
Journal of Mathematical Imaging and Vision, 2, 39-50 (1992).
© Kluwer Academic Publishers. Manufactured in The Netherlands.

Local Decomposition of Gray-Scale Morphological Templates*

SAMER TAKRITI
University of Michigan, Ann Arbor, 11/11 48109-2117

PAUL D. GADER
Environmental Research Institute of Michigan, Ann Arbor, MI 48107-8618

Abstract. Template decomposition techniques can be useful for improving the efficiency of image-
processing algorithms. The improved efficiency can be realized either by reorganizing a computation
to fit a specialized structure, such as an image-processing pipeline, or by reducing the number
of operations used. In this paper two techniques are described for decomposing templates into
sequences of 3 x 3 templates with respect to gray-scale morphological operations. Both techniques
use linear programming and are guaranteed to find a decomposition if one exists.

Key Words: image processing, linear programming, mathematical morphology, image algebra, tem-
plate decomposition

1 Introduction

The increasing use of image-processing activi-
ties in the military, in industry, and in academia
has led to the development of image algebra.
Images are defined in terms of value sets and
coordinate sets. A value set F is simply a set of
values that an image could assume: real num-
bers, complex numbers, binary numbers of fixed
length k, and extended real numbers. Coordi-
nate sets are subsets of n-dimensional Euclidean
space R '~. It follows from the definition that co-
ordinate sets can be rectangular, hexagonal, and
toroidal discrete arrays, as well as infinite sub-
sets of R '~. Given coordinate and value sets X
and F, respectively, an F-valued image a on X
is the graph of a function a : X ~ F . Thus,
an F-valued image a on X is of the form a =
{(x, a(x)) : a(z) E F, Vx C X}. A generalized
F-valued template t from Y to X is a function
t : Y - - , F x. Thus for each y ~ Y , t (y) 6 F x
or t u =_- t(y) = {(x, ty(x)) : x E X}. The point

* This work was ~upported in part by the U.S. Air Force
Armament Laboratory of Eglin Air Force Ba~e under contract
F08635-89-C-0134.

y is called the target point of the template t,
and the values ty(z) are called the weights of
the template t. More detailed definitions of
templates and template operations are given in
[1]-[3].

Several researchers and practitioners have
studied the problem of template decomposition:
given a template t, find a sequence of smaller
templates tl, t2, . . . , t~ such that applying t to
an image is equivalent to applying tx, t2, . . . , t,~
sequentially to that image. In other words,
t can be algebraically expressed in terms of
tl, t2 , . . . , t~. If interested, the reader can re-
fer to [1], [2], and [4]-[13] to form a better
understanding about the methods used.

In this paper two techniques are described
for decomposing templates into sequences of
3 × 3 templates with respect to gray-scale mor-
phological operations. We discuss dilation only.
Decompositions with respect to erosion can be
obtained from our discussion. Only translation-
invariant templates will be considered. We shall
restrict our attention to real-valued templates
defined on one- and two-dimensional grids with
rectangular supports.

40 Takriti a n d Gader

2 Problem Description

Let z be an m , x n , template with weights z~.j.,
and let y be an m u x ny template with weights
y~,j . The dilation of x and y is a template
t = z [] y of size m t x n t , where me = m , + m u - 1
and nt = n~ + ny - 1. The relationship between
x, y, and the weights t~t3. , of t is given by

titjt = V{xi~j~ + yiyj~}

where iy - ix = it - [mt /2]

and jy - j~ = j t - [n t /2] ,

where V is the maximum in this case and []
denotes the ceiling function. A more general
and concise definition of the operation [] is
given in [3].

As described above, a gray-level dilation is a
convolution operation with the sum of products
replaced by the maximum of the sums. For
example, if x and y are given by

1 2 3 2 1 2

x = 2 1 5 ' Y= 1 2 3 ,

3 5 1 1 0 2

then t = z [] y is given by

t =

3 7 6 7 5

7 6 7 8 6

6 7 8 8 5

6 5 7 5 4

4 3 5 4 3

Consider the decomposition problem shown
below:

ill t12

t21 t22

t31 t32

t41 t42

t51 t52

t13 t14 t15

t23 t24 t25

t3z t34 t35

t43 t44 t45

t53 t54 t55

Xll X12 X13 Yll Y~2 Y13

X21 X22 ~r23 [] Y2~ Y22 Y23

X31 X32 I/~33 Y31 Y32 Y33

The template t is known, and we wish to
determine templates x and y that satisfy t =
x S~y. The template equation leads to a set
of linear constraints. To see this, consider the
computation required to compute t2~:

t21 = V{x3z + Y21, z23 + Y11}.

This equation can be written in the following
form:

~;21 _~ X33 + Y21,

t21 ~ X23 -}" Yll.

Furthermore, one of the two inequality con-
straints must hold with equality. There is a
set of linear inequalities of this form for ev-
ery weight titj, of t. Call this set f2~,j,. In
general, decomposing the template t~,×n, into
Xm.×n. and Yr~xn~ is equivalent to the mathe-
matical problem of finding a solution for the
system of inequalities

xi~j~ + Yi~j~ < tld~, it = 1, 2, . . . , mr,

j t = 1, 2, . . . , n t ,

such that each group of inequalities DhJ, has
at least one constraint satisfied as an equality.
We refer to the latter restriction as the group
equality restriction.

We use a one-dimensional example to help
describe the algorithms. If

Local Decomposition of Gray-Scale Morphological Templates 41

then the problem is to find x and y such that t =
x [] y. The system of inequalities corresponding
to this problem is

x3 + Yl < tl, (I.1.1)

x2 + Yl <_ t2, (1.2.1)

x3 + Y2 < t2, (1.2.2)

Zl + Yl _< t3, (1.3.1)

x2 + Y2 < t3, (1.3.2)

x3 + Y3 < tz, (I.3.3)

xl + Y2 _< t4, (I.4.1)

x2 + Y3 < t4, (1.4.2)

Xl + YZ < ts. (1.5.1)

The group equality restriction can be written in
the form

x3 + Yl = tl, (11.1.1)

o r

X2 + Yl = t2, (II.2.1)

x3 + v2 = t2, (11.2.2)

o r

o r

Xl + yl = t3, (11.3.1)

x2 + y2 = tz, (11.3.2)

x3 + V3 = t3, (11.3.3)

o r

Xl + y2 = t4, (11.4.1)

x2 + Y3 = t4, (11.4.2)

xl + y3 = % (I1.5.1)

We describe two algorithms for solving the
problem. The first algorithm uses a depth-first
search technique that is efficient in terms of
storage. The second algorithm uses an integer-
programming approach that, in turn, is solved
by using a branch-and-bound technique.

3 Depth-First Search Decomposition Algorithm

Let 7r be the problem of finding a feasible so-
lution for the system of linear inequalities (I)
that also satisfies (II). An algorithm for solv-
ing 7r based on a depth-first search in conjunc-
tion with linear programming has been devel-
oped. Some relevant linear-programming prin-
ciples and properties of the set of feasible solu-
tions of ~r are described in appendix A. See [14]
for more detailed explanation on this topic.

Each node in the search tree represents the
feasible region corresponding to a set of linear
constraints. The root of the tree represents the
set of feasible solutions for (I). Successor nodes
in the tree are obtained by adding a suitable
constraint from (II) to the set of constraints
used in the immediate predecessor. At each
node linear programming is used to test for the
existence of a feasible solution for the set of
linear constraints. The performance of the al-
gorithm is independent of the particular feasible
solution selected from the set of feasible solu-
tions at that node. The algorithm is based on
the following remarks:

1. When one is looking for a feasible solution
for ~r, it is sufficient to consider the cases
for which only one of the constraints in each
group of (I) is an equality.

2. If at a certain level of search, say, level n,
there is no feasible solution for the prob-
lem 7r,~, then none of the descendants of ~rn
is feasible. Therefore there is no need to
search among these descendants. The proof
is simple: the set of feasible solutions of any
descendant of 7r~ is a subset of the set of
feasible solutions of 7r,~ itself. If any of the

42 Takriti and Gader

descendants is feasible, then 7r, must also be
feasible.

We describe the algorithm by using the one-
dimensional problem as an example, i.e., m~ ---
my = m t = 1. The algorithm begins by finding
a feasible solution for (I). This problem, call it
~rl, is always feasible. The problem 7r2 is then
formed by adding the constraint (ILl. l) to the
set of constraints of 7rl. Note that the first
group of inequalities, i.e., (I.1), has only one
constraint. It follows that if a2 is infeasible,
then a- is also infeasible. On the other hand,
if ~r2 is feasible and the current solution is not
feasible for 7r, more equality constraints from
(II) must be added. This is done by adding a
constraint from (11.2) to the set of constraints of
~r2. Let this constraint be (II.2.1), and call this
problem ~r3. If 7r3 is feasible, the algorithm pro-
ceeds down the tree as described above. If, on
the other hand, 7r3 has no feasible solution, the
algorithm creates problem ~r4, which is obtained
by adding constraint (11.2.2) to the set of con-
straints of problem ~r2. If ¢r4 is infeasible, then ~r
is infeasible. Otherwise, the algorithm proceeds
to the next level. The search terminates when
the algorithm finds a feasible solution for ~r if
there is one.

Thus the rule at any node can be summarized
by the node-level search rule:

If the current problem is feasible,
then set current problem to current problem

plus a previously unselected constraint
from the next group and descend to the
next level;

else
if there are previously unselected con-

straints in the same group,
then set current problem to current

problem plus one such constraint
and test for feasibility;

else set current node to the direct pre-
decessor of current node.

The method of selection of equality con-
straints from (II) is based on order of appear-
ance. For example, if the last selected constraint

at a certain node is (II.i.j), then the next se-
lected constraint is (II.i.j + 1) if j + 1 is less than
or equal to the number of constraints in group
i. This method of selection has been arbitrar-
ily chosen, and more research must be done to
find better selection methods. The following is
a detailed description of the algorithm:

• Initialization. n = 0, ki = 1, i = 1, 2 , . . . ,
number of groups. Find a feasible solution
for (I). Let the set of linear constraints in the
current node / " =(I).

• General step.

1. n = n + l .

2. Let i, j be the indices of x, y correspond-
ing to constraint kn in group n. Find a
feasible solution for/- ' under the additional
constraint x~ + yj = t,. If a feasible solution
exists, go to step 6.

3. Change the constraint k~ in group n o f /~
to an inequality constraint.

4. k , = k n + l . I l k , is less than or equal to
the number of constraints in group n, go to
step 2.

5. Set k, = 1, n = n - 1 . If n = 0, stop;
the given problem has no feasible solution.
Otherwise, go to step 4.

6. Compute

nt

= ~ m!n{tz - z~ - y j [x i + yj <_ tl
~3

l=l

is a constraint in S2z}.

If 6 = 0, then stop; the current solution is
a feasible solution for the given problem.
Otherwise, go to step 7.

7. Change constraint k, in group n of _r' to an
equality constraint. Go to step 1.

This algorithm is guaranteed to find a so-
lution to the template-decomposition problem
if a solution exists. In the worst case the al-
gorithm performs an exhaustive search of the
finite set of all possible combinations of equal-
ity constraints. This may occur when ~- has no
feasible solution. However, the algorithm can
determine the nonexistence of a solution quite

Local Decomposition of Gray-Scale Morphological Templates 43

rapidly without exhausting all possible combina-
tions. A breadth-first search algorithm was tried
and was found to be inferior to the depth-first
search algorithm.

Linear programming is used to check the fea-
sibility in step 2. The linear-programming al-
gorithm used, call it PDAT, is described in ap-
pendix A. It has a major advantage over other
known linear-programming algorithms. Assume
that the current node 7r,~ is feasible, and let rr~+l
be a direct successor of ~r,~. PDAT looks for a
feasible solution for rr,,+t in the set of feasible
solutions for 7r,, This implies that the solution
produced by PDAT satisfies the constraints of rrn
whether ~rn+l is feasible or not. In other words,
the current solution is feasible for all ancestors
of the current node. In this case, only the
current solution has to be stored. This makes
the depth-first search algorithm applicable on
microcomputers.

4 Numerical Example

Let t = [8, 10, 9, 9, 2]. It is desired to de-
compose t into two templates x and y each of
dimension 1 x 3.

0. n = 0, ki = 1, i = 1 , 2 , . . . , 5 . x = [2,9, 8],
y = [0, 0, 0] is a feasible solution for (I).

1. n = l .

2. Find a feasible solution for (I) with the ad-
ditional constraint xa + yl = 8. The solution
is x = [2, 9, 81, y = [0, 0, 0].

6 . 5 = 1 .

7. Change constraint 1 in group 1 into an equal-
ity constraint.

1. n = 2 .

2. Find a feasible solution for (I) with the addi-
tional constraint x2 + yl = 10. The solution
is x = [2, 10, 8], y = [0, - 1 , -1] .

6 . 5 = 1 .

7. Change constraint 1 in group 2 into an equal-
ity constraint.

1. n = 3 .

2. Find a feasible solution for (I) with the ad-
ditional constraint zl + yl = 9. The solution

is x = [9, 10, 8], y = [0, - 1 , - 7] .

6 . 5 = 1 .

7. Change constraint 1 in group 3 into an equal-
ity constraint.

1. n = 4 .

2. Find a feasible solution for (I) with the ad-
ditional constraint xl + y2 = 9. No feasible
solution exists.

3. k4 = 2.

2. Find a feasible solution for (I) with the ad-
ditional constraint x2 + Ya = 9. There is no
feasible solution.

3. k 4 = 3 .

4. k4 = 1, n = 3 .

5. Change the constraint 1 in group 3 into an
inequality constraint.

3. ha = 2.

2. Find a feasible solution for (I) with the ad-
ditional constraint xz + yz = 9. The solution
is x = [9, 10, 8], y = [0, - 1 , - 7] .

6 . 6 = 1 .

7. Change constraint 2 in group 3 into an equal-
ity constraint.

1. n = 4 .

2. Find a feasible solution for (I) with the ad-
ditional constraint zl + ya = 9. There is no
feasible solution.

3. k 4 = 2 .

2. Find a feasible solution for (I) with the ad-
ditional constraint x2 + ya = 9. The solution
is z = [9, 16, 14], y = [- 6 , - 7 , - 7] .

6. 6 = 0. Stop. The current solution is a
feasible solution for the given problem.

Figure 1 illustrates the search tree of the
previous example.

5 Numerical Results

The algorithm has been implemented by using
the Pascal language. A problem generator was
coded to create some test problems for the al-
gorithm. This generator fills each cell in the x
template and the y template with a random inte-

44 Takriti and Gader

II.3.1

n=3 ~ ~ /
= [9 , l O , s]

y = [o , - 1 , - 7]

~ n=0
x = [2,9,s1
y = [o,o, o1

II.1.1

~ n=l
= [2,9, 81

y = [0,0,0]

I1.2.1

~ ~ --I~, lO, 81
[o, -1, -1]

I I . 3 ~ ~

n=4 n=4
Infeasible Infeasible

II.4.1

n=4
Infeasible

n=3
x = [9,1o,8]
y = [0,-1,-7]

II'4~N. N ~

n=4
x = [9, 16, 14]

= [- 6 , - 7 , - 7]

Fig. 1. Tree followed by the depth-first search algorithm.

Local Decomposition of Gray-Scale Morphological Templates 45

ger number. The 27 and y are then composed to
obtain the corresponding t template. So that we
could get a better idea about the performance
of the algorithm, 100 problems were randomly
generated and fully solved. The size of the t
template in each problem was 9 x 9, and the task
was to decompose t into two templates, each of
dimension 5 x 5. The number of nodes studied
and the solution times varied over a large range,
depending on the elements in template t. The
results are shown in table 1.

Table 1. Number of nodes studied by the depth-
first search algorithm to decompose a 9 x 9
template into two 5 x 5 templates.

Number of Nodes Frequency

100-1000 50

1000-10 000 27

10 000-100 000 15

_>100 000 8

Total 100

form:

271

Xl

Xl

Xl

Xl

x3 + Yl < tl,

Z3 Jr Yl -l- M z n > tl,

X2

X2

+ Yl <_ t2,

+ Yl + Mz21 >__ t2,

x3 + Y2 <_ t2,

x3 "1" y2 q- Mz22 -> t2,

X2

272

-4- Yl

+ Yl

X3

X3

+ Y2

+ Y2

_< t3,

+ Mz31 >_ t3,

_< t3,

-t" Mz32 -> t3,

+ Y3 <-- t3,

+ Y3 + Mz33 >_ t3,

X2

X2

+ Y2

+ Y2

<_ t4~

+ Mz41 -> t4,

+ Y3 <-- t4,

+ Y3 + Mz42 :> t4,

+ Y3 _< t5,

-t- Y3 + Mz51 >- is,

The previous problems were solved on an
Apple Macintosh SE/30 computer. The time
required to evaluate each node, i.e., to check
whether the set of constraints at that node is
feasible or not and to decide about the set of
constraints to be used in the next node, was 38
ms.

6 Integer-Programming Formulation

The problem of decomposing templates into a
product of two other templates can be formu-
lated as an integer-programming problem. The
integer program is guaranteed to find a solu-
tion if there is one. Here also, we use the
one-dimensional problem as an example.

The problem ~r can be written in the following

Z21 q"

Z31 + Z32 +

Z41 +

Zll ~ O~

Z22 ~ 1~

Z33 < 2,

z42 < 1,

zs1 _< 0,

zlj = 0 or 1,

where M is a large number and zij is a 0/1 or
yes/no variable. When zij is equal to 0, the
constraint number j in group i must be satisfied
as an equality.

To have at least one equality constraint in
each group f2i, the constraint

zi5 < (number of constraints in group i) - 1
J

is added. M must be chosen in a way such
that if z is equal to 1 in one of the constraints,

46 Takriti and Gader

then the corresponding inequality x + y + M > t
must be satisfied no matter what the values
of x, y, and t are. From the previous in-
equality the value of M must be greater than
m ax{ t} - m i n { x } - min{y}. By giving M the
value of max{t} - min{x} - min{y} + 1, it is
guaranteed to satisfy the aforementioned con-
straint. The problem here is to estimate the
values of min{x} and min{y}. There is no clear
method to perform the previous estimation, but
finding lower bounds on the values of x and y
does not appear to be a very difficult task.

In the previous integer program there is no
objective function to be optimized. The goal is
to find a feasible solution for the given system
that, in turn, corresponds to a feasible solu-
tion for 7r. Any integer-programming method
can be used to solve the resulting program, and
the branch-and-bound method has been used
in this case. In general, this formulation has
been found to be very efficient with smaller
problems. The disadvantage of the integer-
programming formulation is the large amount
of storage required to solve the problem on a
digital computer because of the large number
of nodes in the search tree that must be stored.

7 Generalization: Decomposition of Arbitrari-
ly Sized Templates into 3 × 3 Templates

Both the depth-first search algorithm and the
integer-programming algorithm can be applied,
without change, to decompose a template
t,~,___3,,~_>a into a sequence of 3 x 3 templates.
The following pseudocode performs such a de-
composition.

• Initialization. i = 1, k = 1. Let the current
template be ~ = tm~,~. ~mti nti

• General step.

1. If mt~ = nt~ = 3 , stop; the sequence of
templates tJ, j = i, i + 1, . . . , k is a de-
composition for t,,,~,,~. Otherwise, go to
step 2.

2. Decompose t i into two templates mti , ntl

x ~ and yi each of size max{3, [mt , /2]}
x max{3, [nt , /2]} as follows:

Write the set of linear constraints cor-

responding to the problem i
i i xm ,,~ , [] y,~ ,,%,, using the relationship

described at the beginning of section 2.
Solve this problem by using one of the
previous algorithms. If no feasible so-
lution exists, stop; the given problem is
infeasible. Otherwise, to go step 3.

3. t k+l = x i, t k+2 = y~, k = k + 2, i = i + 1.

Go to 1.

8 Conclusions

Two algorithms have been developed to solve
the template-decomposition problem. They are
guaranteed to find a solution for the problem
if one exists. Both algorithms use linear pro-
gramming to evaluate the nodes of the search
trees. Future research directions include devel-
oping relationships between the geometry of the
linear-programming problem and the shape of
the templates, improving the search-tree prun-
ing, and generalizing the approach to templates
with nonrectangular support. This last area
would involve merging decomposition of bina-
ry morphological templates with the gray-scale
decompositions.

Appendix A: Linear-Programming Concepts

A linear-programming problem is an optimiza-
tion problem. The objective is to maximize or
minimize a linear function subject to a set of
linear constraints. A linear program can be writ-
ten in the mathematical form m a x ~ { c T x [A x < b},
where c E R ~ is the objective function, x E R ~ is
the vector of decision variables, A E R m×'~ is a
given matrix, and b E R m is the right-hand-side
vector. A vector x that satisfies all the con-
straints of a linear program is called a feasible
solution for the linear program, and the set of
all feasible solutions is called the feasible region.
At each node of the search tree of section 3,
we must check for the existence of a feasible
solution for the set of linear constraints at that
node.

Associated with any linear program there is
another linear program called the dual. For

Local Decomposition of Gray-Scale Morphological Templates 47

example, if the given linear program, the primal,
is maxx{cTxlAx <_ b}, then the corresponding
dual is min~{TrbllrA = c, ~r >_ 0}, where 7r c R m
is a row vector. ~ri is called the dual variable
associated with the primal constraint i. The
fundamental duality theorem states that if either
the primal or the dual problem has an optimal
feasible solution, then the other does also and
the two optimal objective values are equal. As
a result to the previous property, solving the
primal problem is equivalent to solving the dual
problem, and this result can be applied to our
problem. By rearranging the rows of inequality
(I), it can be written in the following form:

Xl

Xl

Xl

+ Yt

x2 + Yl

X2

X2

x3 + y~

X3

x3

+ Y2

+ Y2

+ Y2

_< ta (1.3.1) Ul l ,

_ t4 (I.4.1) u,2,

+ Y3 _< t~ (I.5.1) uls,

< t2 (1.2.1) u21,

< tz (I.3.2) ue2,

q- Y3 --< t4 (I.4.2) uz3,

_< tl (I.1.1) ua ,

_< t2 (1.2.2) ua2,

+ Ya -< t3 (1.3.3) u a a ,

where uij are the dual variables corresponding
to the constraints of the original system.

Looking for a feasible solution for the previ-
ous system subject to an additional equality con-
straint is equivalent to maximizing the sum of
the variables in the left-hand side of the equality
constraint subject to inequality (I). For exam-
ple, if the additional constraint is xl + Yl = ta,
then the existence of a feasible solution can be
checked for by maximizing the function Xl + yl
subject to the previous set of linear constraints.
If, after the problem is solved, the optimal ob-
jective function value equals to t3, then the given
problem has a feasible solution. On the other
hand, if xl + yl < ta, then the given problem
has no feasible solution. Writing the dual of the
previous problem leads to the following linear
program:

Minimize

t3u11 -I- t4u12 -I- t5u13 -t- t2u21 -t- t3u22 -t- t4u23

-t-tlu31 + t2u32 -I- t3u33

subject to

Ull q- U12 + U13 = 1

U21 4" U22 "}" U23 = 0

U31 "t- U32 -t- U33 ----- 0

Ul 1 .st. U21 a c ,//,31 = 1

Ul 2 + U22 9¢. U32 ~_~ 0

U13 + U23 -1- U33 ~ 0

uij > O.

It is obvious that the dual has a very spe-
cial structure. Problems with such a structure
are called transportation problems. The trans-
portation problem can be stored in an efficient
form by using the transportation matrix. In this
matrix the variable u{~ corresponds to the cell
(i, j). The constraints specify the sum of the
variables in each column and row in the array.
The transportation problem has the following
integer property: If all the elements in the
right-hand side of the equality constraints are
positive integers, then at least one optimum so-
lution of that problem is an integer vector. The
following is a description of a primal-dual al-
gorithm for solving the uncapacitated balanced
transportation problem efficiently. The given
problem is of the following form:

Minimize ~ ~ ci~xij
{=1 j= l

subject to

m

E xlj = ai, i = 1 , 2 , . . . , n ,
j=l

~ Xij = bj, j = l , 2,...,m,
i=1

zlj _> 0 for a l l i , j,

where al, b 3 _> 0 for all i, j and ~ i ai = ~ b~.
The dual problem is the following:

Maximize ~ aiui + ~_, b~v~
i j

48 Takriti and Gader

subject to

u i + v j < _ c i ~ for a l l i , j .

The algorithm is as follows.

• Initialization. Find a dual feasible solution
for the given problem. This can be done
by selecting the dual solution to be ui =

min{e i j l j = 1, . . . , n) , vj = min{cl 5 -u~ l i =
1, . . . , m}. Let ~ = c i j - u i - v j , xij = 0 for
all cells (i, j) .

• General step.

1. Identify all rows i satisfying)-~j x~j < al,
and label all such rows with label (s, +).
All of these rows are now labeled and
unscanned.

2. If the list of labeled and unscanned rows
and columns is empty at this stage, go
to step 4. Otherwise, select a row or a
column for scanning, and scan it.

To scan row i, label each column j ,
where j is such that column j is unla-
beled so far and ~ = 0 with the label
(row i, +).
To scan column j, label all rows i, where
i is such that row i is unlabeled so far
and xij > 0 with the label (column j, -) .

The rows or columns that are newly labeled
in this step are at present labeled and
unscanned. The row or column that is
scanned in this step is now labeled and
scanned. Go to step 3.

3. Check whether any of the columns with
unfulfilled requirements, i.e., a column j
such that ~ i xij < bj, is labeled. If such a
column is labeled, go to step 5. If none of
the columns with unfulfilled requirements
have been labeled, go to step 2.

4. Let 6 = m i n { ~ I row i is a labeled row,
column j is an unlabeled column}. Let the
new dual feasible solution be (u, v) where

ul = u i + 6 if row i is labeled,
= u~ if row i is unlabeled,

%. = v~ - 6 if column j is labeled,
= vj if column j is unlabeled.

Keep all the labeled columns as labeled
and scanned. Change the state of each

.

labeled row into labeled and unscanned.
Update ~-~. Go to step 2.
Let column Jl be the column whose label-
ing led to this step. Suppose that the label
on column Jl is (row il, +). Add 0 to
the present amount of flow in cell (il, Jl).
Now look at the label on row il. Suppose
it is (column j 2 , -) . Add a - 0 to the
present flow in cell (il, J2). Now look at
the label on column j2, and so on. Repeat ,
adding 0 and - 0 alternately to the flow
amounts in the cells indicated by the la-
bels until a row, say, row ik, with a label of
(8, +) is reached. Let 0 = min{a i - -~k xi~,
b j - ~ k xkj over all cells (i, j) with a - 0
alteration). Substitute the value of 0 to get
the new z. If x fulfills the requirements
in all the columns, i.e., ~ i xij = bj for all
columns j , it is an optimum feasible so-
lution of the transportation problem and
the algorithm is terminated. Otherwise,
erase the old labels on all the rows and
the columns. Go to step 1.

A complete study of this subject can be found
in [15].

Appendix B: Properties of the Set of Feasible
Solutions of 7r

It is worthwhile to note the following properties
of the set of feasible solutions of ~r:

1. If t is a given template with integer weights
and if the corresponding ~r has a feasible
solution, then there exists an integer feasi-
ble solution for the problem 7r. This follows
from the integer property of the transporta-
tion problem.

2. If (z0, y0) is a feasible solution for 7r, then
(x0 + 6, y0-6) is also a feasible solution, where
6 is any real number. This implies that either
7r has no feasible solution at all or that it has
an infinite number of solutions.

3. The set of feasible solutions for 7r is not
necessarily convex. For instance, let t =
[1, 2, 1, 2, 1]. We want to decompose this
template into two templates x and y each

Local Decomposition of Gray-Scale Morphological Templates 49

of dimension 1 x 3. A feasible solution for
this problem would be Xl = [1, 0, 1], Yl =

[0, 1, 01. Also, x2 = [1, 2, 1], Y2 = [0, -1 , 0]
is another feasible solution. Let us take the
point (z, y) that is in the middle of the line
segment joining (Xl, yl) and (x2, y2). Ob-
viously, x = [1, 1, 1], U = [0, 0, 0] is not a
feasible solution of the given problem.

Acknowledgments

We would like to thank Patrick Coffield, Karen
Norris, and Sam Lambert for their support. We
would also like to thank Professor Katta Murty
of the University of Michigan for his help.

phological Image Processing, P.D. Gader, ed., Proc. Soc.
Photo-Opt. Instrum. Engg., vol. 1350, 1990, pp. 408--418.

11. O.R. Mitchell and EY. Shih, "Decomposition of Gray-
Scale Morphological Structuring Elements," in Proc. IEEE
1987 Workshop on Computer Vision, 1987, pp. 304-306.

12. O.R. Mitchell and EY. Shih, "Threshold Decomposition
of Gray-Scale Morphology into Binary Morphology," IEEE
Trans. Part. Anal. Mach. Intell., vol. PAMI-11, 1989, pp.
31-42.

13. G.X. Ritter and P.D. Gader, "Image Algebra Techniques
for Parallel Image Processing," J. Parallel Dis~ Comput.,
vol. 4(5), 1987, pp. 7-44.

14. K.G. Murty, Linear Programming, New York: John Wiley,
1983.

15. K.G. Murty, Network Programming, New Jersey: Prentice
Hall, 1992.

References

1. J.L. Davidson, "Lattice Structures in the Image Algebra
and Applications to Image Algebra," Ph.D. dissertation,
University of Florida, Gainesville, FL., 1989.

2. P.D. Gader, "Image Algebra Techniques for Parallel Com-
putation of Discrete Fourier Transforms and General Lin-
ear Transforms," Ph.D. dissertation, University of Florida,
Gainesville, FL., 1986.

3. G.X. Ritter, J.N. Wilson, and J.L. Davidson, "Image Al-
gebra: An overview," Comput. Vis. Graph., Image Process.,
vol. 49, 1990, pp. 297-331.

4. J.L. Davidson, "Local Decomposition of lnvariant Lattice
Transforms," in Image Algebra and Morphological Image
Processing, P.D. Gader, ed., Proc. Soc. Photo-Opt. Instrum.
Engrg., vol. 1350, 1990, pp. 443-454.

5. ED. Gader, "Separable Decompositions and Approxima-
tions of Gray Scale Morphological Templates," Comput.
Vis., Graph., Image Process., vol. 53, 1991, pp. 288-296.

6. ED. Gader and E.G. Dunn, "Image Algebra and Mor-
phological Template Decomposition," in Aerospace Pattern
Recognition, M.R. Weathersby, ed., Proc. Soc. Photo-Opt.
Instrum. Engrg., vol. 1098, 1989, pp. 134-146.

7. P.D. Gader and S. Takriti, "Decomposition Techniques
for Gray-Scale Morphological Templates," in Image Alge-
bra and Morphological Image Processing, ED. Gader, ed.,
Proc. Soc. Photo-Opt. Instrum. Engrg., vol. 1350, 1990, pp.
431-443.

8. R.M. Haralick and X. Zhuang, "Morphological Structur-
ing Element Decomposition," Comput. Vis., Graph., Image
Process., vol. 35, 1986, pp. 370-382.

9. T.M. Kanungo, R.M. Haralick, and X. Zhuang, "B-Code
Dilation and Structuring Element Decomposition for Re-
stricted Convex Shapes,'* in Image Algebra and Morpholog-
ical Image Processing, ED. Gader, ed., Proc. Soc. Photo-
Opt. lnstrum. Engrg., vol. 1350, 1990, pp. 419-430.

10. D. Li and G.X. Ritter, "Decomposition of Separable and
Symmetric Convex Templates," in Image Algebra and Mor-

Samer Takriti is a Ph.D. student in the Department of In-
dustrial and Operations Engineering at the University of
Michigan. He received his B.Sc. degree in Civil Engineering
from the University of Damascus, Syria, in 1986 and his
M.Sc. degree in civil engineering from the University of
Michigan in 1988. His current research involves the opti-
mization of stochastic linear programs.

Paul Gader received his Ph.D. in applied mathematics from
the University of Florida in 1986. Since then Dr. Gader has
held positions as section manager and research engineer
at the Environmental Research Institute of Michigan, se-

50 Takriti and Gader

nior research scientist at Honeywell Systems and Research
Center, and as assistant professor of mathematics at the
University of Wisconsin, Oshkosh. He is currently an assis-
tant professor in the Department of Computer and Elec-
tieal Engineering at the University of Missouri, Columbia.
He has performed research in applied mathematics, image
algebra and mathematical morphology, obstacle detection,
scene analysis, automatic target recognition, and recognition
of handwritten ZIP codes and words.

