
lnventiones math. 16, 335- 341 (1972) 
�9 by Springer-Verlag 1972 

Areas of Projections of Analytic Sets 

H. Alexander (Ann Arbor), B.A. Taylor (Ann Arbor) 
and J. L. Ullman (Ann Arbor) 

l ,  

If V is a pure 1-dimensional analytic subvariety of C", then the area 
of V is the sum of the areas, counting multiplicity, of the projections 
of V onto the n coordinate lines [5, 6]. If V is a pure 1-dimensional 
variety in the unit ball in C" which passes through the origin, then [5] 
the area of V is at least ~. Together these theorems imply that a 1- 
variety through 0 in the unit ball has the property that the sum of the 
areas of its projections on the coordinate lines, taken with multiplicity, 
is bounded below by ft. We shall generalize this result by showing that 
the conclusion is valid without counting multiplicities. A similar property 
of higher dimensional varieties will also be obtained. The proof depends 
upon a one variable result (Theorem l) which relates the area of the 
image of a function analytic in the unit disc to its LZ-norm on the circle. 
As an application we extend a result of Nishino [4] to the effect that a 
family of varieties is locally finite if each family of coordinate slices is 
such. This in turn will be applied to complete a theorem of Rothstein 
[7] on characterizing analytic sets in C" as those whose coordinate 
slices are analytic sets. 

2. 

We begin with the basic one variable result. Here D will denote the 
open unit disc {zeC: [z]<l} and N the usual Nevanlinna space of 
analytic functions of bounded characteristic on D [-2, p. 16]. For f e N ,  
f *  will denote the boundary function 

f *  (e i~ = lim f ( r  e i~ 

defined for almost all 0. 

Theorem 1. Let f e N  and f (0 )=0 .  Then 

2~ 

�89 ~ I f*  (e'~ 2 dO < a r ea ( f  (D)). 
0 

This theorem follows by integrating, with respect to t, from 0 to + oo 
in the following inequality [3, pp. 421-422]. 
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Lemma. Let f~  N, f(O) = O. Then for t > O, 

t f {el~ If* (ei~ > t} < ~(f(D) n ~) 

where Ft = {w: Iwl = t }  and ( is arc length measure. 

Proof Fix r, 0 < r < l ,  and t>0.  Put E,={d~176 } where 
f ,(z)=f(rz).  Now let u(z) be the bounded harmonic function in D with 
boundary values equal to 0 if ei~ and - 1 if ei~ That is, 

( e'~ 
u ( z ) = ~  ~ Re \ ~ ]  dO. 

that u(0)= 71((E,) ,  and that Note 

IL(ei~ <t ~ lim u(z)=0. (2.1) 
z ~ e  t o  

Now, define ~o(w) for [wl<t by 

fmin  {u(z): f , (z)=w,z~D} if wef,(D) 

q~(w)--'~0J if w(Ef,(D). 

We claim that ~0 is superharmonic in Iwl < t. 
We will assume that Et4=~, since otherwise (2.5) below is trivial. 

Therefore, since f, is analytic on Izl = 1, the set 

Ft= {ei~ IL(ei~ =t} 

is finite. Now ~p is continuous on Iwl<t except possibly for the finite set 
f ,(F,)c {w: Iw[=t}. Off the finite set X of critical values o f f ,  in [wl<t, 
(2.1) implies that q~ is locally the minimum of a finite number of harmonic 
functions, hence superharmonic off X. Since q~ is continuous in Iwl < t  
and X is discrete, it follows that ~o is superharmonic in I wl < t. 

In particular, we have 

q~(O)>-----~- n i q~( tei~ (2.2) 

Now, ~o(tei~ unless t ei%f,(D) in which case ~o(tei~ 1 because 
u(z)> - 1 for zeD. Thus, we get from (2.2), 

- 1 t(f,(D)c~V,) (2.3) 
go(O)> 2n t 

On the other hand, since f ,(0)=0, we have 

q, (o)__< u (o) = - ~ -  ~ (E,). (2.4) 
z g  
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From (2.3) and (2.4) it follows that 

t ~(E,)<=~'(.I;(D)~ r,). (2.5) 
But, f , (D) ~ f (D),  so 

t/o {eiO: [fr(e,O)] > t} <= ( ( f ( D )  c~ Ft). 

Letting r - ,  1- gives the desired result because f , ( d  ~ ---,f* (e i~ a.e., and 
therefore also in measure. Q.E.D. 

Remark. The superharmonic function q~ of the proof was essentially 
introduced by Nishino [4, p. 259] for a related problem. 

In the next theorem, B denotes the unit ball in C", 

{ $, } Z = ( Z  1 . . . . .  Zn): Zi[2 "( I . 

Theorem 2. Let V be a pure 1-dimensional analytic subvariety of  B 
containing the origin. Then the sum of  the areas of  the projections of V on 
the n coordinate lines is at least zr. 

Proof  We may assume that V is irreducible. Let V* be the nor- 
malization of V, r: V*-~ V the associated projection. Since V* carries 
nonconstant bounded analytic functions, the uniformization theorem 
for Riemann surfaces implies that the universal covering surface of V* 
is D, the unit disc. Let ~: D ~  V* be the universal covering map, chosen 
so that (to ~u)(0)=0. Now ro 7 j is given by n analytic functions f~, . . . , f ,  

n 

on D with fj(0)=0 and ~ [ f~(z)[ 2 < 1. 
1 

The f are bounded and have boundary functions fi*. We claim that: 
a.e. dO 

]fj* (ei~ 2 = 1. (2.6) 
1 

In fact, let S=  {ei~ each .fj, 1 < j < n ,  has a radial limit at d~ The com- 
plement of S is a null set as each fj has a radial limit a.e. dO. We will 
show that (2.6) holds for d ~  Suppose not, then there is e~~176 such 
that ~ [fi*(ei~176 2 < 1. Then e =(fl* (e i~176 . . . . .  f*(e i~176 and for 0 < t <  1, 
t ~ ( r o  7J)(td ~176 is a path in V from 0 to c~. It follows that for 0 < t <  1, 
t ~ ,  7J(te i~176 is a path in V* from 7'(0) to some point ~* with r(~*)=c(. 
This path, however, does not lift to a (compact) path in D, with initial 
point 0 and this contradicts the fact that 7 j is a covering projection. 
Thus (2.6) holds on S. 

Now apply Theorem 1 to jj: 

2n 

~- ,[ l f j* (d ~ 12 dO < area (.fj (D)). 
0 

22* 
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Adding for 1 < j < n  and using (2.6) we get 

~=< ~ area(f~(D)). 
j = l  

But f~(D) is the projection of Vto thej-th coordinate line. Q.E.D. 

Remark. An alternate proof of Theorem 2 in the context of poly- 
nomial convexity and based upon the elements of Banach algebras will 
appear in I l l .  

Next we want to generalize Theorem 2 to higher dimensional 
varieties. If ~ is a k-tuple of integers (il, i2 . . . .  , ik) with 1 =<ij<=n, we 
denote the length, k, of ~ by Is[ and by ~ the projection C " ~ c k :  
~ (Z l . . . . .  Z,) = (Zi, , Zi . . . . . .  ZJ. It is known that if V is a pure k-dimensional 
analytic subvariety through 0 in the unit ball in C", then the sum of the 
2k-dimensional measures of the sets ~(V) counted with multiplicity 
and taken over increasing ~'s is bounded below by ~zk/k!= the 2 k-volume 
of the unit ball in C k. In fact, this sum is just the 2 k-volume of V 1,5]. 
We would like to show that the result remains valid without counting 
multiplicity. We have 

Theorem 3. There are positive constants Ck such that if V is a pure 
k-dimensional subvariety of the unit ball in C" passing through 0 then 

E '  ;~2k(~(V))> Ck 
I~l=k 

where the prime denote summation over increasing a's and 22k iS Lebesque 
measure in C k. 

Remark. The constants Ck are independent of n. A natural conjecture 
is that ~rk/k! can be chosen for Ck but we are unable to prove this unless 
k = l .  

Proof. We proceed by induction on k, assuming the result for j < k 
(for k = 1 this is just Theorem 2). Let B(p, r) be the Euclidean ball about p 
of radius r and let W= VerB(O, ~). Since W contains a 1-dimensional 
variety through 0, we apply the 1-dimensional result in the ball of 
radius �89 (necessitating a scale change) and conclude: 

n 

Z 22 (rrJ(W)) >= (�89 2 n' (2.7) 
j = l  

Consider ~,(W). If (en,(W),  there is ( ' eC  "-1 such that q=(( ' ,  ()eV 
and llqll<�89 Let H~={zeC":  ~,(z)=(} and consider the ( k -  1)-variety 
He c~ V (we may assume that V is irreducible so that dim H~ c~ V< dim V). 
Now qeHr and we may apply the (k-1)-dimensional result to 
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H~ c~ V c~ B (q, �89 in B (q, �89 and obtain: 

Z' V))>=(�89 
I~ l=k-I  

he# 

This sum is over /3 with nr since ~z,=( on H;c~ V. Integrating over 
~, (W) we get 

~ '  f "~2k-2(7~'~(n~ ('~ V))d,~2(~)~(-1) 2k-2 Ck_ 1 ~2(7~n(W)) �9 

Applying Fubini's theorem to the integrals on the left yields 

~' 22k(rqa,,,(V))>(~)Zk-2 C,_,22(Tt,(W)). (2.8) 
It~l=k-I 

nr 

Now the replacing in (2.8) of n by j, with l < j <  n, leads to n inequalities 
of the same type. Adding these and recalling (2.7) we get 

Y' ck_,. 
j = l  [pl=k-  1 

jr 

(2.9) 

For a fixed ~ with [~[ =k  there are at most k (/3,j)'s such that (fl, j )=~  as 
sets of k integers. Thus each 2 k-volume term in the left hand side of (2.9) 
is repeated at most k times. It follows that we may choose Ck to be 
rtCk_l/k22k. Q.E.D. 

~ 
As an application we have 

Theorem 4. Let ~ be a ,family of pure k-dimensional analytic sub- 
varieties in an open subset f2 of C". Suppose that Jbr every coordinate 
(n-  k)-plane H ( = an affine linear subspace of C" obtained by fixing k of 
the coordinates), the family ~ = {Vc~ H: V6~t/'} is locally finite. Then 
is locally finite. 

Remark. This extends a result of Nishino [4] who treated the case of 
varieties of codimension I. 

Proof We argue by contradiction. If ~ is not locally finite then there 
is per2 and distinct {Vj}~ ___ ~//~ with pjs Vj such that p j ~  p. Choose r > 0  
such that B(p, r)___f2. Let Wj= Vj~B(p, r), and let ~ be a k-tuple. I f ( e C  k, 
then ~ - t ( 0  is a coordinate n - k  plane and so W~ c~ rt~-t(() is empty for 
large j by hypothesis. That is, the sets 7z~ (W~) eventually omit every point 
in B(rc,(p), r). It follows that 22k(n,(Wj))---, 0 for every c~. But by Theorem 3 
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a finite sum of such terms is bounded below by a number approaching 
r 2k Ck (since p~-. p). This is a contradiction. Q.E.D. 

Theorem 5. Let A be a subset of an open set f2 ~_ C". Let r > 1 be an 
integer. Suppose that the intersection of A with every coordinate hyper- 
plane (i. e. every coordinate ( n -  1)-plane) is a pure r-dimensional subvariety 
off2. Then A is a subvariety of f2 (of dimension r+ 1). 

Remark. Rothstein proved this proposition under the further as- 
sumption that A is a (relatively) closed subset of f~ in [7] and asked 
there if this restriction was really needed. What we shall prove here is 
simply that the hypotheses of the theorem force A to be a relatively 
closed subset of ~2. 

Proof In order to show that A is a relatively closed subset of f2 it is 
enough to show that if 0 ~ A n  f~ then 0~A. We argue by contradiction 
and suppose otherwise; i.e. that 0s / [ng2  but 0CA. Then if H is the 
coordinate hyperplane {z: rc,(z)=0}, A c~H is a subvariety of (2 and 
hence relatively closed. Consequently, as 0CA there is 6 > 0  such that 

{z: [ztl<6, lzzl<=6 . . . . .  [z._l[_<3, z,=0} nA =~[ (3.1) 

and by choosing 6 small enough we may assume that 

{z: [zj[<6, l< j<n}~_Q.  

As 0s / [  there are (c~,c~)e(C "-1 x C ) n A  such that cj---,0, c ) ~ 0  and 
c j= (~  . . . . .  ~_1)~C "-~ with each [c~l <3 and [cjl <6. 

Let (2 l = { z e C " - l :  [zsl<6, l < _ s < n - 1 } ,  let ~: C " ~ C  "- t  be the pro- 
jection ~ (zl . . . . .  z.) = (z I . . . . .  z._ 1) and let 

Wj=~(An  {z: [zll<6 . . . . .  [z,_1[<6, z.=cj}). 

Then W i is a r-dimensional subvariety of f2~ and { Wj} is not a locally 
finite family as Wj~cj~0.  Hence by Theorem 4, the intersections of the 
WSs with some coordinate ( n - 1 ) - r  plane is not locally finite and 
consequently there is a coordinate n - 2  plane K in C"-~ such that the 
sets K n Wj are not eventually empty. Passing to a subsequence we may 
assume that K n Wj is never empty. Without loss of generality, we may 
assume that K =  {z~C"-l :  zt =2} where 12[ <6. This means that there 
are points dj = (di, . . . ,  d~_ 2)~ C "-z such that each Ida] < 6 and (,t, d )e  Wj. 
Hence (2, d r, cj)~A. By passing to a subsequence, we may assume that 
d~---~d j with [dJ[<3. Put d=(d l ,d  z . . . . .  d"-2). Now A n { z :  z1=2} is a 
relatively closed subset of ~2 and contains the points (2, d r, cj) which 
converge to (2, d, 0)cA. But this contradicts (3.1) and we conclude that A 
is relatively closed in ft. Q.E.D. 
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