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Local Decomposition of Gray-Scale Morphological Templates* 
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Abstract. Template decomposition techniques can be useful for improving the efficiency of image- 
processing algorithms. The improved efficiency can be realized either by reorganizing a computation 
to fit a specialized structure, such as an image-processing pipeline, or by reducing the number 
of operations used. In this paper two techniques are described for decomposing templates into 
sequences of 3 x 3 templates with respect to gray-scale morphological operations. Both techniques 
use linear programming and are guaranteed to find a decomposition if one exists. 
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1 Introduction 

The increasing use of image-processing activi- 
ties in the military, in industry, and in academia 
has led to the development of image algebra. 
Images are defined in terms of value sets and 
coordinate sets. A value set F is simply a set of 
values that an image could assume: real num- 
bers, complex numbers, binary numbers of fixed 
length k, and extended real numbers. Coordi- 
nate sets are subsets of n-dimensional Euclidean 
space R '~. It follows from the definition that co- 
ordinate sets can be rectangular, hexagonal, and 
toroidal discrete arrays, as well as infinite sub- 
sets of R '~. Given coordinate and value sets X 
and F, respectively, an F-valued image a on X 
is the graph of a function a : X ~ F .  Thus, 
an F-valued image a on X is of the form a = 
{(x, a(x)) : a(z) E F, Vx C X}. A generalized 
F-valued template t from Y to X is a function 
t : Y - - , F  x. Thus for each y ~ Y , t ( y )  6 F  x 
or t u =_- t(y) = {(x, ty(x)) : x E X}.  The point 
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y is called the target point of the template t, 
and the values ty(z) are called the weights of 
the template t. More detailed definitions of 
templates and template operations are given in 
[1]-[3]. 

Several researchers and practitioners have 
studied the problem of template decomposition: 
given a template t, find a sequence of smaller 
templates tl, t2, . . . ,  t~ such that applying t to 
an image is equivalent to applying tx, t2, . . . ,  t,~ 
sequentially to that image. In other words, 
t can be algebraically expressed in terms of 
tl, t2 , . . . ,  t~. If interested, the reader can re- 
fer to [1], [2], and [4]-[13] to form a better 
understanding about the methods used. 

In this paper two techniques are described 
for decomposing templates into sequences of 
3 × 3 templates with respect to gray-scale mor- 
phological operations. We discuss dilation only. 
Decompositions with respect to erosion can be 
obtained from our discussion. Only translation- 
invariant templates will be considered. We shall 
restrict our attention to real-valued templates 
defined on one- and two-dimensional grids with 
rectangular supports. 
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2 Problem Description 

Let z be an m ,  x n ,  template with weights z~.j., 
and let y be an m u x ny template with weights 
y~,j .  The dilation of x and y is a template 
t = z [ ]  y of size m t x n t ,  where me = m , + m u - 1  
and nt = n~ + ny - 1. The relationship between 
x, y, and the weights t~t3. , of t is given by 

titjt = V{xi~j~ + yiyj~} 

where iy - ix = it - [mt /2]  

and jy - j~ = j t  - [n t /2] ,  

where V is the maximum in this case and [] 
denotes the ceiling function. A more general 
and concise definition of the operation [] is 
given in [3]. 

As described above, a gray-level dilation is a 
convolution operation with the sum of products 
replaced by the maximum of the sums. For 
example, if x and y are given by 

1 2 3 2 1 2 

x =  2 1 5 ' Y=  1 2 3 , 

3 5 1 1 0 2 

then t = z [] y is given by 

t = 

3 7 6 7 5 

7 6 7 8 6 

6 7 8 8 5 

6 5 7 5 4 

4 3 5 4 3 

Consider the decomposition problem shown 
below: 

ill t12 

t21 t22 

t31 t32 

t41 t42 

t51 t52 

t13 t14 t15 

t23 t24 t25 

t3z t34 t35 

t43 t44 t45 

t53 t54 t55 

Xll X12 X13 Yll Y~2 Y13 

X21 X22 ~r23 [] Y2~ Y22 Y23 

X31 X32 I/~33 Y31 Y32 Y33 

The template t is known, and we wish to 
determine templates x and y that satisfy t = 
x S~y. The template equation leads to a set 
of linear constraints. To see this, consider the 
computation required to compute t2~: 

t21 = V{x3z + Y21, z23 + Y11}. 

This equation can be written in the following 
form: 

~;21 _~ X33 + Y21, 

t21 ~ X23 -}" Yll. 

Furthermore, one of the two inequality con- 
straints must hold with equality. There is a 
set of linear inequalities of this form for ev- 
ery weight titj, of t. Call this set f2~,j,. In 
general, decomposing the template t~,×n, into 
Xm.×n. and Yr~xn~ is equivalent to the mathe- 
matical problem of finding a solution for the 
system of inequalities 

xi~j~ + Yi~j~ < tld~, it = 1, 2, . . . ,  mr,  

j t  = 1, 2, . . . ,  n t ,  

such that each group of inequalities DhJ, has 
at least one constraint satisfied as an equality. 
We refer to the latter restriction as the group 
equality restriction. 

We use a one-dimensional example to help 
describe the algorithms. If 
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then the problem is to find x and y such that t = 
x [] y. The system of inequalities corresponding 
to this problem is 

x3 + Yl < tl, (I.1.1) 

x2 + Yl <_ t2, (1.2.1) 

x3 + Y2 < t2, (1.2.2) 

Zl + Yl _< t3, (1.3.1) 

x2 + Y2 < t3, (1.3.2) 

x3 + Y3 < tz, (I.3.3) 

xl + Y2 _< t4, (I.4.1) 

x2 + Y3 < t4, (1.4.2) 

Xl + YZ < ts. (1.5.1) 

The group equality restriction can be written in 
the form 

x3 + Yl = tl, (11.1.1) 

o r  

X2 + Yl = t2, (II.2.1) 

x3 + v2 = t2, (11.2.2) 

o r  

o r  

Xl + yl = t3, (11.3.1) 

x2 + y2 = tz, (11.3.2) 

x3 + V3 = t3, (11.3.3) 

o r  

Xl + y2 = t4, (11.4.1) 

x2 + Y3 = t4, (11.4.2) 

xl + y3 = % (I1.5.1) 

We describe two algorithms for solving the 
problem. The first algorithm uses a depth-first 
search technique that is efficient in terms of 
storage. The second algorithm uses an integer- 
programming approach that, in turn, is solved 
by using a branch-and-bound technique. 

3 Depth-First Search Decomposition Algorithm 

Let 7r be the problem of finding a feasible so- 
lution for the system of linear inequalities (I) 
that also satisfies (II). An algorithm for solv- 
ing 7r based on a depth-first search in conjunc- 
tion with linear programming has been devel- 
oped. Some relevant linear-programming prin- 
ciples and properties of the set of feasible solu- 
tions of ~r are described in appendix A. See [14] 
for more detailed explanation on this topic. 

Each node in the search tree represents the 
feasible region corresponding to a set of linear 
constraints. The root of the tree represents the 
set of feasible solutions for (I). Successor nodes 
in the tree are obtained by adding a suitable 
constraint from (II) to the set of constraints 
used in the immediate predecessor. At each 
node linear programming is  used to test for the 
existence of a feasible solution for the set of 
linear constraints. The performance of the al- 
gorithm is independent of the particular feasible 
solution selected from the set of feasible solu- 
tions at that node. The algorithm is based on 
the following remarks: 

1. When one is looking for a feasible solution 
for ~r, it is sufficient to consider the cases 
for which only one of the constraints in each 
group of (I) is an equality. 

2. If at a certain level of search, say, level n, 
there is no feasible solution for the prob- 
lem 7r,~, then none of the descendants of ~rn 
is feasible. Therefore there is no need to 
search among these descendants. The proof  
is simple: the set of feasible solutions of any 
descendant of 7r~ is a subset of the set of 
feasible solutions of 7r,~ itself. If any of the 
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descendants is feasible, then 7r, must also be 
feasible. 

We describe the algorithm by using the one- 
dimensional problem as an example, i.e., m~ --- 
my = m t =  1. The algorithm begins by finding 
a feasible solution for (I). This problem, call it 
~rl, is always feasible. The problem 7r2 is then 
formed by adding the constraint (ILl. l)  to the 
set of constraints of 7rl. Note that the first 
group of inequalities, i.e., (I.1), has only one 
constraint. It follows that if a2 is infeasible, 
then a- is also infeasible. On the other hand, 
if ~r2 is feasible and the current solution is not 
feasible for 7r, more equality constraints from 
(II) must be added. This is done by adding a 
constraint from (11.2) to the set of constraints of 
~r2. Let this constraint be (II.2.1), and call this 
problem ~r3. If 7r3 is feasible, the algorithm pro- 
ceeds down the tree as described above. If, on 
the other hand, 7r3 has no feasible solution, the 
algorithm creates problem ~r4, which is obtained 
by adding constraint (11.2.2) to the set of con- 
straints of problem ~r2. If ¢r4 is infeasible, then ~r 
is infeasible. Otherwise, the algorithm proceeds 
to the next level. The search terminates when 
the algorithm finds a feasible solution for ~r if 
there is one. 

Thus the rule at any node can be summarized 
by the node-level search rule: 

If the current problem is feasible, 
then set current problem to current problem 

plus a previously unselected constraint 
from the next group and descend to the 
next level; 

else 
if there are previously unselected con- 

straints in the same group, 
then set current problem to current 

problem plus one such constraint 
and test for feasibility; 

else set current node to the direct pre- 
decessor of current node. 

The method of selection of equality con- 
straints from (II) is based on order of appear- 
ance. For example, if the last selected constraint 

at a certain node is (II.i.j), then the next se- 
lected constraint is (II.i.j + 1) if j + 1 is less than 
or equal to the number of constraints in group 
i. This method of selection has been arbitrar- 
ily chosen, and more research must be done to 
find better selection methods. The following is 
a detailed description of the algorithm: 

• Initialization. n = 0, ki = 1, i = 1, 2 , . . . ,  
number of groups. Find a feasible solution 
for (I). Let the set of linear constraints in the 
current node / "  =(I). 

• General step. 

1. n = n + l .  

2. Let i, j be the indices of x, y correspond- 
ing to constraint kn in group n. Find a 
feasible solution for/- '  under the additional 
constraint x~ + yj = t,.  If a feasible solution 
exists, go to step 6. 

3. Change the constraint k~ in group n o f /~  
to an inequality constraint. 

4. k , =  k n + l .  I l k ,  is less than or equal to 
the number of constraints in group n, go to 
step 2. 

5. Set k, = 1, n = n - 1 .  If n = 0, stop; 
the given problem has no feasible solution. 
Otherwise, go to step 4. 

6. Compute 

nt 

= ~ m!n{tz - z~ - y j  [ x i  + yj <_ tl 
~3 

l=l 

is a constraint in S2z}. 

If 6 = 0, then stop; the current solution is 
a feasible solution for the given problem. 
Otherwise, go to step 7. 

7. Change constraint k, in group n of _r' to an 
equality constraint. Go to step 1. 

This algorithm is guaranteed to find a so- 
lution to the template-decomposition problem 
if a solution exists. In the worst case the al- 
gorithm performs an exhaustive search of the 
finite set of all possible combinations of equal- 
ity constraints. This may occur when ~- has no 
feasible solution. However, the algorithm can 
determine the nonexistence of a solution quite 
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rapidly without exhausting all possible combina- 
tions. A breadth-first search algorithm was tried 
and was found to be inferior to the depth-first 
search algorithm. 

Linear programming is used to check the fea- 
sibility in step 2. The linear-programming al- 
gorithm used, call it PDAT, is described in ap- 
pendix A. It has a major advantage over other 
known linear-programming algorithms. Assume 
that the current node 7r,~ is feasible, and let rr~+l 
be a direct successor of ~r,~. PDAT looks for a 
feasible solution for rr,,+t in the set of feasible 
solutions for 7r,, This implies that the solution 
produced by PDAT satisfies the constraints of rrn 
whether ~rn+l is feasible or not. In other words, 
the current solution is feasible for all ancestors 
of the current node. In this case, only the 
current solution has to be stored. This makes 
the depth-first search algorithm applicable on 
microcomputers.  

4 Numerical Example 

Let t = [8, 10, 9, 9, 2]. It is desired to de- 
compose t into two templates x and y each of 
dimension 1 x 3. 

0. n = 0, ki = 1, i =  1 , 2 , . . . , 5 .  x =  [2,9, 8], 
y = [0, 0, 0] is a feasible solution for (I). 

1. n = l .  

2. Find a feasible solution for (I) with the ad- 
ditional constraint xa + yl = 8. The solution 
is x = [2, 9, 81, y = [0, 0, 0]. 

6 . 5 = 1 .  

7. Change constraint 1 in group 1 into an equal- 
ity constraint. 

1. n = 2 .  

2. Find a feasible solution for (I) with the addi- 
tional constraint x2 + yl = 10. The solution 
is x = [2, 10, 8], y = [0, - 1 ,  -1] .  

6 . 5 = 1 .  

7. Change constraint 1 in group 2 into an equal- 
ity constraint. 

1. n = 3 .  

2. Find a feasible solution for (I) with the ad- 
ditional constraint zl + yl = 9. The solution 

is x = [9, 10, 8], y = [0, - 1 , - 7 ] .  

6 . 5 = 1 .  

7. Change constraint 1 in group 3 into an equal- 
ity constraint. 

1. n = 4 .  

2. Find a feasible solution for (I) with the ad- 
ditional constraint xl + y2 = 9. No feasible 
solution exists. 

3. k4 = 2. 

2. Find a feasible solution for (I) with the ad- 
ditional constraint x2 + Ya = 9. There is no 
feasible solution. 

3. k 4 = 3 .  

4. k4 = 1, n = 3 .  

5. Change the constraint 1 in group 3 into an 
inequality constraint. 

3. ha = 2. 

2. Find a feasible solution for (I) with the ad- 
ditional constraint xz + yz = 9. The solution 
is x = [9, 10, 8], y = [0, - 1 , - 7 ] .  

6 . 6 = 1 .  

7. Change constraint 2 in group 3 into an equal- 
ity constraint. 

1. n = 4 .  

2. Find a feasible solution for (I) with the ad- 
ditional constraint zl  + ya = 9. There is no 
feasible solution. 

3. k 4 = 2 .  

2. Find a feasible solution for (I) with the ad- 
ditional constraint x2 + ya = 9. The solution 
is z = [9, 16, 14], y = [ - 6 , - 7 , - 7 ] .  

6. 6 = 0. Stop. The current solution is a 
feasible solution for the given problem. 

Figure 1 illustrates the search tree of  the 
previous example. 

5 Numerical Results 

The algorithm has been implemented by using 
the Pascal language. A problem generator was 
coded to create some test problems for the al- 
gorithm. This generator fills each cell in the x 
template and the y template with a random inte- 
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II.3.1 

n=3 ~ ~ /  
= [9 ,  l O ,  s] 

y = [ o , - 1 , - 7 ]  

~ n=0 
x = [2,9,s1 
y = [o,o, o1 

II.1.1 

~ n=l 
= [2,9, 81 

y = [0,0,0]  

I1.2.1 

~ ~  --I~, lO, 81 
[o, -1, -1] 

I I . 3 ~ ~  

n=4 n=4 
Infeasible Infeasible 

II.4.1 

n=4 
Infeasible 

n=3 
x = [9,1o,8]  
y = [0,-1,-7] 

II'4~N. N ~  

n=4 
x = [9, 16, 14] 

= [ - 6 , - 7 , - 7 ]  

Fig. 1. Tree followed by the depth-first search algorithm. 
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ger number. The 27 and y are then composed to 
obtain the corresponding t template. So that we 
could get a better idea about the performance 
of the algorithm, 100 problems were randomly 
generated and fully solved. The size of the t 
template in each problem was 9 x 9, and the task 
was to decompose t into two templates, each of 
dimension 5 x 5. The number of nodes studied 
and the solution times varied over a large range, 
depending on the elements in template t. The 
results are shown in table 1. 

Table 1. Number of nodes studied by the depth- 
first search algorithm to decompose a 9 x 9 
template into two 5 x 5 templates. 

Number of Nodes Frequency 

100-1000 50 

1000-10 000 27 

10 000-100 000 15 

_>100 000 8 

Total 100 

form: 

271 

Xl 

Xl 

Xl 

Xl 

x3 + Yl < tl, 

Z3 Jr Yl -l- M z n  > tl, 

X2 

X2 

+ Yl <_ t2, 

+ Yl + Mz21 >__ t2, 

x3 + Y2 <_ t2, 

x3 "1" y2 q- Mz22 -> t2, 

X2 

272 

-4- Yl 

+ Yl 

X3 

X3 

+ Y2 

+ Y2 

_< t3, 

+ Mz31 >_ t3, 

_< t3, 

-t" Mz32 -> t3, 

+ Y3 <-- t3, 

+ Y3 + Mz33 >_ t3, 

X2 

X2 

+ Y2 

+ Y2 

<_ t4~ 

+ Mz41 -> t4, 

+ Y3 <-- t4, 

+ Y3 + Mz42 :> t4, 

+ Y3 _< t5, 

-t- Y3 + Mz51 >- is, 

The previous problems were solved on an 
Apple Macintosh SE/30 computer. The time 
required to evaluate each node, i.e., to check 
whether the set of constraints at that node is 
feasible or not and to decide about the set of 
constraints to be used in the next node, was 38 
ms. 

6 Integer-Programming Formulation 

The problem of decomposing templates into a 
product of two other templates can be formu- 
lated as an integer-programming problem. The 
integer program is guaranteed to find a solu- 
tion if there is one. Here also, we use the 
one-dimensional problem as an example. 

The problem ~r can be written in the following 

Z21 q" 

Z31 + Z32 + 

Z41 + 

Zll ~ O~ 

Z22 ~ 1~ 

Z33 < 2, 

z42 < 1, 

zs1 _< 0, 

zlj = 0 or 1, 

where M is a large number and zij is a 0/1 or 
yes/no variable. When zij is equal to 0, the 
constraint number j in group i must be satisfied 
as an equality. 

To have at least one equality constraint in 
each group f2i, the constraint 

zi5 < (number of constraints in group i ) - 1  
J 

is added. M must be chosen in a way such 
that if z is equal to 1 in one of the constraints, 
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then the corresponding inequality x + y + M > t 
must be satisfied no matter what the values 
of x, y, and t are. From the previous in- 
equality the value of M must be greater than 
m ax{ t} -  m i n { x } -  min{y}. By giving M the 
value of max{t} - min{x} - min{y} + 1, it is 
guaranteed to satisfy the aforementioned con- 
straint. The problem here is to estimate the 
values of min{x} and min{y}. There is no clear 
method to perform the previous estimation, but 
finding lower bounds on the values of x and y 
does not appear to be a very difficult task. 

In the previous integer program there is no 
objective function to be optimized. The goal is 
to find a feasible solution for the given system 
that, in turn, corresponds to a feasible solu- 
tion for 7r. Any integer-programming method 
can be used to solve the resulting program, and 
the branch-and-bound method has been used 
in this case. In general, this formulation has 
been found to be very efficient with smaller 
problems. The disadvantage of the integer- 
programming formulation is the large amount 
of storage required to solve the problem on a 
digital computer because of the large number 
of nodes in the search tree that must be stored. 

7 Generalization: Decomposition of Arbitrari- 
ly Sized Templates into 3 × 3 Templates 

Both the depth-first search algorithm and the 
integer-programming algorithm can be applied, 
without change, to decompose a template 
t,~,___3,,~_>a into a sequence of 3 x 3 templates. 
The following pseudocode performs such a de- 
composition. 

• Initialization. i = 1, k = 1. Let the current 
template be ~ = tm~,~. ~mti nti 

• General step. 

1. If mt~ = nt~ = 3 ,  stop; the sequence of 
templates tJ, j = i, i + 1, . . . ,  k is a de- 
composition for t,,,~,,~. Otherwise, go to 
step 2. 

2. Decompose t i into two templates mti , ntl 

x ~ and yi each of size max{3, [mt , /2]}  
x max{3, [nt , /2]}  as follows: 

Write the set of linear constraints cor- 

responding to the problem i 
i i xm ,,~ , [] y,~ ,,%,, using the relationship 

described at the beginning of section 2. 
Solve this problem by using one of the 
previous algorithms. If no feasible so- 
lution exists, stop; the given problem is 
infeasible. Otherwise, to go step 3. 

3. t k+l = x i, t k+2  = y~, k = k + 2, i = i + 1. 

Go to 1. 

8 Conclusions 

Two algorithms have been developed to solve 
the template-decomposition problem. They are 
guaranteed to find a solution for the problem 
if one exists. Both algorithms use linear pro- 
gramming to evaluate the nodes of the search 
trees. Future research directions include devel- 
oping relationships between the geometry of the 
linear-programming problem and the shape of 
the templates, improving the search-tree prun- 
ing, and generalizing the approach to templates 
with nonrectangular support. This last area 
would involve merging decomposition of bina- 
ry morphological templates with the gray-scale 
decompositions. 

Appendix A: Linear-Programming Concepts 

A linear-programming problem is an optimiza- 
tion problem. The objective is to maximize or 
minimize a linear function subject to a set of 
linear constraints. A linear program can be writ- 
ten in the mathematical form m a x ~ { c T x [ A x  < b}, 
where c E R ~ is the objective function, x E R ~ is 
the vector of decision variables, A E R m×'~ is a 
given matrix, and b E R m is the right-hand-side 
vector. A vector x that satisfies all the con- 
straints of a linear program is called a feasible 
solution for the linear program, and the set of 
all feasible solutions is called the feasible region. 
At each node of the search tree of section 3, 
we must check for the existence of a feasible 
solution for the set of linear constraints at that 
node. 

Associated with any linear program there is 
another linear program called the dual. For 
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example, if the given linear program, the primal, 
is maxx{cTxlAx <_ b}, then the corresponding 
dual is min~{TrbllrA = c, ~r >_ 0}, where 7r c R m 
is a row vector. ~ri is called the dual variable 
associated with the primal constraint i. The 
fundamental duality theorem states that if either 
the primal or the dual problem has an optimal 
feasible solution, then the other does also and 
the two optimal objective values are equal. As 
a result to the previous property, solving the 
primal problem is equivalent to solving the dual 
problem, and this result can be applied to our 
problem. By rearranging the rows of inequality 
(I), it can be written in the following form: 

Xl 

Xl 

Xl 

+ Yt 

x2 + Yl 

X2 

X2 

x3 + y~ 

X3 

x3 

+ Y2 

+ Y2 

+ Y2 

_< ta (1.3.1) Ul l  , 

_ t4 (I.4.1) u,2, 

+ Y3 _< t~ (I.5.1) uls, 

< t2 (1.2.1) u21, 

< tz (I.3.2) ue2, 

q- Y3 --< t4 (I.4.2) uz3, 

_< tl (I.1.1) ua ,  

_< t2 (1.2.2) ua2, 

+ Ya -< t3 (1.3.3) u a a  , 

where uij are the dual variables corresponding 
to the constraints of the original system. 

Looking for a feasible solution for the previ- 
ous system subject to an additional equality con- 
straint is equivalent to maximizing the sum of 
the variables in the left-hand side of the equality 
constraint subject to inequality (I). For exam- 
ple, if the additional constraint is xl + Yl = ta, 
then the existence of a feasible solution can be 
checked for by maximizing the function Xl + yl 
subject to the previous set of linear constraints. 
If, after the problem is solved, the optimal ob- 
jective function value equals to t3, then the given 
problem has a feasible solution. On the other 
hand, if xl + yl < ta, then the given problem 
has no feasible solution. Writing the dual of the 
previous problem leads to the following linear 
program: 

Minimize 

t3u11 -I- t4u12 -I- t5u13 -t- t2u21 -t- t3u22 -t- t4u23 

-t-tlu31 + t2u32 -I- t3u33 

subject to 

Ull q- U12 + U13 = 1 

U21 4" U22 "}" U23 = 0 

U31 "t- U32 -t- U33 ----- 0 

Ul 1 .st. U21 a c ,//,31 = 1 

Ul 2 + U22 9¢. U32 ~_~ 0 

U13 + U23 -1- U33 ~ 0 

uij > O. 

It is obvious that the dual has a very spe- 
cial structure. Problems with such a structure 
are called transportation problems. The trans- 
portation problem can be stored in an efficient 
form by using the transportation matrix. In this 
matrix the variable u{~ corresponds to the cell 
(i, j). The constraints specify the sum of the 
variables in each column and row in the array. 
The transportation problem has the following 
integer property: If all the elements in the 
right-hand side of the equality constraints are 
positive integers, then at least one optimum so- 
lution of that problem is an integer vector. The 
following is a description of a primal-dual al- 
gorithm for solving the uncapacitated balanced 
transportation problem efficiently. The given 
problem is of the following form: 

Minimize ~ ~ ci~xij 
{=1 j= l  

subject to 

m 

E xlj = ai, i =  1 , 2 , . . . , n ,  
j=l  

~ Xij = bj, j = l ,  2,...,m, 
i=1 

zlj _> 0 for a l l i ,  j, 

where al, b 3 _> 0 for all i, j and ~ i  ai = ~ b~. 
The dual problem is the following: 

Maximize ~ aiui + ~_, b~v~ 
i j 
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subject to 

u i + v j < _ c i ~  for a l l i ,  j .  

The algorithm is as follows. 

• Initialization. Find a dual feasible solution 
for the given problem. This can be done 
by selecting the dual solution to be ui = 

min{e i j l j  = 1, . . . ,  n ) ,  vj = min{cl 5 -u~ l i  = 
1, . . . ,  m}. Let ~ = c i j - u i - v j ,  xij = 0 for 
all cells (i, j ) .  

• General step. 

1. Identify all rows i satisfying )-~j x~j < al, 
and label all such rows with label (s, +). 
All of these rows are now labeled and 
unscanned. 

2. If the list of labeled and unscanned rows 
and columns is empty at this stage, go 
to step 4. Otherwise, select a row or a 
column for scanning, and scan it. 

To scan row i, label each column j ,  
where j is such that column j is unla- 
beled so far and ~ = 0 with the label 
(row i, +). 
To scan column j,  label all rows i, where 
i is such that row i is unlabeled so far 
and xij > 0 with the label (column j, - ) .  

The rows or columns that are newly labeled 
in this step are at present labeled and 
unscanned. The row or column that is 
scanned in this step is now labeled and 
scanned. Go to step 3. 

3. Check whether any of the columns with 
unfulfilled requirements, i.e., a column j 
such that ~ i  xij < bj, is labeled. If such a 
column is labeled, go to step 5. If none of 
the columns with unfulfilled requirements 
have been labeled, go to step 2. 

4. Let 6 = m i n { ~  I row i is a labeled row, 
column j is an unlabeled column}. Let the 
new dual feasible solution be (u, v) where 

ul = u i + 6  if row i is labeled, 
= u~ if row i is unlabeled, 

%. = v~ - 6 if column j is labeled, 
= vj if column j is unlabeled. 

Keep all the labeled columns as labeled 
and scanned. Change the state of each 

. 

labeled row into labeled and unscanned. 
Update  ~-~. Go to step 2. 
Let column Jl be the column whose label- 
ing led to this step. Suppose that the label 
on column Jl is (row il, +). Add 0 to 
the present amount of flow in cell (il, Jl). 
Now look at the label on row il. Suppose 
it is (column j 2 , - ) .  Add a - 0  to the 
present flow in cell (il, J2). Now look at 
the label on column j2, and so on. Repeat ,  
adding 0 and - 0  alternately to the flow 
amounts in the cells indicated by the la- 
bels until a row, say, row ik, with a label of 
(8, +)  is reached. Let  0 = min{a i - -~k  xi~, 
b j -  ~ k  xkj over all cells (i, j )  with a - 0  
alteration). Substitute the value of 0 to get 
the new z. If x fulfills the requirements 
in all the columns, i.e., ~ i  xij = bj for all 
columns j ,  it is an optimum feasible so- 
lution of the transportation problem and 
the algorithm is terminated. Otherwise, 
erase the old labels on all the rows and 
the columns. Go to step 1. 

A complete study of this subject can be found 
in [15]. 

Appendix B: Properties of the Set of Feasible 
Solutions of 7r 

It is worthwhile to note the following properties 
of the set of feasible solutions of ~r: 

1. If t is a given template with integer weights 
and if the corresponding ~r has a feasible 
solution, then there exists an integer feasi- 
ble solution for the problem 7r. This follows 
from the integer property of the transporta- 
tion problem. 

2. If (z0, y0) is a feasible solution for 7r, then 
(x0 + 6, y0-6)  is also a feasible solution, where 
6 is any real number. This implies that either 
7r has no feasible solution at all or that it has 
an infinite number of solutions. 

3. The set of feasible solutions for 7r is not 
necessarily convex. For instance, let t = 
[1, 2, 1, 2, 1]. We want to decompose this 
template into two templates x and y each 
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of dimension 1 x 3. A feasible solution for 
this problem would be Xl = [1, 0, 1], Yl = 

[0, 1, 01. Also, x2 = [1, 2, 1], Y2 = [0, -1 ,  0] 
is another feasible solution. Let us take the 
point (z, y) that is in the middle of the line 
segment joining (Xl, yl) and (x2, y2). Ob- 
viously, x = [1, 1, 1], U = [0, 0, 0] is not a 
feasible solution of the given problem. 
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