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1. Introduction 

The object of this paper is to generalize the basic zero estimates which were 
obtained in our earlier article [4]. Let G be a commutative group variety 
embedded in some projective space, and let F be a finitely generated subgroup 
(not necessarily algebraic) of G. In [4] we gave sharp upper bounds for the 
number of zeroes in Y, counted without multiplicity, of an arbitrary homo- 
geneous polynomial. In the present paper, we introduce a natural concept of 
multiplicity along a one-parameter subgroup, and by using the methods of [2] 
we obtain the analogous estimates which take this multiplicity into account. 

We also incorporate several more new features into our results. Firstly, the 
estimates of [4] are very weak when F contains torsion points of high order, 
and so we use a more refined counting function on F which is capable of 
detecting such points. Secondly, we show how the results can be improved 
when G splits into a product G 1 x ... x G k of group varieties G1 . . . . .  G k. For this 
we need to consider multiprojective embeddings rather than simply projective 
embeddings; see also the article [13] of Moreau for similar considerations. 
Lastly, by using more delicate properties of multiprojective varieties, we show 
how the estimates can be even further sharpened when the groups G~ . . . . .  G k 
satisfy a certain natural disjointness condition. 

The results of this paper have several applications to transcendence theory 
and related areas. They enable fairly rapid proofs to be given of Baker's 
theorem on linear forms in logarithms (cf. [9]), and also of the elliptic anal- 
ogue in the case of complex multiplication (see [12] for a particularly sharp 
refinement in this context). Furthermore they have already been used to estab- 
lish the elliptic analogues of Gelfond's theorems on the algebraic independence 
of values of the exponential function (see [5]), and it is also possible to give a 
simplified proof of an interesting related result of Philippon [7] on the p-adic 
Weierstrass zeta function. More recently, our estimates have played an impor- 
tant part in the second author 's  proof of the elliptic and abelian analogues of 
Lindemann's  theorem [11]. It is also probable that they will lead to small 
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improvements  in the results of [6] on the N6ron-Tate  height and division 
points on an abelian variety. 

In order  to state our  results we start by discussing our  multiprojective 
embedding and the concept  of  multiplicity. In [4] we considered a group 
variety embedded in projective space IP N for some integer N >  1. In this situa- 
tion we shall say that the group variety is linear if the addit ion laws (see Sect. 2 
(p. 492) of [-4]) can be defined by bilinear forms. For  an integer k >  1 let now 
G I . . . . .  G k be arbitrary commutat ive  group varieties, defined over K =  C or the 
analogous p-adic field ~p,  and embedded in projective spaces IPN1, .... lPr% for 
integers N 1 > 1 . . . . .  Nk> 1. The group variety G =  G 1 x ... x G k is then embedded 
in Y'=IPNI x ... x IPN. Al though this can in turn be embedded in projective 
space by means of the Segre mapping,  it is not  convenient to do this in the 
context of the present paper. So we introduce variables Xi, o . . . . .  Xi, N, on IPN, 
(1 < i < k), and we work in the ring 

9 I = K [ X 1 , 0  . . . . .  X1,N,, .... Xk, o . . . . .  Xk, NJ.  

with mul t ihomogeneous  polynomials  which are homogeneous  separately in the 
variables of  IPN, . . . . .  IPN. Each point  of  Y" can be described in terms of multi- 
projective coordinates in the usual way (see for example [10]). 

N o w  G, being smooth,  has the natural  structure of an analytic manifold 
over K. By a one-parameter  subgroup of G we shall mean a non-trivial 
analytic map  (b from K to G which is also a homomorph i sm  of additive 
groups, and we use the same symbol (b for 45(K); thus ~b+0 the origin of G. 
The map  ~ will be fixed from now on throughout  the paper. For  an element g 
of G and a mul t ihomogeneous  polynomial  P in 9~ we define the order  of 
vanishing ordg P of P at g along �9 as follows. It is well-known that the map  Tg 
from G to G representing translation by g is analytic. Hence the composi t ion 

~'(z) = ~ ( z ) =  T,(~(z)) 

is an analytic map from K to G. In particular, there exist functions 

~ga,o(Z ) . . . . .  ~91,Nl(z) . . . .  , qJu, o(Z) . . . . .  0k,N~(Z), (1.1) 

analytic near z = 0 ,  such that  for all z sufficiently small their values are 
multiprojective coordinates of hU(z). If now the function 

f (z)= P(~k l, o(Z) . . . . .  O l,ul (z) . . . . .  Ok, o(Z) . . . . .  tPk, Nk (Z)) 

is identically zero we write ordg P =  0% this symbol being subject to the usual 
conventions.  Otherwise we define o r d g P  as the order  of  zero o f f ( z )  at z = 0 .  It 
is easily seen that this definition is independent  of the choice of  functions (1.1) 
representing kg(z). Fur thermore  ordg P > 0 if and only if P vanishes at g. If  for 
some T > 0  we have o r d g P > T ,  we shall say that P vanishes at g to order at 
least T along q~. 

N o w  let X be a finite subset of G containing the origin. Suppose the 
dimensions of  G 1 . . . .  , G k are n~ > 1 . . . . .  n k > 1 respectively, and put  n = nl + ... + n k. 
For  integers r with l < r < n  we define quantities Q,(X) as follows. Firstly, 
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if G has no a lgebra ic  subgroup  of cod imens ion  r, we put  

G ( X )  = IXI 

the card ina l i ty  of  X. Otherwise,  for each subgroup  H of G we wri te  IX~HI for 
the m a x i m u m  number  of e lements  of X that  are  dis t inct  modu lo  H, and we 
put  

Qr(X) = m i n  IX~HI 

as H runs over  all connec ted  a lgebra ic  subgroups  of  G of  cod imens ion  r. We  
also write  Gtors for the g roup  of tors ion points  of  G. 

F o r  an integer r >  1 we write X tr) for the r-fold i te ra ted  sum consis t ing of 
all expressions x ~ + . . . + x  r for x ~ , . . . ,  G in X. Since X conta ins  0, we have 
X ~ _ X  ~ ( r > l ) .  F ina l ly  for integers d l > O  . . . .  ,dk>O we say that  a mul t ihomo-  
geneous po lynomia l  P in t5 has  mul t idegree  (d I . . . . .  dk) if its degrees in the 
var iables  of IPN,, . . . .  IPNk are  d 1 . . . . .  d k respectively. F o r  real  D 1 > 0  . . . . .  Dk>O we 
shall  say that  its mul t idegree  is at  most  (DI . . . . .  Dk) if we have 
d 1 < D  1 . . . .  , d k < D  k. We can now state our  first result.  

Ma in  Theorem (general  version). For commutative group varieties Ga . . . . .  G k 
there exists  a constant c > 0  with the following property. Le t  �9 be a one- 
parameter subgroup o f  G = G  1 x ... XGk, and let X be a f in i te  subset o f  G 
containing the origin. Suppose fo r  integers D 1 >= 1 . . . .  ,Dk >= 1 and T >  1 there is a 
polynomial P in 9t, multihomogeneous o f  multidegree at most (D 1 . . . . .  Dk), that 
vanishes at each point o f  X ~"~ to order at least T along ~. I f  G 1 . . . . .  G k are all 
linear put E = T; otherwise let E denote the minimum o f  all those D i for  which G i 
is not linear (1 < i < k ) .  For an integer r with l < r < n  let Ar be the maximum o f  
the products r at a time o f  the numbers D a . . . . .  D 1 (n a times) . . . . .  D k . . . . .  D k 
(n k times). 

Suppose that 
TQ~(X)> c A, ( l < r < n )  

and i f  n > 1 that 

Suppose fur ther  that either 

o r  

E Q r ( X ) > c A  r (1 < r < n ) .  

EQ. (x)_>_ c ~.  

IX/Go,sl = IXI. 

Then P vanishes on all o f  g + q) for  some g in the subgroup o f  G generated by the 
elements o f  X.  

Before we s tate  our  o ther  resul t  we need a definit ion.  We say that  the 
groups  G 1 . . . . .  G k are  mutua l ly  d is jo int  (or jus t  dis joint)  if every connected  
a lgebra ic  subgroup  H of  G = G  1 x ... x G ,  has the form H = H  1 x ... x H ,  for 
a lgebra ic  subgroups  H 1 . . . . .  H k of  G1 . . . . .  G k respectively.  The  subgroups  
H 1 . . . . .  H k are then necessar i ly  connected.  In this case, if X is a finite subset  of 
G conta in ing  the origin,  we can spli t  up the above  funct ions Q,(X)  in the 
fol lowing way. F o r  integers r~ . . . .  , r k with 

O ~ r i ~ n  I . . . . .  0 ~ n  k, q + . . . + ~ l  
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we define quantities Qr, ....... (x)  as follows. Firstly, if there exists i with 1 < i < k  
such that Gi has no algebraic subgroup of codimension r i, we put 

Qrl ....... (S)=lXl .  
Otherwise we let 

Q ......... (x)  = min IX/HI 

as H runs over all connected algebraic subgroups of G of the form H 1 • ... • Hk 
with H i a connected algebraic subgroup of G i of codimension r~ ( l < i < k ) .  
We can now state our second result. 

Main Theorem (disjoint version). For mutually disjoint commutative group va- 
rieties G1, . . . ,  G k there exists a constant c > 0  with the following property. Let  4 
be a one-parameter subgroup of  G = G 1 • ... • Gk, and let X be a f inite subset o f  
G containing the origin. Suppose for integers D 1 > 1 . . . . .  Dk> 1 and T >  1 there is 
a polynomial P in ~R, muttihomogeneous o f  multidegree at most (D 1 . . . . .  Dk) , that 
vanishes at each point o f  X (") to order at least T along 4. I f  G 1 . . . . .  G k are all 
linear put E = T; otherwise let E denote the minimum of  all those D i for  which G i 
is not linear (1 < i < k). 

Suppose that 

TQ ........ ~(X)>cD]I . . .D~ ~ ( O < q < n ~  . . . . .  O<rk<n k, q + . . . + r k > l )  

and if  n > 1 that 

EQ ........ k(X)>cD]~.. .D~ ~ ( O < q < n  1 . . . . .  O<rk<nk, l < q + . . . + r k < n ) .  

Suppose further that either 

EQ ......... ( X ) > c D ]  ~ ...D~" (1.2) 
o r  

I X / a t o r s l  = IXl- (1,3) 

Then P vanishes on all o f  g + 4 for  some g in the subgroup o f  G generated by the 
elements o f  X.  

Let us make here a remark about the conditions (1.2) and (1.3). The effect 
of (1.2) in practice is to restrict the number  T of derivatives to the same order 
of magnitude as E. This suffices for the applications in 1-11]. By imposing 
instead the condition (1.3) on X we can sometimes take T roughly up to E 2, 
and this is crucial for the work of [-5]. Similar remarks apply to the general 
version of the Main Theorem. 

The arrangement of this paper is as follows. In Sect. 2 we set up the 
operators which provide the algebraic description of translation by elements of 
X. This is essentially the generalization to multiprojective space of Sects. 2 and 
3 of [4], but a few additional considerations are needed. Then in Sect. 3 we set 
up the derivation operator which is the algebraic equivalent of differentiating 
along 4, and we obtain some of its properties. 

Next we give in Sect. 4 a technical estimate which in geometric terms 
generalizes to multiprojective space the result that the degree of a subvariety of 
G does not change much under translation. The result for a single projective 
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space is probably not new, but we could not find a suitable reference, so our 
proof is self-contained. Then in Sect. 5 we derive another technical estimate, 
this time for the number  of connected components of certain stabilizer groups; 
this is rather more delicate and it plays a central part  in our overall proof. 

Then we prove our Main Theorems. As the proofs are very similar, we are 
able to present them in parallel. In Sect. 6 we state a Proposition and we verify 
that it implies the Main Theorems. We subsequently prove the Proposition in 
Sect. 7. 

Finally in Sect. 8 we show that the general version of our Main Theorem 
implies all the zero estimates announced in Sect. 9 of [-4]. We also give some 
practical criteria for establishing the disjointness of given group varieties. 

For the convenience of the reader we include an Appendix which summar- 
izes some fairly classical facts about degree theory for multihomogeneous 
ideals. The main reference here is [10] but this is not quite adequate for all our 
purposes. 

We end this introduction with a few comments on terminology. We shall be 
working in the product space .~r = IpN1 x ... x IPNk using the Zariski topology for 
which the closed sets are those defined by the vanishing of multihomogeneous 
polynomials in 9t. For  a subset S of 5f we write S for the closure in Y', and we 
shall sometimes write S G for the intersection G c~ S. If already S___ G it is easy to 
see from the continuity of the group laws on G that 

Gc~g + S = g  + ( G ~ S )  (1.4) 

for any g in G. If further S is closed in G, that is, S = G n X for some closed set 
X in Y', then G ~ S = S ;  for example, this holds if S is an algebraic subgroup of 
G. 

Next if V ~ G  is an irreducible variety meeting G, the set G ~ V = V  G is a 
non-empty open subset of V, and so 

G ~ V = V. (1.5) 

These remarks will be useful in Sects. 2 and 5; they enable us to avoid the 
construction of a theory of quasiprojective varieties in f .  

Finally for integers Jl . . . . .  Jk we write J= (  Jl . . . . .  Jk) for the corresponding 
element of :~k, and we put 

IJl = ]Jll + . . .  + ]Jkl. 

2. Translation operators 

Let G 1 . . . . .  G k be as in Sect. 1, not necessarily disjoint, and let F be a finitely 
generated subgroup of G = G  1 x ... x G k. Our object here is to define for each 7 
in F an endomorphism E(7 ) of the associated polynomial ring 91 and a 
corresponding operator ~(7) acting on ideals of ~fl. These will generalize the 
constructions of Sects. 2 and 3 of [4] for the case k =  1. 

Fix an integer i with l<_i<_k. Let gi denote the projection from G to Gi, 
and write F~= ~i(F). The arguments of the proof of Lemma 1 of [4] (especially 
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p. 493) show that there exists an addition law on G i valid on F~ x F~. To be 
more precise, there exists an integer a i > 1, independent of F~, an open subset (9i 
of G i x G  i containing F~xFi, and polynomials Ai, o . . . . .  Ai, N, in K [ X i ,  o . . . .  , 
XI, N,, Yi, o . . . . .  Yi, N,] homogeneous of degree a i in each of the two sets of vari- 
ables, such that for any g, h in G~ with projective coordinates 4o . . . . .  IN, and 
% . . . . .  ~/Ni with (g,h) in (9 i the numbers 

A,,j(~o . . . . .  ~N,,~lo . . . . .  ~lN,) (O<=j<=N~) 

are projective coordinates of g+h.  We note that if G i is linear in the termi- 
nology of Sect. l, then we can assume a~= 1, and henceforth we shall make this 
assumption. For 7 in F let rh, o .. . .  ,qi,N, be projective coordinates of ni(~,), and 
define 

E(7)X, . j=A, . . i (X, .o  . . . . .  X,.s, ,rl , .o . . . .  ,q,.N,) (O<=j<=N~). 

We can extend E(7) uniquely to an endomorphism of 9t considered as an 
algebra over K. Note that if P in 9l is multihomogeneous of multidegree 
(D x . . . . .  Dk) then E(7)P is multihomogeneous of multidegree (a 1D 1 . . . . .  a k Dk). 

Next we let 15 be the multihomogeneous ideal of 91 generated by all 
multihomogeneous polynomials vanishing on G. Let also J4 be the multiplica- 
tive set of 9l consisting of all polynomials not vanishing at any point of F. As in 
Lemma 2 (p. 494) of [4], it is easy to see that for any ~ in F we have E(7 ) 15 c 15 
and E(7 ) J /_cJ / .  For  an ideal .3 of ~R we write .3* for the corresponding 
contracted extension of `3 with respect to J/r Finally for ~ in F and an ideal .3 
of Ol define 

#(7) ~ = (E(~) 3,15)*. 

We say that ~ is special if 15_~  and 3"=`3 .  Then we have the following 
properties. 

Lemma 1. (i) For any multihomogeneous ideal `3 of  Ot and any 7, 6 in F the ideal 
#(~) 3 is multihomogeneous and special, and we have 

`3 __q #(0).~,  #(v + 6) `3 = #(~) #(6)  `3. 

(ii) I f  further  `3 is special then ~ = #(0)3 .  

(iii) I f  further `3 is non-zero and proper then #(7)`3 has the same rank as .% 

(iv) I f  further `3 is unmixed then #(7)-~ is unmixed. 

(v) I f  further ~ is primary o f  length l with associated prime ~3, then # (~)~  is 
primary o f  length I with associated prime #(7) ~3. 

Proof  The properties (i), (ii) and (iii), as well as property (v) for l=  1, can be 
proved as in Sects. 2 and 3 of [4], with only trivial changes arising from the 
multihomogeneous nature of everything. We excuse ourselves from giving the 
details. 

We next establish property (v) for arbitrary 1>1. To show that #(~)~ is 
primary it suffices to verify that if P, Q are multihomogeneous polynomials of 
~R with PQ in #(7)3  but P not in #(7)3,  then Qe is in #(~)`3 for some integer 
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e=>l. On applying E ( - j  we see that P'Q' lies in E(-7)8(7) ,3 ,  where 
P ' = e ( - j P ,  Q '=E( - jQ .  But 

E ( -  7) 8(7),3 =__ 8 ( -  7) 8(7),3 = 8(0)`3 =,3 

by (i) and (ii) above. So P 'Q'  lies in `3. But P' is not in `3. For  otherwise 
E( - 7) (P) ~'3, whence 

8 ( -  7)(P) ~ (`3, ~)* = `3* = `3, 

which on applying 8(7) and using (i) above would give (P)~ 8(7)`3, contradict- 
ing the fact that P is not in 8(7)'3. Since ,3 is primary, it follows that Q,e is in 
,3 for some integer e > 1. So 

8( - 7)(Qe)= (E( - 7)(Qe), (9), _~ (`3, ffi)* = `3, 

whence applying 8(7) and using (i) and (ii) we conclude that Qe lies in ,3 as 
required. Hence 8 ( j , 3  is indeed primary. 

Next suppose ,3 has rank r. Then so does its associated prime ~3, and, as 
,3_~3, it follows that ~3 is special and 8(7) '3 ___ 8 ( j  ~.  By (iii) above 8(7)'3 has 
rank r, and by (v) above with l=  1 we see that 8(7) ~3 is prime of rank r. Hence 
8(7) ~3 must be the associated prime of 8(7)'3. 

Finally if ,U has length l then there is a strictly increasing chain 

of multihomogeneous special primary ideals of 9l, and on applying 8 ( j  we 
obtain an increasing chain 

8(7)'3 = 8(7) g o -  8(7) ~1 . . .  ~ 8(7) ~ _  1 = 8(7) ~. 

This too must be strictly increasing, since from 8 ( 7 ) ~ = 8 ( j ~ + a  would 
follow ~ I = ~ + 1  on applying 8 ( - 7 ) .  As the ideals in this new chain are 
primary, it follows that the length m of 8(7)`3 is at least l. But by a similar 
argument the length of 8 ( -7 )8 (7 ) `3  is at least m. As this ideal is ,3 itself, we 
conclude that m = I. This proves (v) in general. 

It remains to verify (iv). Suppose ,3 has rank r. Then we can write `3= 0 ~ 
taken over a collection of multihomogeneous primary ideals ~.  Since ,3 is 
special, so is each ~.  From ,3 ~_ f2 we deduce immediately 

8(7) ,3 __ (~ 8 ( J  ~.  (2.1) 

To obtain the opposite inclusion, let P be an arbitrary multihomogeneous 
polynomial in the right-hand side of (2.1). Then Q=E(-7)P lies in 
8 ( - J 8 ( 7 ) ~ = ~  for each ~,  so Q is in `3. This leads to 8(-7)(P)___,3, so 

(P) _ 8(0)(P) = 8(7) 8( - 7)(P) ~- 8(7) `3. 

Hence P is in 8(7)`3, and since P was arbitrary, we get the opposite inclusion 
to (2.1). Therefore 8(7)`3= ('] 8(7)~,  and it follows at once, possibly by omit- 
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ting redundant components, that g(7)~ is unmixed. This establishes (iv) and so 
completes the proof of Lemma 1. 

We note here that it is in fact possible to prove Lemma 1 using directly the 
corresponding result for k =  1 given as Lemmas 3 and 4 of [4]. One embeds G 
in a single projective space by means of the Segre map and then one works 
with homogeneous polynomials in the corresponding polynomial ring in 
(N 1 + 1)...(Nk+ 1) variables. But the details are tedious. 

Finally we shall need the following lemma, which reveals explicitly the 
geometric significance of the operators g(7). Note that a multihomogeneous 
prime ideal ~ of 91 is special if and only if its associated multiprojective 
variety V in • meets F and is contained in G. In this case V G = G c~ V is a non- 

empty open subset of V, so G c~ V = V, by (t.5). 

Lemma 2. Let ~ be a multihomogeneous special prime ideal of 91 with associated 
variety V in X. Then the associated variety W of d~ ~ satisfies 

7 + WG= VG. 

Proof Recall that the translation polynomials defining E(7) are valid on an 
open subset (9 of G containing F. Since g(7)~3 is special, W meets F, and 
therefore (9 ~ W G is a non-empty open subset of W. Pick any x in (9 c~ W G and 
any P in ~3. Then E(y)P is in g(7)~3, so vanishes at x. This means that P 
vanishes at 7+x .  Since P was arbitrary, it follows that ? + x  is in V~. Since x 
was arbitrary, we see that 7 + ((9 (~ We)-VG. Taking the closure, and intersect- 
ing with G using (1.4), we get 7+  WG~-VG. The opposite inclusion can be 
obtained by applying the same argument to the prime ideals # ( 7 ) ~  and 
#( - 7) #(7) ~3 = ~3. This proves Lemma 2. 

The following is a useful consequence of this result. Suppose ~3 is a 
multihomogeneous prime ideal of 91 containing ffi, and let ? be any point of G. 
Let V be the variety of ~3, and let F be any finitely generated subgroup of G 
meeting V and containing % At first sight it might seem that the ideal #(7)~3 
depends not only on the choice of F but also on the choice of addition laws 
valid on F • F. However, Lemma 2 shows that g(7)~3 is the ideal correspond- 

ing to V G -  7, and so is in fact independent of all these choices. 

3. Differentiation operators 

Let G a . . . . .  G k be as in Sect. 1, not necessarily disjoint, let F be a finitely 
generated subgroup of G=G1  x ... x Gk, and let tb be a one-parameter sub- 
group of G. In this section we define a derivation A on the associated poly- 
nomial ring 9t which provides the algebraic equivalent of differentiating along 

Let 
~Ol,o(Z) . . . . .  q~,Nl(Z)  . . . . .  q~k,o(Z) . . . . .  q~k,N~(Z) 

be functions, analytic near z = 0 ,  that represent the map 4) locally near the 
origin. Fix an integer i with 1 <iNk.  As in Sect. 2, we have polynomials 
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Ai, o . . . . .  AI,N, in K [ X I ,  o . . . . .  Xi,N,,  Yi, o . . . . .  Yi,u,] representing the addit ion law 
on an open subset (9 i of  Gi x Gi containing F~ • F~, where F~=rt~(F). We define 

A X i , j = ( d / d w ) ( A i , j ( S l .  o . . . .  ,X , ,N, ,  q),.o(w) . . . . .  q%N,(W))lw_O (O<=j<=Ni), 

and we extend A uniquely to a derivation on 9t considered as an algebra over 
K. Note  that if P in 91 is mul t ihomogeneous  of multidegree (D 1 . . . . .  Dk) then 
A P  is mul t ihomogeneous  of  multidegree (D 1 + a I - 1 . . . . .  D k + a k - 1). 

Lemma 3. (i) We have Affg~_ ff~. 

(ii) Le t  P be any mul t ihomogeneous  polynomial  o f  91 and let y, ~ be in F. 
Then i f  orda P is infinite, so is ord~ rE(7)P;  and o therwise  

ord~ e E(7) P = ordo P. 

(iii) I f  ord~P is infinite so is ord~AP; and otherwise  

ord~ A P  = ordo P -  1 
provided ord~ P >__ 1. 

P r o o f  We prove (ii) first. Let 

,91, o(Z) . . . .  , Ox,NI(z) . . . . .  Ok, o(Z) . . . . .  Ok, N~(Z ) (3.1) 

be functions, analytic near z = 0, that  represent the map  

O(z) : %_ ~(4~(z)) = ~ - 7 + 4~(z) 

near z = 0. Using the addit ion laws, we see that the functions 

O,,j(z)=A~,j(O,,o(Z) . . . . .  O,,s,(Z),rl,.o . . . . .  ~l,,s,) (l < i < k ,  O<j<=N~) (3.2) 

represent the map ~(z)=To(cI)(z)) near z = 0 ,  where t/i,0 . . . .  ,r/i,u ' are projective 
coordinates of ~i(7) in IPN, (1 < i N k ) .  Thus if we evaluate ordo_r E(7 )P  using 
(3.1) and ord~P using (3.2) it becomes clear that these two numbers  are either 
both  infinite, or both finite and equal. This proves (ii). 

Next  let (9 be the open subset of  G consisting of  all g such that (zi(g),0) lies 
in the open subset (9~ of G i x G  i for all i with l < i < k .  It contains F, and so is 
non-empty.  We now prove (iii) for any 5 in (9. 

Suppose first that  t = o r d ~ P  is finite and positive. This implies that  the 
power series development  of  the function 

f ( z + w ) = P ( ~ b l , o ( Z + W  ) . . . . .  ~bX,N~(Z+W ) . . . . .  Ok, o(Z+W) . . . . .  t~k,N~(Z+W)) (3.3) 

starts with c ( z + w )  t for some c:#0.  But on recalling that 7 ' =  T~(~b) we see that 

~(z + w) = ~ + 4)(z + w) = 6 + ~(z) + ~(w) = 7'(z) + ,/)(w), 

and for z, w sufficiently small we can add the two terms on the extreme right- 
hand side by means of  our addit ion formulae. Thus if we write 

a i , j ( z ,w)=Ai , j (Oi ,  o(Z) . . . . .  t~i,u~(Z),q)i,o(W ) . . . . .  goi,N,(w)) (l <i<=k, 1 < j <  Ni) 
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it follows easily that the power series development of the function 

f (z, w) = P(ct 1, o (z, w) ... .  , ~ 1. N, (z, w) . . . . .  ak, 0 (Z, W) . . . . .  ak. Nk (Z, W)) 

starts with c ' ( z+w)  t for some c':~0. Hence 

fw(z, O) = (O/Sw) f (z, W)lw = o 

starts with c ' t  z t-1.  But from our definition of A we find after a short calcu- 
lation that 

fw(z, 0) = AP(~b l,o(Z) . . . .  , qJ l,Nl(z) . . . . .  ~k,o(Z) . . . . .  tPR,Nk (Z)). 

It follows that ord~ AP = t -  1 as required. 
A similar argument works if ord~ P = ~ ,  for then the function in (3.3) and 

f ( z , w )  are both identically zero. This proves (iii) for any 6 in (9, and in 
particular for any 6 in F. 

Finally to prove (i) let P be an arbitrary multihomogeneous polynomial in 
15. Then o rd~P=oo  for all 6 in (9. So by the above remarks we see that 
ordo A P =  oe for all 6 in (9. In particular AP vanishes on (9. Since (9 is a non- 
empty open subset of G, it follows that AP is in 15. This establishes (i), and 
thereby completes the proof  of Lemma 3. 

Lastly it is convenient here to isolate in the following lemma the basic 
argument of Sect. 6 of [2]. For a mult ihomogenous ideal `3 of 9l and g in G we 
write ordg.3 for the minimum of ordg P as P runs over all multihomogeneous 
polynomials of .3. Put N = N 1 + . . .  q- N k. 

Lemma4 .  For l <_r<N let .3 be a multihomogeneous special unmixed ideal o f  
rank r. Suppose ~3 is a multihomogeneous prime ideal o f  rank r such that for  
some T > 0 we have 

At`3~_~3 ( 0 < t <  T). (3.4) 

Assume that there exists ~ in F such that ord~ ~ is f ini te  and non-zero. Then 
has a primary component ~ of  length at least T whose associated prime ideal is 

Proof  Taking t = 0  in (3.4) we see at once that ~ must be a prime component  
of `3. Let ~ be the corresponding primary component,  and let e be its 
exponent. We shall show that e>T .  Let co=ordr ~ ,  and pick P in ~3 with 
ord~ P =  co. Then by (iii) of Lemma 3 we have 

ord~ A P  = co - 1 < ord~ ~3, 

and so AP is not in ~.  If  now ~ is the only primary component  of .3, we put 
Q = I ;  otherwise we define Q as follows. For each of the other primary 
components ~ ' + ~  of .3, their associated primes ~ '  satisfy ~ ' # : ~ .  Since .3 is 
unmixed, the ranks of ~ ,  ~3' are equal, and so ~ ' ~  ~.  Hence for each such ~3' 
we can find P'  in ~ '  but not in ~3. So if e' is the exponent of ~ '  the polynomial 
P'~' is in t~' but not in ~ .  Now put Q=I- IP '~ ' ,  where the product is over all 
~ ' #  ~ as above. Thus in both cases p e Q  lies in .3, but Q does not lie in ~ .  Since 
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P lies in ~ ,  we see that 

A~(WQ)=-e!(Ap)eQ (mod ~) ;  

and since AP does not  lie in ~3, we conclude that Ae(peQ) is not  in ~ .  So by 
(3.4) we cannot  have e < T; thus indeed e > T. 

Hence by L e m m a  1 (p. 278) of  [2] we see that  the length of ~ is also at 
least T. This completes the proof  of L e m m a  4. 

4. Degree estimates 

Let G 1 . . . . .  G k be as in Sect. 1, not  necessarily disjoint, and let F be a finitely 
generated subgroup of G = G I X . . .  x G  k. Let a~ . . . . .  a k be as in Sect. 2, and 
define the operators  E(7), 8(7) on the associated polynomial  ring 0t as in 
Sect. 2. For  an integer r let iV(r) denote the set of all j = (Jr . . . . .  j~) in Z k with 

O<=jl <=N 1 . . . . .  O ~ j k ~ N  k, j l - t - . . . - l - jk=r.  

Thus Jg'(r) is empty unless 

O < r < N = N ~  + . . . + N  k. 

We recall (see the Appendix) that if `3 is a mul t ihomogeneous  ideal of  ~fl whose 
rank r satisfies 1 <_r<_N, then for any j in JV(r) there is a non-negative integer 
bj(`3) measuring the corresponding degree of `3. We further define 6j(`3)=0 for 
any j in Z k not  in tiff(r). We shall need the following compar ison result. 

Lemma 5. For 1 <_ r <_ N let ?(3 be a multihomogeneous special prime ideal of 91 of  
rank r. Then for any j = (Jl . . . . .  Jk) in dV(r) and any 7 in F we have 

Proof. We do this by considering the associated varieties in 3f = IPN1 X ... X 1PN~ , 
and we argue by decreasing induct ion on r. If  r = N the result is easy. For  any 
mul t ihomogeneous  special ideal .3 is contained in the maximal mul t ihomo-  
geneous ideal 9l(70) corresponding to some point 7o in F, and so, if prime of 
rank N, it must  be equal to 9l(7o). Then the only possible value for j is 
(N 1 . . . . .  Nk) , for which 3j(`3)= 1. By parts (iii) and (iv) of L e m m a  1, this argu- 
ment applies to g ( 7 ) ~  as well as to ~.  This does the case r =  N. 

N o w  assume the lemma holds for ideals of rank r + 1 =< N, and let ~ be as 
above of rank r. Pick J=( J l  . . . . .  Jk) in W(r). As [ j [ = r < N ,  we can assume 
without  loss of generality that Jl < N t .  Since ~ is special, its associated variety 
V in 5f is contained in the Zariski closure G of  G in ~ .  Let G~o=CJ\G and 
V~ = G~ c~ V. Note  that  V~ 4: V, since V contains an element 70 of F _  G. Thus 
either Vo~ is empty or its codimension r~ in f satisfies ro~ => r + 1. We choose a 
linear form L in ~RI = K [ X 1 ,  o . . . . .  X1,N, ] as follows. If V~ is empty, then all we 
demand is that  L should not  vanish at 70. However,  if Vo~ is not  empty, let 
W 1 . . . .  , W  t be its irreducible components ,  and fix w~ on W l (l <= l _<_ t). Then 
choose L so that it does not  vanish at 70 or w~ . . . . .  w~. 
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In  either case, since L does not  vanish at 70 on V, we see that  L does not  lie 
in ~ .  Hence  the ideal .~ = (~3, L) is of  rank r + 1, and we can write 

for some  h >  1, where ! ~  . . . . .  ~h are mul t ihomogeneous  p r imary  ideals of 91 of 
rank r +  1 and .~' is ei ther 91 or of  rank exceeding r + 1. Fu r the rmore  we can 
assume that  the associated pr imes ~3~ . . . . .  ~h are distinct. Let  V~,..., V~ be the 
associated irreducible varieties in 5 c. We claim first that  V~ . . . .  , V~ all meet  G. 

Fo r  suppose not, and  that  G ~ V~ is empty  for some i with 1 _<i< h. Then as 
V~_ V ~ G ,  it would follow that  

In par t icular  Vo~ must  be non-empty ,  whence V~___ W~ for some l with 1 < l < _ t .  

But the codimension of  Vii in Y" is r + 1, whereas the codimension of W~ in .%r is 
at least ro~ => r + 1. It follows that  Vii = W~. But this is not  possible, as L vanishes 
on V/but  not  at the po in t  w I of W I. Hence  indeed each V~ (1 _-<iN h) meets  G. 

Therefore  for each i with 1_<i<h  we can fix a point  v~ of G on V~. By the 
r emark  after L e m m a 2 ,  we may  without  loss of generali ty assume that  F 
contains  v 1 . . . .  ,Vh, as by enlarging F we do not in fact change the ideal d~(7)~3. 
It follows now that, in the earlier no ta t ion  for contracted extensions, we have 
~ =  ~[~i (1 < i < h ) ,  and, since 

15 ~ ' ~  ~ ( ~ , L ) = . ~  ~ ' ~ ,  (1 =<i__<h), 

we see that ~31 . . . . .  ~h are special. 
N o w  write e = ( 1 , 0  . . . .  ,0). Since j ~ < N a ,  the vector  j + e  is in A : ( r + l ) ,  and 

because L is in 911 we have by L e m m a  A5 of the Append ix  with (D 1 . . . . .  Dk)=e  
the relat ion 6j(~)=3j+~(.3) .  Also by L e m m a s A 2  and A3 of the Append ix  we 
have 

h h 

i = 1  i = 1  

where I i is the length of ~ (1 < i < h). The induction hypothesis  therefore shows 
that  

h 

i = 1  

where 
A = a~ 1 -Jr ~Nk--jk 

Using part  (v) of  L e m m a  1 we get 
h 

6j(~B)<__a; 1A ~ 6j+e(g(?) Qi). (4.1) 
i = 1  

Finally to get an upper  bound  for the r ight-hand side of (4.1) we consider 
the ideal ,~ = (8(7) ~ ,  E(7) L). N o w  if E(?) L were in ~(?) ~ ,  we should deduce at 
once that  e (7) (L)~d~(7)~ .  Apply ing  d~  and using parts  (i) and (ii) of 
L e m m a  1, we find tha t  (L)_c~,  which is impossible,  as r emarked  above. It  
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follows that ,3 is of rank r +  1. Also, from the definition of  E(7), we see that 
E(7)L lies in 911 and is homogeneous  of degree a 1. So by Lemma A5 we have 

a I 6j (~(~/) 9 )  = {~j +e (3)"  (4 .2)  

But since ,~ = (~3, L)_a ~i ,  we deduce 

3 a _ g ( y ) ~ a _ ~ ( 7 ) ~  i (1 ~ i ~ h ) .  

It follows that ~ has an isolated pr imary componen t  s of  rank r + l  whose 
associated prime is ~(7)~3i, and on localizing at this prime, we see that 
~ i_ag(7)~/  ( l < i < h ) .  As g(7)~31 . . . . .  g(7)~3h are all different, it follows from 
Lemmas  A2 and A4  of the Appendix  that 

h h 

i=1  i - 1  

Substituting this into (4.1) and using (4.2), we obtain the desired conclusion 

~j(9)_-<A~j(g(~) 9). 

This completes the p roof  of L e m m a  5. 
We remark that the lower bound  6j(~)>__A-16i(g(7)~3) follows im- 

mediately by applying the lemma with - 7  instead of  7. However,  it is possible 
to prove the exact equality 5i(~3)=(~i(g(y)~3 ) provided the projective embed- 
dings of G1 . . . . .  G k are sufficiently well-behaved; this observat ion is due to 
Moreau  [13J in the case k =  1. 

5. Connectivity estimates 

This section is concerned with the connectivity of certain stabilizers in 5f. Let 
G 1 . . . . .  G k be as in Sect. 1, not  necessarily disjoint, with G = G 1 x ... x G k em- 
bedded in ~r. For  any subset V of  Y" with V a = G n V  non-empty,  we write 
stab G V for the set of elements g in G such that g +  V G= V G. This is clearly a 
subgroup of  G. If V =  F it is even an algebraic subgroup;  for example, it can be 
seen using (1.4) that in this case 

stab G V = G n 0 VG - v, 

where the second intersection is taken over all v in V G (see also [1] p. 97). 
For  any algebraic subgroup H of  G, let H o be the neutral connected 

componen t  of H;  that  is, the componen t  of  H through the origin of  G, and 
write ~: (H)=[H:Ho]  for the total number  of connected components  of H. We 
make a further definition if in fact G a . . . . .  G k are disjoint. In this case H o has 
the form H 1 x ... x Hk, where H 1 . . . . .  H k are connected algebraic subgroups of 
G 1 . . . . .  G k respectively. We say that H has type s = ( s  1 . . . . .  Sk) if H i is of codi- 
mension s i in G i (1 < i < k ) .  

Finally we say that  a subset S of G is defined in G by mul t ihomogeneous  
polynomials  P~ . . . . .  Pm in the associated polynomial  ring 9l if G intersects the 



246 D.W. Masser and G. Wiistholz 

variety of  the ideal (/]1 . . . . .  Pro) exactly in S. Recall the integers n~ . . . .  , nk, with 
n = n ~ + . . . + n k ,  and put  

h i = N i - n  i (1 <__i<=k) 
with 

h = ( h  1 . . . . .  hk), h = l h [ = h l + . . . + h k = N - n .  

For  integers d 1 . . . . .  d R with d = ( d  I . . . . .  dk) we put C(d)=O if d i<O for some i 
with 1 _< i_< k, and otherwise we let C(d) be the mult inomial  coefficient 

C(d) = (d 1 + . . .  + dk)!/(dl !... d k !). 

L e m m a  6. For integers D x > 1 . . . . .  D a > 1 let S be a subset o f  G defined in G by 
multihomogeneous polynomials in ~fl o f  multidegrees at most (D x . . . . .  Dk_). For 
O<r<_n let V be an irreducible component o f  S, o f  codimension r in G, with 
associated prime ideal ~3. Assume G n V is non-empty, and let H = stab G V. Then 
the codimension s of  H in G satisfies r<_s<n, and there exists J=(J l , - - . , Ja)  in 
Jff  (h + s) such that 

K(H) <"NI=-1 sl """k"Nk- J~ V C(d) 6 j z .  - d(~3) D~ ' "'" Ddkk, (5.1) 

where the sum extends over all d = ( d  x . . . . .  dk) with I d l = s - r .  In addition, i f  
G x . . . . .  G k are disjoint, we can suppose that j - h  is the type of  H. 

Proof. The definition of  H shows that 

where the intersection is taken over all v in V G. Let (9 be a non-empty  open 
subset of  V~, to be chosen shortly. We note that even 

H = ~ (V G - v) (5.2) 

where the intersection is taken only over v in (9. For  suppose that x is in V G -  v 

for all v in (9. Then (9 ___ VG -- X. Taking the closure gives V ~ V G - - x  , and 
intersecting with G using (1.4), (1.5) yields Va_  V ~ - x .  It  follows that 

Vo, VG + x, V~ + 2 x  . . . .  

is a non-increasing sequence of closed sets in 8f. So by the Noether ian  proper-  
ty there exists a non-negative integer l such that  

VG+lx  = VG+(l+ l ) x ,  

and once again use of  (1.4), (1.5) leads to V G= VG+x. So x lies in H = s t a b ~  V. 
Since x was arbitrary, this proves (5.2). 

Next, a similar appeal to the Noether ian  proper ty  of ~ shows that we can 
find a positive integer m and elements v o . . . .  , v,, of (9 such that  

H =  5 (VG--vi). (5.3) 
i = 0  
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Let H o be the neutral connected component of H. We can find a subset R of 
H, of cardinality ~c(H), such that 

H=O(P+Ho), 

where the union is taken over all p in R and the Hp=p+H o are all the 
connected components of H. Thus for each p in R the set Hp is a component  
of the right-hand side of (5.3) in an appropriate sense. We shall soon choose 
the set (9 such that each Hp is even a component  of 

(V~-vo)n ~ (S-vi). (5.4) 
i = 0  

We first define an open subset (~ of V as follows. If V is the only irreducible 
component  of S meeting G, put (~ = V; otherwise let 

(~ = V \ T ,  (5.5) 
where 

T=U w -p 

with the union taken over all p in R and all those irreducible components 
W 4: V of ,~ that meet G. 

Next we verify that (~ is non-empty. This is trivial if V is the only com- 
ponent of S meeting G. Otherwise, suppose (5.5) holds and ~ is empty. Then 
V__ T. Since V is irreducible, it follows that 

V~ W~-p (5.6) 

for some p in R and some component  W:~ V of S meeting G. In particular 
W~_G, and so intersecting (5.6) with G using (1.4), (1.5) gives VG~_ W~-p. Thus 
p+VGc_W G. But p+VG=V G since p is in H = s t a b ~  V. Hence V~_W~, and now 
taking the closure gives V _  W, which is not possible as V, W are different 
components of S. Thus indeed (~ is a non-empty open subset of V. 

Therefore 
(9=GnC= VGnC 

is a non-empty open subset of V G. 
Having thus chosen (9 and v o ... .  ,v,,, we proceed to interpret the assertion 

about (5.4) in terms of ideals, and then prove it. Let F be the subgroup of G 
generated by v 0 . . . .  , v,, and the elements of R, and for 7 in F write E(7), g(7) for 
the corresponding operators defined in Sect. 2. Let .~ be the ideal generated by 
8 (v0)~  together with the polynomials E(vo)P ..... E(vm)P as P runs over the 
given polynomials defining S in G. Further for each p in R let ~p be the 
associated prime ideal of Hp, and let 3w) be the contracted extension of ~ with 
respect to p. We shall eventually show that ~3p is a prime component  of ~tp) 
with the same rank as 3(P). 

To start with, we shall verify that 

_ ~p (5.7) 
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for any p in R. F r o m  (5.3) we have Hoc_VG--v o, whence gfVo)~_q(3 p by 
L e m m a  2. To  prove  (5.7) it therefore suffices to show that  Q = E(vl)P lies in ~3 o 
for any i with 0 <i<_m and any mul t ihomogeneous  polynomial  P vanishing on 
S. Let  (91 be an open subset of  G containing F on which E(vl) represents 
t ranslat ion by v~. Since (9~ contains p + v~, the set 

(9~, p = ((9i - vi) c~ Hp 

is a non-empty  open subset  of Hp. Let  h be an arbi t rary  point  of  (9~,0" Then 
vi + h lies in 

Vo+h=V6c_a~g=S.  

Consequent ly  P vanishes at v~+h. Since v~+h is in (91, it follows that  

Q=E(v~)P vanishes at h. Since h was arbi t rary,  Q vanishes on (gi,p = H o ,  and so 
lies in ~3 o. This completes  the p roof  of  (5.7), and by localizing at p we deduce 
that  

"3(P) -~ ~o" (5.8) 

This does not  quite imply that  ~3 o is a pr ime c o m p o n e n t  of ~(o~. To  prove 
this, fix any pr ime componen t  ~ '  of  .3 (p) with the same rank  as .~(P). By (5.8) ~ '  
exists, as .~P) 4= 9l. Let V' be the variety of  ~ '  in Y', and fix an arb i t ra ry  integer 
i with O<_i<_m. Since V' contains p, the set (9'~=V'c-~(9~ is a non-empty  open 
subset of  V'. Pick an arb i t ra ry  v' in (9'~, and  let P be chosen arbi trar i ly f rom the 
collection of given polynomials  defining S in G. Then  Q = E(v~)P lies in 3 and 
so in ~ ' .  So Q vanishes at v', and it follows that  P vanishes at v'+ v~. Since P 
was arbi t rary,  we deduce that  v'+ v~ lies in 

where the union is taken over  all irreducible componen t s  W of S meet ing G. 
Hence  v' lies in {)(WG-vl). As v' was arbi t rary,  we get (9'ic__~(Wa-vi), and 

taking the closure gives V'c_[.J WG-v~. Therefore  V'~_Wa-v i for some W, 
whence intersecting with G yields 

Vd _~ W a - v i. (5.9) 

In par t icular  p lies in W o - v l ,  so vi lies in W G -  p. N o w  our choice of  (9 implies 
that  W = V. This is trivial if V is the only componen t  of S meet ing G; otherwise 
suppose W +  V. Then v~ lies in the set T, contradict ing the fact that  it lies in 
(9_ (~. We conclude f rom (5.9) that  

V.' c VG-vi. G - -  

Since i was arbi t rary,  it follows f rom (5.3) that  V~ ~ H .  Taking  the closure, we 
get V' ~_ U R~, where the union is taken over  all a in R. Thus  

V ' ~ H ,  (5.10) 

for some  a in R, and since H ,  is closed in G, we get V; c_H,.  As p is in V.'G, it 
follows that  in fact a = p .  N o w  we conclude f rom (5.10) that  V'c_H o. 
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So in terms of ideals we have ~ o c - ~ ' .  Thus the rank of ~p  is at most  the 
rank of ~ ' ,  which by assumpt ion  is the rank of ~w). The  opposi te  inequality 
follows f rom (5.8). Hence ~o  is indeed a pr ime componen t  of `3(P) of the same 
rank as .3 (p) (and in fact ~ p = ~ ' ,  so it is the only such componen t ;  but  we 
don ' t  need this). 

N o w  let s__<n be the codimension of H in G. Then  the ideal ~o  has rank 
h+s for each p in R. So each `3(P) has rank h+s. Let `3* be the contracted 
extension of .3 with respect to all the points of R simultaneously.  Then .3* also 
has rank  h + s ,  and it has a pr ime componen t  ~3p for each p in R. It follows 
that  the radical 

also has rank h + s  and pr ime componen t s  ~p  for each p in R. Thus  we have 
by L e m m a  A2 of the Appendix  

2 3j (~o) < 6j ( l / / ~  -) (5.11) 

for any j in Jf'(h+s), where the sum is taken over  all p in R. We proceed to 
est imate the r ight-hand side of (5.11). This could be done using a suitable 
degree theory for quasiproject ive varieties in 5 c, but  we prefer instead to apply 
the considerat ions of the Appendix  directly to radical ideals. For  this we recall 
that an ideal is said to be quasi -unmixed if all its isolated componen t s  have the 
same rank. 

N o w  we have `3=(~o,!~) ,  where ~ o = g ( 7 0 ) ~  and !~ is generated by the 
polynomials  E(Vo)P . . . . .  E(v, ,)P of multidegrees at most  (aiD 1 ..... akDk). In 
part icular  the rank of `3 is at least the rank h+r of ~o ,  and so h+s>h+r .  
Thus r_< s-< n. We now inductively construct  ideals `3o . . . . .  `3~ r such that  

(i)l ~3o~`3t___`3 (O<_l<_s-r) 
(ii)l The ideal `3, is quasi -unmixed of rank h + r + l (0-< l_< s -  r) 

(iii)z For  any j in JV(h+r+l) we have 

6j(]//~-)_-<~ C(d)dj_ a D ,d~. d~ d(~30)( 1 lJ ..(akDk) (O<_l<_s--r), 

where the sum is taken over  all d = ( d  1 . . . . .  dk) with Idl--l.  
For  l = 0  we take ` 3 o = ~ o  . Since ~*_c`3 .  we have ~*+~R,  and so ~ * = ~ o .  

Thus  (i)0 and (ii)o are clear. Also 1// .~-= ~o ,  so that  (iii)o is obvious.  So we are 
finished if s = r. Hencefor th  assume s > r and that  for some l with 0__<l< s -  r we 
have found `31 satisfying (i)l, (ii)t and (iii)r We proceed to construct  `3t+~ 
satisfying (i)t + 1, (ii)l+ 1 and (iii)l + 1. 

Firstly, note that  since `3* is quasi -unmixed of rank h+r+l ,  its radical 

I / ~  is unmixed of rank h + r  + I. Let ~ be any pr ime componen t  of  l//~-~. 
Then ~ is of rank h+r+l  and ~ * = ~ .  N o w  ! ~ ,  otherwise, since 

~ o ~ ` 3 ~ _ _ _ 1 / ~  we should deduce `3=(~o,!~)___~ and so g * ~ _ ~ ,  which is 
impossible on compar ing  ranks. Hence  at least one of the genera tors  of ~ is not 
in ~ .  The usual techniques (cf. Sect. 7) now enable us to find a mul t ihomo-  
geneous po lynomia l  Q of :E, of mult idegree exactly (a~ D~ ..... akDk), which does 

not lie in any of the pr ime componen t s  of  ] , / ~ .  We put  `3~+~=(~z,Q). Then 
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(i)t+l is obvious,  as 

~0 C-̀31CC-̀31+ 1 -----(`3, ~ )  =`3"  

Also t / ~ - : ( Q ) = ] , / ~  -, and so the ideal , 3 = ( ] / ~ - , Q )  has rank  h + r + l + l .  
Fur thermore ,  for any j in J V ' ( h + r + l +  1) we have by L e m m a  A5 

k 

(.3) = ai o l  ~ ( / 5 0 ,  
i=1 

where e 1 . . . . .  e k are the s tandard  basis vectors of Z k. F r o m  (iii)~ this gives easily 

~j(3) < y~ C(d) ,~j_ 0(~3o)(al D1)"1 ... (akDk) d~ (5.12) 

where the sum is over  all d = (dl . . . .  , dk) with ]dl = l +  1. 
Next  by Satz 57 (p. 170) of [-8] the ideal ~ = ( ~ ' ,  Q) is quas i -unmixed of rank 

h + r + l + 1. So either !~/* = 91 or ~t* is also quas i -unmixed of rank h + r + l + 1. 
~ c ` 3 .  _c`3. we see that  ~/*___`3"; thus R*~91.  Hence  !;1" is quasi- But as ~ , _  t+ 

unmixed  of rank h + r + l +  1. But it is easily seen that  :3z+a =!;1"; and this 
proves  (ii)t+ 1. Finally (iii)t+ 1 is immedia te  f rom (5.12) using L e m m a  A4 and the 
inclusions 

3 = e )  = v'`3*+ 

since 3, 1/~1+1 have the same ranks. 
This completes  the inductive construct ion of .30,.. . ,`3~_,. N o w  we note that  

1,/~---~_ c__]//~ and that  these ideals have the same rank  h+s.  Hence f rom (5.11) 
and  the est imate (iii),_, we get finally for any j in JV(h+s)  

~ 6j(~3 o)< ~, C(d) aj_a(~3o)(a~ D y ~ ...(akDk) a~, (5.13) 

where the first sum is over  all p in R and the second sum is over  all 
d = ( d  I . . . . .  dk) with I d l = s - r .  

N o w  let ~r be the element of  R giving rise to H~ = H o. By L e m m a  A1 of the 
Append ix  there exists j in JV(h +s )  such that  

6j(~3~) >0 .  (5.14) 

But f rom L e m m a 2  we have ~ 3 o = g ( a - p ) ~ , ;  therefore by L e m m a 5  we have 
6 j ( ~ o ) > 0  for all p in R. So 6j(~3p)>l for all p in R, and now (5.13) gives the 
required est imate (5.1) for the cardinali ty ~:(H) of R, after using once more  
L e m m a 5  to replace ~3o=g(?o)  ~ by ~3. This proves  L e m m a 6  without  the 
disjointness condition. 

Final ly if G t . . . . .  G k are disjoint then we can be more  specific abou t  the j 
satisfying (5.14). Fo r  if s=(s~ . . . . .  Sk) is the type of H, we have H , = H  1 x ... x H k 
where H i is a connected algebraic subgroup  of G i of codimension s~ (1 <i<k) .  
Thus we have 

~3, = (31 . . . . .  3k), 

where .3i in K [ X i .  o . . . . .  Xi.N,] is the homogeneous  ideal of r ank  hi+s i as- 
sociated with H i (1 < i < k). I t  follows f rom L e m m a  A6 of the Append ix  that  

~h+~(~)=6~ ...~k>O, 
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where 61 is the degree of 31 (1 < i N k ) .  Hence (5.14), and therefore also the 
est imate (5.1) for K(H), holds with j = h + s .  This completes  the proof  of Lem- 
m a  6. 

6. The Proposition 

In this section we state a Proposi t ion and we show that  it implies our Main 
Theorems.  Let G 1 . . . . .  G k be as in Sect. 1, not necessarily disjoint. Let X be a 
finite subset of G = G  1 x . . .  x G  k containing the origin, and take F as the 
subgroup  of G generated by the elements of  X. Fo r  an ideal `3 of the as- 
sociated polynomial  ring 9t let `3* denote the contracted extension with respect 
to F. Recall that  for each i with 1 < _ i N k  the number  h i = N ~ - n  i is such that  
either h i = 0  or the pr ime ideal 15i of G i in 9 t i = K [ X i ,  o . . . . .  Xi,N, ] is of rank 
h i>  1. In the former  case we set b i = O  and we let 31 be the zero ideal of 9t i. In 
the lat ter  case we let b i>  1 be an integer such that  the Zariski closure of G i in 
IPN, can be defined by the vanishing of homogeneous  polynomials  in 9l i of 
degrees at mos t  b i. Also by L e m m a 6  (p.499) of [4] we can find h i homo-  
geneous polynomials  in 9t i which generate an ideal 3i with ,3* = 15i. 

Next,  if h = h  I + .. .  + h k = 0 ,  we write `3o=0. Otherwise,  if h>= 1 we write 

-30 = (~1 . . . . .  ~k), 

then this ideal is generated by h mul t ihomogeneous  polynomials  of ~tl, say 
/]1 . . . . .  Ph. In either case we note that  3 " = 1 5 ;  this is trivial if h = 0 ,  while if h >  1 
then on the one hand 

3 c~*--151__15 (1 < i < k )  
i - -  " , ~ ' i  - -  

so that  ` 3 o -  15 whence .3* ~_ 15"= 15, and on the other  hand 

`3*  = ( 3 1  . . . . .  3 0 *  ~- ( 3 *  . . . . .  :6k) = (151 . . . . .  % )  = 15. 

Fur thermore ,  if h > l  the rank  of `3* is h, and we deduce by applying 
L e m m a  A6 of the Appendix  to those 3i with h i =t=0 and using L e m m a  5 (p. 499) 
of [4] that  

6~(.3")<b]' . . . b~  ~ (6.1) 
while 

6 j ( ;30) -0  (6.2) 
for any j 4: h. 

The  main  result of  this section shows how to construct  polynomials  
Ph+l . . . . .  Ph+,+l to get a local complete  intersection. We take G 1 . . . . .  G k , ~ , X  

satisfying the condit ions of either version of the Main  Theorem,  and we 
suppose that  for some integers D ~ > I  . . . . .  D k > l  and T > I  there is a poly- 
nomial  P of ~ also satisfying the condit ions of the Main  Theorem,  with the 
constant  c given by 

c = (2 a) "~ b N-" k", (6.3) 
where 

a = m a x ( a l  . . . .  ,ak), b = m a x ( b  a . . . . .  bk). 
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Thus in the general version of the Main  Theorem we do not  assume that 
G 1 . . . . .  G k are disjoint, and we have 

TQr(X)>cA ,  
and if n > 1 also 

E Q , ( X ) > c A ,  

Fur thermore  we have either 

o r  

(1 < r < n) (6.4) 

(1 < r < n). (6.5) 

EQ,(X)>cA, ,  (6.6) 

[X/Gtorsl = IXl, (6.7) 

and we shall refer to these as cases Ig, I Ig  respectively. 
In the disjoint version of the Main Theorem, we assume that G~ . . . . .  G k are 

mutual ly  disjoint. For  r=(r~ . . . .  ,r,) we abbreviate (2 ........ k(X) to Qr(X) and 
D]' . . .O;  k to D ~. We put n = ( n  1 . . . . .  n~). Then we have 

TQ,(X) > c D" 

and if n > 1 also 

EO.r(X)>=cD" 

Fur the rmore  we have either 

o r  

(O<q <n~ . . . . .  O<rk <nk, Ir[_--> 1) (6.8) 

EQ.(X)>=cD" (6.10) 

IX/G,orsl = IXl, (6.11) 

and we shall refer to these as cases Id, I I d  respectively. 
Finally in the situation of  either version of  the Main  Theorem we define 

and 
T ' =  rain (E, T/n) 

T ~ = T - ( r - 1 ) T '  (1 <r_<n). 

Also in cases Ig, I d  we put  

whereas in cases IIg,  I I d  we put 

T , + x - = T - ( n - 1 ) T ' - T / n .  

We can now state our  Proposit ion.  We recall the mult inomial  coefficients 
C(r) defined in Sect. 5, and we define X t~ as the origin of G. 

Proposition. Suppose, in addition to the above, that P vanishes at each point of F 
to finite (not necessarily positive) order along q~. Then there are multihomo- 
geneous polynomials Ph+l . . . . .  ~+,+l  of  ~R which together with the ideals 
~,  =(Pa . . . . .  Ph+~) satisfy 

T,+ I = T - n  T' 

(O<r 1 <n 1 . . . . .  O<rk <=nk, [r[ > 1, r =l=n). (6.9) 
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(i)r the multidegree of Ph+r is at most (2a) r l(D 1 . . . .  ,Dk) (1 <r<n) 
(ii)r Ph+r vanishes at each point of X ("+l-r)  to order at least T~ along cb 

(1 _ < r < n + l ) ,  with strict inequality if r=n+ 1. 
(iii)r the ideal 3" is of rank h+r (1 < r < n +  1) 
(iv)r for any j in JV'(h + r) we have 

6j(.~*)< C ( j - h ) ( 2 a )  ~r(~- 1)bhDJ-h (1 <r<n). 

We prove this Proposi t ion in the next section. But first we verify that  it 
implies the Main  Theorems  with c given by (6.3). For  if P satisfies the 
condit ions of either version of the Main  Theorem and also has finite order  at 
each point  of F, then we may  apply  the Proposit ion.  We conclude f rom (iii),+ 
that  the ideal ~*+~ is mul t ihomogeneous  of rank h +  n +  1 = N +  1; yet it van-  
ishes at the origin X (~ of G, since by (ii),+ 1 all the generators  of 3 ,+  1 vanish 
there to order  strictly greater than 

T,+I> T - ( n - 1 )  T ' - T / n > O .  

But this is not possible;  hence there is some g in F at which P vanishes to 
infinite order  along ~. It follows f rom the definition that  P vanishes at g + @(z) 
for all z sufficiently small, and hence by analytic cont inuat ion it must  vanish 
on all of  g + 45. 

7. Proof of Proposition 

We carry over all the nota t ion  of the preceding section. We shall construct  the 
desired polynomials  Ph+i . . . . .  Ph+,+i by induction, s tart ing with r = l .  We take 
P h + i = P ;  then 0)1 and (ii)l are obvious.  It  remains to check (iii)i and  (iv)l. For  
this we note that  P cannot  lie in the pr ime ideal 3~ = ~ ,  else it would vanish at 
all points  of  G to infinite order.  If  h = 0  then -~I=(P) ,  and since X (") is non- 
empty  we deduce 3 "  4: ~R. Hence  by L e m m a  7 (p. 501) of [4] the rank  of 3 "  is 
at most  1; so this rank must  be exactly 1. This proves  (iii)l in the case h = 0 .  
Also (iv)~ is clear in this case f rom L e m m a A 4  of the Appendix  since 
(P) = ' ~ l  ~* C2~  1 and these ideals have the same ranks. 

Next,  still with r = 1, assume h >__ 1. Then by L e m m a  A5 of the Append ix  the 
ideal ~ ~'* ;5=(:3o,P)  has rank  h + l  and for any j in JV'(h+ 1) we have 

k 

~j(3)- -< Z D,,~j_o.(~*). 
i=1  

By (6.2) this is non-zero  only if j - e i = h  for some i with 1 <iNk ,  and then (6.1) 
gives the est imate (iv)1 with 3* replaced by .~. Also 

3 "  = (3 o, P)* ___(3~, P) = 3. (7.1) 

N o w  3* 4: ~R since the generators  of 31 vanish on the non-empty  set X('); thus 
by (7.1) the rank of 3* is at least h + 1. But by L e m m a  7 of [4] this rank is also 
at most  h +  1. We deduce (iii)~ for h >  1, and now (iv) 1 follows f rom L e m m a  A4, 
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the inclusion (7.1), and the estimate for 6j(,3). This completes the construction 
o f  Ph+  1 '  

Next suppose that for some r with l<r<_n the polynomials Ph+l . . . . .  Ph+r 
have been constructed to satisfy the conditions (i),, (ii)r , (iii),, (iv)r of the 
Proposition. We shall construct Ph+~+l SO that the conditions (i)r+l, (ii),+l, 
(iii)r+ 1, (iv)r+ 1 hold. 

Since by (iii), the rank of .3* is h + r, it is unmixed by Lemma 7 of [-4]. Fix 
an arbitrary prime component ~3 of ~r~*', this is then multihomogeneous of rank 
h + r  and special in the sense of Sect. 2. Thus the variety V of ~3 in Y" passes 
through some ~: in F. We shall eventually prove that there exists x in X and an 
integer t with 0 <  t < T~-Tr+ a such that 

At(g(x) ~*) ~ ~3. (7.2) 

For  suppose (7.2) is false. Then for all x in X we have 

A'(g(x),3*)~_~3 ( 0 < t <  T , -  T~+ 1). (7.3) 

By (iv) o f .Lemma 1 the ideal 3=g (x ) , 3*  is unmixed of rank h+r. Since 
contains P and by hypothesis ord~P is finite, so is o r d e r .  Since V passes 
through 7, we have in fact o r d e r > 0 .  Hence we may apply Lemma4. It 
follows that ,~ has a primary component ~ of length at least T~-T,+ 1 whose 
associated prime is ~3. In particular ,3___~, whence ,~* _ ~# ( -x )~ .  Comparing 
ranks, we see that ,3" must have a primary component ~ x ~ _ g ( - x ) ~  whose 
associated prime is g ( - x ) ~ .  Furthermore the length I x of ~x is at least the 
length of g ( - x ) ~ ;  and so by (iv) of Lemma 1 we conclude that Ix> T r -  Tr+ 1. 

Thus on our hypothesis (7.3) we see that for each x in X the ideal ~* has a 
primary component of length at least T~-T~+a whose associated prime is 
d ~  We now define an equivalence relation on X by saying that x, x' in 
X are equivalent if 8 ( - x ) ~ = # ( - x ' ) ~ 3 .  Suppose X splits into M > I  non- 
empty equivalence classes X ~ , . . . , X  M under this relation. Pick x t . . . .  ,x M in 
X 1 . . . . .  X~t respectively. Then the ideals g ( - x l ) ~ 3  . . . . .  g ( - x M )  ~ are different. 
So the above conclusion yields for any i in ~ ( h  + r) the inequality 

M 

( ~ -  ~+ ~) y~ ~,(g(-  x.~) ~)__< ~,(.~*). 
m = l  

Using Lemma 5 we deduce 

n r * M(T~-T,+a)6i(~)<a 6~(~,), 
and so by (iv)~ 

M ( T  r - T, + ~) 6~(~3) < a"-" (2 a) ~r(r- a)b h C( i  - h) D*-h.  (7.4)  

This holds for all i in ~V'(h+r); but from our convention on b~(~) it actually 
holds for all i in ~k. 

We now study more carefully the above equivalence relation in order to 
obtain a lower bound for M in terms of the quantities Q~(X) or Q,(X). If x,x'  
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in X are equivalent then g ( x - x ' ) ~ = ~  and so x - x '  is in the stabilizer 
H=s tabGV of V in G, by Lemma2.  In particular, Xm-XmC_H (l_<m_<M). 
Also if x - x , , , x ' - x =  are elements of Xm-x, ,  in the same connected com- 
ponent of H, then x - x ' =  (X-Xm)-(X'--Xm) is in the neutral component H o of 
H. It follows that 

IX,,/HoI<K(H) (l_<m<M), 
and consequently 

IX /nol <= M ~:( H). (7 .5)  

We estimate the right-hand side by introducing the subset S of G defined in 
G by the polynomials Ph+l . . . . .  Ph+r of multidegrees at most (2a) r- I(D 1 . . . . .  Dk). 
Since the closure S is defined by the ideal 

3=(~5,P~+1 . . . . .  P~+,) =(t5,.%) 
and since 

e,~-, e-x., -%* = (~,-~*)* =--.3" - ( ( 5 . , . ~ * )  = ( t s ,  ~ ,  ) = ~,  

we see that , 3 " = 3 " .  Hence ~ is a prime component of ,3", and therefore also 
of ,3. Thus V is an irreducible component of S, and its codimension in C, is r. 
We now split cases according to whether we are considering the general or the 
disjoint version of the Main Theorem. 

Suppose first that we are in the situation of the general version of the Main 
Theorem. Let s be the codimension of H in G; then by Lemma6 we have 
r<_s<_n and there exists j in Jg'(h+s) such that 

~c(H) < a"- r(2 a) "~"- ~ }-" C(d) 6 j_ , (~)  D", 

where the sum is taken over all d with I d l = s - r .  By (7.5) and the definition of 
Q~(X) this gives 

Q,(X) < M a"- ~(2 a) ~"- r) ~ C(d) 6j_ a(~) Da- (7.6) 

So combining this with (7.4) yields 

(Tr - T,+ 1) Q~(X) ~ A~ b h D ~ ~, C(d) C ( s -  d) (7.7) 
where 

and 
s=(s l  . . . . .  Sk)=j--h 

Ar = a 2 (,- r)(2 a) r~"- r)(2 a) ~rCr- 1 ). 

By considering suitable generating functions it is easy to see that 

C(d) C ( s -  d) = C(s)__< U < k". 

In particular (7.7) then implies C(s)> 0, so that 

si>O (1 =<i<k). 

It is not difficult to verify the inequality 

A r < (2 a)"2/n, 

(7.8) 

(7.9) 

(7.10) 
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and using this together with (6.3) and (7.8), we deduce from (7.7) that  

(~ - ~ +  1) Q~(X) < (c/n) D ~. (7.11) 
Finally 

si-=ji-hi<=Ni-hi=ni (1 =<i__<k), (7.12) 

and it follows from (7.9), (7.12) and the definition of A s that 

D~<As.  (7.13) 

We conclude from (7.11) and (7.13) that 

(T~ - T,+ 1) Qs(X)  < (c/n) A~. (7.14) 

We now obtain a contradiction.  In case Ig this is immediate,  for 

T , -  T,+ 1 = T'  = min(E,  T/n) (7.15) 

and so (7.14) contradicts at least one of (6.4), (6.5) or (6.6). In case IIg the same 
argument  works if s # n ,  for then r < s < n  and (7.15) is still valid. Thus (7.14) 
contradicts either (6.4) or (6.5). It remains in case IIg to consider the possibility 
S ~/'/. 

For  this we go back to (7.4). There  exists some i in Jc"(h+r)  with 8 i (~ )>1 .  
In part icular  (7.4) then implies that C(r )>  0 for 

r = (r 1 . . . .  , r k )  = i - -  h ,  

so that  
r i=0  (1 < i < k ) .  (7.16) 

In addition, from (6.3), (7.8) and (7.10), the inequality (7.4) also implies that  

M(T,  - 7", + 1) < (c/n) O r. (7.17) 

But as s = n the stabilizer H must be a finite subgroup of G, and so contained 
in Gtor~. Since X , , - x m ~ _ H  (1 <_m<M),  the condit ion (6.7) implies that  M=IXI .  
Since Q , ( X ) <  IX[ we deduce from (7.17) that 

(7", - 7",+ 1) Q , ( X )  < (c/n) D'. (7.18) 

As in (7.12) we see that  
ri<n, (1 < i < k ) ,  (7.19) 

and it follows from (7.16), (7.19) and the definition of A, that 

D" < A r. (7.20) 

We conclude from (7.18) and (7.20) that  

( T r -  Tr+ 1) P~r(X) • (c/H) Am. (7.21) 

If r # n ,  then r < n  and (7.15) is still valid; hence (7.21) contradicts either (6.4) or 
(6.5). It remains only in case II g to consider the possibility r = n. 
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But now T, -T~+ 1 = T/n, whence (7.21) contradicts  (6.4). These contradic-  
tions establish (7.2) in all cases for the general version of the Main Theorem.  

Next  suppose that  we are in the situation of the disjoint version of the 
Main  Theorem,  so that  G 1 . . . . .  G k are disjoint. Now the algebraic subgroup H 
has a type s = ( s  I . . . .  ,Sk) au tomat ica l ly  satisfying 

O~si ~rt i (l__<i<__k). 

By L e m m a 6  the codimension s=[s]  of H in G satisfies r<_s<_n, and, putt ing 
j = h + s, we have 

K (H) < a " -  r(2 a) '  (" r) ~ C(d) 6 i_ d (~3) D d, 

where the sum is taken over all d with Id] = s - r .  By (7.5) and the definition of 
Qs(X) this gives 

Qs(X) < Ma"-r(2af("-~) ~, C(d) 6j d(~)  Dd" (7.22) 

So combining  (7.4) and (7.22) and using (6.3), (7.8) and (7.10) yields 

( T, - T~ + 1) Qs (X) < (c/n) D ~. (7.23) 

We now obta in  a contradiction.  In case Id  this is immediate ,  for (7.15) 
holds and so (7.23) contradicts  at least one of (6.8), (6.9) or (6.10). In case I I d  
the same argument  works  if s4:n,  for then r < s < n  and (7.15) is still valid. Thus 
(7.23) contradicts  either (6.8) or (6.9). It  remains in case I I d  to consider the 
possibility s = n. 

For  this we go back to (7.4). There  exists some i in ,Ar(h + r) with 6i(~3 ) >__ 1. 
In par t icular  (7.4) then implies C ( r ) > 0  for r = ( r  1 . . . . .  rk)=i - -h ,  so that  (7.16) 
holds. In addition, f rom (6.3), (7.8) and (7.10), the inequali ty (7.4) also implies 
that  (7.17) holds. But as s = n  the stabilizer H must  be a finite subgroup  of G, 
and therefore contained in Gtors. Since X, , - xm~_H (1 < m < M ) ,  the condit ion 
(6.11) implies that  M = I X ] .  The  inequalities (7.19) are still valid, and together  
with (7.16) they show that  Qr(X) is defined. Then Qr(X)<[x], and we deduce 
f rom (7.17) that  

(T, - T,+ 1) Qr(X) < (c/n) D'. (7.24) 

If r4:n,  then r<n and (7.15) still holds;  hence (7.24) contradicts  either (6.8) or 
(6.9). It  remains  only to consider in case l i d  the possibility r =  n. 

But now r=n and so T , -T~+ 1 = T/n, whence (7.24) contradicts  (6.8). These 
contradict ions establish (7.2) in all cases for the disjoint version of the Main  
Theorem.  

Thus we have proved  (7.2) uncondit ionally.  The a rgument  is now essentially 
routine and it does not  depend on which version of the Main  T h e o r e m  we are 
considering. There exists x in X and an integer t with 0 < t < T r -  Tr+ 1 such that  
(7.2) holds. We may  assume t is chosen minimal ly  for this choice of x. We shall 
deduce that  

At(E(x) ~,) ~ ~3. (7.25) 

For  suppose on the cont rary  that  At(E(x)3,)~_~. F r o m  the minimal i ty  of t it 
follows easily that  A t ~ _ ~ 3 * = ~ 3 ,  where ,~=(E(x)3 , )*  is the contracted exten- 
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sion of the ideal generated by the elements of the set E(x).,~ r. Since the 
multiplicative set Jg of Sect. 2 satisfies E(x)Jtl c_jg, we see that E(x):d~ c_;d, 
and therefore At(E(x)~3*)~_~3. Now At15c_15~_~ by (i) of Lemma3,  and it 
follows once again using the minimality of t that 

A'(o'(x) ~*) =_ ~* = ~,  

which contradicts (7.2). Thus (7.25) is established. 
Therefore there exists j with l < j < h + r  such that P~=A'(E(x)Pj) is not in 

~.  But in fact j > h + l .  This is trivial if h=0 ;  and otherwise we only have to 
observe that if 1 _< i _< h then P~ is in (P~ . . . . .  P0* = 15, so that E(x) P~ is in E(x) 15 c 15. 
Hence At(E(x) Pi) is in A t 15 c_ 15 ~ ~3. Thus indeed h + 1 < j  <__ h + r. 

Now by (i), the multidegree of P~ is at most (D' 1 .. . . .  D'O, where 

D'~=(2a)" ~aiD~+t(ai -1)<=(2a) ' - laD~+(Tr-Tr+O(ai-1)  (1 =i__<k). 

Assume r + n. Then we observe that 

(T-T ,+I ) (a~- I )<=aD ~ (1 =<i<k). (7.26) 

This is obvious if G i is linear, since then a i= 1; otherwise, if G i is not linear 
then by the definition of E we have 

T , -  T,+I = min(E, T/n)<E<D~. 
Hence (7.26) gives 

D'i<(2a)~Di (1 < i < k ;  r . n ) .  

Thus if r.i:n, multiplying P~ by a suitable monomial M~ in J/{ we 
obtain a multihomogeneous polynomial P~=M,P~ of multidegree exactly 
(2a)r(D1 . . . . .  D 0 which again does not lie in ~.  If however r = n  then we define 
P~ simply as P~. 

Now we recall that this construction can be carried out for each prime 
component ~ of .~*. Thus using Lemma 5 (p. 285) of [2] we can find a linear 
combination of the P~, with coefficients in K, that does not lie in any of the 
prime components of 3" .  This linear combination gives the required poly- 
nomial Ph+,+ a, and we proceed to verify that it satisfies the conditions (i),+ 1 (if 
r 4:n), (ii),+ 1, (iii),+ 1, and (iv),+ 1 (if r +  n) of the Proposition. 

The above construction of each P~ makes it clear that (i),+ t holds (if r + n). 
Next, to prove (ii)~+ 1, let y be any point of X ("-'). Then z = y + x  is in X ("+ 1-,), 
and so by (ii)~ 

ordz Pj>= T , (h+l<=j<=h+r). 

Hence by (ii) of Lemma 3 we have 

ordy E(x) Pi = ~ PJ > T~ 

and so by (iii) of Lemma 3 

ord,  At(E(x) Pj)>= T r -  t 

( h + l N j ~ h + r ) ,  

( h + l N j ~ h + r )  
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as long as T~ > t. But in fact 

T r - - t > r r + 2 > = O .  

So this holds, and we deduce that  o rdyP~>T~+t .  Hence  also 
o r d y P h + , + t > T , + l ,  and since y was arbi t rary this proves  (ii)r+2 (with strict 
inequality). 

The  condit ion (iii),+l follows by s tandard  arguments .  Indeed,  the ideal 
=( .3*,R 1) has rank h + r + l .  Also, since T,> T,+ t >-O, every generator  of ', r h + r +  - -  - -  

-~,+1 vanishes on the non-empty  set X ~"-'), and in part icular  ~* :3 ,+2~9t .  So by 
L e m m a  7 of [-4] the rank of 3 ,*  2 is at most  h + r + 1. Since ,3 -~ 3 *  1, this rank  
must  be exactly h + r +  1. This verifies (iii),+ 2. 

Finally if r+n ,  then for any j in X ( h +  r +  1) we deduce f rom L e m m a  A5 
that  k 

6j (3) < (2 a)" ~ D, cSj_ ~, (~*). 
i = l  

By (iv), we have 

hi_ ~. (~3") < C(j - h - e~) (2 a) ~'~'-  ~ I b h D j -  h /D  ~ 

so we get 

(1 <i<k~ 

k 

6 j ( 3 ) < ( 2 a )  ~'<'+ 1)bhoJ-h 2 C ( j - h - e i ) "  
i = l  

But with our  convent ion on mul t inomia l  coefficients it is easily seen that  
k 

C(j - h -  el) = C(j - h), and hence 
i=2  

6j(,~) < C(j - h) (2 a) ~r~' + 1) b h D j -  h. (7.27) 

Since ,~ __ .3*+ 1 and these ideals have the same ranks  h + r + 1 < N, the condit ion 
(iv)r + ~ follows f rom (7.27) using L e m m a A 4 .  This completes  the proof  of  the 
Proposit ion.  

8. F u r t h e r  r e m a r k s  

We discuss here the relat ionships between our  Main  Theorems  and the results 
announced  in Sect. 9 of [4]. To  start  with, we show that  either Main  Theorem 
implies a slightly weaker  version, sufficient for all applications,  of Theo rem A 
(p. 514), in which the inequalities (42) of [4] should be replaced by 

(S/rl)pr>=cD r-2 (l__<r<n) (*) 

if n > l .  There is no loss of generali ty in supposing that  D > I  and  D is an 
integer. It  now suffices to take k =  1 and G 1 = G ;  then F is a subgroup  of  G 
generated by elements  72,-..,V,. of G. If the rank  l of F is zero, we take X as 
the origin of  G. Otherwise,  if l >  1, then without  loss of generali ty we can 
assume that  ~2 . . . . .  ~ are linearly independent ,  and we take X as the set of 
elements of the form 

sl ~1 + ... +st~z (O<s2 . . . . .  sl<S/n). 
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In the notation of [4], we have Xt")~F(S); and also 

lX/Gtorsl = IXI.  (8 .1 )  
We next claim that 

Qr (X) > (S/n) pr (1 =< r < n). (8.2) 

If  p r = 0  this is trivial. Otherwise, suppose p=pr>l .  If G has no algebraic 
subgroups of codimension r, put H = 0 ,  else let H be any such algebraic 
subgroup. In either case, we can assume from the definition of p that 71 . . . . .  7p 
are linearly independent modulo H. Now the elements 

sl 71 + ... +sp~p (O<sl . . . . .  sp<S/n) 

are distinct modulo H, so that IX/HI>(S/n) p. Taking the minimum over H, we 
deduce (8.2) in either case. 

Now the conditions (41) and (*) of Theorem A imply the coriditions 

TQr(X)>cD r (1 <r<n)  (8.3) 
and if n > 1 also 

EQr(X)>cD r-1 ( l < r < n )  (8.4) 

of our Main Theorems, and we also have (8.1). Thus we can conclude that P 
vanishes on 7 + ~  for some 7 in F, and so the slightly weaker version of 
Theorem A is established, with c= (2a )  "2 b N-". At the same time we are able to 
verify an additional remark made in [4]; namely, that the conditions (,) can be 
omitted entirely if G is a linear group variety. For then by definition E =  T; 
whence the conditions (8.3) and (8.4) are implied by (41) alone. 

Similar arguments enable us to deduce Theorem B (p. 515) of [4] from the 
general version of our Main Theorem. We choose ~ in an arbitrary way and 
we take T =  1. By using induction on k and simple projection properties of the 
quantities p,, it is not difficult to see that we may without loss of generality 
assume that D 1 . . . . .  D k are positive integers. We could define X as above; but 
in fact it suffices here to take X = F(S/n), since we no longer need the condition 
(8.1). We still have X~")~F(S), and, as this X is certainly no smaller than the 
set defined above, (8.2) still holds. 

Now the conditions of Theorem B imply the conditions 

TQr(X)>cA~ ( l < r < n )  

EQ~(X)>cA, ( l < r < n )  

of the general version of our Main Theorem. Thus we conclude that for any 
one-parameter  subgroup �9 of G there exists ~ in F such that P vanishes on all 
of ~ + 0 .  

It remains to verify that this implies the vanishing of P on all of G. We do 
this using only the countability of F. It is convenient to assume G embedded in 
some projective space IPM; for example, the Segre map does this with 
M +  1 =(N~ + 1)...(Nk+ 1). Then P can be regarded as a homogeneous polynomial 
in the associated variables X o . . . . .  X M. Without loss of generality we can assume 
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that X 1 / X  o . . . .  , X , / X  o are algebraically independent functions on G. Let ~ be 
the rational map from IP M to IP, obtained by taking only the coordinates 
X 0 . . . . .  X, .  Then ~ is defined on a non-empty  open subset (9 of G, and ~((9) is 
a constructible subset of IF', which therefore contains a non-empty  open subset 
(9' of IP (see for example [1] p. 39). Thus there is a non-zero homogeneous  
polynomial  Q ( X  o . . . . .  x , )  which vanishes on the complement  of (9' in IP. 

N o w  suppose on the contrary that P does not vanish on all of G. Then the 
vanishing of P defines a proper closed subset S of G. Hence for each 7 in F the 
set S - 7  is a closed subset of G of  dimension at most  n -  1. Thus for each 7 in 
F we can find a non-zero homogeneous  polynomial  P~(X o . . . .  ,X, )  which van- 
ishes on S - 7 .  Since F is countable, it follows as in E4] (p. 492) that there exist 
elements x o .. . .  ,x ,  of K such that Q(x o . . . .  ,x , )4 :0  and P~(x o . . . . .  x , ) :#0  for all 7 
in F. In particular there exists g in (9~_G whose first n +  1 pr~ojective coor- 
dinates are x 0 . . . . .  x, ;  and then P does not  vanish at g for any 7 in F. Therefore 
g is not  in S - 7  for any 7 in F, whence 7 + g  is not  in S for any 7 in F. 
However,  by using the exponential  map  on G it is easy to construct  a one- 
parameter  subgroup 4~ of G that passes through g. Then there exists 7 in F 
such that P vanishes on 7 + 4 .  So 7+~b_~S, whence y + g  is in S, a con- 
tradiction. 

Thus indeed P vanishes on all of G, which establishes TheoremB,  with 
c = (2 a) "2 b N-" k". 

Next  we deduce Theorem C (p. 515) of  [4] from either version of our  Main 
Theorem. We note that in the statement of this result the numbers  Z, should 
be defined as 1 if p~=0. It suffices to take k =  1 and G~ =G,  with ~ arbitrary 
and T--- 1, and without  loss of generality D a positive integer. We take 

x = r~ (s~/n) + . . .  + ~(S~/n); 

then clearly X ~") ~_F~(S~)+ ... + Fh(Sh). We claim that 

Qr(X)>Zr/nPr ( l < r < n ) .  (8.5) 

If  p~=0 this is trivial. Otherwise, suppose p = p r > l .  If  G has no algebraic 
subgroup of codimension r, put  H = 0 ;  else let H be any such algebraic 
subgroup. In either case we can find p elements Vl .. . .  ,7p taken from the 
generators of F~ . . . . .  F h that are linearly independent modulo  H. Suppose qi of 
these come from generators of F~ (1 < i < h ) .  Then we have 

O<ql  < l  1 . . . . .  O<qh < l  h, ql + . . .  + q h = p ,  

and now it is clear how to write down at least 

(S1/n)ql ...(Sh/n) ~ >__ St~n; 

elements of X that  are distinct modulo  H. Hence ]X/H[>Zr /n  p. Taking the 
min imum over H, we deduce (8.5) in either case. 

N o w  the conditions of Theorem B imply the conditions 

TQr(X)>=cD r (l__<r__<n) 

EQr(X)>=cD ~ (1 <__r<=n) 



262 D.W. Masser and G. Wiistholz 

of our Main Theorems. Thus we conclude that for any one-parameter  sub- 
group 45 of G there exists 7 in F such that P vanishes on 7+q'-  Exactly as 
above this implies that P vanishes on all of G. This establishes Theorem C, 
with c= (2a )  "2 b re-". 

We leave it to the reader to prove that the general version of the Main 
Theorem implies a form of Theorem ABC (p. 515) of [4] in which the con- 
ditions EZr/nPr>A r are replaced by EXJnPr>cAr  ( l < r < n ) ,  even when E is 
defined as in the final sentence of [4]. Likewise, if he wishes, he can formulate 
a variant of this result when G I . . . . .  G k are disjoint, and deduce such a result 
from the disjoint version of the Main Theorem. 

We close this section with some practical methods for establishing that 
given commutat ive group varieties are disjoint. For a commutative group 
variety G we define a subquotient of G as a group of the form H / K ,  where H 
and K are algebraic subgroups of G with H connected and K c_H. It too is 
connected, and is therefore a group variety. 

Lemma7 .  (i) For commutative group varieties G j , G  2 suppose that whenever 
Q1, Q2 are isomorphic subquotients o f  Ga, G 2 respectively, then Q1 = Q2 =0. Then 
G1, G 2 are disjoint. 

(ii) For commutative group varieties G1,GE,G 3 suppose G1,G 3 are disjoint 
and G2, G 3 are disjoint. Then G 1 • G2,  G 3 are disjoint. 

(iii) For k > 2 and commutative group varieties G 1 . . . . .  G k suppose Gi, G~ are 
disjoint whenever 1 < i < j < k. Then G 1 . . . . .  G k are disjoint. 

Proof. Let G~, G 2 be commutative group varieties, with G = G  x • G2,  and let 
/'~1, ~2 denote the projections from G to G 1, G 2 respectively. We start by noting, 
essentially as in [3], that the existence of an algebraic subgroup H of G implies 
the existence of algebraic subgroups K 1 ~ H a = ~ ( H ) ,  K 2 _~H 2 --~ZE(H ) and an 
isomorphism 2: H1/KI - -*H2 / K  2 such that (hi,h2) is in H if and only if 
2(h  1 + K 1 ) = h  2 + K  2. For  we may identify G 1, G 2 as  algebraic subgroups of G in 
the natural way, and we let K~=na(Hc~Ga)  be the set of all h~ in H a such that 
(hi,0) is in H, and we let K2=~z2(Ht~G2) be the set of all h E in H 2 such that 
(0, h2) is in H. Then for any h a in H 1 there is s o m e  h E in H 2 such that (ha ,hE)  

is in H, and it is easy to see that this induces the desired isomorphism 2 
between the subquotients H a / K  1, H 2 / K  2. 

Now (i) is immediate. For  let H be any connected algebraic subgroup of 
G 1 • G 2. Then the resulting subgroups H a, H 2 a re  connected, and so Q1 = H 1 / K a ,  
Q 2 = H 2 / K z  are subquotients. Thus by hypothesis Q a = Q 2 = 0 ,  so K I = H  1, 
K 2 = H  2. This leads at once to H = H ~  • H2, SO G1,  G 2 are disjoint as required. 

Before we establish (ii) and (iii) we prove a converse to (i). Suppose G~, G 2 

are disjoint, and let 2: QI-~Q2 be an isomorphism of subquotients 
Qa =H1/K1,  Q2 =H2/K2 of G1, G 2 respectively. We shall show that Q1 =Q2 =0.  

Define a map ~: H l x H 2 ~ Q 2  by 

6(ha, h2)= 2(h~ + K~) -  (h 2 + K2). 

Its kernel H is an algebraic subgroup of G, and clearly r q (H)=  H a, rc2(H ) = H 2. 
By disjointness the neutral connected component  H 0 of H is a product, and by 
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writing H as a union of translates of  H 0 we see easily that in fact H = H  o. 
Thus H = H  1 x H 2 ,  and 6 is zero. Hence Q2=0 ,  and Q1 = 0  as well. This proves 
the required converse of (i). 

N o w  to prove (ii) suppose G 1, G 3 as well as G 2, G 3 are disjoint. By (i), to 
prove G = G l x G 2 , G  3 disjoint it suffices to show that if 2: Q 3 ~ Q  is an 
isomorphism of subquotients Q3 =H3/K3, Q = H / K  of G3, G respectively, then 
Q = 0 .  Let H I = n l ( H  ), H z = T c z ( H  ). The projections Tgl,~ 2 induce surjective 
maps from Q to HI/~I(K ), Hz/rcz(K), and these may be combined with 2 to 
give surj ective maps/~ 1" (2 3 ~ H 1/~ 1 (K), p 2: Q 3 --* Hz/rr z (K). Their kernels have 
the forms La/K3, Lz /K 3 for algebraic subgroups L~,L 2 with K 3 ~_LI,Lz~_H3, 
and we thus obtain isomorphisms between H3/L 1 and H1/~I(K ) and between 
H3/L z and H z / T c z ( K  ), Since H~,H2 ,H  3 are connected, our disjointness hy- 
pothesis and the converse to (i) show that H I = n l ( K  ), H z = / ~ z ( K  ). N o w  Q - - - 0 ,  

because any element of Q=)-(Q3) must  be in the kernels of both  rq and rc z. 
This completes the proof  of (ii). 

Finally we prove (iii) by induct ion on k. It is trivial for k = 2 ,  so assume 
that it has been verified for some k > 2 .  Suppose G~ ... . .  Gk+ 1 are pairwise 
disjoint, and let H be any connected algebraic subgroup of G~ x ... x Gk+ 1. By 
repeated use of (ii) we see that G ' = G l x  ... x G  k, Gk+ 1 are disjoint. Hence 
H = H' x Hk+ ~ for connected algebraic subgroups H', Hk+ ~ of G', Gk+ ~ respective- 
ly. By the induction hypothesis G~,. . . ,G k are disjoint; hence H'  splits further 
as H 1 x ... x H k. Thus H splits completely as required. This proves (iii), and 
thereby completes the proof  of L e m m a 7 .  We note here incidentally that, 
besides (i), the statements (ii), (iii) also have converses; however, these are 
trivially verified. 

Appendix 

Multihomogeneous ideals 

We collect here a number  of results about degree theory for mult ihomogeneous ideals. Our basic 
reference is [10], but we have to supplement this with a few additional considerations. These 
usually generalize the corresponding classical arguments for homogeneous ideals. 

For k > l  and integers N I > I  . . . . .  Nk>=l let 

X1,  o . . . . .  X1,N~, .... XR. o . . . . .  Xk. Nk (A1) 

be independent variables, and let 9t be the associated polynomial ring over some field K. We say 
that a polynomial P in 91 is mult ihomogeneous if it is homogeneous in each of the sets of variables 
X~, o . . . .  ,X,.N, ( l < i < k ) ;  if further its degree in these variables is t, ( l < i < k ) ,  we say that its 
multidegree is (t 1 . . . .  ,tk). AS usual we say that an ideal `3 of 91 is mult ihomogeneous if it can be 
generated by mult ihomogeneous polynomials. For such an ideal .3 and integers t I > 0  . . . . .  tk>O let 
H ( t l , . . . , t k ; ` 3  ) be the max imum number  of monomials  of multidegree (t 1 . . . .  ,tk) that are linearly 
independent over K modulo 3. Suppose the rank r of `3 satisfies 1 < r < N ,  where 

N=Nl+.. .  +Nk. 

Let .W" be the set of elements J=(J l  . . . . .  Jk) of Z k with 

O<=jI <=N 1 . . . . .  O<=jk<=N k. 
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Then it is known that there exist integers aj such that for all sufficiently large t l , . . . ,  t k w e  have 

where the sum is taken over all j in ~4 p with 

IjT = j l  + ...-t-jk>=r. 

For a proof see Theorem 7 (p. 757) of [10]. 
Let ~#(r) denote the subset of ./V consisting of all j with IJl =r .  For j in JV'(r) we denote the 

coefficients aj by 6j(3). It is convenient also to define c~i(3 ) as 0 for any j in 7~ k not in JV'(r). 

Similarly it is useful to define the binomial coefficient (~) as O for any integers a, b w i t h a > O a n d  
either b < 0 or b > a. 

LemmaA1 .  For l <-r< N let 3 be a multihomogeneous ideal of  rank r. Then 6j(~)>O for all j in 
,X(r). Furthermore, there exists at least one j in Y ( r )  such that bj(3)>0.  

Proof By T h e o r e m l l  (p. 759) of [10] we know that h i (3 )>0  for all j in dV(r). To get a strict 
inequality we note that 3 is a homogeneous ideal of 2 ,  so that for an integer t->_0 we can define 
the usual Hilbert function H(t; 3) that counts the max imum number  of monomials  of degree t that 
are linearly independent over K modulo 3. It is easy to see that 

H(t; 3)= ~ H(t~ . . . . .  tk; 3), (A3) 

where the sum is taken over all t l , . . . ,  t k with 

t l>O, . . . , tk~O,  t l + . . . + t k = t .  

We also have the identity 
~ t + k - l \  / t l \  (;i)'  A4, 

where the sum is taken over the same range. This holds for any r 1 >0 ,  . . . , rk>0 with r I + ... +rk=r. 
Now for t sufficiently large the function H(t; 3) is a polynomial of degree m = N + k - 1 -  r with 

leading term &m/m!, where 6 is the classical degree of 3 viewed as a homogeneous ideal. If we 
formally substitute (A2) and (A4) into (A3) we may in fact equate the resulting coefficients of t". 
This is because the terms with at least one of t l ,  . . . , t  k bounded give rise to terms of order at most 
t " -  1. We obtain 

where the sum is over all j in Jff(r). Since 6 > 0, the last part of the lemma follows at once. 

Lemma  A2. For 1 <_r< N let ~ be a multihomogeneous ideal of rank r, and let 

be an irredundant primary decomposition with ~1 , . . . ,  ~m of rank r and the remaining ideals ( i f  any) 
of  rank larger than r. Then ~1 , . . . ,  ~,~ are also multihomogeneous and we have 

~ j ( 3 ) = , ~ j ( ~ l )  + .. .  + g j ( ~ , )  
for any j in Jff(r). 

Proof The fact that ti21 . . . . .  ~ , ,  are mult ihomogeneous follows easily from the fact that they are 
isolated components  and therefore determined uniquely by ~3; the full result is then proved as 
Theorem 8 (p. 758) of [-10]. 

Lemma  A3. For 1 <- r <- N let ~ be a multihomogeneous primary ideal of rank r and length I. Then the 
associated prime ideal ~ is multihomogeneous and we have 

for any j in ~V'(r). 

Proof It is easy to see that  ~ is mult ihomogeneous,  and then the result is proved in w 32 (p. 767) of 
[10]. 
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Lemma A4. For 1 <- r < N suppose ~3, 3' are multihomogeneous ideals of rank r with ~' ~_ 3. Then we 
have 

for any j in iV(r). 

Proof  The inequality H( t l , . . .  , tk;:3 ) < H( t l , . . .  , tk; 3') is an obvious consequence of the hypotheses, 
but unfortunately it does not imply the corresponding inequalities for the leading coefficients if 
k> 1_ Instead we argue as follows. We can write 

where ~1,  . . . ,~ , ,  are multihomogeneous primary ideals of rank r with distinct associated primes 
~1 , . - . ,  ~m, and either ~ =  9{ or .~ has rank larger than r. Since 

~ ) ' ~ . ~ i ~ } i  (1 < i<m) ,  

it follows that :3' has an isolated primary component ~'i of rank r with associated prime ~i  
(1 <i<m) .  We can therefore write 

.~'= ~'~ m... m ~;, m.3', 

where either ~ ' =  ~R or ~' has rank at least r (possibly equal to r). Localizing the inclusion 3'  c_~ at 
~ gives then ~'~_c ~ (1 <i<m) ,  and so the lengths l'~ of s and l~ of ~ are related by 

l'i> l i (1 <i<m).  

Also by Lemmas A2 and A3 we have 

i - - I  i = l  

and 

i = 1  t=l 

for any j in .X'(r). The inequality of the present lemma is now immediate. 

LemmaA5. For l < r < N  let ~ be a multihomogeneous ideal of rank r, and for integers 
D 1 > 0 . . . . .  D k >= 0 not all zero let P be a multihomogeneous polynomial of multidegree (D1,... , Dk) such 
that ~ : (P) = 3. Then the ideal ~ = (3, P) is multihomogeneous of  rank r + 1. Furthermore, i f  r ~= N then 
we have 

6j(3)= ~ Di3j_,,(3) 
i - - 1  

for any j in JV'(r + 1), where e 1 . . . . .  % are the standard basis vectors of  Z k, 

Proof Since P is in particular homogeneous of degree D, + ... + D t > 0  in the variables (A1), the 
fact that the rank of ~ is r +  1 follows immediately from the corresponding assertion for homo- 
geneous ideals (see for example Lemma 3 (p. 281) of [2]). Then from Theorem 5 (p. 756) of [10] we 
get 

H(tl  . . . . .  tk; 3 )=  H(t  ~ . . . . .  tk; 3)- -  H(t 1 -- D~ . . . . .  tk--Dk', ~ ) 

for any integers t a > D~,.. . ,  tg> D~. On making t~,. . . ,  t k sufficiently large, the required expression 
for 6~(,,~) follows without difficulty from the fact that for t large and m, D fixed the expression 

( 3 - C ~ D I - D ( ~  0 

is of order at most t m- 2. 
For the final lemma we write 

~R~=K [X,, o . . . . .  X~.u,] (1 < i<k) .  

Lemma A6. For integers q ,  ...,r~ with 1 < q  < N,, ..., 1 <r~ < Nt let ~ be a homogeneous prime ideal 
of  ~Ri o f  rank r i and degree ~ (1 <i<k) .  Then the ideal ~ = ( ~  . . . . .  ~ )  of 9{ is multihomogeneous of  
rank r = q  + ... +r~ and we have 

6~(~)=6~ ...6~ 
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for j = r = ( r  I . . . . .  rk), while 
6j(3)=0 

for all j#:r in JV'(r). 

Proof. It is obvious that ~ is multihomogeneous. Fix integers t~ >0, ..., tk>0. Let h~= H(t~; ~3~)> 1 
be the usual Hilbert function of ~i in 91~, and let 

M,(1) . . . . .  M,(h~) 

denote a maximal set of monomials of 91~ of degree ti that are linearly independent over K modulo 
~3~ (1 <i<k).  It is easy to see that the products 

M(m 1 . . . . .  mk)=Mi(ml). . .Mk(mk) (l <ml <h 1 . . . . .  l <mk <hk) 

span the vector space V over K of all multihomogeneous polynomials of 9t of multidegree (t~,... ,  t~) 
taken modulo ,~. It is not so easy to see that they are actually linearly independent over K in V. In 
fact we prove by induction that for any i with 1 < i<  k the products 

Ml(mO...Mi(mi) (1 ~m 1 _<h I .....  1 <=m,<hi) (A5) 

are linearly independent over K modulo ,~i=(~1 .. . . .  ~i). This is clear for i=  1; assume it holds for 
some i with 1 <i<k .  Suppose we have elements 2(m 1 ... .  ,mi+i) of K such that 

~,2(m i . . . . .  mi+ l )Mi(ml) . . .Mi+ l(mi+ l)=-O (mod3i+ 0, (A6) 

where the sum is over all m I .... ,mi+ i with l < m i < h l , . . . , l < m i + l < h i + a .  Pick an arbitrary 
projective zero 7~ of r 1 and specify a set of projective coordinates for re. Let/l(m~+ 1) be the value 
of the monomial Mi+ l(mi+ 1) at rc (1 <m~+ 1 <h~+ a)- Specializing to 7z in (A6) and putting 

h,+l 

2'(ml . . . . .  mi)= ~, 2(m i . . . . .  m~+Ol~(mi+l), (A7) 
m , + l = l  

we get 
2'(ml . . . . .  rn ) M 1 (m 1)... Mi(ml) =- 0 (mod 3i), 

where the sum is over all ml, ...,m~ as in (A5). By the induction hypothesis we get 2'(m~ .... ,m~)=O 
for all m I .... , m i, Since 7z was arbitrary, by (A7) this implies that 

h,+l 

2(ml .. . . .  mi+l)Mi+l(mi+O~O (mod ~i+ 0. 
m,+l--1 

Consequently 2(m I .... , mi+ l )=0  for all m l .... ,mi+ 1. This does the induction step. 
Now the linear independence of the monomials in (A5) for i=  k shows that 

H(tl . . . . .  tk; "~)=H(tl; ~O" 'H( tk ;  ~k)" 

From this and the positivity statement of Lemma A1 the assertions of Lemma A6 follow without 
difficulty. 
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