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Let G be a finitely generated group, and 2; a finite generating set for G. Then 2; 
determines a norm on G, called the word norm, defined by letting Ig[ be the minimal 
length ofg as a word in 27. Following Milnor [,15], we define the growth series g(z) 
= 1 + a2z +. . .  + a,z"..., where a, is the number of elements of G of word norm 
exactly n. Much of the early work (e.g., [-1, 16, 17, 23]) on growth series was 
concerned with asymptotic properties of the coefficients of g(z). This work 
culminated in Gromov 's  theorem [12] that G has polynomial growth if and only if 
it is virtually nilpotent and in Grigorchuk's  theorem [11] that there are finitely 
generated groups whose growth is neither polynomial nor exponential. 

If  G is a Coxeter group and 2; is the standard generating set for G, Bourbaki 
[3] showed that the growth series g(z) is the series of a rational function f (z)  and 
Serre [-20] showed that f(1) = I/z(G), where z(G) is the rational Euler character- 
istic of G. Note that if G is finite then g(1)=order(G)=l/z(G), but g(z) is not 
defined at one if G is infinite. If G is a compact  hyperbolic or irreducible 
Euclidean Coxeter group and 27 is the standard generating set for G, Serre 
showed that f (1 /z )= +_ f(z), and so the poles of f are algebraic units. In contrast 
to the work on the asymptotic properties of the coefficients of g(z), these results 
raised the possibility of a beautiful theory of the exact structure of growth 
functions on groups. However, a decade went by before there was much further 
work on this subject. 

In two papers ([5] and [6]) Cannon studied growth functions for cocompact  
hyperbolic groups. If  G is a cocompact  hyperbolic group and X is any finite 
generating set for G, he showed that the coefficients a,  of the growth series g(z) 
satisfy a linear recursion, and hence g(z) is the power series of a rational function 
f(z).  He also computed some examples when G is a closed surface group or a 
compact  hyperbolic Coxeter group. If G is a closed surface group and 2; is a 
geometric generating set (see below for a definition) for G coming from a one 
relator presentation, then f is reciprocal ( f ( z )=f (1 /z ) ) ,  f (1)=l /x (G) ,  the 
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numerator  o f f  is a product of cyclotomic polynomials, and the denominator  of f 
is the product of a Salem polynomial  and cyclotomic polynomials. 

In 1983, Benson [2] showed that if G is a finite extension of 7/" and 2; is any 
finite generating set for G, then the growth series g(z) is the series of a rational 
function f(z), and f has a pole of order n at z = I. Since these groups have Euler 
characteristic x (G)=  0, this fits in with the conjecture that f ( 1 ) =  l/z(G) when the 
power series g(z) is the series of a rational function f and when z(G) is defined. 

Smythe [21] studied the relation between f (1)  and )~(G) by thinking of G as a 
filtered semigroup and studying RG-resolutions of R (where R is the integers or a 
field). While he gets conditions for which f (1)  = 1/z(G ), it seems to be very hard to 
work with these conditions. 

There have been further calculations (e.g., [10] and [22]) to support  the 
conjecture that f (1 )  = 1/z(G ). However, a recent example due to Parry [18] shows 
that this conjecture is not true for all finite generating sets. Let G = 2~ * 2g with 
generators x and  y, ~=--{x +2, x +3, y+2, y+3}, and Z'={g~G: [g[s<3}. Parry 
shows that  the growth function of G with respect to the generating set Z '  is f(z) 
= (1 + 2 4 z -  4z2)/(1 - 32z + 4z2). Note  that f (1)  = - 7/9 and z(G) = - 1. As a result 
of this example, we decided to look at the case when S is a geometric generating set. 

Let G be a discrete group ofisometries of hyperbolic n-space g-I" such that IH'/G 
has finite volume. Choose a basepoint x in ~-I" which is not fixed by any non-trivial 
element of G, and  let D = Dx = {y e ~I ' :  d(y, x) < d(y, gx) for all g e G}. Then D is a 
finite sided polyhedron in N"  which is a fundamental region for the action of G on 
~I' .  D is called a Dirichlet region, and the number  of sides of D depends on the 
choice of  basepoint x. The set of face-pairing elements 2;={0 e G: gDc~D has 
dimension n -  1 } is a finite generating set for G. If G is finitely generated, we will call 
a finite generating set S for G geometric if there is a representation of G as a discrete 
group of isometries of hyperbolic space N"  so that N"/G has finite volume and a 
basepoint x ~ ~-I" so that  2; is the set of face pairing elements for D x. 

Let G be a finitely generated, discrete group of isometries of ~I z with IH2/G of 
finite area and S a geometric generating set for G with respect to the Dirichlet 
region D = Dx. Fo r  convenience we also assume that X has no elements of order 
two. In w 1 we study the combinatorics of the tessellation of M e by {gD: g ~ G}. 
Using this we show: (1) B(n) = w{gD: lye < n}, the "combinatorial  ball of radius n", 
is a topological ball, and (2) there is a square matrix A and a column vector v so that 
g(z) is the series of the rational function f ( z )= 1 + ( 1 . . . 1 ) ( I - z A ) - l z v .  This is 
motivated by Cannon 's  proof  that g(z) is the series of a rational function, but we 
may have a different recursion matrix A and initial vector v. 

These facts are used in w 2, where we prove our main result. Loosely speaking, it 
may be stated as follows: 

Theorem 1. Given a Fuchsian group G, Dirichlet region D, generating set X, and 
growth function f (z) as above, there is a row vector w (defined geometrically in terms 
of D) so that 

f(z) --= 1/x(G ) + (1 - z) (2Z(G))- lw(I - zA)-  iv. 

Thus f ( 1 ) =  1/z(G) if I - - A  is invertible. 
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From this one would expect that f(1)  = 1/z(G ) for most but not all choices of 
geometric generating sets for Fuchsian groups. In w 3 we give some examples to 
illustrate this. We first compute the growth functions associated to tilings o f ~ I  2 by 
(even-sided) regular polygons, with all angles 2rc/p, p > 3. In these cases, it turns out 
that I - A  is invertible, so f ( l ) =  1/Z. We also give an example, on a genus two 
surface with a less symmetric Dirichlet region, where I - A  is not invertible but 
nevertheless f ( 1 ) =  I/Z. Finally, we give an example where I - A  is not invertible 
and f ( 1 ) +  1/Z. Our example has genus 4 and 30 sides, with angles alternating 
between 2rc/3 and 2rt/5. We conclude, in w 4, with an indication of how our methods 
should extend to higher even-dimensional hyperbolic groups, and with some open 
problems. 

w 1. Combinatorics of planar tessellations 

Let G be a finitely generated, discrete group of isometrics of either the hyperbolic 
plane (in which case we assume ff-I2/G has finite area), the Euclidean plane (in which 
case we a s s u m e  IEZ/G is compact), or the round sphere S 2, and let N be a geometric 
generating set for G with respect to the Dirichlet region D = Dx. For  each integer 
n > 0  let B(n)=c losure (u{gD:  I#[s<n}), where in the first case we are using the 
Poincar6 disc model for ~ I  2 and taking the closure in Nz (the closure is adding the 
parabolic points at infinity). One can think of B(n) as the "combinatorial ball of 
radius n" around x. 

Our goal in this section is to give an inductive construction of the group graph 
of G with generators Z. As consequences of this construction, we will show: 

(1) If G is a group of hyperbolic or Euclidean isometrics, then B(n) is a 
topological ball, and the cells 9D with Igls = n + 1 intersect B(n) and each other in 
rather simple configurations. 

(2) The growth series of G with respect to Z is the series of a rational function. 
We make one rather mild assumption on Z, more out of convenience than 

necessity - namely, we assume that Z has no elements o f  order two. Thus, our 
discussion is essentially disjoint from the case of Coxeter groups, where all 
elements of Z have order two. 

We first describe how the Dirichlet region determines a presentation for G with 
generators Z. For  simplicity, first assume that D is compact and G is torsion-free, 
so that G is the fundamental group of a closed surface. Let V= {vertices v of D}, 
and put an equivalence relation ~ on V by v ~ w if there is a finite sequence v = v 0, 
vl . . . . .  v , = w  of vertices of D and elements g~ . . . . .  g, E Z with gjvj_ 1 =Vj for all 
j e {1 . . . . .  n} (so each equivalence class corresponds to one vertex in the quotient 
surface). Each equivalence class of vertices is known as a vertex cycle. Let 
{v~ . . . . .  Vm} consist of one vertex from each equivalence class. For each 
i e { 1 . . . . .  m}, let ci be the word in Z determined by an edge-path in the 1-skeleton of 
the dual tessellation which traverses the link of vi. If ao=vi ,  al =glao,  az 
=g2al  . . . . .  a r=g ,a ,_ l ,  ao=gr+la~ is a minimal listing (i.e., a j + a  i if i+-j) of the 
vertex cycle through vi, then the corresponding word is g~+ Xgr'"gzOl" Note that 
choosing a different initial edge for the edge-path would give a cyclic permutation 
of ci and changing the orientation of the edge-path would replace ci by its inverse. 
Then G has presentation (S l cx  . . . . .  % ) .  We give an example in Fig. 1. 
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h I e d / G 

Fig. l .G~-(a,b ,c ,d ,e , f ,g ,h ,  ilab ld, bc-la 1, ced-I,fie-l, gh lffI, hi lg ~ 

In the general case, D may be non-compact and G may have torsion. Recall that 
2; has no elements of order two. In particular, S contains no reflections, so each 
element of 2; pairs two different edges. Hence, D is an even-sided polygon in IH z, 
IE 2, or S 2, possibly with some vertices at ~ in the hyperbolic case. As before, we 
follow the edge pairings to compute the vertex cycles and words cl . . . . .  cm. We also 
assign an integer n i e {1,2 . . . . .  ~ }  to each cycle as follows: Given i e {I . . . . .  m}, add 
the (interior) angles in D at each vertex of the cycle through vi. This gives the total 
angle at the image of vi, say fi, in the quotient ~I2/G, IE2/G, or S2/G. Since G is 
discrete, this angle must have the form 2rt/nz for some positive integer n~. If n~ = l, 
the quotient has a non-singular geometric structure near f~, and ci has order 1 in G. 
If 1 < n~ < ~ ,  f~ is a branch point of index n~, and c~ is an elliptic element of order hi. 
If n~= co, the cycle through v~ consists of vertices at ~ ,  neighbourhoods of the 
vertices in the cycle are glued together to form a cusp in ~I2/G, and cz is a parabolic 
element of infinite order. Then G has the presentation ( S  [(c0"', .... (Cm)"m), where 
infinitely long relators, of course, may be deleted. 

We now describe the possibilities for the "spine" of the quotient; that is, the 
image of ~D. In the torsion-free, cocompact case, the spine is a finite graph, and 
every vertex has valence at least three, as in Fig. 1. In the presence of torsion, there 
may be vertices of valence one or two. For example, the orientation-preserving 
subgroup of a triangle group can give valence one or two vertices, as shown in 
Fig. 2. Finally, if ~I2/G is not compact, the spine might be disconnected, as shown 
in Fig. 3. 

We now describe the properties that we need of the words c l , . . . , c  m to 
inductively construct the group graph. Let C = {c~, ..., cm}. For each q, let [q]  
consist of all cyclic permutations of c i, and let W = u {c"': c e [q]  and i e { 1 . . . . .  m} }. 
By convention, ifn ~ = ~ ,  c"' means the bi-infinite word ...ccc...; ifg is the first letter 
of c, we say c ~ begins with g- Note that, since Z has no element of order two, every 
element of W has length at least three. 

Lemma 1 (compare Cannon [6, Lemma 3.2]). (i) The elements of C are cyclically 
reduced. 

(ii) For each g e S, g+_l appears exactly twice in the elements of C. 
(iii) Elements of W u  W-1  are determined by their first two letters. 
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Fig. 2a, h. Two possible "spines" for a (p,p, r)-triangle group, a G ~ (a, b, c Ja v, b q, c', abc). b G~ (a, 
b [a p, b q, (ab) ~ ) 

Fig. 3. G_~ (a, b I(aba- lb-1) "~) 

(iv) For each g ~ Z, exact ly  two o f  the elements o f  W w  W - 1  begin with g. 
(v) I f  f ,  9 and h are distinct elements of  s then f g -  1, f h  and 9h do not all occur 

as initial segments o f  elements of  W ~  W -  1 

Proo f  (i) T h e  c o m b i n a t i o n  gg-  1 c o u l d  n o t  o c c u r  for  a g e o m e t r i c  g e n e r a t i n g  set. 
(ii) Le t  e be the  edge  D n g D .  T h e n  g-+~ o c c u r s  e x a c t l y  once  for  e ach  e n d  o r  

ve r t ex  of  e. 
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Fig. 4 

(iii) Let ge2:,  w e ( W ~ W  -1) such that w starts with g, and let e be the edge 
DngD. Then w is the word determined by following one of the two vertices or ends 
ofe.  So there are only two possibilities, and these are detected by the second letter 
of w. 

(iv) This follows from (ii). 
(v) Let f,  g and h be distinct elements of 2, and suppose that fg -  t and fh  are 

initial segments of elements of Wu W -  1. Without loss of generality, we can assume 
that the edge-pairing elements near the edge D n f D  are as in Fig. 4. Ifgh occurs as 
an initial segment of an element of W u  W -  1, then d--h and D only has 3 sides, a 
contradiction. [] 

Our construction of the group graph follows an argument of Cannon in [-6], 
and we adopt  Cannon's notation from [6] and [7]. Given a graph L and a directed 
edge e in L, let g be the same edge but with the opposite direction. We say that a 
graph L is colored by 2 if each directed edge e in L has a label c(e) ~ S such that c(#) 
= (c(e))- 1. We call c(e) the color of e. If L is colored by I2, then each edge-path c~ in 
L determines a word c(~) in Z by concatenating the colors of the successive directed 
edges of the edge-path. A colored graph L is a prepermutation graph if for each 
vertex v ~ L and each color c in S there is at most one edge emanating from v with 
color c. 

Now assume that G is infinite, i.e. either hyperbolic or Euclidean. Let K C ~I 2, 
11~, 2 be the 1-complex with vertices the elements {gx : g ~ G}, and with two vertices 
gx, hx connected by a geodesic arc if gD and hD intersect in an edge (this occurs 
exactly when hg- 1 e Z). Since S has no elements of  order two, K is the 1-skeleton of 
the dual tessellation. For each vertex v in K and g ~ 12, there is exactly one directed 
edge e in K from v to gv, K is colored by 2J if we give e the color g, and K is exactly 
the group graph of G with generators 12. 

Using Lemma 1, we can now give an inductive construction of K. Our building 
blocks are graphsAo~(v)which are colored by Z, where co ~ Wand v is a vertex. Given 
a symbol v and a finite word co,W, A,o(v) is a cyclic graph such that one vertex of 
Ao,(v) is labelled by v and the cyclic edge-loop, based at the vertex labelled v, which 
traverses each edge exactly one time determines the word co or co- 1 (depending on 
the direction). If v is a vertex and co= c~~ W, then Ao~(v) is an infinite graph 
homeomorphic to ( -  co, ee) by a homeomorphism taking the vertex labelled v to 0. 
In this case A,~(v) is colored so that one of the two edge-paths which traverse each 
edge exactly one time determines the word c ~ and  the segment which starts at v 
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and has length Icl determines the word c. We will construct graphs 

r(0)c r(1)c.., c r ( n ) c  ... c 0 r ( n ) = r  
n = O  

such that F(0) is a base vertex Vo, and for all n > 0  F(n) is a connected, 
prepermutation graph which is obtained from F(n - 1) by adding some Ao~(v)'s. We 
will abuse notation and also denote by A,o(v) the image of A~,(v) in F(n), since each 
Ao,(v) will be embedded. However, it is possible that a Ao, in F(n) can have two 
different base vertices vl and v2; that is, the colored graphs Awl(v1) and Aw2(v2) are 
identified in F(n) even though vl + vz. (Actually, in very special circumstances, A~ 
may have three base vertices. See Condition 5 below.) We will put norms I1 I], on 
the F(n)'s so that if v is a vertex of a Ao~ in F(n), then II v II. = min{ II v II. plus the edge- 
path distance in A,o from v to v: v is a base vertex for Ao~}. Since our norms will have 
Ilvll~--Ilvll. if i<n and veC(i), we will usually denote Ilvll. by Ilvll. Let V ( n - 1 )  
denote the set of vertices of F(n-  1). For each n > 0, we require that F(n) satisfies 
the following five Conditions: 

(1) Each Ao,(v) of F(n) is based at a vertex ve V(n-1 ) .  
(2) An edge ofF(n)joining a vertex of norm <n  to one of norm <n  belongs to 

exactly two of the Ao,(v)'s in F(n). 
(3) An edge of F(n) joining two vertices of norm > n belongs to exactly one 

A~,(v) in F(n). 
(4) A vertex in F(n) of norm n is joined by edges to at most two vertices of norm 

n -  1. If it is joined to two vertices of norm n -  1, then all three vertices belong to 
some finite A,o(v) in F(n). 

(5) Except for the case of the orientation-preserving subgroup of a (3, 3, r)- 
triangle group, with a 4-sided Dirichlet region as in Fig. 2.b, at most two vertices of 
a given A,,,(v) can have equal norm, and if A~(v) contains two vertices of minimal 
norm, then these vertices are connected by an edge. In this case we say A,o(v) is 
based at both vertices. For  the (3, 3, r)-triangle group, some A~'s are based at three 
vertices. 

Let F(0) be a vertex Vo. To construct F(1), start with the union F(0)L[~ {A~(vo): 
e) e W}, identify all of the vertices labelled Vo, and call the resulting graph F(1)'. For  
each g e S, by Lemma l.iv) there are exactly two directed edges in F(1)' which start 
at the vertex labelled v o and have color g, and these will belong to different A~,'s by 
Lemma 1.i). For  each g E S identify this pair of directed edges, and call the resulting 
graph F(1). Then F(1) is connected, and F(1) is a prepermutation graph by 
Lemma 1.iii). Furthermore, all relators of F(1) are a consequence of finite elements 
of W, as in Cannon I-6]. Put  a norm II II on the vertices ofF( l )  by letting Ilvll be the 
edge-path distance in F(1) from the vertex labelled v o to v. Note that Conditions 
1-5 hold for F(1), and that each Aw(vo) is embedded in F(I). 

Now let n > l ,  and assume that F(n--1) has been constructed satisfying 
Conditions 1-5. We will obtain F(n) from F(n-1) by adding A,o(v)'s for each 
vertex veF(n--1) with Ilv[I =n-1.  We will first define graphs F(v) for each 
veV(n-1)  with IlvlJ=n-1, attach these graphs to F(n--1), and then make 
whatever edge identifications are required for the result, F(n), to be a prepermu- 
tation graph. 
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First assume that v is joined by an edge in F(n--l)  to a unique vertex 
v'e F(n--1) with norm [Iv'[[ = n - 2 .  By Condition 2, the edge vv' joining v and v' 
belongs to exactly two A,o(v)'s, which we will denote by Aw,(a ) and Aw,(b), in 
F(n--1). By Condition 3, at least one of these, which we will assume is A~,,,(b), is 
not in F(n-2) .  It follows that v' is a base vertex for Aw,,(b), and we inductively 
assume the local picture in F(n - 1) near vv" is that of Fig. 5a). Let wl be the cyclic 
permutation of w' which is determined by the edge-loop in Aw,(a) which starts at v. 
If w' is an infinite word, this means that we read w' beginning at v. Let w2 be the 
cyclic permutation of w" which is determined by the edge-loop in Aw,,(v') which 
starts at v. Let W(v)= W - { w l ,  w2}. Take vo{Ao,(v): co e W(v)}, identify all of the 
vertices labelled v, and call the resulting graph F(v)'. For each g E Z, there will be at 
most two directed edges in F(v)' which start at the vertex labelled v and have color 
9. Identify each pair of directed edges from this vertex which have the same color, 
call the resulting graph F(v), and note that each Ao,(v) is embedded in F(v). 

Now assume that v is joined by edges in F(n-- 1) to two distinct vertices xl and 
X 2 in s - 1) with [[ x 1 I[ = [[ x2 I[ = n - 2. Then by Condition 4 there is a finite word 
w ~ Wand a vertex x e s  2) with x, xl and x2 all in Aw(x ). By Conditions 2 and 
3, there are words w', w" ~ W such that v e A, ,(xO, v e Aw,,(x2), and both Aw,(XO 
and A~,,(x2) are in s  but not in F ( n -  2). Thus, we inductively assume the 
local picture in F(n - 1) near v is as in Fig. 5b. Note that there are no identifications 
among A,, Aw,, and A,<, other than the ones pictured. This is because otherwise 
either d 2 = ( C l ) -  1, d l  = ( C 2 )  - 1 or dl = d2.  If d 2 : ( c l )  - 1, then by Lemma 1.iii) the 
cyclic permutations of w + 1 and (w')+1 determined by the two edge loops which 
start with x2v must be the same. But this implies that Aw(x) and Aw,,(x2) are the 
same graphs since F(n - 1) is a prepermutation graph, which gives a contradiction. 
Similar reasoning shows that d 2 =l=(Cl) - 1. If dl =d2, then there are elements in 
W w W -  1 beginning c1(c2)- 1, cldl ' and c2d2, violating Lemma 1.v). Let w 1 be the 
cyclic permutation of w determined by the edge-loop in Aw(x) which starts at v, let 
w 2 be the cyclic permutation of w' determined by the edge-loop in A,,,(xl) which 
starts at v, and let w3 be the cyclic permutation of w" determined by the edge-loop 
in Aw,,(Xz) which starts at v. Let W(v) = W -  {wl, w2, w3}. Let F(v)' be the graph 
obtained from w {Ao(v): w e W(v)} by identifying all of the vertices labelled v. For  
each 9 e Z, there will be at most two directed edges in s which start at the base 
vertex labelled v and have color g- Identify each pair of directed edges from the base 

o \  

V, x, .,.yx2 
A~,(a 

A~,(x 1) /~v A~.,lx~ 

V 1 V 2 V 1 V 2 

Fig. 5a, b a b 
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Fig. 6 

/ \ 

/ \ 
/ \ 

t I 
I A~.  I A,,,. I 

\ / 
/ 

\ / 

vertex which have the same color, and call the resulting graph F(v). As before, each 
Ao,(v) is embedded in F(v). 

For  the future, note that the argument  above ruling out d I = d 2 (see the proof  of 
Lemma l.v) merely says that one cannot find three Ao,'s fitting nearly around a 
vertex, as in Fig. 6. Indeed, since K is the l-skeleton of the dual tessellation, the link 
of v would be a copy of D, forcing D to be 3-sided. Similarly, if a future argument 
forces four Ao]s to fit nearly around a vertex, D would be 4-sided. 

We will now attach the F(v)'s to F(n - 1) to obtain F(n). Let F(n)" be the graph 
obtained from F ( n -  1)11 w {F(v): v ~ V(n - 1) and II v II = n -  1 ) by identifying each 
vertex v in F ( n -  1) of norm n - 1 with the vertex labelled v in F(v). We will obtain 
F(n) as a quotient of F(n)' by further edge identifications, depending on the local 
structure near the vertices of norm n - 1  in F ( n - 1 ) .  Let v be a vertex in F ( n -  1) 
with Ilvll = n -  1, and let v~ and v2 be the vertices in F(n - 1) as shown in Fig. 5.a or 
5.b (depending on which case v is in). Then each of l]/)1 II and II v2 II is either n -  1 or n, 
depending on the lengths of w and w'. Identify the pair of directed edges in F(n)" 
which start at v and have color d 1, and identify the pair of directed edges in F(n)', 
which start at v and have color d 2. DO this for each vertex of norm n -  1 in F(n)'. 

We claim that no further identifications need be made near v, in order that F(n) 
be a prepermutat ion graph, if l] vl II = II v2 II = n. For, suppose further identifications 
need be made, involving v and, say, v 2. Because of the way the A~, are added to 
F ( n -  1), this can only occur if v2 is connected in F(n-- 1) to another vertex, v3, of 
norm n -  1 or n, and we must have one of the following two possibilities (Fig. 7): 

Fig. 7a, b 

1-,,, . . .  / ~ \  / ~ \  . / ~ \  . . .  i f \  / ' ,  

' ' ' , , I  f ', / V l  v I I . . .  I v3 v v3 

\ v2 / 

o b 

Note also that all of the A~, pictured as lying above v 2 must already be present in 
F ( n -  1). But then Condition 3 is violated if there are more than one of these. 
Hence, there is only one, but now the local picture near v z forces D to have two (a) 
or three (b) sides. 

Note  also that this argument shows that if some A,~ ~ F(n) - F ( n -  1) is based at 
more than one vertex (of norm n -  1), then there is an interval in A~, connecting 
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these two vertices so that every vertex in the interval also has norm n - 1. This is a 
step toward inductively verifying Condition 5. 

Now suppose that ]J v2 ]] = n -  1. (This occurs if either w" has length 3 or w" has 
length 4 but is based at two vertices.) Then in F(n)" there is a copy of s attached 
to v and a copy of F(v2) attached to v2. In F(v) there is exactly one A,(v) which has a 
directed edge which starts at v and has color d2, and in F(v2) there is exactly one 
Afl(v2) which has a directed edge which starts at v 2 and has color (d2)-1 .  In the 
above we have identified the directed edge in Y(v) which starts at v and has color d 2 

with the directed edge vv 2 in F(n)" and we have identified the directed edge in F(v2) 
which starts at vz and has color (d2)- 1 with the directed edge vzv in F(n)'. In order 
that the resulting graph will be a prepermutation graph, we need to also identify 
the copies of A,(v) and Ap(v2) in F(n)" so that the colors match up. This is possible 
by Lemma 1.iv). If ]] vl Jl = n -  1 (This occurs if either A~, is a cycle of length 2r + 1, 
based at one vertex of norm n -  r -  1, or if Aw, is a cycle of length 2r, based at two 
vertices of norm n -  r - 2 . )  then do the same thing with the appropriate cycles in 
F(v) and s Continue this for all vertices of norm n -  1 in s and call the 
resulting graph F(n). By construction, F(n) is a connected, prepermutation graph 
(this uses Lemma 1.v) if c~ and /~ are 3-cycles), and all relators in Y(n) are a 
consequence of finite elements of W. Let V(n) be the set of vertices in Y(n). Since 
F(n-1)  and each s are embedded in s we will identify them with their 
images in F(n). In the case where we have identified A,(v) with Aa(vz), we will think 
of their image as a single A~,(v), even though it has more than one choice of labelled 
vertex. 

We now investigate the possibility that some Ao could be based at more than 
two vertices. Suppose v, vl, and 0 2 are as in Fig. 5.a or 5.b, with Ilvll = IlVl l[ = liv211 
= n -  1. If A,(v) is identified with both Aa(v2) and A~(v~), we find one of two 
possibilities (Fig. 8): 

/ [ ', / \ / ' ,  
I\ j) \/Ao,. "1 
Vl x ,  /r v2 Vl-~ ,.Jr2 

Fig. 8a, b e b 

As usual, Fig. 8a is impossible. If Fig. 8b arises, D is 4-sided. Furthermore, if v has 
minimal norm among all vertices producing Ao's based at three vertices, then Aw, 
and Aw,, have length 3 or 4. 

Since we will need to analyze the presentations coming from 4-sided 
fundamental domains, we list below the possibilities (Fig. 9). 

Now, the situation where A~ is based at three vertices actually does arise. 
Consider Fig. 9a with p = q = 3. Then G ~- (a, b[a 3, b 3, (ab)') is the (3, 3, r)-triangle 
group from Fig. 2b. If r = 2, G is the tetrahedral group, so assume r > 3. Figure 10 
shows a piece of the group graph for the Euclidean case, r = 3, with vertices labelled 
by their norms. The hyperbolic cases (r > 3) are similar. 
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Edge Pairings Relations Local Cycle Structure 

(<  b~ i, " 0 p , b  q , ( o h ,  r , 2 L C I ~ Q 3 r )  

) )  

~,,.~a [3q ~ 3q! 
\ . ~ . ~ p ~ l  1 

C (abba)  p (L,p X L'P 1 

' { ~ ~ '<'~176176 "."~,,~;o <~' 
e b a (a-lba-lb -i (Ap a./~xLb Ap} 

\ I 

I 'i I '~ 
f b a lab , (ab-1) q 

�9 L ~ a/TXb ~l 

Fig. 9 

5 
Fig. 10 

Ii 

Remarks 

p .q>~3 

r~>2 

p>/3 

q>_.l 

(q= l  O'Z Z2p) 

p : 1: Euclidean 
p>  1 " Hyperbol ic 

p.q ~>2 

Fig. 11 

We claim these are the only such examples. For instance, suppose both Aw, and 
Aw,, (Fig. 8) have length 4, and that v, vl, v2 have minimal norm among such triples. 
Working backwards, we find (Fig. ] 1): 

,..~-~ \ Yn-~ _9.n_ ~ 

n - l " ~ ,  " .~. , ~ ' n - 1  
- \ V l  v v 2 / - 
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Fig. 12 

/ \ 
/ \ 

/ / I - [  [-----\\, 

z v 2 

But the vertices y, z, t violate Condition 4 for F ( n - 3 ) .  A similar contradiction 
arises if one of Aw,, Aw,, has length 3 and the other has length 4. Refering to Fig. 9, 
we see that the only other possibility is Fig. 9b with q = 1, but this is a finite group. 

Extend the norm on V ( n -  1) to V(n) by defining the norm of a vertex v ~ V(n) 
- V ( n - 1 )  to be [[vl[ =min{[Iv[[ plus the edge-path distance in F(v) from v to v: 
v e r (v )} .  

It now remains to inductively verify Conditions 1-5 for Y(n). Observe that 
Condition 1 is obvious, and we have already given the arguments necessary to 
verify Condition 5 (modulo checking that the (3, 3, r)-triangle groups do not give 
rise to any other unusual behavior, but this is easy). The main work remaining 
consists in verifying Condition 4. So let z be a vertex of norm n. By a predecessor 
ofz we mean a vertex v, of norm n -  1, connected by an edge to z. We need to show 
z has at most two predecessors, as in Condition 4. Let v be a predecessor ofz. There 
are two main cases. 

Case I: Every predecessor of z has a unique predecessor. 

Subcase A: z is either vl or v2 (Fig. 5a). 
Suppose z=vx.  Of course, z might have a predecessor belonging to A w, 

(Fig. 12). I fz  has another predecessor, it must have a predecessor that belongs to a 
cycle that shares either vz or v3z with Aw,. If it shares vz it must also contain v2v, and 
then the local picture makes D 3-sided. If it shares v3z, then since v3 has a unique 
predecessor, the situation is as shown in Fig. 12, and then the local picture at v 3 
forces D to be 3-sided. 

Subcase B: zOevl, z~ev 2. 

(1) If both vl and v2 are predecessors of z, we have (Fig. 13): 

/ /  ] \ \  

Vl ~ V2 
Fig. 13 z 

Hence, D is 4-sided. But we see from Fig. 9 that the only infinite groups with 4- 
sided Dirichlet regions, and 3-cycles in their presentations, are the (3, 3, r)-triangle 
groups, in which case the two 3-cycles which emanate from a vertex are opposite, 
not adjacent. 
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(2) If(say) I)2 is a predecessor of z, but v~ is not, there are various possibilities. If 
a cycle through va passes through z, we have (Fig. 14): 

o4 _V~ o-1 - v ~  v2 
Fig. 14 z 

Since Aw C F ( n ) -  F ( n - -  1), the vertices of Aw have norm at least n -  1. But if ]]vl ]] 
=n,  A~ violates Condition 5. Thus, Ilv~ I[ = n - 1 ,  Aw is a 4-cycle based at three 
vertices, and G must be the tetrahedral group. It is easy to draw the entire group 
graph in this case, and indeed this situation does occur. On the other hand, if a 
cycle through v2 passes through z, we find a picture exactly as in Fig. 14, but with v 
replaced by v2. 

(3) If neither v~ nor u 2 are predecessors of z, and a cycle through v2, say, 
passes through z, we have (Fig. 15): 

t/~ v "\1 v2 

Fig. 15 
z 

But Condition 5 forces A~ to be a 4-cycle, based at three vertices (U u2 ]] = n -  | ) ,  SO 
we have a (3, 3, r)-triangle group. But this forces the cycles adjacent to Aw to have 
length 3, so v~ is a predecessor of z after all. 

Case II: Some predecessor, v, of z has two predecessors (Fig. 5b). 

Subcase A: II vl I[ = II vz I] = n - 1. 
(1) If both v 1 and v 2 are predecessors of z, D is forced to have 5 sides. 
(2) If neither vl nor v2 are predecessors of z, then the existence of another 

predecessor gives rise to Fig. 16: 

)-; 
\v 1 y v j  

Fig. 16 z 

But then Aw is based at three vertices, so D has 4 sides, which contradicts the local 
picture at v. 

(3) If v~ is a predecessor of z, but v 2 is not, we must have Fig. 17: 
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I / \  / 
v [ v, r ' 9 '  v 2 

Fig. 17 z 

This is because a cycle containing z and passing through v2 would give a 
contradiction as in (2) above. If there was a vertex of Aw in the interior of v l v  3, 

Condition 5 would force Aw to be based at three vertices, A w would have length 4, 
and we would have the tetrahedral group. Thus, Aw is a 3-cycle, but now we have 
adjacent 3-cycles. 

Subcase B: Ilv~ll =n,  v 1 +z.  

We have already seen that no Aw passing through vl can include z, and it is easy 
to see that at most one additional predecessor (v2) of z can come via v2. 

Subcase C: V l - z .  

We begin with (Fig. 18): 

/ \ ~ /  A~., 1 

Fig. 18 z 

If ll/)3 I] = n ,  a relatively short argument shows that z has no predecessors coming 
via/)3. But previous arguments give that at most one predecessor @2) comes via v2. 
Thus, assume 11/)3 II = n -  1, and Aw, has length 4 or 5. If another predecessor comes 
via v 3, G must be a (3, 3, r)-triangle group, and the fact that A w, has length 4 or 5 
forces G to be the tetrahedral group (but this does not arise). If ]Iv2 ][ = n, we know 
(Condition5) that no predecessor comes via v2. Thus, assume ] ]v2 l l=n- l .  
Suppose a predecessor other than v2 came via v2. If/)2 is also a predecessor of z, we 
have a (3, 3, r)-triangle group with two adjacent 3-cycles; whereas if v2 is not a 
predecessor we again have a (3, 3, r)-triangle group, but with two adjacent cycles of 
length greater than 3. We conclude that the situation is (Fig. 19): 

f ~  
/ \ 

/ v A~., \  
V3 ~ ' 

Fig. 19 z 

Now Aw,, must have length 4, since otherwise there are adjacent 3-cycles. But now 
this forces (Fig. 9a) A~, to have length 4, and we have a (p, 3, 2)-triangle group, 
where A has length p. Letting z have minimal norm among all vertices with three 
predecessors, and working backwards, we find (Fig. 20): 
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n-5 

n-5 

n-& 

n-3 

n-2 n-2 n-2 

n-1 ~ ~-1 

Fig. 20 z 

The circled portion contradicts minimality! However, our labelling implicity used 
that p => 6, since otherwise IF Y]I + n - 4 .  In fact, this is precisely how vertices with 
three predecessors arise in the graphs of the octahedral (p= 4) and icosohedral 
(p= 5) groups. It is instructive to draw out these graphs as vertices arise with 
more than two predecessors, the cycles begin "wrapping" around the graph. 
Eventually, a cycle wraps completely around the graph. The graph is then 
complete, and tessellates a sphere. 

This completes the inductive verification of Condition 4. We leave to the reader 
the relatively easy task of verifying Conditions 2 and 3. This now (finally!) 

completes the construction ofF. As in [-6], we find that F = U F(n) is a connected 
n=0 

prepermutation graph, each color emanates from every vertex of F, each finite 
word of Wis a relator at every vertex, and every relator o f f  is a consequence of the 
finite words of W. Consequently, F is the graph of the group with presentation 
(Xl(c l )"  , .... (Cm)'m). In fact, F is isomorphic to K by an isomorphism ~o which 
takes v o to the base point x in K and is color-preserving. In addition, ~0 is norm- 
preserving between the norm l] el on the vertices of F and the norm I I on G. 

We now show that the B(n)'s are balls. Recall that G is a finitely generated, 
discrete, co-finite area group of hyperbolic or Euclidean isometries, X is a 
geometric generating set for G with respect to the Dirichlet region D = D x, 2; has no 
elements of order two, and for each integer n >_ 0 B(n)= closure(w{gD: Lgl--< n}). 

Lemma 2. For every integer n > 0, B(n) is a ball. 

Proof. First exclude the (3, 3, r)-triangle groups with 4-sided Dirichlet regions. 
The proof is by induction on n. The lemma is valid for n = 0 since B(0) = cl(D) is a 
ball. Let n > 0, and assume that B ( n -  1) is a ball. Let {bl, ..., bk} be an enumeration 
of the elements in G of norm n. For  each i E {1 . . . . .  k}, let Ci = B ( n - l ) w c l ( b l D  
w... wbiD). Let Co = B(n - 1). Then B(n) = Ck, so it suffices to show that each Ci is a 
ball. 

Let i e {1 . . . . .  k}, and assume by induction that Ci 1 is a ball. We will show that 
Ci is a ball by showing that Ci- ~ c~cl(biD) is a closed interval. By Condition 4, biD 
intersects B ( n - 1 )  in either one edge or in two edges which have a vertex in 
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common. By Condition 5, ifbiDnbiD is not empty for some j +  i, then biDnbjD is 
an interval and biDnbjDnB(n-  1) is a point in the boundary of B ( n -  1). Thus 
Ci_lnb~D is an interval and hence Ci is a ball. 

For  the (3, 3, r)-triangle groups, it is easy to see that each Ci is a ball if one is 
careful in enumerating the elements of norm n. [] 

Note that the proof of Lemma 2 actually shows that, except for the (3, 3, r)- 
triangle groups, if B(n) is built from B ( n -  1) by adding the domains of norm n, one 
at a time, in any order, the result is a ball at each stage. 

Actually, Brenner and Lyndon [4] have shown the following remarkable fact. 
Le t /7  be any cellulation of the plane (i.e. H is a union of polygons covering the 
plane, and two polygons are either disjoint, meet in a vertex, or meet along an 
edge). Pick a base polygon P0 e H. Define P e /7  to have length I if P n P  o is an 
edge. Assume inductively that polygons of length n - 1  have been defined, let 
B ( n -  1) be the union of all P e / 7  of length < n -  1, and define PeEl to have length n 
if Pc~B(n-1) is a union of edges. Then, assuming that every P ~ /7 has at least six 
sides, each B(n) is a topological ball, and in fact, if we build B(n) from B ( n -  I) by 
adding length n polygons in any order, the result is a ball at each stage. 

Brenner and Lyndon made no assumptions that a group acts transitively on 
the polygons, which is the case for us. Our approach, however, allows us to find a 
"recursive structure" on the elements of G, thereby showing the rationality of the 
growth function (see below). Note that the proof of Lemma 2 also establishes the 
following result. 

Lemma 3. Let n > O, and g, h e G with ]g[ = [hi = n + 1. Then B(n)ngD is an interval, 
and gDnhD is either empty or an interval which intersects B(n) in a point (again 
excluding the (3, 3, r)-triangle groups). 

Let g(z) be the growth series of G with respect to the generating set Z. We know 
from [5] that g is the power series of a rational function f Cannon proves this by 
giving a finite labelling of G by "cone-types", and using this to show that the 
coefficients of g satisfy a linear recursion. Using the fact that Z is a geometric 
generating set, we will describe another finite labelling of G (analogous to 
Cannon's method in [6]) that shows that the coefficients of g satisfy a linear 
recursion. This gives an alternate proof in this case that g is the power series of a 
rational function, and makes the proof of our main theorem much easier. 

For  each A~(v) in F, denote by A~(~o(v)) the image ~o(A~o(v)), as a subgraph of K 
which is colored by Z and has a base vertex labelled by ~o(v). We will partition the 
elements of G into finitely many types, as follows. The identity element of G is in a 
type by itself, and each element g e Z (these are the elements in G of norm one) is the 
only element in its type. Let g e G with [gl > 2. Then gx is joined by either one or two 
edges in K to vertices of norm Igl- 1. Each of these edges is contained in exactly 
two A~,'s in K. Let A(g) denote the union of these two or three A,$s, as a colored 
subgraph of K with certain vertices labelled as base vertices. (Each Ao has one, two, 
or three choices of labelled vertex, and we will call each such choice a base vertex. 
However, we will forget the particular labelling of each base vertex.) Given two 
elements g, g' e G with Ig[ > 2 and [g'l > 2, then g and g' are in the same type if and 
only if there is a color-preserving isomorphism z: A(g)--,A(g') such that z takes the 
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base vertices of A(9) to the base vertices of A(,q') and T(gx) = 9'x. Let t(9) denote the 
type of 9, and let {tl . . . . .  tr} be an enumeration of the non-identity types. 

Le t j  e {1,..., r}, and choose an element O s G with t(9) = tj. We define n(j) ( = 1 
or 2) to be the cardinality of {h E G: [hi = 191-1 and 9x and hx are connected by an 
edge in K}, and for each i s { 1 . . . . .  r} we define re(i, j) to be the cardinality of {h s G: 
1hi = 191 + 1,9x and hx are connected by an edge in K, and t(h) = ti}. Then n(j) is the 
number of predecessors of 9, and m(i, j) is the number of elements of type tl which 
have 9 as a predecessor. 

We claim that n(j) and re(i, j) depend only on i and j and not on the 
representative element 9. This is clear if 191 = 1, since in this case 9 is the only 
element with type tj. So assume that ]9] >2.  Then n ( j ) -  1 if0x is in the boundary of 
exactly three edges in A(g) (see Fig. 5), and n(j) = 2 if 9x is in the boundary of four 
edges in A(9). In particular, n(j) depends only on the type of 9- Let N(9 ) = {hx: 
h ~ G, Ihl = lgl + 1, and there is an edge in K joining 9x and hx} (N(9) is the next 
generation ofg). Then m(i, j) is the cardinality of {h E N(9): t(h) = ti}, so we need to 
show that the distribution by types of the elements of N(9) depends only on the 
type of 9. Let A'(9) be the union of A(9 ) and all edges in K whose boundaries 
contain 9x (see Fig. 21). Since A'(9) has exactly one edge of each color emanating 
from 9x, A'(9) is determined up to color-preserving isomorphism by the type of 9- 
Let h ~ N(9), and let e be the edge in A'(9) joining 9x and hx. Then e is contained in 
two A~,'s, Aw and Aw,, in A(h), and by Lemma 1 .iv) these A~o's are determined by the 
color of e. If the union of these two A~,'s is A(h), then the A~o's in A(h) are 
determined by the color ore. Suppose A(h) 4= AwwA~,, and hx is not in A(9). Then h 
has a second predecessor, and, unless G is a (3, 3, r)-triangle group, we can assume 
without loss of generality that it is g2, so we have Fig. 22. 

Fig. 21a, b a b 

Fig. 22a, b 

/ \ 

Q b 
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Fig. 23a, b 

/ \ / 793• 
l gx A,~, e' I g• /gr 

\ A ~ I  ''^ 
a \ I - /  b 

This occurs when A w, has length 3 and Ig2[ = [gl. The third A,o of A(h) is the other Ao, 
attached to the edge e'. Since the color of e', the length of Aw,, and Igzl are 
determined by the type of g, in this case the A,o's in A(h) are determined by the color 
of e and the type of g. 

The final case is that A(h)#-AwuA w, and hxeA(g). Without loss, we can 
assume that h=g2, so we have Fig. 23. This occurs when [g3l = [gl, and the third 
A,o in A(h) is determined by the color of e'. Since this information is determined 
by the type of g, in this case also the Ao's in A(h) are determined by the color of e 
and the type of g. 

It remains to show that the base vertices of A(h) are determined by the color ofe 
and the type of g. It is easy to show that the base vertices of A(h) are the obvious 
ones if G is not a (3, 3, r)-triangle group or a (3, 4, r)-triangle group. We leave it to 
the reader to check that the type of g determines the base vertices of A(h) for the 
(3, 3, r)- and (3, 4, r)-triangle groups. Since the type ofg determines the colors of the 
edges in A'(g), each m(i,j) depends only on the type tj and not on the representative 
g of that type. 

Let A be the r x r matrix with Aij = m(i, j)/n(i), and let v be the r x 1 matrix 
w h o s e  i th entry is the cardinality of {gr G: Igl = 1 and t(g)=t~}. Then for each 
positive integer n, the matrix A"v has i th entry the cardinality of {g r G: ]gl = n + 1 
and t(g)=t~}. Let (1...1) be the 1 •  matrix with all entries 1. Then the n th 

coefficient a, of g is (1... 1)A"-iv. 

Lemma 4. With the notation as above, g is the Maclaurin series of the rational 
function f ( z ) =  1 + ( 1 . . . 1 ) ( I - z A )  lzv. 

Proof. By the above, 

g(z)= 1 +amz+ ... +a.z"+.. .  

= 1 +(1 ... 1)zv + ... +(1 ... 1)A"-lz"v+ ... 

= 1 +(1. . .1)  ( I + z A + . . .  +z"  ~A"- ~ +.. .)zv. 

But this is the Maclaurin series of the rational function 

f ( z ) = l + ( l . . . 1 ) ( l - z A ) - l z v .  [] 

In computing examples, it is often possible to exploit symmetries in the 
Dirichlet region in order to reduce the number of types. For  convenience, we will 
give a definition of the kind of structure we need. Let G be a finitely generated 
group, and S a finite generating set for G. A recursive structure for (G, S) is a 
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partition of the elements of G-{identity} into finitely many equivalence classes 
{t 1 . . . .  , t~}, called types, so that for each i, j e  {I . . . . .  s} and 9 s G with type t~, the 
cardinality, n(j), of {h e G: Ihls = Igl~- 1 and g and h are connected by an edge in the 
graph of G with respect to Z} and the cardinality, re(i, j), of {h ~ G: Ihls: Igl~ + 1, the 
type ofh is t i, and 9 and h are connected by an edge in the graph of G with respect to 
S} depend only on the type ofg. The recursion matrix is the s x s matrix A with Aij 
= re(i, j)/n(i) and the initial vector is the s x 1 matrix v with i th entry the cardinality 
of {9 ~ G: [9Is = 1 and the type of 9 is ti}. Note that a recursive structure is all that 
was used to prove Lemma 4. 

w 2. The Euler characteristic 

Let G be a finitely generated, discrete group of isometrics of lI-I 2 such that IH2/G has 
finite area, and Z a finite generating set for G which is geometric with respect to the 
Dirichlet region D=Dx and has no elements of order two. Let {tl . . . . .  t,} be a 
recursive structure for (G, Z), and for each g E G-{identity} let t(g) denote the type 
of g. Let g 6 G-{identity}, and let n = tg]. Let a(g) be the number  of edges of g(Dx) 
c~B(n- I), and let O(g) be the sum, over the vertices v in g(Dx)c~B(n- 1), of the 
angle in B ( n - 1 )  at the vertex v divided by the cardinality of {h6 G: ]h[=n and 
v6 h(D)}. So a(g) counts the number  of sides with which g(D) is attached to 
B(n-  1) and O(g) counts the portion of the angle sum of OB(n - 1) corresponding 
to g(Dx)c~B(n - I). The recursive structure is geometric if for each g 6 G-{identity}, 
a(g) and O(g) depend only on the type of g. Note  that the recursive structure 
defined in w 2 is clearly geometric. If the recursive structure is geometric, then the 
attaching vector is the l x r matrix w whosej  'h entry is (O(g)/r 0 - a(g), for any g 6 G 
with type tj. 

Theorem 1. Let G be a discrete group of isometries of ~-I 2 with R-I2/G of finite area, 
Z a geometric generating set for G with no elements of order two, and A, v, w 
determined as above by a geometric recursive structure for (G, X). Then the growth 
series for G with respect to Z is the Maclaurin series of the rational function 

f(z) = 1/Z + (1 - z )  (2Z)- l w ( I -  zA)-  iv,  

where Z is the rational Euler characteristic of G (the orbifold Euler characteristic of 
IH2/G). 

Proof. At this point, it is somewhat more natural to work not with the growth 

series g(z), but with the cumulative growth series h(z) = ~ b,z", where b, = (1 + al 
n=0 

+ . . .  + a,) is the number  of elements of G with length =~ n. These are clearly related 
by (1 - z)h(z) = g(z). 

For  every n > 0, let a(n) be the number of sides of B(n) and let O(n) be the sum of 
the angles at the vertices of B(n). Since A"v is the distribution by types of the ele- 
ments of length n + 1, wA"v = (O(n)/Tr)-a(n). By the Gauss-Bonnet theorem and 
Lemma 2, the area ofB(n) = rr(~(n) - 2 ) -  O(n) = - zr(2 + wA"v). But also by Gauss- 
Bonnet, we have that the area of D = area(NZ/G) = - 2n)~, hence the area of B(n) 
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= -2~)~b,, so that  b , =  l / z +  (l/2z)wA"v. Thus, 

h(z)= ~ (1/Z+(1/2z)wA"v)z" 
n:O 

= 1/(1 - z)z + (1/2Z)w(I-  zA) iv. 

Multiplying by 1 - z  now proves the theorem. [] 

An immediate consequence of Theorem 1 is that f (1)  = I/Z i f I  - A is invertible. 
Since 1 is not an eigenvalue of A for a generic square matrix A, one might expect 
f (1)  = 1/2 for most  geometric generating sets for Fuchsian groups. As we will see in 
the next section, there are geometric generating sets for which I - A is not invertible 
and f (1)  # 1/)~(G). 

w 3. Examples 

We want to describe some examples and computat ions of growth functions for 
Fuchsian groups with geometric generators 2;. We first consider growth functions 
associated to tessellations of ~I z (IE 2, S 2) by regular n-gons, n even, n > 4, with 
vertex angle 2n/p, p > 3. It  is well-known that such regular polygons exist. Except 
for n = 4, p = 3 (spherical quadrilateral), n = 4, p = 4 (Euclidean square), and n = 6, 
p = 3 (Euclidean hexagon), they are hyperbolic. We will refer to them as (n, 2n/p)- 
gons. 

Suppose an (n, 2n/p)-gon is the fundamental domain for a (torsion-free, closed) 
surface group. An Euler characteristic argument shows that if the surface is 

orientable, genus g, then g =  ~ 1 + ~ - , so that pin and ~ + P is odd. If  the 
n n 

surface is non-orientable, genus g, then g = 1 + ~ - - ,  hence pin. 
P 

Conversely, if pin, an (n, 2~/p)-gon is a fundamental domain for a surface 

group. This is seen in the following way. I fg  = 1 + ~ - is an integer, let F a be 

a closed, orientable surface of genus g. Now Fg has a spine with 2g edges and one 
vertex of valence 4g. Perform Whitehead moves to create valence p vertices, one at 

a time, from the original vertex. When this has been done ( ~ -  1) times, we have a 

new spine with n vertices, each of valence p. Equivalently, there are edge pairings 
P 

on a polygon with n = 2p(2g - l ) / ( p -  2) sides so that each vertex cycle has length p. 

If 1 + ~ - is not an integer, one can do the same construction on a non- 

orientable surface of genus g = 1 + ~ - . Now let D be an (n, 2rc/p)-gon in ~I 2 

(except for (4, ~/2) and (6, 2~/3), which give tessellations oflE2). Since D is regular, 
we can pick hyperbolic isometries to give the desired edge pairings, and now 
Poincar6's Theorem for Fundamental  Polygons [19, 14] shows that the edge 
pairings generate a discrete, torsion-free group having D as a fundamental domain. 
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For  fixed n, this gives only a finite collection of(n, 2~z/p)-gons. We can do much 
better if we allow torsion in G. For  example, suppose (p, n) > 3, and pick q so that 
q ]p, q ln, q > 3. Then there is an (n, 2~/q)-gon which is the fundamental domain for 
a torsion-free group. Replace the (n, 2zr/q)-gon by D = (n, 27r/p)-gon, keeping the 
same edge pairings. The angle sum for each vertex cycle is now 2zt/(p/q), so 
Poincar6's Theorem again shows that the edge pairings generate a discrete group 
with D as fundamental domain. 

Of course, this construction has a lot of symmetry every vertex has branching 
index p/q. When (p, n) < 2, one could imagine that a less symmetric construction 
would produce an (n, 2~/p)-gon as fundamental domain. For  example, let n = 4. If 
4 [p, the edge pairings in Fig. 9c, d, or e, give a Fuchsian group G (p > 4), and N2/G 
is a torus or Klein bottle with one vertex, branching index p/4. If4 does not divide p 
but 21p, then Fig. 9a gives a (p,p,p/2)-triangle group. In the quotient S z, two 
vertices have branching index p, one vertex has branching index p/2. If 3 [p, then 
Fig. 9b gives a discrete group with quotient the projective plane, one vertex having 
index p, the other having index p/3. (If p = 3, the group is 2g 6 - S 2 is tiled by six 
(4, 27z/3)-gons- but otherwise the group is Fuchsian.) But ifp is odd and 3 does not 
divide p, the (4, 2rc/p)-gon is not a fundamental domain for any discrete group (even 
allowing reflections). 

Consider the general problem of tiling ~"I 2 by (n, 2rr/p)-gons. l fp  is even, and we 
allow reflections, we simply use the Coxeter group based on the polygon 
(a~,...,a, la~, (aiai+l)P/2). The case ( p , n ) = l  is clearly more complicated 
combinatorially, as the example above shows, and we do not know the exact 
conditions on p and n which allow the construction of a discrete group having the 
(n, 2rc/p)-gon as a fundamental domain. Nevertheless, such tilings always exist. In 
fact, one can view the discussion which follows as a construction of the tilings. The 
type analysis shows how to inductively build the combinatorial ball B(n), where 
length is taken in the sense of Brenner-Lyndon, as described earlier. It will be clear 
that each B(n) has a non-singular, complete hyperbolic structure in its interior, and 

c~3 

its boundary is a broken geodesic. Since each B(n) is a topological ball, U B(n) is 
a simply connected, complete, hyperbolic manifold, hence l-I z. n = 0 

Thus, in what follows, we will not worry about the existence of a group G 
having the (n, 2rc/p)-gon as a fundamental domain. The discussion is written as 
though G exists - if G does not exist, think of G as the set of polygons in the tiling, 
interpret length in the sense of Brenner-Lyndon, and let )~(G) = ( -  1/2~)area(D). 

Given n (n > 4) and p (p > 3), we will find a geometric recursive structure for 
(G, S), where G is the discrete group generated by the edge pairing Z on an 
(n, 2n/p)-gon, and explicitly calculate the initial vector v, recursion matrix A, and 
growth function f. We will see that the growth function depends only on n and p, 
and not on the choice of edge pairings. The argument is divided into the following 
four cases: (1) p = 3, (2) p = 4, (3) p = 2k, k~;g, k>2 ,  and (4) p =  2k + 1, k~2g, k=>2. 

Let p=3 .  If n = 4  (n=5), then the growth function is l + 4 z + z 2 ( l + 5 z  
+ 5z 2 +z3). So assume n > 6. Our recursive structure will have two types, t 1 and 
t2. Let g~G with ]glx=r> 1. The type o fg  is t~ ifg(D)nB(r--I ) is a single edge e 
and both vertices of ~e have angle 2r~/3 in B(r-  1). The type of g is t 2 if g(D) 
c~B(r- 1) consists of two edges with a vertex in common, the interior vertex ofgD 
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Fig. 24a, b 

B(r-1) 

hD 

gD 

h'D 

riB(r-I) has angle 4rc/3 in B(r-1), and the other two vertices each have angle 
2~/3 in B(r-1). So n(1)= 1 and n(2)= 2. We need to show that every element in 
G-{identity} has one of these two types, and that this does give a recursive 
structure for (G, 2;). Suppose r > 1, and 9 e G with {9[ = r and t(9)= tl. By Lemmas 
2 and 3, there exist h, h 'e  G so that Ihl = [h'] = r and the local picture near 9D in 
B(r) is that of Fig. 24a. Thus gx is connected by edges in K to n -  5 vertices of type 
tl and to two vertices of type t2. Similarly, if Igl=r and t(g)=t2, then there are 
elements h, h' in G so that the local picture near gD in B(r) is that of Fig. 24b. In 
this case gx is connected by edges in K to n - 6  vertices of type t~ and to two 
vertices of type t 2. Since every element of norm one has type tl, this shows 
inductively that every element of g has type tl or type t2 and that {t~, t2} gives a 

r- 7 
recursive structure with initial vector v = | n ]  and recursion matrix 

A = [ n 1 5  nl6].ByLemma4, thegrowthseriesgforGwithrespecttosiskU3 
z 2 + 4 z +  l 

the Maclaurin series of the rational function f(z) = z2 + ( 4 -  n)z + 1" Notice that 

n = 6 gives the hexagonal tiling of lE e, and f has a double pole at z = 1. 
Now let p = 4. An element 9 e G with Ig[ = r > 1 has type tl if gDnB(r - I) is a 

single edge with both vertices of angle re/2 in B(r-1), and 9 has type t2 if gD 
riB(r- 1) is two edges with a vertex in common, the two exterior vertices of gD 
riB(r-1) have angle ~/2 in B(r-1), and the interior vertex has angle 3n/2 in 
B(r-1). An argument similar to the above shows that {t~, tz} gives a recursive 

I--7 
for ( G , ~ ) w i t h  initial vector v = / ~  / and recursion matrix structure 

UV~ 

[ 1 1- ] z 2 + 2 z + l  Not ice tha t  A =  n 3 n 4 . So the growth f u n c t i o n f ( Z ) = z 2 + ( 2 _ n ) z + l .  

n = 4  gives the tiling of lE2 by squares, with the "usual" growth function 
(1 + z)2/(l - z )  2 for Z z. 

Now suppose p=2k. In this case there are k types. For ie{1 . . . . .  k - l } ,  an 
element 9 e G with 101 = r >__ 1 is of type ti i f g D n B ( r -  1) is a single edge e, one vertex 
of 0e has angle re/k in B(r- 1), and the other vertex has angle ( 2 i -  1)rc/k in B ( r -  1). 
An element g e G is of type tk if 9DnB(r- 1) consists of two edges with a vertex in 
common, the exterior vertices of gDnB(r- 1) each have angle z~/k in B ( r -  1), and 
the interior vertex has angle ( 2 k -  l)rc/k in B(r- 1). Suppose i e {1 . . . . .  k -  1}, and 
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Fig. 25a, b 

B(r -1)  

Q 

B(r-1 ) 

h'D 

b 

g e G with  t(g) = ti and  ]g[ = r. By L e m m a s  2 and  3, there exist h, h'  e G so that  ]hi 
= [h'[ = r and  the local  p ic ture  in B(r) near  gD is that  of  Fig. 25a. Thus  gx is 
connec ted  by  edges in K to n - -  1 vertices of  n o r m  r +  1, of which n -  3 have type t I , 
one has  type  t2, and  one has  type ti+ a. I fg  has  type  t,, then the local  pic ture  near  gD 
in B(r) is t ha t  of Fig. 25b. In  this case 9x is connec ted  by edges in K to n -  2 vertices 
of n o r m  r + 1, of  which n - 4  have type t~ and  two have type t 2. Since every e lement  
of n o r m  one  has  type  t 1, this  shows tha t  each e lement  of g e G-{identity} has  type  
in {tl . . . . .  tk}. Hence  {tl . . . . .  tk} gives a recursive s t ructure  with init ial  vec tor  

n 

0 

0 

v =  0 

0 

0 

and recurs ion  mat r ix  

- n - 3  

2 

0 

A =  0 

0 

0 

n - 3  n - 3  n - 3  ... n - 3  n - 3  

1 1 1 . . .  1 1 

1 0 0 . . .  0 0 

0 1 0 ... 0 0 

0 0 0 ... 1 0 

0 0 0 ... 0 1/2 

n - 4  

2 

0 

0 , 

0 

0 

and the g rowth  funct ion for G with respect  to Z is 

zk + 2Z k -  1 + 2 z k -  2 + . . .  + 2 2 2  + 2 z +  1 

f ( z )  = zk + (2 --  n)z k-  1 + (2 -- n)z k-  2 + . . .  + (2 - n)z 2 + (2  - / / ) z  --~ ] " 
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The cases n =49, k = 2g (orientable, genus g) and n = 29, k =g  (non-orientable, 
genus g), corresponding to (torsion-free) surface groups with one vertex, were first 
computed by Cannon [-6]. 

When p = 2k + 1 there are 2k types. For  i ~ {1 . . . . .  k}, an element 9 ~ G with [g[ 
= r >  1 has type t(9)= ti if g D ~ B ( r - 1 )  is a single edge, with one vertex of angle 
2rc/(2k+l) in B ( r - 1 )  and the other vertex of angle (2 i - l )2rc / (2k+l) .  For 
i e  { k + l  . . . . .  2 k - l } ,  t(9)=ti if g D n B ( r - 1 )  is a single edge, with one vertex of 
angle 2rc/(2k + 1) and the other of angle 4re(i-k)/(2k + 1). Finally, g has type tZk if 
gDc~B(r-- 1) is two edges with a vertex in common, the exterior vertices of gD 
~ B ( r -  1) each have angle 2rc/(2k + 1) in B ( r -  1), and the interior vertex has angle 
4kn / (2k+l )  in B ( r - 1 ) .  An argument like the above shows that this gives a 
recursive structure. The initial vector and recursion matrix are the same as the 
comparable size matrices for the case p = 2k, except that in this case Alk = n--4. 
The growth function 

zZk + 2zZk 1+. . .+2Z  k+ l +4z k + 2z k- l +. . .  + 2z + l 

f ( z )  = Z2 k + (2-- n)z 2k- 1 + . . .  + (2 -- n)z k + 1 + (4-- n)z k + (2 -- n)z k- 1 +. . .  + (2-- n)z + 1 

In all of the above cases, the recursive structure is geometric and the recursion 
matrix A has I -  A invertible. By Theorem 1, we know (without explicitly checking) 
that f (1)  = 1/)~(G) in all of these examples. Note that the zeros o f f  are not all roots 
of unity, in contrast to the Coxeter groups [-3] or the examples in [6]. 

We now give an example of a recursive structure for a surface group in which 
I - A  is not invertible. Let G be the fundamental group of a closed orientable 
surface of genus 2, and Z a finite generating set for G coming from edge-pairing 
elements of a 16-gon whose image in the surface is shown in Fig. 26. By Poincar~'s 
Theorem, we can assume that G is represented as a group of isometrics of~I  2 and 
that Z is a geometric generating set for G with respect to a Dirichlet region D for G 
in which each vertex has angle 2rc/3 or re/2. From Fig. 26, one sees that the angles 
alternate in the cycle (2r~/3 2rc/3 2rc/3 re/2). Let r > 1, and 9 e G with 191 = r. Then 9 is 
of type tl if 9 D n B ( r -  1) is a single edge e, and both vertices of~?e have angle 2~/3 
in B ( r -  1). For  i e {2, 3}, t(9) = ti i f g D n B ( r -  1) is a single edge e, one vertex of 0e 
has angle 27r/3 in B ( r -  1), and the other vertex has angle rc(i - 1)/2 in B ( r -  1). IfyD 
c~B(r-  1) is two edges with a vertex in common, then t(9) ~ {t4, ts, t6}. The type is 
t4 if the interior vertex ofgDc~B(r-  1) has angle 4rc/3, one exterior vertex has angle 
2rc/3, and the other exterior vertex has angle re/2. The type is t 5 if the interior vertex 
has angle 3rc/2 and each exterior vertex has angle 2rc/3, and t(9) = t6 if the interior 
vertex has angle 4rc/3 and each exterior vertex has angle 2r~/3. An argument like the 
above shows that {tl . . . . .  t6} gives a geometric recursive structure for (G, ~) with 
initial vector 

8 

8 

0 
u  

0 

0 

.0 



Growth functions on Fuchsian groups and the Euler characteristic 25 

Fig. 2 7 ~  

and recursion matrix 

A =  

Thus  the growth function 

6 6 5 6 4 6 

5 6 6 5 6 4 

1 0 0 0 0 2 

1/2 1/2 1/2 1/2 1 0 

0 1/2 0 1/2 0 0 

0 0 1/2 0 0 0 

Z4 + 5Z3 --}-- 8Z2 -}- 5Z -t- l 
f (z)  - 2 4 _ _  I lZ 3 -- 20Z 2 -- 1 lZ + 1 " 

We note that even though I -  A is not  invertible, we still find f (1)  = 1/X. In this 
case, v is in the image of  I - A ,  say ( I - A ) v i  =v. It is easy to rewrite the formula of 
Theorem 1 to give 

f (z)  = 1/Z + (1/2Z) [(1 - z)wv 1 - (1 - z )Z w( l -  z A ) -  lAy1 ] .  

Since 1 has multiplicity 1 as an eigenvalue of A, we find f (1 )  = 1/Z. 
Finally, we give an example in which I - A is no t  invertible and f (1 )  ~ 1/g- Let 

G be the fundamenta l  group of  a closed orientable surface of  genus 4, and  2; a finite 
generating set for G determined by the edge-pairing elements of a 30-gon whose 
image in the surface is shown in Fig. 27. By Poincar6's  Theorem, we can represent 
G as a g roup  of isometries of  H 2 and find a basepoint  x E H  2 so that S is a 
geometric generating set with respect to the Dirichlet region D = D x, where D has 
30 sides of  equal length, and the angles of  D strictly alternate between 2n/3 and  
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2n/5. We will give a geometric recursive structure {/71, . . . ,  t5} for (G, Z). Let g s G 
with [gl = r > 1. For i e { 1, 2, 3 }, t(g) = t i if 9D n B(r - 1) is a single edge e, one vertex 
of 0e has angle 2n/3 in B(r-1),  and the other vertex of 0e has angle 2ni/5 in 
B ( r -  1). The type of 9 is t4 ifgDc~B(r-- 1) is two edges with a vertex in common, the 
interior vertex has angle 8n/5 in B(r-  1) and each exterior vertex has angle 2n/3 in 
B ( r -  1). The type of 9 is t 5 i fgDnB(r-  1) is two edges with a vertex in common, the 
interior vertex has angle 4n/3 in B(r -  1), and each exterior vertex has angle 2n/5 in 
B(r-1).  An argument like the above shows that this gives a geometric recursive 
structure with initial vector 

v 

LOJ 

and recursion matrix 

-26 26 25 24 i l  26 
l 1 1 2 

A =  1 0 0 0 . 
0 1/2 0 0 

0 0 1/2 0 0 J 

By Lemma 4, the growth function for G with respect to 2; is 

z4+4z 3 +7z / + 4 z +  1 
f(z) = z4_ 26z3 _ 53z2 __ 26z + 1 " 

Note that I - A  is not invertible, and f ( 1 ) =  -17/103 @ - 1 / 6 =  1/X. So even for 
geometric generating sets for surface groups, it is not always true that f(1) = 1/Z. 

w 4. Higher dimensions and open questions 

We would like to explain briefly why Theorem 1 should have an analogue for even- 
dimensional co-finite volume hyperbolic groups. The two ingredients in the proof 
of Theorem 1 are: 

(1) that B(n) is a ball, and 
(2) the Gauss-Bonnet formula, expressing area(B(n)) in terms of com- 

binatorial data for OB(n). 
As far as (1) is concerned, nothing seems to be known in higher dimensions, 

except for Coxeter groups with the standard generating set, in which case B(n) is a 
ball [8]. However, the generalized Gauss-Bonnet theorem does give an analogue 
for (2). For  polyhedra in I-I", this formula was known to Dehn [9], Klein [13, 
pp. 204-205], and certainly others. 



G r o w t h  func t ions  o n  F u c h s i a n  g r o u p s  a n d  the Euler  cha rac te r i s t i c  27 

To describe the formula, let B (a topological ball) be a polyhedron in H", n even. 
Then •B is a union of lower-dimensional faces B~, 0 < i < n -  1, 1 < 2 < ml, defined 
by the intersections of n - i  hyperplanes. Each face B~ has an "inner angle" a~, 
0 < ~ < 1, defined as follows: Let x e B~. The collection of unit tangent vectors to x 

i is which are normal to B] forms an ( n - i -  1)-dimensional sphere S"-i ~, and ~4 
the fraction of S"- i- 1 which points into B. This is independent of x. For  example, 
the unique codimension zero face (B itself) has a" = 1, a codimension one face has 
~ -  ~ = 1/2, and a codimension two face has 7~- 2 = Oa/2n, where 0 4 is the dihedral 
angle formed by the intersection of two hyperplanes. The Gauss-Bonnet formula 
states: 

v o l u m e ( B ) = ( - 1 )  "/2 1+ 52 ( - 1 )  i ~ ~i 4 , 
i = 0  4 = 1  

where K. = is the volume of the unit n-sphere. 
(n-t)! 

Now let G be a discrete group of isometries o f ~ " ,  with finite volume, and let D 
be a Dirichlet region. By Cannon [-5], the elements of G fall into finitely many 
"cone types", and we have a recursion matrix A and initial vector v which yield the 
growth function as in w 1. Each type is determined by local combinatorial data, in 
particular the way that a copy olD corresponding to an element of length n, and a 
fixed type, is attached to B(n-1), hence each element of length n and a fixed type 
accounts for fixed angle contributions (of all codimensions > 1) in OB(n - 1). Thus, 
as in w 2 there is an attaching vector w so that 

Kn n-1 K, 
w A " v = ( -  1)"/2 7 Z ( -  1) i 5 2 c ~ = v o l ( B ( n ) ) - ( -  1) "/2 

~=o 4 2 

(Here we are assuming B(n) is a ball.) But 

vol(B(n)) = b, vol(D) = b , ( -  1) "/z ~ )~(G), 

by the Gauss-Bonnet formula for ~"/G. Hence 

n 2  2 

As in Theorem 1, we find 

f(z) = 1/z + ( -  1)"/2 2(1 - z~ (w, (I - zA) -  ~v/, 
K.Z 

so one again expects (generically) that f ( l ) =  1/X. 
In our view, the main open problems along the lines of this work are: 
(1) Understand the "error term" f ( 1 ) -  I/Z when it is non-zero. In w 3 we gave 

one example - the fundamental group of a closed, orientable surface of genus 4, 
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and D is a 30-sided po lygon  whose angles alternate between 2rc/3 and 2~/5. This is 
just one example of  an infinite family. We have computed  growth  functions for all 
tilings of  ~I 2 by even-sided polygons  whose angles alternate between 2zt/p and 
2zc/q. It  turns out  that  the "error"  is non-zero  whenever both  p and q are odd. We 
will describe these results elsewhere. 

(2) Unders tand  the symmetries of the g rowth  functions. Not ice  that all of the 
examples in w give reciprocal functions: f(z)=f(1/z) .  This symmetry  in the 
coefficients of  the numera to r  and denomina to r  of  f(z) seems to be the rule. 
Actually, we do know of two classes of counterexamples one class is the (3, 3, r)- 
triangle groups with 4-sided Dirichlet domains,  which were already singled out  in 
w as exceptional. In these cases, the denomina tors  of  f(z) have symmetric  
coefficients, but  not  the numerators .  Based on m a n y  computat ions ,  we are tempted 
to conjecture that  for cocompac t  Fuchsian  groups  the denomina tors  always have 
symmetric  coefficients. 

(3) Unders tand  the poles o f f ( z ) .  This is closely related to (2), see C a n n o n  [-6]. 
H o w  does the radius of convergence of  9(z) ( = the smallest modulus  of the poles of 
f(z)) change as the geometry  of D changes? Can  f(z) have a pole at 1 ? While f(z) 
often has only one pole in the open unit disk, there are examples for which f(z) has 
more than one pole in the open disk. If  f (z) has only one pole in the open disk and 
the denomina to r  has symmetr ic  coefficients, then this pole is the reciprocal of  a 
Salem number.  

(4) Compu te  some higher dimensional  examples. Some three-dimensional  
examples have been computed  by C a n n o n  and by Grayson  (see [10]). 

Note added in proof. 
For cocompact planar groups with geometric generating sets, the authors have shown that 
f(z) = f(l/2) except for the two classes of counterexamples mentioned above. The proof will appear in a 
paper titled Symmetries of planar growth functions. 
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