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1. Introduction 

Albeit the distribution of the prime factors of an integer determine in principle 
that of the divisors, it is often very hard in practice to describe the latter 
using currently available information about the former. A typical example is 
supplied by the 45 year old conjecture of Erd6s [-1] stating that almost all 
integers possess at least a pair of divisors d, d', with the property that 

d<d'<_2d. 

This problem and several other questions connected with the distribution and 
the propinquity of divisors have been studied recently [-2, 4, 8, 12-14]. Another 
related topic is the theory of Hooley's A-function which has gained importance 
in several applications to different branches of Number Theory [11]. This func- 
tion is defined by 

A (n)." = sup card {d : din, u < d < eu}, 
u 

(n= t, 2, ...). 

The normal and average orders of A have been investigated by Hall and Te- 
nenbaum in [-9, 10]. The second paper also deals with the generalized At-func- 
tions (see [-11]) which are of specific interest in some applications. The best 
known results are 

x log  logx,~ ~, A(n)~x( logx)  ~ 
n~<x 

with ~=0.21969, and 

A(n)~(logn) ~, (p.p.) 

for any /~>log2(1-1/ log3)=0.06221 .... Here and throughout the paper we 
use the notation p.p. (presque partout) to indicate that a relation holds for al- 
most all integers - that is in a sequence of asymptotic density 1. 
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In this paper, our aim is to prove a strong form of Erd6s's conjecture and 
to give a lower bound for the normal order of Hootey's function. We now state 
our main result. 

Theorem 1. Let E(n) be the infimum of the numbers log(d'/d), when din, d'ln, 
d <d'. I f  ~(n) is any function tending to infinity, we have 

E(n)<=(logn)l log3 exp{~(n) 1 V ~ l o g n }  ' (p.p.). 

We first make some historical comments. Originally the first named author 
gave a proof of the slightly weaker result 

(Ve>0), E(n)<=(logn)l Iog3+e (p.p.). 

His approach was indirect: he first established a comparison theorem which 
enables one to translate the problem into a purely probabilistic statement, 
namely that a certain integral is asymptotically 1+o(1). He then used an 
iterative procedure that yielded the desired estimate. Retaining the basic idea of 
this last step, the second author provided a number theoretical demonstration, 
along lines similar to those of r7, 14]. We present this second proof here. 
Ignoring the slight improvement on the final result, it has the advantage of 
being easier in principle, and considerably shorter. 

The result stated in Theorem 1 is nearly best possible. As shown by a 
theorem of Erd/Ss and Hall 1-2] not only the exponent 1 - l o g  3 cannot be im- 
proved but, also, the function ~(n) cannot be taken tending to - o o  as fast as 

- c I / log log log logn. 
An easy heuristic argument explains why the exponent l - l o g 3  has to be 

expected. The number of distinct ratios d'/d, when din, d'ln, is equal to 

v(n) :  = l q (2~  + 1). 
p % n  

For all n we have 

3 ~ < U(n) < 3 ~("), 

where c~(n) (resp. f2(n)) denotes the number of prime factors of n counted with- 
out (resp. with) multiplicity. By the Hardy-Ramanujan Theorem, both func- 
tions og(n) and f2(n) have normal order loglogn. Thus, assuming smooth distri- 
bution of the log(d'/d) in [ - l o g n ,  Iogn], any sub-interval of length 2 should 
normally contain as its appropriate share 

2 U (n)/(2 log n) = 2(log n )  l~  - 1 + o(1) 

distinct values log(d'/d). We apply this to an interval centered at the origin. 

Theorem 2. Let y < - l o g 2 / l o g ( 1 -  1/log3)=0.28754 . . . .  Then 

A(n)>(toglogn) ~, (p.p.). 
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2. Two lemmas 

We shall use in the sequel the following lemmas. They can both be proven 
elementarily. The first is a weakening of a theorem of Halberstam and Richert 
[6] generalizing a result of Hall. The second is established in [5] and, in a 
stronger version, in [14]. 

Lemma 1. Let f be a non negative multiplicative function such that for all primes p 

0<f(pV)<212~,  ( v = l , 2  . . . .  ), 

where 0<21,  0 < 2 2 < 2 .  Then for x>  l 

~, J ' (n)~ , ,~  2 x I1 ( 1 - p - l )  ~ f(p~)p L 
n<x p<x v - - O  

Lemma 2. For 2 <_ u < v < x, we have 

logv] 
card{n_<x: I1 p ~ > v } ~ x e x p - c  

- p ~ u,pvll,, log u/ '  

where c is a positive absolute constant. 

3. Proof of Theorem 1 

We first introduce some notation. 
The letter p always denotes a prime number. We set r/=r/(x) 

= ( l o g x ) l - l ~  e=e(x)=~(x)(loglogx) ~, el=el(x)=e/lO, 
L=[ (1 -2e Ol og l ogx ] ,  M = [ ( 1 - e l ) l o g l o g x  ], rk=expexpk, (L<k<_M). We 
suppose that ~(x) tends to +oo so slowly that e(x)--*O. 

For every integer n<x,  we define rig= H p and we denote by 2(n) the 
p]n,p<rk 

Lebesgue measure of the set 

d~, (log(d'/d) + [ -  q, q]). 

For real 0 and square free n we write 

S(O; n)= ~ (d'/d)i~ +2cos(01ogp)). 
dd'ln pin 

Finally, the notation p.p.x means: for a set of cardinality x+o(x)  of integers 

The basic idea of the proof is to show that 2(nk) is fairly large p.p.x. This 
leaves many possibilities for those prime factors of n larger than r k to lie close 
to a ratio d'/d with dd'ln k. In other words this means that if n k does not satisfy 
the conjecture, then the conditional probability that, for small l0 nk+ ~ still does 
not satisfy it is not to close to 1. The proof is then completed by inductive use 
of this upper bound. 

We start with a lower estimate for 2(n) derived from Fourier Analysis. 
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Lemma  3. We have, for square free n, 

J.(n) ~ 32 w(n) (2 n 

H. Maier and G. Tenenbaum 

ll .  )_ ] 
S(O ; n) 2 dO . 

- l l ~  

Proof Set F (z )=  ~ 1. Then 2(n) is the measure of the set of those z 
dd" [ n, log(d'/d) ~= z 

for which F(z + 0 ) -  F(z - tl) 4= O. Plainly 

+ o o  /sin((u - z)/2tt)\ 2 . . . .  
F(z + t l ) -  F ( z - q ) <  2 L 

1/q 

=20 ~ ei~ 
- 1 / , 1  

by Parseval's formula. A second application of this formula implies 

+ oo 1/n 

( F ( z + q ) - F ( z - , ) ) Z d z < S n t l  2 ~ (1- [0 , [ )2S(0 ;n)Zd0.  
- e e  - 1/~ 

This gives the result stated by the Cauchy-Schwarz  inequality: 

(2~3~"~)2= (F(z+~)-f(z-~))dz <=X(n) ~ (F(z+~)-f(z-~))2dz. 

Lemma  4. Let 0 < c~ < 1 and let w(x) be any function tending to infinity. For each 
k, L <- k <_ M, we have uniformly in s, w(x) <= s <= k, 

co(nk/n k _,) > ors, (p.p. x). 
Moreover, 

o~(nk) > (1 - e O k ,  (p.p. x). 

Proof The  second inequali ty readily follows from the Tur~n-Kubil ius  in- 
equality. To  prove the first, we use Lemma  1. The  number  of exceptional in- 
tegers up to x does not  exceed 

w(x)  <=s<-k n <_x s>_ w(x)  

where Q(c~) = ~ log c~ - ~ + 1 > 0. This is sufficient. 

L e m m a  5. Let k and w(x) be as in Lemma 4. We have 

1/q 

S(O;nk)zdO<=32~~ (p.p. x). 
- 1 / , 1  

Corollary.  Under the same hypothesis, we have 

2(nk) > ek/w(x), (p.p. X). 

Proof of  the Lemma. Since IS(O; nk)] < 3  '~ the desired estimate is valid for all 
n for the sub-range IO[<e-kw(x). We may therefore suppose ]0]>e-kw(x) .  Set 
~ = Z 1. 

Pin,  logp<= 1/lOI 
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By L e m m a  1, we have for y, z > 0  

2 S(O ; nk) 2 z ~(nk) yCOO(n) 
n~x 

9,z+ z(l+acost01o ;/   
~.p<=eUIOl P el/IOl<p<=rk p 

x exp {3 z(3 y - l) log + (1/I 0}) + (3 z - 1 ) k + Or,~(log log(3 + 101))}, 

the second sum over  p being estimated,  using the Pr ime N u m b e r  Theorem,  as 
explained in [3; L e m m a  2]. Next,  we select y = z =  1/3, and use L e m m a  4 in the 
form 

co(nk)-COo(n)>~(k-log(1/lOI)), (e-kw(x)<lO[<l), (p.p. x) 

co(nk) > (1 -e~)k,  (p.p. x). 
We obtain  

fx(eklO[) -~'1~ (e kw(x)<lOl<t), 
~<='xS(O;nk)23-E~ ' (1 <101 < l/r/), 

where the dash indicates that  the sum is restricted to a set of integers < x ,  
independent  of 0, of cardinali ty x +o(x), and where A denotes an absolute  con- 
stant. 

We now fix c~ in the range I / log 3 < c~ < 1 and perform the integrat ion in 0. 
This yields 

~'  ~ S(O;nk)z3-z'~("u)dO'~xe -k. 
n<=x e kw(x)<lOl<=l#l 

Indeed, the cont r ibut ion  of the first range is easily seen to be of the desired 
order  and that  of  the second is 

~ x  3- ( i  -~1)k r/- I (log logx)A =o(xe-k). 

This completes  the proof.  

Proof of Theorem 1. Let  E k be the number  of integers n_-< x having the follow- 
ing proper ty  

dd'ln k, d#:d' ~llog(d'/d)l>tl(x). 

We denote by E' k the n u m b e r  of  those n counted in E k which satisfy the three 
extra condit ions 

(a) log n k <= e k w(x), 
(b) e)(nk) <= 2k, 
(c) 2(rig) > eR/w(x). 

By L e m m a  2, the Tur /m-Kubi l ius  inequali ty and Corol lary  to L e m m a  5, we see 
that  for each k, L < k < M ,  

G < G + o(x). (1) 

We shall prove  by contradic t ion  that  EM=o(x ). To this end, we consider the 
num be r  F k of those integers n counted in E~ which have two pr ime factors p 
and q such that  
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(i) 2 e k w(x) < log p < 3 e k w(x), 
(ii) log p < log q < log p + e k w(x), 

(iii) log q -- log p e ~a~" ,k (log(d' /d) + [ -  q, q]). 
1 

The last condition ensures that [log(pd'/qd)l<q(x) for some d, d', dd'lnk, so 
that n is certainly not counted in Ek+~, with l=  l+[log(4w(x))] .  Thus, Fk<E k 
--Ek+ r Denote by m k an integer equal to n k for some n counted in E~, and by 
b an integer all of whose prime factors are >exp(4ekw(x)).  By the sieve 

x e  - k  

Fk> Z* 1>> Z* 
,mkpqb<=x m~p~<=x w(x)pq~o(mk) 

tlmk 

where the star indicates that p and q satisfy (i), (ii), (iii) above with m k in place 
of n k. The condition m ~ p q < x  is redundant since lOgmk<ekw(x). When rag, p, 
are fixed, q covers a union of at most 3~'(mk)=<3 2k disjoint intervals with total 
logarithmic length >ek/(2W(X)). Moreover, all the limit points have logarithm 
of the order of e kw(x). By the Prime Number Theorem, this implies that the q- 
sum is >> w ( x ) - 2  The p-sum is then >> 1 and we have 

Fk~ Xe--kw(x) - 3 E 1/q~ 

Now "~ 
E'k <=~ Z l ~ x e - k Z 1 / q ~ ( m k )  

mk a < x/mk mk 
p[a=~pl-mk o r  p >  rk 

again by the sieve. Therefore 

F k >> E' k w(x)-  3. (2) 

t Now, suppose EM>>x. Then, by (1), Ek>>E k for L < k < M ,  and (2) implies 

Ek+t <(1--CW(X) 3)E k. 

Using this inequality recursively, we get 

E M < (1 - c w ( x ) -  3)t(M- L)/q EL ~ (1 - -  c w ( x ) -  3)t(~, loglogx)/l] EL" 

When w(x) tends to infinity sufficiently slowly, this upper bound is o(x). This is 
all we need. 

4. Proof of Theorem 2 

Let p > ( 1 - 1 / l o g  3)-1, j =  [(log loglogx)/log p)] and w(x)-~ o% w(x)=o(J) ,  be a 
function to be further specified later. We are going to apply the procedure of 
the previous section to the numbers 

nj = 1~ p, (w(x) < j  <= J), 
pJ <loglo~p<pj+ 1 

pin 

for almost all n<x .  The choice of the nj is heuristically justified by the fact 
that we certainly need yo(,j)>lognj,  and this inequality is normally satisfied if 
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pJ(p-1) log3>p j+a that is p > ( 1 - 1 / l o g 3 )  t. It will be seen that the following 
statement holds for any fixed positive r/ 

3dlnj, 3d'[nj, O<[log(d'/d)l<r/, (w(x)<j<J),  (p.p.x). (*) 

Suppose it is true. Forming all the possible products of r =  [ J -  w(x)] terms by 
choosing for each j a d or a d', we obtain 2 ~ distinct divisors of n lying all in an 
interval of logarithmic length r/r. By Dirichlet's box principle, it follows that 

A(n)>2"/r/r, (p.p. x). 

This is all that is required. 
To establish (*), we define L j=  [pJ(p-1-2e)] ,  Mj= [ p J ( p - 1 -  e)], and 

n.i,k = l--~ P, (Li < k < Mj), 
p J< loglo~p<p-'+k 

pin 

where e=e(r/,p) is positive and sufficiently small. 
Using the same arguments as in the proofs of Lemma 4, 5, we easily check 

that for each j and each k we have 

o~(nj,k/nj,k_~)>eS, (610gw(x)<s<=k), (p.p.x) 

(n(nj, k)>=(1--e)k, (p.p. x) 

2(n~,k)>=exp(pJ + k)w(x) -~- 3 , (p.p. x) 

where 1/log 3<c t <  1, and fi=fi(cQ= 3/Q(e)>0. Moreover, the numbers of excep- 
tional integers are respectively O(xw(x) 3), O(x/k), and O(xw(x)-3). The third 
estimate is achieved by computing an upper bound for 

~, S(O; nj,k) 2 z'~176176 ~ 
n<=x 

with y = z =  1/3 when exp( -pJ -k)w(x)~<lOl<exp( -pJ ) ,  and with y =  1, z=  1/3, 
when exp ( -pJ )<  [01 < l/r/. The condition on p ensures that the integral on the 
first range dominates if z is small enough. Let Ej, k (resp. Ej.R) denote the 
number of n < x such that 

dd'lnj, k, d@d' ~[log(d'/d)l>r/ 

(resp. and log nj,k < exp(y  + k) w (x), Co(nj,k) ~ 2 k, 2(hi, k) > exp(pJ + k)/w(x) ~+ 3). We 
have 

Ej, k = ~j,k + O(x w(x ) -  3) 

uniformly for w(x) <j < J, Lj < k < Mj. 
Now we may prove exactly like in Sect. 3 that, on the assumption that 

Ej, Mj > B x w(x)-3 for a sufficiently large absolute constant B, 

~,~ +,-5(l - c w(x) -~-~) E~,~ 
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w i t h  l =  1 + [ l og (4w(x ) ) ] .  T h u s  

E j, Me --< (1 - c w ( x ) - ~ -  8)t~M~ - L,~/,I x = o ( x  w ( x ) -  ~), 

a c o n t r a d i c t i o n .  F i n a l l y ,  i t  fo l lows  t h a t  

E j.Mj ,~ x w ( x ) -  3, (w(x) < j < J). 

W e  h a v e  t h e r e f o r e  p r o v e n  t h a t  t he  n u m b e r  of  i n t e g e r s  n < x  w h i c h  d o  n o t  sa t -  

isfy ( . )  d o e s  n o t  e x c e e d  

Ei, t , , t , '~xJw(x)  - 3. 
w(x) < j <=.t 

O n  c h o o s i n g  w ( x ) = l / l o g l o g l o g x ,  we o b t a i n  t h a t  th i s  is o(x). T h i s  c o m p l e t e s  

t h e  p roof .  
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