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In [1], Doi and Naganuma showed that the conjugation ofa Shimura curve is again 
a Shimura curve. The present paper deals with the generalization of their result. 

Consider in general a reductive algebraic group G defined over Q. Let G u be the 
semi-simple part of G. Assume that G~t modulo a maximal compact subgroup 
defines a bounded symmetric domain ~ ,  and that a system of canonical models (in 
the sense of Shimura [11, 2.13]) for the quotients of ~ by the arithmetic subgroups 
Yx of G exists. Let {Vx, (gx, Jxw(U)} be such a system. Take an arbitrary 
automorphism z of the complex number field C, and conjugate all the Vx's and 
Jxw(U)'S by z. Then one expects that {V:~, C~x, Jxw(u) ~} with suitable ~x's forms a 
system of canonical models for some reductive group G1. 

In this paper we show that this is the case if G is the type of groups investigated 
by Shimura in [11]. The corresponding group G1 is defined explicitly in 1.2, and the 
precise statement of the result is given as Theorem 1.3. 

In Shimura's construction, for special Yx the model Vx is first realized as a 
s ubvariety of a moduli-variety Vo for some PEL-type f2. Consider V~ as embedded in 
V~. It is known that the conjugate variety V~is isomorphic to the moduli-variety V w 
of another PEL-type f2'. The relations between f2 and f2' are provided by Shimura's 
work [6]. One of our main task then is to prove that the isomorphism of V~ to V u, 
induces an isomorphism ofV~to Vxl for some arithmetic subgroup Fx~ of G1. This 
can be achieved by studying the isolated fixed points of G o and G1 o" We carry out 
these considerations in Sections 2 and 3. 

The same functorial property also holds for the models constructed by Miyake 
in [3]. In Section 4 we deal with this case briefly. We shall not give the proof, 
because the argument is similar to, and actually simpler than, the one presented in 
this paper. 

We assume the reader is familiar with Shimura's work [10] and [11], which will 
be quoted respectively as [A] and [C] hereafter. 

* Partially supported by NSF grant M PS 75-07948 
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Notations 

We adopt the notations of [C], of which some are recalled here. 
The multiplicative group of an associative ring S with identity is denoted by S • 

For  an algebraic group G defined over Q, G A denotes its adelization. The finite part 
and infinite part of GA are denoted by Go and G~ respectively. Denote the identity 
component of Go by Go~+, and put GA+ =GoG~+.  

For an algebraic number field F, re denotes the ring of integers of F, F~b the 
abelian closure of F, and Fc the closure of F • Fo~+ in the idele group FA ~ . 

1. The Main Theorem 

1.t. Let F be a totally real algebraic number field of degree g, and B a quaternion 
algebra over F. Let z 1 . . . . .  "cg be the g distinct isomorphisms of F into R arranged in 
such a way that B is unramified at z~, ..., rr, and ramified at all other infinite places. 
Denote the discriminant of B over F by D(B/F). 

Assume r > 0. Define an algebraic group G over Q so that the Q-rational points 
of G are 

Go= {ct e G L,(B)[ct . '~' =v(~) l ,  with v(o:)E F • }, 

where l denotes the main involution of B and tot the transpose of~. The semi-simple 
part of G is 

G" = {o~ e Glv(ce)= l }, 

and G[ modulo a maximal compact subgroup defines a bounded symmetric 
domain J f  which can be identified with ovg', r copies of Siegel's upper half space ~,, 
of degree n. 

Consider a representation 0 of F equivalent to ~ zv. Let (F', 0') be the reflex of 
v=l  

(F, 0) and 2 = det 0' (see [CI, w 1] for notation). Then 2 is a homomorphism ofF'  • to 
F • Put 

~ + = {X e G A + lV(X)e A(FX• 

Define a group extension 9.I of 921=(~+/F~G~+ and a subgroup A+ of 92 as in 
[CII,  w Let [* be the subfield of F~'~ defined in [CII, 3.10], and p the homo- 
morphism from 9/ to Gal(f*/F') defined in [CII,  4.7]. The kernel of p is the 
closure of A +. Consider the set 3 of all open compact subgroup of 9.1. For every 
X e 3 ,  F x = A + n X  acts on out ~ properly discontinuously and Yg/F x has finite 
measure. The subgroup p (X)  of Gal(I*/F') corresponds to a subfield of ~*, which 
we denote by k x. 

As shown in [C], for every X e 3  there is a model (Vx, C~x ) of ~ / F  x with Vx 
rational over k x, and for ue92, X, We,3 such that u X u  -x = W, there is a mor- 
phism Jwx(u) of Vx onto V~, t") rational over k x. Furthermore the system 
{Vx, ~Px, Jwx(U), (X,  W e 3 ;  ueg.l)} enjoys the properties stated in [-CII, Theo- 
rem 5.2]. We call it a canonical system of models associated with G. 
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1.2. Let z be an automorphism of C. By a well-known Theorem of Hasse, there is a 
quaternion algebra B 1 over F, unique up to F-linear isomorphism, such that BI is 
unramified at z l r  . . . . .  zrz, ramified at all other infinite places, and D(BJF) 
=D(B/F). Consider the algebraic group G1 over Q whose Q-rational points are 

G I Q = { ~ G L n ( B I ) I ~ . ~ ' = v l ( ~ ) I ,  with vl(~)eF• 

Define the counterparts 21, 9A~, f*, Pl, 31, etc. of 2, 9.1, f*, p, 3, etc. Note that the 

representation 01 of F associated with B~ is equivalent to ~ z~z ~ OL Denote the 
v=l 

reflex of(F, 01) by (F;, 01). Then it follows from Lemma 1.5 proved below that F; 
= F  '~, 21(x')=2(x) for x~F', and ~* =[*L Let {Vx~, C~x,, Jw, x,(UO, (X 1, Wle31;  
u~ eg.I1)} be a system of canonical models associated with G 1 . 

1.3. Theorem. There is a topological isomorphism u of 9.I to 9A 1, which is locally 
algebraic, with the following properties. For X1~31 and u l e ~  1, put X =  u - l ( X 0  
and u = u - l ( u 0 .  Then kx,=Ux, zp l (u l )=p(u)z  on [*, and for each Xle31 ,  there is 
a biregular isomorphism Ox of Vx~ to V;c rational over Ux such that 

~,<"~)oJw~x~(Ul)~-Jwx(U)~O~x ( u X u - I = W ) .  

Remark. We have ~ =id.  on F' if and only if {~1 . . . .  , zr} = {zl z . . . . .  r,z}. In this case 
we have B 1 = B and Gt = G. Since p: 9.[ ~ Gal (f*/F') is surjective, there exists u ~  
such that p(u)=z on ~*. Define u ( x ) = u - l x u  for xEg, l. Then u satisfies the 
conditions of  Theorem 1.3. Therefore the theorem is trivial in the case where z =id. 
on F'. 

1.4. For X ~ 3 ,  let Kx be the field of all functions on Vx rational over kx, and put 

,-~x = I f ~  (bxl f~Kx} ,  

 =Ufx 
xe3 

We call ~'~ the arithmetic automorphic function field associated with G. For u e 9J 

and f ~ Kx, put 

( fo  Cx) ~") =fP<") o Jxw(U) ~ ew,  

where W= u-  1Xu. Then o2 is a homomorphism of 91 to Aut (~ /F ' ) .  Let 9f~1 be the 
field of arithmetic automorphic functions associated with G1, and 
o l :  9 . I i~Aut(~l /F~)  the homomorphism corresponding to ~o. In terms of 
arithmetic automorphic function fields, we can restate Theorem 1.3 as follows. 

Theorem. Let U: ~*'['~[1 be as in Theorem 1.3. 7hen there is an isomorphism 
n: ~5. ~ extending z: f * ~ *  such that nwl(uO=~o(u)n for ueg.l and u I 
=u(u)~9~. 
1.5. Lemma. Let E be an algebraic number field and ~P a Q-linear representation of 
E by complex matrices. For an automorphism z of C, let ~ be a representation of E 
equivalent to T ~. Denote the reflexes of (E, ~t') and (E, 7si) by (E', T') and (E'a, T;) 
respectively. Then E~ = (E') ~ and ~P; is equivalent to the representation r of E'~ given 
by q,(x')= ~U'(x) (xeE'). 
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Proof. By definition, E[ is generated over Q by {tr ~el(x)lxeE}. Since tr ~Pl(x) 
= (tr ~(x)) ~, we have Ei = (E'y. To show 7'; is equivalent to ~, take an (E, E')-module 
of type (E, 7 j) and of type (E', ~g') [C I, 1.1]. Introduce an (E, E~)-module structure 
on V as follows: For  a t E ,  beE'a and x e  V, put ( a |  where c is the 
element of E' such that c~= b. Call this (E, E])-module 1/1. Then I/1 is of type (E, 7'1) 
as well as of type (El, r Therefore ~u~ ~ ~. 

Remark. The above Lemma can be regarded as dual to Proposition 12 of [4]. 

1.6. Let B* be the quaternion algebra over F ~ such that D(B*/F ~) = D(B/Fy and 
such that B* is unramified at T- t r~z for v = 1 . . . . .  r, and ramified for v = r + 1 . . . . .  g. 
It is easy to see that the algebraic group defined in terms of GL,(B*) is isomorphic 
to G1 over Q. Especially, if F'=F,  D(B/F)~=D(B/F) and { z - l z l z ,  ...,~'--lZr"C } 
= {% . . . . .  z~}, then GI is isomorphic to G. Under  this situation we have F '~ = F'. The 
isomorphism u of Theorem 1.3 can be considered as an automorphism of 92. If 
z 4:id. on F', then u is not an inner automorphism. It  would be interesting, as 
suggested by the Corollary in the introduction of [1], to see under what conditions 
we can reduce the fields of definition of Vx's. The author hopes to discuss this and 
other implications of the result on some other occasion. 

2. Construction of  u 

2.1. Let K be a totally imaginary quadratic extension ofF.  For each v = 1 . . . . .  g, fix 
an extension of z~ to K and denote it again by rv. By Hasse's Theorem on central 
simple algebras, there is a quaternion algebra L over K which is isomorphic to both 
B | K and B1 @ r K over K. Denote the main involution of L by L Then there are a 
positive involution p on L and two invertible elements v and vl of L such that v ~ = 
- v ,  v~= - v l ,  and 

B_~{xeL lx '=vxPv -1 } ,  

BI ~- {x e L Ix '=v l  xO v~ I }, 

see [-8, 7.2]. Via these isomorphisms we regard B and B1 as F-subalgebras of L. 
Put T = v l , ,  S = v - l l ,  and x =  - (vv ' )  -1. Then T, SsGL , (L ) ,  x e F  • and 

(2.1.1) t T V = - T ,  S ' P S = x l , ,  T . ' S P = - - S ' ~  'p 

[A, Prop. 6.2]. We assume Conditions (6.3.7) and (6.3.8) of [A] for x and T. 
Similarly, put T1 = v l  1,, $1 =vi- 1 1, and xl = - ( v l  v])- 1. We also assume for T1 and 
xl the conditions corresponding to I-A, (6.3.7), (6.3.8)]. 

Let/~ be a finite prime of F. Denote the completion of F a t /~  by Fe. Fo r  an 
algebra A over F, put A e = A |  

2.2. Proposition. For every finite prime/~ of F, there is a ~ K S such that x/x l = a a ~ 

Proof. Since B e and BI~ are F~-isomorphic, there is b in L~ such that BI~ = bBpb-  1. 
It follows that 

B1/,= {xeLetx '  =(bvb~176 1}. 
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We also have (bvbV)P=-bvb ~ Hence vl =cbvb ~' for some ceF~. Denote  the 
reduced norm from L to K by N. Then it is easy to see that K = a a ~ K~ with a = c N (b). 

2.3. Proposition. For every finite prime/~ of F, there are ceF~ and eeGL,(L~) such 
that 7"1 = ca T. teo. 

Proof Let  the nota t ion be as in the proof  of Proposit ion 2.2. Put  c~ = b  1,. Then we 
have T ~ = c ~ r . ~  ~. 

2.4. Let 

5g = { z 6 M,(C) I 1 -t~-z is positive definite} 

and 

9 .  = { z ~ S e l ' z  = z} .  

Define an algebraic group G* over Q so that the Q-rational  points of  G* are the 
group of similitudes of T: 

G~ = G( T)Q = {c~GL.(L)[ a T. 'c~ p = v(a) Twith v(a)~F • }. 

Then G]+ acts on 5 ~" as described in [A, 6.5], As shown in [A, 6.6] there are maps 

i: G~G*,  a Q-rat ionalinject ion,  

i': B"--,L", a B-linear injection, 

j: j / g , ' ~ N , ' c 5  ~r, aho lomorph ic  bijection, 

such that  v(i(~))=v(a),j(~(z))=i(c~)(j(z)), i'(xc~)=i(x)i'(e)for c~eGQ+, zsoet~, " and 
xeB". The  image of  G under i is 

i(G) = {aeG*la  'p S=S~} .  

Using T~ and $1 instead of T and S, we define the counterparts  of G*, i, i' and j, and 
denote them by G*, il, i'1 and j~ respectively. 

2.5. F r o m  B we can construct a representation q~ of  Lx by complex matrices as in 
[A, 6.4]. Similarly, define a representat ion ~t of Ln, using B1 instead. It is easy to 
see that 4 1 is equivalent to ~ .  Let (H, q~') be the reflex of (K, q~). Choose an ample 
rv-lattice m in B" in the sense of  [A, 3.7], and put 9J~ = r K �9 m. Then  9J~ is an rK-lattice 
in L". Replacing v by c v for suitable c e F+ if necessary, we can assume trL/o(T(ff)l, ~Ol)) 
= Z. F o r m  the PEL-type ~2 = (L, 4, p; T, 9J~). Then  ~ ' =  (L, ~ t ,  p; T*, 931"), where 
T*eM,(L)  and 9)l* is a lattice in L". By [6I ,  Proposit ion 1.11], forevery finite prime 
/~ of F, there  are c e F~ and ~e GL,(L~) such that T* = c ~ T. ta". (As already noted in 
[1], the original condition tha t  ~=id. on H is not  necessary.) 

Note  that  both T*  and TI have signature (n, n) at  an infinite prime correspond- 
ing to z~ z (v  = 1 . . . . .  r), and (2n, 0) at o ther  infinite primes of  F. Next, combining 
Proposi t ion 2.3 with the observation made  at the end of the last paragraph, we see 
that for every finite prime fi of F, there  are c~eF~ and ct/,eGL,(L/~) such that  
a~ T* .  ta~ =c~ 7"1. Hence by a Theorem of Landherr  [2], there are c e F+ and 

aeGL, (L)  such tha t  aT*.  %~v =c Tv 
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Replace vl by cv 1, hence T1 by c Ta. Then f2 ' = (L, q~l, P; T*, 93/*) is equivalent to 
(L, 41, p; 7"1, !lJ/* ~- a). Put 9Y/1 = 9J/* ~- a. Then we can assume 

~?=(L,q~,p:T, ffJl) and Q~=(L,~ ,p;T1,  gJtt). 

2.6. Take a totally imaginary quadratic extension P o fF  different from K such that 
B |  is isomorphic to Mz(P). Put Y= M,(P). Denote the complex conjugation on 
P by p. For  ae  Y,, put a ~ = 'a ~ Then 3 is a positive involution on Y.. By [A, 4.7] there is 
an F-linear isomorphism f of Y into M,(B) such that f (a  ~) = (f(a)' for all ae  Y. Let 
z e ~  be the fixed point of (Y,,P,f,f) [A, (4.7.5)]. We use (Y,,P,6,f) to define a 

representation ~ of P as in [A, 4.9]. The representation ~ is equivalent to ~ Xv, 
v = l  

where Z~(v = 1 ... . .  r) is one of the extensions of % to P. For v = r + 1 . . . . .  g, let )~ be 
any extension of ~ to P. 

By Hasse's Theorem, B1 |  is also isomorphic to Mz(P ). Therefore there is an 
F-linear isomorphism f l  of Y into M, (B 1) such that f l  (a~) = (fl (a) '. Let z i e ~ be the 
fixed point of (Y,P,6,fl). Let 711 be the representation of P constructed from 
(Y,P,f ,f l)  as 7 j was from (Y,P,6,f). Conjugating f l  by a suitable element of 
GL,(BI), we may assume that ~1 is equivalent to ~ .  

2.7. Let ~(~) = {-~w I west '}  be an analytic family of PEL-structures of type ~ with 
parametrizing function 0 (x, w), see [A, 6.4]. Let (Y,P, 6,f)  be as in 2.6. Put Z 
= L | Y~-Mz,(KP), and regard L" as a Z-module by setting x (a | b)= a x (i(f(b))) 
for aeL, b e y  and xeL". Let zeogg be the fixed point o f (Y ,P , f , f )  and y=j(z)e5 r 
Consider the structure -~=(A r, ~gy, 0~,). We can extend 0 r to an anti-isomorphism 
0* of Z into Endo(Ar) as in [A, 6.7-6.9]. Define a representation ~ of Z so that 

g 

~ , - ~ 2~ +  ~ (X~+Z~P) on P, 
v = r + l  

~,-~ ( ~ , + ~ p ) + 2  ~ ~ on K, 
v = l  v = r + l  

see [A, 6.8, 6.9]. For  a, a'eL" put U(a, a')=trL/o(r(a, a')). Then ~* =(At, ~r, 0") 
is of type (Z, ~, gJl, U) in the sense of [CI, 4.1]. 

Let (Y,P, 6,fO and z 1 be as in 2.6, and put y l=j l (z l ) .  Denote Q~ 
=(L,  O~, p; T x ~0~) by ~. Let ~ ~ , 2;(fJ)={.~wlwe~ } be an analytic family of PEL- 
structures of type ~ with parametrizing function O~(x, w). We can extend "~r, 
=(3r~, cgr,, 0~,) to a structure .~* =(.4~, Cr,, 0") of type (Z, ~ ,  ~ t ,  U0- Here we 
regard L" as a Z-module by setting x(a | b) = ax(il (f l  (b))). E1 is a representation of 
Z defined in the same way as ~ was defined in the last paragraph. And U1 (a, a') 
= trt./o(Tl(a, a')) for a, a'eL". Comparing the restriction of E1 and E ~ to both K and 
P, we see that 2~ is equivalent to ~ .  

We show that if the parametrizing function 01 is chosen suitably, then we have 

(2.7.1) .~*' ~.~*. 

Let u be a point of 5 ~' such that ~ is isomorphic to .~, = (.,1,, ~ , ,  0,). There is an 
anti-isomorphism 0* of Z into Endo(A~) which extends 0, and such that 
( A , , ~ ,  0")~.~ *~. Then 0* defines a K-linear embedding f *  of K |  M,(L). 
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Regard L" as a Z-module by setting x (a | b) = a x (f* (b)). Then .~* = (.4,, ~2,, 0") is 
of type (Z, S~). Since .~* is also of type (Z, ~*), there is an isogeny ;t of .~* to .~*. 
Recall that for every a~G(T1)R+ and we6 er there is a C-linear automorphism 
A1(7, w) of C 4"g such that 

/11(~, w) Ol(x, w)=ol(x~, a-l(w)) 

for all x~L~, see [8, 4.4]. The isogeny ). is induced by Al(fl, Yl) for some fie G(Tt)o+ 
such that fl(u)= Yl. Let ~: C4"g--+,~, be a surjective holomorphic homomorphism 
with t11(9311, u) as kernel. Then from the definitions of 0* and 0* we have 

(2.7.2) ~ (r) 1 (x i 1 (fl  (b)) fl, u)) = ~ (r~ ~ (x fl f*  (b)), u) 

for all xeL"~ and be E 
Consider the PEL-type f2 '=(L,r and let tl'l(x,w) 

= r/1 ix/~, fl- 1 (w)). Let Z (f2') = {2" I w e 5 e'} be the family of PEL-structures of type 
parametrized by t)l. We have . ~ = ~ ,  where v=/~-l(w). Note that AI(~ , w) 

= A 1 (fl-* ~ fl, fl- 1 (w)) has the property 

A; (~, w) tj', ix, w) = 0'~ (x ~, ~-  l(w)) 
t for all xeL"~. Extend .~y, to a structure .~'* with the help of (Y,P,&f,). Then it 

follows from (2.7.2) that .~'* ~.~*---.~*~. 
Now replace 9R 1 by 93/1 fl-1, T1 by v(fl) T 1 and ~2' by 0. Replace 19t by 0',, and let 

S (~ )=  {.~ Iwe6 e'} stand for the family parametrized by the new t l l .Then the 
above reasoning shows that .~*'~.~*. Especially .~; is isomorphic to "~r," 

2.8. Now apply the results of [6 II, w 3] to .~* = (A r, cg r, 0") and ~. (We emphasize 
one more time that the results hold for any z.) For every finite prime p of F, there 

C x are a Ze-linear automorphism % of L~ and ~e Qv (//Ip) such that 9]/~ % = 9J/1~ and 
U (x, y) = ce U~ (x %, y %) for all x, ye L"~. Furthermore, let s be any non-negative 
integer and (q . . . .  , t,)(resp.(t n . . . . .  q,)) be an ordered set of elements from L"/~ 
(resp. L"/991~). Then we have t,~=ti%(modgJl,~ ) for all i= 1 . . . . .  s, provided the 
conjugation of (Z,Z,~IR, U; t, . . . . .  t o under z is (Z ,E~ ,~  1, U1 ; t n . . . . .  t**). From 
the relation between U and U,, we obtain T =  c~% T, .'~t{. Observe that % is a 
Ze-automorphism means it is an L~-automorphism and 

(2.8.1) ct; ~ i(f(a))%=il(f~(a)) forall aeY/,. 

Let S and $I be as in 2.1. Then we have 

(i(f(a))) 'v S = S i(f(a)), (i, (f~ (a))) 'v $1 = S~ il (fl (a)) 

for all asY~. On the other hand, it follows from (2.8.1) that 

(i~ (f~ (a)))'~[(~-~ l)'P S ~ ]  =[(~t;1)'v S~t/,](i~ (f,(a))). 

Hence S-~ 1 ( ~  1),vS% commutes with every element of i~ (fl (Ye)), i.e. it belongs to 
the commutor of i~(fl(Ye)) in M,(L~), which is Ke(i,(fl(P~)) ). Therefore there are 
aeK~ and 2eP~ such that 

(2.8.2) (c~ 1)'~ il(f1()~)). 
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We show that 2 is in F~. 
Combining T= c~ ~ T~ �9 t ~  with (2.8.2), we have 

T .  ~S p = c /, a ~ :t~ T 1 . t(i 1 ( f l  (2))) 0. 'S~. '~;, 

and 
- S 'p T 'p = - c/,  a p o~  S~~  ( f i  (2)))  'p T~ ~  ~ct'~. 

Since T .  ' S  ~ = - S w T '~, Ti  �9 ~S~ = - S'~ ~ T ;  ~ (see (2.1.1)), this shows 

(2.8.3) 7"1. '(i~ (fl (2))) 0. 'SO = - S'xP(ix ( f~  (2))) w TI v. 

Because f~ (2)~M,(Ba~), we have Sl (i~ (f~ (2))) = (i1(fl (2))) '~ $1. So the left hand side 
of (2.8.3) is equal to 

TI  a .  t(i~ ( f~  (2)))' = (ia (A (2))) 'a T~ 'o- 

Applying t p to the identity, we obtain 

T~. t(i, (fa (2))) p = i, (f ,  (2)) T~. 

On the other hand, 

7"1. r(i, (f~ (2)))" T~- ~ = i a (% (2)') = ia (fl (2a)). 

Therefore 2 = 2  ~, and hence 2aF~. This proves: 

(2.8.4) ( ~ ) ' ~  forsome d ~ e K ~ , .  

Note that 

(2.8.5) d j d P # = t c / t r  . 

This results from (2.8.4) and the identities S 'p S = x 1,, S] p S~ = ~:11,. 

2.9. Define an isomorphism u~ of G~ onto G*~ by u~(:()=7~ 1 ~ .  Then (2.8.4) 
shows that u~ actually sends G~ isomorphically onto GI~. Since ~ =  9J/1~ for 
almost all #, u / s  can be put together to form an isomorphism tt o of G O to Gto. For 
an infinite prime #a corresponding to the embedding ra, the signature of T at #z is 
the same as that of T 1 at flu if ~z ~ = T u. Therefore we can define an isomorphism u~ 
of G~  onto G*~, which sends G~,~ onto G ~ .  Putting together all u~'s we get an 
isomorphism u~ of G L onto G*~t+ which sends GR+ onto G~§ Finally by putting 
Uo and u~o together, we obtain an isomorphism u of G*+ onto G~'A+ that sends 
GA+ onto G1A +. By Lemma 1.5, we have u(f~+)=#x§ Hence u induces an iso- 
morphism (again denoted by u) of ~ onto ~ .  

2.10. Now it is only a formality to extend u to an isomorphism ofg.l onto 9.1~. First 
observe that both 9//~ and ~/9.I~ are canonically isomorphic to the finite group 
g defined in [CII, 4.1]. Let the notation be as in Proposition 4.6 of [CII] and its 
proof. Write 

A + = U J x A I +  and A I + =  U ~tA~+. 
~tl EU1 
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For  ~ e U  put t t(~)=cq~U~ if ~ and ~ have the same image in g. Define c, 
= ~b~(u(~)) -1 u(q~(~))eg.II, and for (~, x)e U • ~ l  =9.I set 

n(c~, x)=(u(~), c~u(x))e u~ x 9~ 1 =gX~. 

Then a trivial computa t ion shows that  u is an isomorphism of 9A onto  ~ .  In w 3 
we shall prove that u satisfies the conditions of Theorem 1.3. 

3. Proof of the Main Theorem 

3.1. Proposition. Let  9~ x be determined as in 2.7. Then there are an ample rF-lattice 
m I in B~ and an element : :o f  L~ such that 9)11 = / r  r �9 i'l(ml). 

Proof  Let v and v~ be as in 2.1. As we saw in the proof  of Proposit ion 2.2, for every 
finite prime ~ of  F, there are % e F ~  and bj,~L) such that vl = c~ b e v b~. For  a~ 

p x =c:  N ( b ~ ) ~ K : ,  we have a: a~=~c/~l, see Proposit ion 2.2. On the other hand, by 
(2.8.5) we also have d e d~ = ~c/~q, where d~eK~ satisfies (2.8.4). Thus (d~/a~)(d~/a~) p 
= 1. Hence there is es,~K ~ such that 

(3.1.1) d~/a~=e~/e:. 

• r infinite prime ~, let be an arbitrary element of L) .  It is Put/~p = e~ b~eL~. Fo an /#p 
easy to see that f=(,#~) belongs to L~,. Define m 1 by 

i'1 (m0 = / - ~  ~ ii (B% 

We show that  for every finite p,  

(3.1.2) i i ( B ] ~ ) = / p ,  i'(B":)o~:. 

In fact, we have 

i'(B") = {xeLn]x =vxW S}, 

i'l(Bq)= {xeL"lx  =v l  x 'p 8 1 } .  

Therefore, for B" x : e  : we have 

v I (2::. i' (x/O %~)'P S, = V l e~ b) p. i' (x/~) w a~/' S, 

= Vl e~ b : "  i'(x:) w d;1S~l ,  = 1)1 e~ d;  1 b~ p v -1 i ' (x~)~  

= v~ e: a-~ 1 b7 v- x i '(x/j % = vl ee e~ 1 N(b~)- 1 ~*t"P v-  1 i'(x/,) o~ 

= ee c~ ~ v 1 (b~ ~)o v-  1 i' (x~) ~t, = ee b e i' (xe) ~ 

=// , .  i' (X:) o~. 

This completes the proof  of  (3.1.2). Especially we have 

(3.1.3) "' -1 " . - f  " . 

=?*~ ~. i'(me) c~:. 
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Hence 

r ~ "  il (ml ~) =/;1 ~ % =/;1  ~ ,  ~" 

This being true for all finite primes/~, we have r~r i ' l (ml)=/-~gJ/r  In view of 
(3.1.3), m 1 is ample because m is. 

3.2. Put 

F* = {TeG~lv(7)= 1, 9J17=gJl}, 

~* = {Te G*QIVl(Y)= 1, 9J/1 ~ = ~ 1 } .  

Let f2 and ~ O '  be as in 2.7, and let (V,v, 4)) be a moduli-system for S(f2) in the 
sense of [7, 6.2]. Here v is an assignment which assigns a point v(~) of V to every 
PEL-structure .~ of type s qb is a holomorphic map from 6 e~ onto V inducing a 
biregular isomorphism of 6"~/F * onto V,, and qb(w)= v(~w) for all w e ~ ' .  Let 
(Vl,vl,qbl) be a moduli-system for 22(s~). Since s by [8, 4.23] there is a 
biregular isomorphism ~/, of V, to V ~ such that ~ =  0 o ~,,. 

3.3. Proposition. Let z, zl, y =j(z) and Yl =J~ (zl) be the special points chosen in 2.6. 
Let fl eGQ+ and w =j(fl(z)) = i(fl)(y). Then there is 7eG~o + such that for w ~ =j~ (7(z~)) 
we have c~(w) ~ = O(e~l (wa)). 

Proof Let fl,=u(fl)eG~A+. Then vl(flO=v(fl)eF • Hence by [A, 3.3], there is 
e e G l o  + such that vl(e)=vl(flO. Put Sx={Xef~l+lmlx=m,}. Then $1e3 , .  By 
the strong approximation theorem for G I' (see [CI, 3.4]), there are s o and 
seS, o G ~  such that f l l e - '=ss  Put 7=&eeGlo+ .  Then vl(7)=Vl(e)=v(fl ). 
We show that 7 satisfies the condition of our proposition. 

As in 2.7, we first consider L" as a Z-module by setting x (a | b)= a x(i(f(b))). 
The extended structure .~* of .~r is then of type (Z, N, 9J/, U). We see easily that 
. ~  can be extended to a structure .~* of type (Z,~,gJlfl, Ua), where Ua(a,a') 
=trL/Q(v(fl)-lT(a,a')). Now regard L" as a Z-module by setting x(aNb) 
=ax(i,(fl(b)) ) instead. Then ~r, can be extended to a structure ~* of type 
(Z, S1,gJI,, U 0. Recall that we have .~*'---~*, see 2.7. We determine the type 
(Z, ~1, ~Jl*, U*) of .~ ' .  

We have (Z,~,gJI, U) '~(Z,~I,gJ/1,  U1) and (Z,N, gJ/fl, Ua)~,-~(Z,~I,~ *, U*). 
Let/~ be a finite prime of F. Then e~ is a Ze-linear automorphism of L"~ such that 
~011~= .~1~ ~ and U(a,a')=c~U,(a%,a'e~) for some %eQ;(/flp). Since .~* and 
.~*~ are ~sogenous, by a standard argument we can assume that we also have 9J/; 
=(gJlfl)~e~ and Up(a,a')=c/iU*(ao~/,,a'c%). Now s/,7=fl~=u(fl)=~;lfl~. 
Therefore 

~*~ = ( ~ # ) / , ~ =  ~ / , % s ~ ' = ~ b ~ s ~ ' = ~ l ~ ' .  

This is true for all finite p. Hence 9J/* =9J/17. Similarly, we have U* = Ulr, where 
U 1 r(a, a') = trL/Q(v 1 (7)- 1 TI (a, a')). 

So -~*' is of type (Z,~1,~17,  U,r), which is the type of the extended structure 
of-~w,,  where wl=jl(7(zO). Hence .~w=.~Wl. Therefore, v(.~w)'=ff(vl(.~)) 
= qz(v1(.~w,)), or qb(w)~= qz(qb,(w,)). 
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3.4. For a positive integer b, define a member S(m, b) (resp. St(m1, b)) o f~  e (resp. ~1) 
as in [CI, 2.10]. Then it follows from Proposition 3.1 that u(S(m, b))=Si(m i, b). 
For any rK-lattice 91 in L", and any positive integer b, put 

F* (9l, b)= {7�9 1,917=91, 9 l (1 -7 )~  b91} 

F~* (91, b)= {7�9 1,917=91, 91(1 - 7 ) c  b91}. 

For a given positive integer a, choose b and c so that conditions (6.4.2)-(6.4.4) of 
[CI]  are satisfied. Put 

(3.4.1) S =S(m, c)- {x eS(m, b)lv(x)= 1}. 

Then 

(3.4.2) u(S)=S~ =S~(m~, c). {x�9 b)lVl(X)-= 1}. 

We assume that b has been chosen in such a way that the following conditions 
corresponding to [-CI, (6.4.3), (6.4.4)] also hold: 

(3.4.3) Put E = r { .  Then, for every u l e G i A ,  

E . r ( u l  1 S 1 u , ) =  {o~�9 g . F ~ ( / -  1~)~ l t t l ,  b ) l c ~ ( ~ ) c ~  4=f~}. 

(3.4.4) For every u~ e 6 ~ , ,  F*(/-~gJIlu~, b) has no element of finite order other 
than the identity element. 

Note that 

(3.4.5) F * ( / -  'gJt,u,, b)=F*(~J)I, ul,  b). 

Let (H, 4~') (resp.(H1,4~)) be the reflex of (K, 4~) (resp. (K, 4h)). Then by 
Lemma 1.5, H1 =HL Let Mc be the class field over H corresponding to the 
subgroup H • �9 {h �9 H I  I h - 1 mod0 (c)}. Define a class field Mlc over H~ in the same 
way. Then Mlc=M~.  

3.5. Choose q~ . . . . .  q~eLn/g28 such that b- ~ fOl/fOl ~- ~ Zqi. Consider the PEL- 
i = l  

type 

f2' =(L, ~, p; 9J~, T; q~ . . . . .  qs). 

Fix q l l ,  . . . ,qls �9 sO that 

~2' = ( L, CI) I , p ; 931l , T1; q11 . . . . .  q l s) 

is equivalent to ~" .  Then for every finite p r ime / /o f  F, we have 9J~le = 9Jtect~ and 
5 

qli---qict~(mod 9Jll~). Therefore b-19Jtl/gYtl ~- ~ Zql l .  Let kw be the field of 
i = l  

moduli of f2'. Then ko, is contained in Mc [CI. (6.6.1)]. The field of moduli of ~' is 
k~,, which is contained in M~c. 

Let I)(x, w) (resp. rh (x, w)) be the parametrizing function for Z(t?) (resp. Z(t))) as 
given in 2.7. We can use the same t)(x, w) (resp. 01 (x, w)) to parametrize a family 
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X(f2')={~wLWS~9 ~ (resp. I ; (~ ' )={-~]wsSPr})  of PEL-structures of type ~' 
(resp. ~'). Let (V',v', 4s (resp. (VI, ~1 ,40 )  be a moduli-system for X(~') (resp. 
X(~')). We can identify Vs with the subvariety ~b'(~, ~) of V' and take ~s = ~'oJ [CI. 
6.9]. Similarly, in view of(3.4.3)-(3.4.5), we can identify Vs~ with q~l ( ~ )  and take 4~s, 

=q~i~ . 
Since f ) '~  O '~, there is a biregular isomorphism Oe of 1/1' to V '~ over MI~ such 

that z, '~ = 0 ~ v~. We show that 0~ restricted to Vs, defines an isomorphism of Vs, to 
Vs ~ (over M1r ). Let z e Y f  be as in 3.3. Then Z =  {/3(z)l/~eGQ+ } is dense in Yr So it is 
sufficient to show that (qT(j(Z))) ~ is contained in ~,s~(Vs,), and is Zariski dense in 
there. 

Let/3 e GQ+ and w =j(/3(z)). Let the notation be as in 3.2. Then Proposition 3.3 
shows that ~b(w) ~ = ~Oe(~bl (wl)) for some wl e ~,~. According to [9], ~ ,  ~ ~w, 
posesses a certain non-holomorphic endomorphism b. It follows that ~ also 
posesses this endomorphism b. Therefore .~',j is isomorphic to .~,, for some va ~ ~,~. 
Thus 4a'(w)~=O~(d?'l(Vs))eOa(4'l(jl(~)))=t~e(Vs,). This shows (4)'(j(Z))) ~, and 
hence its Zariski closure V~, is contained in Oa(Vs,). Similarly, we show that Oa(Vs, ) 
is contained in V~. Therefore the restriction Os of 0~ to Vs~ is a biregular 
isomorphism of Vs, to V~. 

Thus for S of the form (3.4.1) with sufficiently large b, and for S~ = u(S), there is a 
biregular isomorphism 0s of Vs~ to V~ rational over M1 c. Put q~s = tPs ~ qSs,. Then 
(V~, q~s) is a model of W/Fs~ over k). 

3.6. For  xeGA+ and x a = u ( x ) e G l , +  we have v~(xO=v(x). Therefore, by the 
definitions of p and p 1 in 1.1, and by Lemma 1.5, we have z p i (x~) = p (x) z. Similarly, 
if S ~ ~ and S 1 = u (S) e ~ ,  then k~ = ks,. 

3.7. Let ~* be the subgroup of G* defined in [CI, 6.2]. Define a subgroup ~*+ of 
G~'A+ correspondingly. Then we have u(~r = ~'+ in view of Lemma 1.5.Let fin+, 
2n, etc. be as in [CI, 3.1], and define Nan,+, 2 m in a similar way. Let S and S~ be as 
in 3.4. For  xeffn+,  x~=u(x)~ffxn,+, put T = x - ~ S x ,  and TI=x'~ISlXl=U(T). 
We show that V~ and VT, are biregularly isomorphic over Mx~. 

By [CI, (6.3.5)], there is deH;, such that v(x)/2n(d)sF+Fo~ + and n(d)xeff* .  
(For the notation used here and in the following, see [CI, w 6].) Let d~ = d ' s  H~, .  
Then 2n, (dl) = 2n(d) and rq (dO = n(d). Hence 

Vl(Xl)/)~H,(dl)~F~_FX+ and n 1 ( d l ) x ~ + .  

Let O', ~'--~ (2 '~ be as in 3.5. Put a = [d-  1, HI  and a~ = r -  ~ a~ = [di- 1, H1]. By 
[CI, (6.6.1)], f2 '" is equivalent to 

f2" =(L,  ~, p; n(d)fOlx, #(n(d)x)- 1 T, {n(d)q~x}), 

while 0 '~  is equivalent to 

O" =(L,  ~1, P; n(d) ~Ol~x~ , la l (n(d) x ~)- ~ 7"1, { n(d) qlx x } ). 

We have f 2 " ~  f2"',,~ f2 . . . . .  f]"~ ,-~ f)". Note that for every finite prime / of F, we 
have (9)2~ x~)~ = ( g J ~ x ) ~  and #(n(d)x)) 1 T = ~  (n(d)xl)~xe T1. te~. 

Let 22(0")= {.~',~,]we6 ~} (resp. 22(f2")= {.~']wsSe~}) be the family of PEL- 
structures of type f2" (resp. f]") parameterized by O(x,w) (resp. O~(x, w)). Let 
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(V", v", q~") (resp. (V;', ~';, 4)';)) be a moduli-system for 2;(f2") (resp. 2;(0")). Since 
tf~ ~t! f2 ,-~ Q , there is a biregular i somorphism ~p" of V[' to V ''~ such that  v ''~ = 0% ,/[. 

Combin ing  the arguments  of [CI ,  6.7] and 3.5, we see that  O" induces a biregular 
i somorph ism 0 r  of VTi to V~ over M~c. Put q~r = 0 t o  4 r l .  Then (V~, 4;r) is a model  
of Jt~/FT, o v e r  k) .  

3.8. Let  S be as in 3.3. Consider # ' = { x - l S x l x E f q n + } .  Let T = x - l S x ~ q r  r, 
uefgu+ and U = u  -1 Tu. Then J~,r(u) is defined, and is a morph ism of V r onto Vt~ 
o v e r  kw, where a=pn(U). Let 

f2 '= (L ,  ~, p; 9J~,T; {qi}) 

be as in 3.5. As observed in 3.7, there is a PEL-type  f2" of the form 

f 2 "=(L ,~ ,p ;kgJ l x ,~cT , {kq i x } )  (k~K~,,  ~c~F+) 

such that  if (V", v", ~b") is a moduli-system for Z(Y2"), then Vr can be embedded in 
V" in such a way that  q~r=q~"o j. Let d ~ H 2  be such that  v(u)/2H(d)~F~_ F~+. 
Then f2 ''~ is equivalent  to 

f2* = (L ,  q~, p; rc(d) k gJ~x, #(Tr(d)x)- l~c T, {rc(d) kqix} ). 

Let (V*, v*, qS*) be a moduli -system for Z(f2*). Then Vv can be embedded in V* in 
such a way that  q5 v = q~* oj. Since f2 ''~ ~ 12", there is a biregular isoanorphism d from 
V* to V ''~ rat ional  over  M~ such that  ~"~ = J  o ~*. In view of the construct ion [CI ,  
w we can identify JvT(U) with the restriction of J to V r. 

Put xl = tt(x), T~ =x~  1SIXl ,  ui =u(u)  and U 1 = H ( U ) .  Also let al =pn,(uO. 
Then U~=u~ 1 TmUl and a l = r - a c r z .  Let 

f)' = (L ,  I~1, Io; 9 J ~ l ,  T,, (qli}) 

be as in 3.5. F r o m  3.7 we know that  ~"~ (resp. f2 *~) is equivalent to 

~ "  = (L ,  I~Jl ,  p ;  k ~)J~IX1,  K" 1 r l ,  { k q l i x 1 } )  

(re sp. l)* = (L, 4~1, p ; x  (d) k 9Jllx I , ~1 (it (d)x 1)-1 ~c 1 T1 ' {n (d) k q l 1 x 1 })) 

x tr fp r~ , , * ' with a suitable ~qeF~. Let (V i , ~ , 4 ~ )  (resp. (V~ ,~q,qSi)) be a moduh-sys tem 
for Z(~)") (resp. 2;(~*)). Embed  Vr, (resp. Vv,) in V~" (resp. V~*) in such a way that 
qSr =~b~;oj~ (resp. q~v,=qS*oj0. We have a biregular i somorphism 0" 
(resp. 0")  of V~' (resp. V~*) onto V ''~ (resp. V*') over M ~  which induces the iso- 
m orph i sm  0T (resp. 0v) of Vr, (resp. Vv,) to V~ (resp. V~). 

We have f)* ~ f2*" ~ f2 .... ~ f2 . . . . . .  ~2 .... . Therefore, there is a biregular isomor-  
phism J~ of [/1" to V; '~' such that  ~'1 '~' =J~ o~T. We can identify Jv, r~(u~) with the 
restriction of ./~ to VT,. 

N o w  we have 

on one hand, and 

0 .... ~ ~ ~,* = O  .... ~176  = ( 0  ' ' ~ ~*)~' = ~  . . . . . .  ~ .... 
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on the other. Therefore  J~o ~p*= ~b .... o J1. It  follows that  

(3.8.1) J~r(u)~o~=~oSv, r~(uO, 

where al =pro(nO. 

3.9. We prove  that  Ov is defined over  kv,H~. Let n~ be an a u t o m o r p h i s m  of M ~  
over  kv, H1. By [C I. 3.3, 3.5], there is u e U ~ fen + such that  Pu (u) = z ~z~ z -  ~ on M~. 
Put  u~ = u(u). Then  Pu~ (u~) = ~ ,  Jvv(u) = id., and Jr, v~ (ul) = id. Hence by (3.8.1) 
we have ~p~? =Ou.  This being true for all n~ e G a l ( M i J k u ~ H O ,  tPv is defined over 
kv, H~. 

Therefore,  for all U e ~  and  U~ = u(U), we have a biregular  i somorph ism ~0v: 
Vv, ~ V{: over  kvl H~ satisfying (3.8.1), i.e. we have proved  the main  Theo rem for { Vv, 
(or, JvT(u)[U, Te ~U, u e (r + } over H. Go ing  through the reduction process of [CI,  
I I ] ,  we conclude tha t  u satisfies all the condit ions of  Theo rem 1.3. 

4. Conjugations of Miyake's Models 

4.1. Let  K be a total ly imaginary  quadra t ic  extension of a totally real algebraic 
number  field F of degree g, and B a central  simple algebra over  K with a positive 
involut ion p which coincides with the complex conjugat ion on K. Choose  g 
embeddings  zl . . . . .  Zg of K into C so that  their  restrictions to F are all distinct. Put 
n 2 = [B: K-]. Decompose  Bn = B |  R into the direct sum of simple algebras BI 0 " -  
OBg.  Let  ~ be the identity e lement  of  B~. Fo r  each 2 = 1 . . . . .  g, there is an R-linear 

i somorph i sm ~pa of B~ onto M,(C)  such that  ~ba(x p) = t~p~(x) for all x eBa. Fix ~ba once 
and for all. For  a p-hermi t ian  element h of  B • i.e. an  element h of B • such that  h ~ 
= h, denote  the signature of  ~b~(h) by J~(h). 

Let 6 be an involut ion of  B which coincides with p on K. Define an algebraic 
group  G over  Q so that  the Q-ra t iona l  points  of G are 

G o = {c~sB • I ~ =  v(e)eF • }. 

The  semi-simple par t  of G is 

G" = { ~ G [ v ( ~ )  = 1 and N(~) = 1}, 

where N denotes the reduced no rm of B to K. Deno te  the homogeneous  space G~ 
modu lo  a max imal  compac t  subgroup  by ~ .  

Fix a p-hermi t ian  e lement  h e B  • such that  x6=hxOh - 1 for all x~B.  Let Jz 
= J~ (h) = (r (2), s(2)). Put  

[1,ca) 0 ] 
J r ( ~ ) , s ( ~ ) =  L 0 - 1s(~)  " 

As in [3, 1.4], consider an element  j of  B R such tha t  f l  = - j ,  j2 = _ 1 and such that  
{ue G"nluj = j  u} is a max imal  compac t  subgroup  of  G~. By [3, Corol la ry  1, Prop. 2], 
for each 2 = 1,. . . ,  g, there is an i somorph i sm o)~ of  B~ on to  M,(C)  such that  

coa(x ~) =3,~),~)tcn~(x) J,~),~(a) for all xeBa,  
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and 

o~z(j tz) = ]//-- 1Jr~z),s(~)' 
g 

Using co~'s, we can identify J f  with the product  I-[ ~(~r where ~ ,~  denotes the 
, r  

bounded  symmetric domain consisting of all r • s complex matrices z such that 1, 
- z  t~-is positive hermitian. In this way we have a bounded symmetric domain 
structure on ~ .  The main Theorem of [-3] states that there is a canonical system of 
models for the quotients of  fff by arithmetic subgroups of G. 

4.2. Let z be an automorphism of C. For  each 2 = 1 . . . . .  g, there is a unique p so that 
z,  z = z~ on F. Put  o-(2) = p. By a Theorem of Landherr  [2] on hermitian forms over 
division algebras, there is a p-hermitian hi ofB • such that i) for every finite prime/~ 
of  F, there is x/~B~ such that hi =x/,hx~; and ii) Jz(hl)=J~lz)(h). Let 61 be the 
involution of B given by x~--*h~ xh~ 1. Then (B, ~1) defines a reductive group G~ as in 
4.1. 

Since Jx(h~)=J~(x)(h), there is an R-linear isomorphism ua of  Ba to B,(x~ such 
that nz(x ~') = uz(x) ~. Putting all ux's together, we get an R-linear automorphism tt~ 
of  B~ so that u ~ ( x ~ ) =  u~(x) ~ for all xEBR. The automorphism u~ induces an 
isomorphism between G'i and G~ ~. 

Put  e~ = 1 if z~ = z ~ )  z on K, and e~ = - 1 if zx = z~tz) z p on K. Let e = e~ t ~ + . . .  
+ eg tgeBR. Denote  by Jl the unique element of  Ba such that u ,U1  e)=j. Then we 
have j~  = - J  l, J 12 = - 1 and { u l ~ G~ a lUl j~ =j~ u~ } is a maximal compact  subgroup 
of  G~ a. Hence j~ defines an isomorphism co ~ a of Bz to M~ (C) for each 2 = 1 . . . . .  g, as 
in 4.1. Using the co~ z's we can make the quotient of G~ a modulo a maximal compact  
subgroup into a bounded symmetric domain 3~f~. Let {Vx,,Ox,,Jw,x~(ul)} be a 
system of canonical  models for the quotients of  ~ by arithmetic subgroups of Gp 
Then the models {Vx,4x,Jwx(U)} associated with G and the models 
{Vx,, C~x,, Jw~x~(U~)} are related in the way described in Theorem 1.3. This fact 
can be proved in a similar way. Actually this is the easier case, because the 
bounded  symmetric domains in question parametrize families of abelian va- 
rieties themselves. 

4.3. We make some comments  on the special case where z is the complex 
conjugation.  In this case we have G1 = G. Note  that the domains ~ and ~ are not 
equivalent unless r (2)= s(2) or r(2). s (2)=0 for each 2. 

The isomorphism u in the main Theorem can be given by w--,a- x uct with a 
"negat ive"  element ~ of G o in the sense of  [4, w This fact follows easily from 
the results of  [4, w 3]. The finite part  e0 of ~ belongs to the group ~ +  defined in 
[3, 3.4] if and only if r(2)=s(2) for all 2. When this happens we have ~T(Ct(Z--)) 
=JTT~(~o)odpT~(Z) for all T~ 3 and T~=tt(T)~,3~. The corresponding fact for 
Shimura 's  models is much harder to prove, see [4]. 
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