for large j by hypothesis. That is, the sets $\pi_{\alpha}(W_j)$ eventually omit every point in $B(\pi_{\alpha}(p), r)$. It follows that $\lambda_{2k}(\pi_{\alpha}(W_j)) \to 0$ for every α . But by Theorem 3 a finite sum of such terms is bounded below by a number approaching $r^{2k} C_k$ (since $p_i \rightarrow p$). This is a contradiction. O.E.D.

Theorem 5. Let A be a subset of an open set $\Omega \subseteq \mathbb{C}^n$. Let $r \ge 1$ be an integer. Suppose that the intersection of A with every coordinate hyperplane (i.e. every coordinate (n-1)-plane) is a pure r-dimensional subvariety of Ω . Then A is a subvariety of Ω (of dimension r + 1).

Remark. Rothstein proved this proposition under the further assumption that A is a (relatively) closed subset of Ω in [7] and asked there if this restriction was really needed. What we shall prove here is simply that the hypotheses of the theorem force A to be a relatively closed subset of Ω .

Proof. In order to show that A is a relatively closed subset of Ω it is enough to show that if $0 \in \overline{A} \cap \Omega$ then $0 \in A$. We argue by contradiction and suppose otherwise; i.e. that $0 \in \overline{A} \cap \Omega$ but $0 \notin A$. Then if H is the coordinate hyperplane $\{z: \pi_n(z)=0\}, A \cap H$ is a subvariety of Ω and hence relatively closed. Consequently, as $0 \notin A$ there is $\delta > 0$ such that

$$\{z: |z_1| \le \delta, |z_2| \le \delta, \dots, |z_{n-1}| \le \delta, z_n = 0\} \cap A = \emptyset$$

$$(3.1)$$

and by choosing δ small enough we may assume that

$$\{z\colon |z_j|\leq \delta, 1\leq j\leq n\}\subseteq \Omega.$$

As $0 \in \overline{A}$ there are $(c_j, c'_j) \in (\mathbb{C}^{n-1} \times \mathbb{C}) \cap A$ such that $c'_j \to 0$, $c_j \to 0$ and $c_j = (c_1^j, \dots, c_{n-1}^j) \in \mathbb{C}^{n-1}$ with each $|c_s^j| < \delta$ and $|c'_j| < \delta$. Let $\Omega_1 = \{z \in \mathbb{C}^{n-1} : |z_s| < \delta, 1 \le s \le n-1\}$, let $\tilde{\pi} : \mathbb{C}^n \to \mathbb{C}^{n-1}$ be the pro-

jection $\tilde{\pi}(z_1, \ldots, z_n) = (z_1, \ldots, z_{n-1})$ and let

$$W_{i} = \tilde{\pi}(A \cap \{z : |z_{1}| < \delta, \dots, |z_{n-1}| < \delta, z_{n} = c_{i}\}).$$

Then W_i is a r-dimensional subvariety of Ω_1 and $\{W_i\}$ is not a locally finite family as $W_j \ni c_j \rightarrow 0$. Hence by Theorem 4, the intersections of the W_j 's with some coordinate (n-1)-r plane is not locally finite and consequently there is a coordinate n-2 plane K in \mathbb{C}^{n-1} such that the sets $K \cap W_j$ are not eventually empty. Passing to a subsequence we may assume that $K \cap W_i$ is never empty. Without loss of generality, we may assume that $K = \{z \in \mathbb{C}^{n-1}: z_1 = \lambda\}$ where $|\lambda| < \delta$. This means that there are points $d_j = (d_1^j, \dots, d_{n-2}^j) \in \mathbb{C}^{n-2}$ such that each $|d_s^j| < \delta$ and $(\lambda, d_j) \in W_j$. Hence $(\lambda, d_i, c_i) \in A$. By passing to a subsequence, we may assume that $d_s^j \rightarrow d^j$ with $|d^j| \leq \delta$. Put $d = (d^1, d^2, \dots, d^{n-2})$. Now $A \cap \{z: z_1 = \lambda\}$ is a relatively closed subset of Ω and contains the points (λ, d_i, c'_i) which converge to $(\lambda, d, 0) \in A$. But this contradicts (3.1) and we conclude that A is relatively closed in Ω . Q.E.D.

References

- 1. Alexander, H.: Projections of polynomial hulls (to appear).
- 2. Duren, P.: Theory of H^p spaces. New York: Academic Press 1970.
- 3. Hewitt, E., Stromberg, K.: Real and abstract analysis. Berlin-Heidelberg-New York: Springer 1965.
- 4. Nishino, T.: Sur une propriété des familles de fonctions analytiques de deux variables complexes. J. Math. Kyoto Univ. 4-2, 255-282 (1965).
- 5. Stolzenberg, G.: Volumes, limits, and extensions of analytic varieties. Lecture Notes in mathematics 19. Berlin-Heidelberg-New York: Springer 1966.
- 6. Rham, G. de: On the area of complex manifolds, global analysis (volume dedicated to K. Kodaira), pp. 141–148. Tokyo Univ. Press and Princeton Univ. Press, 1969.
- 7. Rothstein, W.: Zur Theorie der analytischen Mengen. Math. Ann. 174, 8-32 (1967).

H. Alexander B. A. Taylor J. L. Ullman The University of Michigan Department of Mathematics 347 West Engineering Building Ann Arbor, Mich. 48104 USA

(Received February 12, 1972)