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In[1], Doiand Naganuma showed that the conjugation of a Shimura curve is again
a Shimura curve. The present paper deals with the generalization of their result.

Consider in general a reductive algebraic group G defined over Q. Let G* be the
semi-simple part of G. Assume that G% modulo a maximal compact subgroup
defines a bounded symmetric domain #, and that a system of canonical models (in
the sense of Shimura [11, 2.137) for the quotients of 5 by the arithmetic subgroups
Iy of G exists. Let {Vy, by, Jxyw(u)} be such a system. Take an arbitrary
automorphism 7 of the complex number field C, and conjugate all the Vy’s and
Jyw()'s by 7. Then one expects that {V§, dx, Jyw(u)'} with suitable ¢y’s forms a
system of canonical models for some reductive group G;.

In this paper we show that this is the case if G is the type of groups investigated
by Shimura in [11]. The corresponding group G, is defined explicitly in 1.2, and the
precise statement of the result is given as Theorem 1.3.

In Shimura’s construction, for special I'y the model Vy is first realized as a
subvariety of a moduli-variety V, for some PEL-type Q. Consider V¥as embedded in
V&, It is known that the conjugate variety V3 is isomorphic to the moduli-variety Vg
of another PEL-type Q'. The relations between Q and ' are provided by Shimura’s
work [6]. One of our main task then is to prove that the isomorphism of Vg to Vo
induces an isomorphism of V§to V, for some arithmetic subgroup Iy, of G,. This
can be achieved by studying the isolated fixed points of Gg and G, 4. We carry out
these considerations in Sections 2 and 3.

The same functorial property also holds for the models constructed by Miyake
in [3]. In Section 4 we deal with this case briefly. We shall not give the proof,
because the argument is similar to, and actually simpler than, the one presented in
this paper.

We assume the reader is familiar with Shimura’s work [10] and [11], which will
be quoted respectively as [A] and [C] hereafter.
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Notations

We adopt the notations of [C], of which some are recalled here.

The multiplicative group of an associative ring S with identity is denoted by S*.
For an algebraic group G defined over Q, G, denotes its adelization. The finite part
and infinite part of G, are denoted by G, and G, respectively. Denote the identity
component of G, by G ,, and put G, , =G,G, ..

For an algebraic number field F, ty denotes the ring of integers of F, F,;, the
abelian closure of F, and F, the closure of F* F.}, in the idele group F).

1. The Main Theorem

1.1. Let F be a totally real algebraic number field of degree g, and B a quaternion
algebra over F. Let1,, ..., 7, be the g distinct isomorphisms of F into R arranged in
such a way that B is unramified at 74, ..., 7,, and ramified at all other infinite places.
Denote the discriminant of B over F by D(B/F).

Assume r > 0. Define an algebraic group G over Q so that the Q-rational points
of G are

Go={aeGL,(B)|a ‘¢’ =v(a)1, with v(x)eF*},

where 1 denotes the main involution of B and ‘a the transpose of a. The semi-simple
part of G is

G*={aeGlv)=1},

and G modulo a maximal compact subgroup defines a bounded symmetric
domain ¥ which can be identified with 5, r copies of Siegel’s upper half space £,
of degree n.

Consider a representation 6 of F equivalent to ) 7,.Let (F’, #) be the reflex of

v=1
(F, 6)and A =det ¢ (see [CI, § 1] for notation). Then 2 is a homomorphism of F'* to
F>*, Put

g . ={xeGr,|v(x)eA(F)F}.

Define a group extension A of A= +/EG,, and a subgroup A, of A as in
[CII, §4]. Let I* be the subfield of F,, defined in [CII, 3.10], and p the homo-
morphism from U to Gal(t*/F’) defined in [C1I, 4.7]). The kernel of p is the
closure of 4. Consider the set 3 of all open compact subgroup of . For every
Xe3, ;=A,nX acts on # properly discontinuously and /I has finite
measure. The subgroup p(X) of Gal(t*/F’) corresponds to a subfield of ¥, which
we denote by k.

As shown in [C], for every Xe3 there is a model (Vy, ¢,) of #/I; with Vy
rational over ky, and for ue, X, We 3 such that uXu~* = W, there is a mor-
phism Jy,(u) of Vy onto Vg™ rational over ky. Furthermore the system
Vo, Ox> Jwx W), (X, We 3; ue W)} enjoys the properties stated in [CII, Theo-
rem 5.2]. We call it a canonical system of models associated with G.
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1.2. Let 7 be an automorphism of C. By a well-known Theorem of Hasse, there is a
quaternion algebra B, over F, unique up to F-linear isomorphism, such that B, is
unramified at 7y7t,...,7,7, ramified at all other infinite places, and D(B,/F)
=D(B/F). Consider the algebraic group G, over Q whose Q-rational points are

Gio={xeGL,(B)|o-"&’'=v ()], with v (x)eF*}.
Define the counterparts 2,, ¥, %, p,, 3,, etc. of 4, %, t*, p, 3, etc. Note that the
representation §, of F associated with B, is equivalent to Y t,7~8§". Denote the

v=1
reflex of (F, 8,) by (F}, 8,). Then it follows from Lemma 1.5 proved below that F{
=F", A, (x)=A(x) for xeF’, and T =" Let {Vy,, ¢y, Jw,x, (1) (X;, W35
u, €U, )} be a system of canonical models associated with G,.

1.3. Theorem. There is a topological isomorphism u of U to N, which is locally
algebraic, with the following properties. For X,€3, and u,e ¥, put X =u"*(X,)
and u=u""(u,). Then ky, =K%, Tp,(u;)=p(u) T on t*, and for each X,€3,, there is
a biregular isomorphism ¥ of Vy, to Vg rational over ky such that

Yo Ty v () =Jyx@fothy (@Xu 'cW).

Remark. We have t=id. on F' ifand only if {7, ...,7,} ={7;7,..., 7,7}. In this case
we have B, =B and G, =G. Since p: A - Gal(f*/F') is surjective, there exists ue U
such that p(u)=t on *. Define u(x)=u"'xu for xe. Then u satisfies the
conditions of Theorem 1.3. Therefore the theorem is trivial in the case where 7 =id.
on F'.

1.4, For X €3, let K be the field of all functions on Vy rational over ky, and put

Hy={fo ¢xlfeKyl,
A=) H.

Xe3
We call # the arithmetic automorphic function field associated with G. For ue ¥

and feKy, put

(fodx)* @ =1*“oJyw(u)o dw,

where W=u~! X u. Then @ is a homomorphism of 2 to Aut(%/F’). Let 4", be the
field of arithmetic automorphic functions associated with G,, and
w;: U —Aut(A/F) the homomorphism corresponding to w. In terms of
arithmetic automorphic function fields, we can restate Theorem 1.3 as follows.

Theorem. Let u: A A, be as in Theorem 1.3. Then there is an isomorphism
n. A —A, extending 1 P—T such that nw,(u)=wn for ued and u,
=u(u)e¥,.

1.5. Lemma. Let E be an algebraic number field and ¥ a Q-linear representation of
E by complex matrices. For an automorphism t of C, let P, be a representation of E
equivalent to W*. Denote the reflexes of (E, V) and (E, W,) by (E', ¥') and (E}, ¥])
respectively. Then E} =(E')" and ¥, is equivalent to the representation ® of E; given
by o(x)="'(x) (xeE').
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Proof. By definition, E; is generated over Q by {tr ¥,(x)|xe E}. Since tr ¥;(x)
=(tr ¥(x))’, we have E; =(E')". To show ¥, is equivalent to @, take an (E, E')-module
of type (E, ¥) and of type (E', ¥') [CI, 1.1]. Introduce an (E, E;)-module structure
on V as follows: For acE, beE; and xeV, put (a®b)x=axc, where ¢ is the
element of E’ such that ¢*=b. Call this (E, Ej)-module V;. Then V| is of type (E, ¥;)
as well as of type (E}, @). Therefore ¥ ~®.

Remark. The above Lemma can be regarded as dual to Proposition 12 of [4].

1.6. Let B* be the quaternion algebra over F* such that D(B*/F*)=D(B/F)* and
such that B* is unramified at t~ 'z, 7t forv=1, ..., r, and ramified forv=r+1, ..., g
It is easy to see that the algebraic group defined in terms of GL,(B*) is isomorphic
to G, over Q. Especially, if F*=F, D(B/F)'=D(B/F) and {t~'1,1,...,77 1,7}
={ty,...,7,}, then G, isisomorphic to G. Under thissituation we have F'*=F", The
isomorphism u of Theorem 1.3 can be considered as an automorphism of 2. If
t%id. on F', then u is not an inner automorphism. It would be interesting, as
suggested by the Corollary in the introduction of [1], to see under what conditions
we can reduce the fields of definition of Vy’s. The author hopes to discuss this and
other implications of the result on some other occasion.

2. Construction of u

2.1. Let K be a totally imaginary quadratic extension of F. Foreachv=1, ..., g, fix
an extension of 7, to K and denote it again by t,. By Hasse’s Theorem on central
simple algebras, there is a quaternion algebra L over K which is isomorphic to both
B®rK and B, ® K over K. Denote the main involution of L by 1. Then there are a
positive involution p on L and two invertible elements v and v, of L such that v*=
—v, 9= —v,, and

Bx={xeL|x'=vx’ v~ '},
B, x{xeL|x'=v,x"v7 '},

see [8, 7.2]. Via these isomorphisms we regard B and B, as F-subalgebras of L.
Put T=vl,, S=v"'1, and k= —(vv")"!. Then T, Se GL,(L), ke F* and

21.1) 'T*=-T, §*S=xl,, T-'$=-8°T"

[A, Prop. 6.2]. We assume Conditions (6.3.7) and (6.3.8) of [A] for x and T.
Similarly, put T, =v, 1,,, S; =v7 ' 1,and k, = — (v, )~ '. We also assume for 7; and
x, the conditions corresponding to [A, (6.3.7), (6.3.8)].

Let 4 be a finite prime of F. Denote the completion of F at 4 by F,. For an
algebra A over F, put 4 ,=AQ®F,.

2.2. Proposition. For every finite prime 4 of F, thereis ae K such that k/k, =ad".

Proof. Since B, and B, , are F;-isomorphic, there isbin L’ such that By ;=bB,b~ L
It follows that

B, ={xeL/x'=(bvb’)x"(bvb")"'}.
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We also have (bvb?)’=—bvb?. Hence v, =chvb? for some ceF; . Denote the
reduced norm from L to K by N. Then it is easy to see that k =aa’ k, with a=c N (b).

2.3. Proposition. For every finite prime 4 of F, there are ceF » andaeGL,(L,) such
that Ty=caT- "o’

Proof. Let the notation be as in the proof of Proposition 2.2, Put ¢ =b1,. Then we
bave T, =caT ‘o’

24. Let

¥ ={zeM,(C)j1 —"Zzis positive definite}
and
B,={zef|'z=1z}.

Define an algebraic group G* over Q so that the Q-rational points of G* are the
group of similitudes of T:

GE=G(T)g={neGL,(L)|aT "a* =v(x) Twith v(x)eF*}.
Then G%., acts on & as described in [A, 6.5]. As shown in [A, 6.6] there are maps
i: G-G*  aQ-rational injection,
i's B"—=I",  a B-linear injection,
ji HT-Ir<S”, aholomorphic bijection,

such that v(i())=v(a), j(@(2)) =i(@){j(z)), (xa)=i(x)¥(x) for aeGq,, z€H/ and
xeB". The image of G under i is

i(G) = {aeG*|a'? S=Su}.

Using Ty and S, instead of T and §, we define the counterparts of G*, 1,1’ and j, and
denote them by G¥, iy, i; and j, respectively.

2.5. From B we can construct a representation @ of Ly by complex matrices as in
[A, 6.4]. Similarly, define a representation &, of Ly, using B, instead. It is easy to
see that @, is equivalent to @°. Let (H, @’) be the reflex of (K, ). Choose an ample
t;-lattice m in B" in the sense of [A, 3.7], and put M =1, - m. Then M is an ry-lattice
in I". Replacing v by cv for suitable ce F)' if necessary, we can assume tr, (TR, D)
=7. Form the PEL-type Q=(L,®,p; T,M). Then & =(L, P,,p; T*, IM*), where
T*e M, (L) and I* is a lattice in L. By [61, Proposition L11], forevery finite prime
#of F,therearece F,;* andae GL,(L,)suchthatT *=co T 'o”. (Asalready noted in
[1], the original condition that t=id. on H is not necessary.)

Note that both T* and T; have signature (r,n) at an infinite prime correspond-
ing to 7, t1(v=1,...,7), and (2n,0) at other infinite primes of F. Next, combining
Proposition 2.3 with the observation made at the end of the last paragraph, we see
that for every finite prime z# of F, there are ¢ ,€F/ and o ,eGL,(L) such that
a, T* ‘af,=c,T,. Hence by a Theorem of Landherr [2], there are ceF and

aeGL, (L) such that oo T*-‘a? =cT;.
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Replace v, by cvy, hence Ty by ¢ T;. Then Q*=(L, @,, p; T*, M*) is equivalent to
(L, @y, p; Ty, M* o= 7). Put M, =IM* o~ 1. Then we can assume

Q=(LD,p:TM) and Q=(L,D,,p;T;, M,).

2.6. Take a totally imaginary quadratic extension P of F different from K such that
B ®g P is isomorphic to M ,(P). Put Y= M, (P). Denote the complex conjugation on
Pby p. For ae Y, put @°='a’. Then § is a positive involution on Y. By [A, 4.7] there is
an F-linear isomorphism f of Y into M, (B) such that f(a°)='f(a) for all acY. Let
ze¥ be the fixed point of (Y, P,9,f) [A, (4.7.5)]. We use (Y, P,d,f) to define a

representation ¥ of P as in [A, 4.9]. The representation ¥ is equivalent to ). x,,

v=1
where y,(v=1,...,7) is one of the extensions of 7, to P. For v=r+1,...,g,let x, be
any extension of 7, to P.

By Hasse’s Theorem, B, ® P is also isomorphic to M, (P). Therefore there is an
F-linear isomorphism f; of Y into M, (B,) such that f;(a®)='f (a)". Let z, € # be the
fixed point of (Y, P,0,f;). Let ¥, be the representation of P constructed from
(Y, P,4,f,) as ¥ was from (Y, P,d,f). Conjugating f; by a suitable element of
GL,(B;), we may assume that ¥, is equivalent to ¥~

2.7. Let Z(Q)= {2,,|we &'} be an analytic family of PEL-structures of type Q with
parametrizing function y(x,w), see [A, 6.4]. Let (Y,P,4,f) be as in 2.6. Put Z
=L®;Y=M,,(KP), and regard ' as a Z-module by setting x(a ® b) =ax(i(f(b)))
for aeL, beY and xel”. Let zes# be the fixed point of (Y, P,d,f) and y=j(z)e S".
Consider the structure 2 —(Ay, %,,0,). We can extend 6, to an anti-isomorphism
0* of Z into EndQ(A ) as in [A, 6.7 6 9]. Define a representatlon E of Z so that

E~2T+ Z (Xv+va) on P’

v=r+1

E~ Z(‘c +1,p)+2 Z 7, on K,
v=r+1
see [A, 6.8, 6.9]. For a,a'e " put U(a, a')=tryo(T(a,a)). Then 2*=(A4,,%,, 0*)
is of type (Z, E, M, U) in the sense of [C]I, 4.1].

Let (Y,P,4,f;) and z, be as in 2.6, and put y;=j(z,). Denote Q°
=(L,®,,p; T, M,) by Q. Let Z(Q)={2,|we ¥’} be an analytic family of PEL-
structures of type Q with parametrizing function p,(x,w). We can extend ,@y
_(Aw - y‘) to a structure ,@*—(Ayl, yl,B ) of type (Z, ul,ilRl, U,). Here we
regard L' as a Z-module by setting x(a ® b)=ax(i, (f,(b))). =, is a representation of
Z defined in the same way as = was defined in the last paragraph. And U, (a,a’)
=trp,o(7T1(a, a)) for a, a’'e '. Comparing the restriction of Z, and Z* to both K and
P, we see that 2, is equivalent to =°

We show that if the parametrizing function 1, is chosen suitably, then we have

(27.1) 2% x3*.

Let u be a point of & such that 2] is 1somorph1c to 3,=(4,,%, ,8,). There is an
anti-isomorphism 67 of Z into ’End, o(4,) which extends 9 and such that
(A,.%,,00) =2+ Then 0* defines a K- llnear embedding f* of K®FY1nto M, (L).
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Regard I as a Z-module by setting x(a ® b)=ax(f*(b)). Then 2* =(4,,%,,8*) is
of type (Z, £%). Since 2* is also of type (Z, £%), there is an isogeny A of 2* to 2
Recall that for every aeG(T,)y, and we¥" there is a C-linear automorphism
A, (o, w) of C**¢ such that

Ay (o w) 9y (x, W)=, (xa, o™ (w))

for all xe Iy, see [8,4.4]. The isogeny A is induced by 4,(B, y,) for some fe G(T)o.
such that f(u)=y,. Let £: C*"¢> 4, be a surjective holomorphic homomorphism
with p, (I, u) as kernel. Then from the definitions of 6* and #* we have

(2.7.2) &y, Ceiy (f1(B) B, u)=E(n ((x B f* (b)), u)

for all xely and beY.

Consider the PEL-type Q'=(L,®;,p;M, "L v(f)T,) and let p(x,w)
=1,(x, 7 (w)). Let Z(Q)={2, |we ¥} be the family of PEL-structures of type
' parametrized by 1;. We have 2, >3, where v=p"1(w). Note that A (o, w)
=A,(B"tap, B~1(w)) has the property

A; (0(, W) t)i (x! W) = r)/l(x oo ! (W))

for all xe L'y. Extend 2; to a structure 2* with the help of (Y, P, f}). Then it
follows from (2.7.2) that 2'* = 9% >~ 9%",

Now replace I, by M, p~1, T, by v(8) T, and @ by Q. Replace 1, by p;, and let
Z(Q)={3, |lwe "} stand for the family parametrized by the new vu,. Then the
above reasoning shows that 2**~ J*. Especially 2; is isomorphic to .@yx.

2.8. Now apply the results of [61I, §3] to 2*=(4,,%,, 0*) and . (We emphasize
one more time that the results hold for any 7.) For every finite prime 4 of F, there
area Z -linear automorphism a, of I, and ¢ ,€ Q, (4|p) such that M, o, =M, ; and
Ux,y)=c, U (xa,, ya) for all x,yeL,. Furthermore, let s be any non-negative
integer and (¢, ..., t)(resp.(t,;, ..., t;;)) be an ordered set of elements from L'/
(resp. L'/9,). Then we have t;;=t;a,(mod9M, ) for all i=1,...,s, provided the
conjugation of (Z,E,M, U;¢t,,...,t) under 7 is (Z,5,,M,, U] ; t;,, ..., ;). From
the relation between U and U;, we obtain T=c,a,T, - ‘u5. Observe that o, is a
Z ,-automorphism means it is an L -automorphism and

28.1) a;ti(f@)a,=ii(fi(@) forall ac,.
Let S and S, be as in 2.1. Then we have
((f@)y*S=Si(f(@), (1 (f1(@)*S=8,i:(f1(a)

for all aeY,. On the other hand, it follows from (2.8.1) that
(o (fr(@))? Loy ')? S ] = [, 1) St J (i (f1 (@),

Hence ST 1(05; 1y» S, commutes with every element of i; (f;(Y,)), i.e. it belongs to
the commutor of iy (f,(Y,) in M,(L,), which is K (i, (f,(F,))). Therefore there are
aeK , and AeP, such that

(2.82) (a;')*Sa,=aS, i;(fi(A).
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We show that / is in F,.
Combining T=c,a, T, -‘af, with (2.8.2), we have

T 'SP =c,a o, T, - (i (/1 ()Y -°S] - "o,
and
— ST = =, @ a, SP(L ([ T e,
Since T-'S=—§"* T, T, -'S§=—S' T;* (see (2.1.1)), this shows

(2.83) T, "G (fi(A)Y - 'S = — ST (fL(D)* TP,
Because f;(1)e M, (B, ,), we have S (i; (f1 (1)) =(i,(f1(2)))"* S;. So the left hand side
of (2.8.3) is equal to

% - (S (D)) =G (L (D) T
Applying 1p to the identity, we obtain

Ty - (L (D) =i (1 (D)) Ty
On the other hand,

Ty -G (L)Y T =i (1 (A)) =i (/1(A)).
Therefore A= 4% and hence AeF,. This proves:
(284) (a;')*Sa,=d,S, forsome d,eK,.
Note that
(2.8.5) d,df=x/k,.
This resuits from (2.8.4) and the identities $** S=«1,, S S,=x,1,

2.9. Define an isomorphism u, of G onto Gf, by u /,(oz)=cx;1cxoc 4 Then (2.8.4)
shows that u, actually sends G, isomorphically onto G, ,. Since I =M, 4 for
almost all 4, u s can be put together to form an isomorphism u, of G, to G,,. For
an infinite prime 4, corresponding to the embedding 7,, the signature of T at 4, is
the same as that of T at 4, if 7, v=1,. Therefore we can define an isomorphism u,
of G, onto G}, Wthh sends G, onto G, , . Putting together all u,’s we get an
isomorphism u of G§, onto Gfg, which sends Gpg.. onto G, . Finally by putting
ug and u together we obtain an isomorphism u of G%, onto G}, that sends
G onto. Gy, By Lemma 1.5, we have u(%,)= Hence u induces an iso-
morphism (again denoted by u) of 2! onto QI‘

2.10. Now it is only a formality to extend u to an isomorphism of 2 onto A, . First
observe that both /A and A, /A} are canonically isomorphic to the finite group
g defined in [CIL, 4.1]. Let the notation be as in Proposition 4.6 of [CII] and its
proof. Write

=Jad}, and A,,= () 0, 41,.

acl el
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For acU put w)=o,eU, if a and «, have the same image in g Define ¢,
=y, (u())” u(n//(oc))e‘JI and for (o, x)e U x A=A set

u(a, x)=(u(a), c,u(x)e U, x AL =9A,.

Then a trivial computation shows that u is an isomorphism of 2 onto . In §3
we shall prove that u satisfies the conditions of Theorem 1.3.

3. Proof of the Main Theorem

3.1. Propesition. Let MM, be determined as in 2.7. Then there are an ample rp-lattice
m, in B and an element ¢ of L} such that M, =71y - ij(m;).

Proof. Letvand v, be as in 2.1. As we saw in the proof of Proposition 2.2, for every
finite prime 4 of F, there are ¢,eF,* and b,eL}, such that v;=c,b,vb}. For a,
=c, N(by)eK , we have a,a}=k/k,, see Proposition 2.2. On the other hand by
(2.8. 5) we also have d,d%,=xk/k,,where d e K satisfies (2.8.4). Thus (d,/a,)(d/a)f
=1. Hence there is eﬁeK 4 such that

B.L1) dja,=ée,.

Put /,=e,b,eL}. For an infinite prime 4, let /, be an arbitrary element of L%, Itis
easy to see that /=(#,) belongs to L}. Define m, by

iy (my) =7/~ "M iy (BY).
We show that for every finite 4,
(3.12) (Bl )=/, (B,
In fact, we have
I'(B")={xel’|x=vx"S},
i1(BY)={xel!|x=v,x'*S8,}.
Therefore, for x B} we have
vl(//,-i’(xﬁ)oc/,)"’&:vle’,’,b',f’-i’(x )Pl Sy
=v, €4 b - T(x,)Pd; S =0, efdy Yhi vt (x ) ey,
=vyea; b vT T (x)u=vie,0, N b v (x )y,
=e,c; ! vy(by P uT i x o= bl (X)),
=T (X
This completes the proof of (3.1.2). Especially we have
(B.13) i(my )= /F7 ' Wy iy (Bl) =/ W0 (By)a,

=fu i m) ey
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Hence
i, i;(m1,)=/;1mtﬁa,=/;lsmu.

This being true for all finite primes 4, we have r -ij(m;)=/"19,. In view of
(3.1.3), m, is ample because m is.

3.2. Put

={reGglv(»)=1, My=M},
I*={yeGfolvi (=1, M y=M}.

Let Q and @~ " be as in 2.7, and let (V,+, ¢) be a moduli-system for Z () in the
sense of [7, 6.2]. Here « is an assignment which assigns a point «+(Z2) of V to every
PEL-structure 2 of type @, ¢ is a holomorphic map from ¥ onto V inducing a
biregular isomorphism of &"/I'* onto V, and ¢(w)=+(2,) for all we&". Let
(Vi,v1,¢;) be a moduli-system for X (). Since @~ , by [8, 4.23] there is a
biregular isomorphism ¥ of V; to V" such that +*=yov.

3.3. Proposition. Let z, z,, y=j(z) and y, =j(z,) be the special points chosen in 2.6.
Let BeGy, and w=j(P(2))=i(B)(y). Then thereis yeG, o, suchthat forw, =j,(y(z,))
we have ¢(w)' =y (¢ (w)).

Proof. Let B, =u(f)e G, . Then v (B;)=v(f)e F*. Hence by [A, 3.3], there is
a€G,q, such that v (@)=v,(B;). Put S, ={xe% _ |m x=m,}. Then §,€3,. By
the strong approximation theorem for Gi (see [CI, 3.4]), there are o'e G}, and
s€8; NGy, such that B a~'=so’. Put y=a'aeGq,. Then v,(y)=v,(0)=v(p).
We show that y satisfies the condition of our proposition.

As in 2.7, we first consider I as a Z-module by setting x(a®b)=ax(i(f(b))).
The extended structure 2* of 2, is then of type (Z,Z,9R, U). We see easily that
2, can be extended to a structure 2% of type (Z,Z,Mp, Uy), where Uy(a,a)
_tl‘L,Q(v(B)‘1 T(a,a’)). Now regard L" as a Z-module by settmg x(a@b)
=ax(i,(f;(b)) instead. Then ,@ can be extended to a structure 2* of type
(Z,E2,,9,,U,). Recall that we have 2%~ J* see 2.7. We determine the type
(Z,E,, 0%, U*) of 2%".

We have (Z,E, M, Uy ~(Z,5,,M,,V)) and (Z,E,MB, Up)' ~(Z,E,TM*, U*).
Let 4 be a finite prime of F. Then a,, is a Z -linear automorphism of L, such that
M =M, o, and Ula,a)=c,U(an, a'a,) for some c,eQ; (4|p). Since 2* and
2y, are isogenous, by a standard argument we can assume that we also have 9%
=MpP)a, and Uya,d)=c,U*(aa,da). Now s,y=p =u(f)=a,'fo,.
Therefore

W =(MB) o, =Myays, 7 =My ,5,7=M, 7.

This is true for all finite 4. Hence IM* =9, . Similarly, we have U* =U,,, where
U,,(a, @)=trpo(v(¥) "' Ty(a, @)

So 25" is of type (Z,E,,M, 7, Uj,), which is the type of the extended structure
of .@wl, where w, =j, (y(z,)). Hence Z, ~,@ . Therefore, «(2,) =y (v (2)
=Y(,(2,), or W)=y (¢, (w,)).
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3.4._ For a positive integer b, define a member S(m, b) (resp. S, (m,, b)) of Z (resp. Z,)
as in [CI, 2.10]. Then it follows from Proposition 3.1 that u(S(m, b))=S5,(m,, b).
For any ry-lattice 9 in I, and any positive integer b, put

(M, b)={yeGglv(y)=1, Ny=R, N(1 —y)< bR}
I (M, b)={ye Giolv, () =1, Ny=N, N(1—y)=bIR}.

For a given positive integer a, choose b and ¢ so that conditions (6.4.2}6.4.4) of
[CI] are satisfied. Put

(34.1) S=S(m,c)- {xeSim, b)|v(x)=1}.
Then
(3.4.2) u(S)=S,=8,(my,c): {xeS;(my, b)|v,(x)=1}.

We assume that b has been chosen in such a way that the following conditions
corresponding to [CI, (6.4.3), (6.4.4)] also hold:

(3.4.3) Put E=x;. Then, for every u; G,
E-T(ui'Syu)={xe E- T}/ My, b)|c(P)) A 2, +0).

(3.4.4) For every u, Gy ,, IT*(#~ "M, uy, b) has no element of finite order other

than the identity element.

Note that
(34.5) It~ YR uy, b)=TF (M uy, b).

Let (H, ®') (resp.(H,, ®;)) be the reflex of (K, ®) (resp. (K, ®;)). Then by
Lemma 1.5, H, =H". Let M, be the class field over H corresponding to the
subgroup H* - {he H} |h=1 mod,(c)}. Define a class field M, ,over H, in the same
way. Then M, = M;.

3.5. Choose qy, ..., gs€L*/M such that b~ 'M/IM = Y Zg,. Consider the PEL-
i=1

H

type
Q=(L,&p;M,T;q,,....9).
Fix g4y, ...,41,€ L/ Bt so that
@=L, ®,p; M, Ti;q11,--,41)
is equivalent to Q'*. Then for every finite prime 4 of F, we have M, ,= M a, and
g1, =q;0,(mod M, ,). Therefore b‘liml/imlg_i Zq,,. Let ko be the field of

i=1
moduli of €. Then kg is contained in M, [CI. (6.6.1)]. The field of moduli of @' is
k5, , which is contained in M. i
Let n(x, w)(resp. 1, (x, w)) be the parametrizing function for 2(2) (resp. 2(Q)as
given in 2.7. We can use the same n(x, w) (resp. 9y (X, w)) to parametrize a family
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Z(@)={2,|lweF"} (tesp. Z(Q)=1{2,|lweS"}) of PEL-structures of type Q'
(resp. Q). Let (V',+/, ¢') (resp. (Vy, 1, ¢1)) be a moduli-system for (') (resp.
2(€2')). We can identify Vg with the subvariety ¢'(2) of V" and take ¢s=¢'c j [CL
6.9]. Similarly, in view of (3.4.3)~(3.4.5), we can identify V5, with ¢, (2;) and take ¢y,
=0 1.

Since '~ Q'", there is a biregular isomorphism /, of V| to V'* over M 1. such
that +'* = o). We show that y, restricted to Vg, defines an isomorphism of I, to
Vs (over M, ). Let ze 5 be asin 3.3. Then Z = {B(2)| fe G4, } is dense in . So it is
sufficient to show that (¢'(j(Z)))" is contained in y,(Vs,), and is Zariski dense in
there.

Let Be Go, and w=j(f(2)). Let the notation be as in 3.2. Then Proposition 3.3
shows that ¢(w)'=y,(d;(w,)) for some w,eP;. According to [9], 2\ =2,
posesses a certain non-holomorphic endomorphism bd. It follows that 20 also
posesses this endomorphism d. Therefore 2] is isomorphic to Q’m forsome v, € Zj.
Thus ¢' (W) =¥o(¢) (V1)) EVa(d) (1 () =o(Vs). This shows (¢'(j(£)))’, and
hence its Zariski closure V§, is contained in yo(Vs,). Similarly, we show that yq(V5,)
is contained in V§. Therefore the restriction yg of Y, to V5 is a biregular
isomorphism of ¥, to V5.

Thus for S of the form (3.4.1) with sufficiently large b, and for S; =u(S), thereis a
biregular isomorphism 5 of V5, to V§ rational over M, . Put bs=yso ¢s,. Then
(V4, ds) is a model of #/I;, over k5.

3.6. For xeG,, and x; =u(x)eG,,, we have v,(x;)=v(x). Therefore, by the
definitions of pand p, in 1.1, and by Lemma 1.5, we have 7 p (x;)=p(x) 7. Similarly,
if SeZ and S, =w«(S)e Z,, then ki=kg,.

3.7. Let %% be the subgroup of G¥ defined in [C], 6.2]. Define a subgroup %}, of
Gy, correspondingly. Then we have u(%¥)=%f, in view of Lemma 1.5. Let %, ,
Ap, etc. be as in [C], 3.1], and define %, _, A4, in a similar way. Let S and S, be as
in 34. For xe%,,, x,=u(x)e%y,., put T=x"'Sx, and T,=x7'S,x,=u(T).
We show that V; and V7, are biregularly isomorphic over M.

By [CI, (6.3.5)], there is de H such that v(x)/A,(d)e F)' F;, and n(d) xe%*.
(For the notation used here and in the following, see [CI, §6].) Let d, =d* e H{,.
Then Ay, (d,)=4y(d) and 7,(d;)=mn(d). Hence

vi(61)/An, () €FX FY, and  m(d)x, €%% .

Let @, Q' ~Q*beasin3.5. Puto=[d"!,H]land 6, =71"'ot=[d; ', H,]. By
[CI, (6.6.1)], £'° is equivalent to

Q' =(L,®, p; n(d)Mx, u(n(d)x)""' T, {n(d)q;x}),
while €7 is equivalent to
Q' =(L, ®y, p; n(d) Myxy, p, (m(d)x,)~* Ty, {m(d) gix1}).

We have Q" ~ Q' % ~ Q"1 ~ (¥ ~ Q" Note that for every finite prime 4 of F, we
have (M, x,),=(Mx),a, and p(m(d)x)” ! T=py, (n(d)x)a, Ty - oy

Let 2(Q")={2,|lwe "} (resp. Z(2")={2,|lwe &"}) be the family of PEL-
structures of type € (resp. Q) parameterized by 1(x, w) (resp. n,(x,w)). Let
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(V",¢", ¢") (resp. (V{',+], 7)) be a moduli-system for Z(Q") (resp. Z(£2")). Since
Q" ~ ", there is a biregular isomorphism " of ¥{' to ¥"* such that " *=y"o .
Combining the arguments of [C1, 6.7] and 3.5, we see that " induces a biregular
isomorphism ¥/ of ¥y, to V§ over M, . Put ¢p =y 0 ¢r,. Then (Vf, ¢ 1) is a model
of # /Iy, over ki.

38. Let S be as in 3.3. Consider # ={x"'Sx|xe%,,}. Let T=x"'Sxe¥,
ue%y,, and U=u"'Tu. Then J,(u) is defined, and is a morphism of V; onto V
over kr, where o =py(u). Let

Q, :(La ¢: o, SIR, T’ {Qz})
be as in 3.5. As observed in 3.7, there is a PEL-type Q" of the form
Q'=(L,®,p; kMx, kT, {kqg;x}) (keK{, keF{)

such that if (", 2", ¢”) is a moduli-system for X ("), then V; can be embedded in
V" in such a way that ¢;=¢" 0 j. Let de HS be such that v(u)/Ay{d)e F F;,.
Then Q"7 is equivalent to

Q¥ =(L, D, p; w(d)kMx, u(n(d)x)" 'k T, {n(d)kg;x}).

Let (V*, »*, ¢*) be a moduli-system for 2(2*). Then V}, can be embedded in V* in
such a way that ¢, = @* oj. Since Q" ~ Q*, there is a biregular isamorphism J from
V*to V'"° rational over M, such that »'°=J o »*, In view of the construction [CI,
§6], we can identify J;, (1) with the restriction of J to V;.

Put x; =u(x), Ty =x7'S;x(, u;=u(u) and U, =u(U). Also let g, =py, (u;).
Then U, =u; ' Tyu, and 6, =7 o1 Let

Q=(L,®1,p; M, Ty, {41.})

be as in 3.5. From 3.7 we know that Q"'° (resp. Q*") is equivalent to
Q' =(L,®,,p; kM,x,, 6, Ty, {kqy;x,})
(resp. % =(L, @, p: n(d) kI, x,, g, (u(d) x,) ™ 1, T, (=) Ky x,3)

with a suitable x,e F7. Let (V] ¢}, ¢7) (resp. (Vf, v}, ¢)) be a moduli-system
for Z(Q") (resp. Z(Q*)). Embed Vy, (resp. Vy) in V)" (resp. V{*) in such a way that
Gr, =@ oj; (resp. ¢y, =¢%ej). We have a biregular isomorphism y”
(resp. Y*) of V" (resp. V;*) onto V' (resp. V*7) over M. which induces the iso-
morphism . (resp. ¥y) of Vi, (resp. V) to Vi (resp. Vy).

We have Of ~ Q*T~ Q77 ~ ("7 ~ "1 Therefore, there is a biregular isomor-
phism J, of ¥ to V{’"t such that +/°' =J, o »}. We can identify Jy, 1, (1) with the
restriction of J, to Vr,.

Now we have

Jrol//*o’u;k'——’Jtov*t:(.lov*)t:v”ar
on one hand, and

‘////al oJl ° UT =¢Hal ov*dl =(¢!/ o’u*)‘” 27)111:01 =v//ar
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on the other. Therefore J*o yy* =110 J;. It follows that

(381) J[/T(u)’o l//T = '//gll ° JU1 Ty (ul)’
where o, = py, (1,).

3.9. We prove that Y, is defined over ky, H,. Let #; be an automorphism of M,
over ky H,.By[C1.3.3,3.5], thereisue U %, suchthat py(u)=tn,7" ' on M,.
Put u; = u(u). Then py, (u,)=mn,, Jyy(@)=id,, and Jy, y,(#,)=id. Hence by (3.8.1)
we have Y7 =y This being true for all n, e Gal(M, /ky, H,), Yy is defined over
ky H,.

Therefore, for all Ue# and U, = u(U), we have a biregular isomorphism /:
Vi, — Vi over ky, H, satisfying (3.8.1),1.e. we have proved the main Theorem for { ¥,
ou, Jur(W| U, TeW , ue9, } over H. Going through the reduction process of [C],
II], we conclude that u satisfies all the conditions of Theorem 1.3.

4. Conjugations of Miyake’s Models

4.1. Let K be a totally imaginary quadratic extension of a totally real algebraic
number field F of degree g, and B a central simple algebra over K with a positive
involution p which coincides with the complex conjugation on K. Choose g
embeddings 7, ..., 7, of K into C so that their restrictions to F are all distinct. Put
n*=[B:K]. Decompose Bg =B ®qR into the direct sum of simple algebras B, @
@ B,. Let 1, be the identity element of B;. For each A=1, ..., g, there is an R-linear

isomorphism ¢, of B; onto M ,(C) such that ¢, (x°) ="¢,(x) for all xe B,. Fix ¢, once
and for all. For a p-hermitian element 4 of B*, i.e. an element & of B* such that h*
= h, denote the signature of ¢,(h) by J,(h).

Let é be an involution of B which coincides with p on K. Define an algebraic
group G over Q so that the Q-rational points of G are

Go={aeB* |aa’=v(@)eF*}.
The semi-simple part of G is
G'={aeG|v(e)=1and N(a)=1},

where N denotes the reduced norm of B to K. Denote the homogeneous space G
modulo a maximal compact subgroup by .

Fix a p-hermitian element he B* such that x’=hx?h~"' for all xeB. Let J,
=J,(h)=(r(A),s(1)). Put

1, Z.) 0
Jr(}.),s(}.)=[ (; _1 M)] :

As in [3, 1.4], consider an element j of Bg such that j°= —j, j>= — 1 and such that
{ueGY%|uj=ju} is a maximal compact subgroup of Gg. By [3, Corollary 1, Prop. 2],
for each A=1,..., g, there is an isomorphism w, of B; onto M,(C) such that

)
0,(x%) =J,2), 50 ‘@,(%) L a5 forall xeB,,
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and

w;(ji)=V1 — L y.siay-
Using w,’s, we can identify s# with the product H Hr a5 Where £, denotes the

bounded symmetric domain consisting of all r >< s complex matrices z such that 1,
—z'Z is positive hermitian. In this way we have a bounded symmetric domam
structure on #. The main Theorem of [ 3] states that there is a canonical system of
models for the quotients of # by arithmetic subgroups of G.

4.2. Lett be an automorphism of C. Foreach A=1, ..., g, there is a unique p so that
1,7=1;0n F. Put6(A)=p. By a Theorem of Landherr {2] on hermitian forms over
division algebras, there is a p-hermitian k, of B* such that i) for every finite prime 4
of F, there is xﬁeB; such that hy =x ,hx%; and ii) J;(hy)=J,,(h). Let &, be the
involution of B given by x+—h, xh7! Then (B, ;) defines a reductive group G, as in
4.1.

Since J,(h)=J,;(h), there is an R-linear isomorphism u; of B, to B,;, such
that u, (x%) = u, (x)°. Putting all u,’s together, we get an R-linear automorphism 1,
of Bg so that u_ (x*)=1u_(x)° for all xeBg. The automorphism 1 induces an
isomorphism between Gy and G%g.

Pute;=1if1,=1,ytonK,and g;=—1ifr,=1,Tpon K. Lete=¢g, 1, + -+
+ &, 1,€ Bg. Denote by j, the unique element of By such that u, (j, &)=j. Then we
have j% = —j,, j?= —1 and {u,€G'g|u; j, =j, u,} is a maximal compact subgroup
of G% g. Hence j, defines an isomorphism w,; of B; to M, (C)foreach =1, ...,g, as
in 4.1. Using the w, ;’s we can make the quotient of G4z modulo a maximal compact
subgroup into a bounded symmetric domain ;. Let {Vy , ¢x,,Jw,x, (4,)} be a
system of canonical models for the quotients of #, by arithmetic subgroups of G .
Then the models {Vi, ¢y, Jwx(u)} associated with G and the models
{Vx,» &x,» Jw, x,(u1)} are related in the way described in Theorem 1.3. This fact
can be proved in a similar way. Actually this is the easier case, because the
bounded symmetric domains in question parametrize families of abelian va-
rieties themselves.

4.3. We make some comments on the special case where t is the complex
conjugation. In this case we have G = G. Note that the domains #; and # are not
equivalent unless r(4)=s(4) or r(4)-s(1)=0 for each A
The isomorphism u in the main Theorem can be given by ura” Yo with a
“negative” element a of Gy in the sense of [4, §3]. This fact follows easily from
the results of [4, §3]. The finite part a, of « belongs to the group ¥, defined in
[3, 3.4] if and only if r(4)=s(4) for all 2. When this happens we have dr(a(2)
=Jrr (2o)o ¢r,(2) for all Te3d and Ty=u(T)eJ,. The corresponding fact for
Shimura’s models is much harder to prove, see [4].
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