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A S Y M P T O T I C  PATHS F O R  S U B S O L U T I O N S  OF 
Q U A S I L I N E A R  ELLIPTIC E Q U A T I O N S  

JUHA HEINONEN 

Let u be an entire lower semicontinuous subsolution to the quasilinear 
elliptic equation divA(m,Vu) ---- 0 in R n. It is shown that if u is not 
bounded above, then there exists a path going to infinity along which 
u tends to infinity. The result extends works of Talpur, Fuglede, and 
others. Growth aspects of subsolutions are also studied. 

i. INTRODUCTION 

A classical result of F. Iversen [13] states that if f is a non-constant 
entire analytic function, there is a continuous path  F in the complex 
plane going to infinity such that  f ( z )  --~ cx~ as z --* c~ along F. Such 
a pa th  is called an asymp to t i c  path.  Today a relatively simple proof 
of that  result can be given which applies to all continuous subharmonic 
functions in R 2 (thus replacing log IfI in Iversen's theorem), see [7]. To 
prove the result for general subharmonic functions in R n, n k 2, is a 
considerably more difficult task. M. N. M. Talpur [19] was the first to 
show tha t  in the plane an asymptotic path  can always be found; shortly 
after B. Fuglede [4] settled the problem in every dimension by using 
Brownian paths and fine potential  theory. Since then several different 
proofs for Fuglede's theorem have appeared including a probabilistic 
proof (T. Lyons [14]), another proof in terms of fine potential theory 

(B. Fuglede [5]), and at least two "classical" proofs (L. Carleson [2] and 
W. K. Hayman [8]). See also B. Davis and J. L. Lewis [3]. 

This paper was written while I was in Bonn in the fall 1987. I take this opportunity 
to thank the Mathematics Department in Bonn for its hospitality. I also thank Tero 
Kilpel~iinen @ho read the manuscript and shortened some of my arguments. 
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In this paper we prove the existence of an asymptot ic  path for subso- 
lutions of the quasilinear elliptic equation 

(1.1) div A(x,  Vu) = 0 

where A(x,  V u ) .  Vu ~ ]Vu[ p and 1 < p < oo. The accurate description 
of (1.1) is given in Section 2. 

We naturally have to explain precisely what we mean by a subsolu- 
tion in this connection. Indeed, we consider so-called A-subharmonic 
functions which were introduced in [10]. Let us recall the definition. A 
continuous (weak) solution to the equation (1.1) is called A-harmonic, 
and a function u defined in an open set f~ C R n, n >_ 2, is called A- 
subharmonic if 

(i) u is upper  semicontinuous (u.s.c.), 
(ii) - c ~  <_ u < oo, and 

(iii) for each domain D CC ~2 and each A-harmonic h E C(D) ,  u <__ h 
in OD implies u < h in D. 

Our first main theorem now reads as follows: 

1.2. THEOREM. Suppose that u is A-subharmonic in R n and not bounded 
above. There exists a continuous path P going to infinity such that 
u(x)  ~ oo as x ~ cx~ along P. 

It was shown by T. Kilpelginen and the author in [10] that  each subso- 
lution to (1.1) has a unique A-subharmonic representative so that Theo- 
rem 1.2 is about  subsolutions as well. On the other hand, A-subharmonic 
functions are not subsolutions in general (see Section 2). 

In order to appreciate the existence of an asymptot ic  path, it is per- 
haps worth mentioning that,  if 1 < p < n, for every operator A there 
are entire A-subharmonic functions (in fact. entire subsolutions to (1.1)) 
which are non-negative, unbounded,  and vanish at a dense se~ of points 
in R ". In the subharmonic case A(x,  h) = h this is classical and well 
known, and the general case is treated in i l l ] .  

Another classical result of complex analysis states that  if f is an entire 
function having k distinct asymptotic  values, k > 2, then the lower order 

1 This is the famous and seminal Denjoy-Ahlfors of f is at least 7k. 
theorem, see e.g. [1]. For a subharmonic function u in R" the analogous 
problem asks the relationship between the lower order of u and the 
number  k _> 2 of distinct components of the set {u >__ L} for some large 
number  L. Talpur [19], [20] and Hayman [8] proved that the lower 
order is at least a positive constant depending only on n and k, and 
this constant tends to infinity with k. The second main result of this 
paper, Theorem 4.7 in Section 4, is an extension of that  theorem to A- 
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subharmonic functions. We thus extend the work of V. M. Miklyukov 
[17] who proved Theorem 4.7 for continuous subsolutions of (1.1). 

Our proofs are based on ideas taken from [81 and [33 as well as on 
some techniques and results from nonlinear potential theory [10], [12]. 
The critical step is to establish the existence of an asymptotic  continuum. 
The existence of an actual path  can then be deduced as in [8]. The main 
novelty is that  the very properties of subharmonic functions (submean- 
value property, representation by potentials, linear structure) play no 
r61e in our reasoning. On the other hand, we do not know whether  the 
pa th  "in Theorem 1.2 can be chosen to be sectionally polygonal as it is 
the case for ordinary subharmonic functions [2], [14], [5]. Neither do we 
know whether  there are reasonable quanti tat ive estimates for the length 
of the path,  el. [3]. What  is more, it would be extremely interesting to 
know whether  there is a probabilistic approach, or an approach similar 
to that  of Fuglede [4], [5], to the questions of this paper. 

There is an analogy between potential theory and function theory in 
higher dimensions as well. Namely, if f : R n ~ R n is a quasiregular 
mapping, then log Ifl is an A-subharmonic function for an appropriate 
operator  A, A ( x , h ) .  h ~ lhl" , see e.g. [18], [6]. Thus our results 
apply to entire quasiregular mappings and can be viewed as extensions 
of the results of Iversen and Ahlfors. We notice however that  in this 
particular case different methods can be used; indeed, Iversen's theorem 
for quasiregular mappings was proved by O. Martio et al. in [15, 3.18] 
and a generalization of Ahlfors's theorem is due to V. M. Miklyukov 
[17]. 

Our notat ion is standard. Throughout,  f~ is a connected open set in 
R n, n _> 2, and D CC f~ means that  D, the closure of D, is compact 
in f~. I f B  = B(z , r )  = {g E R n : Iz--Vl  < r} is an open n-ball and 

> 0, then CB = B(z ,r  and similarly for the closed ball c r B =  
B(z,~rv). The Lebesgue n-measure of a measurable set E is ]El, and 
the integral averages are marked as usual with ~ fE udz = f E  udz. We 

let c, co, Cl, ... denote various positive constants which are not necessarily 
the same at each occurrence, and c(a, b, ...) denotes a constant depending 
Oil  G, D, . . . .  

2. PRELIMINARIES 

In this section we recall the definition and some basic properties of 

A-subharmonie functions. 

Let A : R n • R n --~ R n be an operator satisfying the following assump- 

tions for some numbers 1 < p < o~ and 0 < (~ _</3 < oo: 

(2.1) the function x ~-§ A(x,h)  is measurable for all h E Rn and 
the function h H A(z,  h) is continuous for a.e. z E R~; 
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f o r a l l h E R  ~ anda .e ,  x E R  ~ 

(2.2) 
(2.3) 
(2.4) 

A(x, h) . h > ~lhE p, 
fA(x, h)l _< Zihi p-l ,  

(A(x, hl) -- A(x, h2)). (hi - h2) > 0 

whenever hi • h2, and 

(2.5) A(x, ,kh ) = [,klP-2 AA(x, h ) 

for all A E R, )~ r 0. 
A real valued function u in ~ is said to be A-harmonic if it is a 

continuous weak solution to the equation 

(2.6) div A(x, Vu) = O. 

In other words, u is A-harmonic if it is continuous, locaIly in the Sobolev 
space Wfl(f~), and satisfies 

fa A(x, Vu) �9 V p d x  = 0 

for all !P E C~(~2). It is well known that weak solutions to (Z6) are 
actually continuous. 

A function u in F/, - e c  _< u < co, is A-subharmonic if it is upper  
semicontinuous (u.s.c.) and satisfies the comparison principle: for each 
domain D CC f~ and each A-harmonic function h E C(D), u < h in OD 
implies u _< h in D. The function u is A-superharmonic if and only if 
- u  is A-subharmonic. 

Unfortunately, the sum of two A-subharmonic functions is not A- 
subharmonic in general. To some extent this lack of linearity can be 
compensated by using the following simple observations: if u is A- 
subharmonic, so is A u + #  whenever ~ >__ 0 and # E R; if u and v 
are A-subharmonie, so is max(u,  v). 

The model equation to (2.6) is the so-called p-Laplace equation 

div([Vul p-2 Vu)  = O, 

and in this case the terminology p-harmonic and p-subharmonic is cus- 
tomary. The fundamental  p-subharmonic function in •n is 

f - lx l~  ~ ; ,  p # ~, (2.7) u(x) 
I. log Ixl, p = n. 
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A subsoIution to the equation (2.6) is a function u in loc Wl(f~) sat- 
isfying 

fa A(x ,  V u )  . V ~ d x  <_ 0 

for a11 non-negative ~ E C~(f~).  It was shown in [10] that  if u is a 
subsolution to (2.6), then u has a unique A-subharmonic representative 
defined by  

(2.8) u(x)  = ess l imsup u(y). 
y--~x 

On the other hand, if 1 < p < n, then an A-subharmonic function need 
not be locally in W 1 as displayed by the examples in (2.7). If p > n, 
all A-subharmonic functions are continuous and thus subsolutions, see 
[10, 3.20]; in fact, for p > n the considerations in this paper could be 
somewhat  simpler. 

2.9. PROPOSITION. [10] I f  u is A-subharmonic in f~, then (2.8) holds 
at each point  x E f~. Further, for each domain D CC ft there is a 
decreasing sequence of  A-subharmonic functions uj E C(-D) such that 
l i m u j  = u in D; the functions uj are subsdut ions  o f (2 .6 )  in D. 

Both  the "ess lira sup" proper ty  and the approximation proper ty  will 
be used in this paper. We do not explicitly need the fact that  the 
approximating functions are subsolutions. Observe that  if uj is any 
decreasing sequence of A-subharmonic functions, then u = lim uj is A- 
subharmonic (possibly -- - ~ ) .  It is also true that  being A-subharmonic 
is a local proper ty  [10]. 

We shall make use of the following weak submean-value inequality 
which is by now rather  s tandard for subsolutions to equations of the 
type  (2.6). 

2 .10.  PROPOSITION. Suppose that u is non-negative and A-subharmonic 
in f~. I f B  = B ( x o , r )  C ft and 0 < a < 1, then 

f 
(2.11) sup u _< c0(1 - ~r)-~-/- u dx 

B(xo,ar) J B(xo,r) 

where ~ = n, i f  p < n, ~ = 2p, i f  p >__ n, and Co = co(n ,p ,a / /3)  > O. 

PROOF: Since u is lower bounded,  it is a subsolution of (2.6) by Corol- 
lary 3.13 in [10]. Thus (2.11) follows from the est imate [10, (2.19)] 
together  with the fact that  ess sup u = sup u. 
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2.12. C o m p a r i s o n  p r inc ip l e .  [10, 3.7]. Suppose that  f~ is bounded 
and u, - v  are A-subharmonic in ~2. If 

lim sup u(y) <_ lim inf v(y) 
y-"*'x y'--'+x 

for each x in Oft and if the left hand side and the right hand side are 
not simultaneously +ec  or - c o ,  then u _< v in ft. 

3. ON THE COMPONENTS OF {U ~ C} 

The goal of this section is to prove 

3.1. PROPOSITION. Suppose that u is A.subharmonic in a bail B = 
B(xo,  r) and 0 _< u < 1. Suppose that x l ,  x2 are two points in 7B1 such 
that u(xa),u(x2) >_ 2e > 0. There is a number  50 = 5o(n,p,e ,a ,  fl) > 0 
such that i f  I x l - x2 t  < 5or, then xl and xz belong to the same component 

3-- of the compact set { u >_ e} N x B. 

The Proposition 3.1 is the main ingredient for the proof of Theorem 
1.2. In fact, once we have established Proposition 3.1 and the existence 
of an asymptotic continuum, we may invoke the argument of Hayman 
[8, pp. 188-191] and deduce that  the required path actually exists. 

We start with a lemma, similar to Theorem 4.11 in [8]. 

3.2. LEMMA. Suppose that u is A-subharmonic in f~ and that D CC f~ 
is a domain. Let DL = {x 6 ~2 : u(x) >_ L > - e c }  N D and let K ( L )  be 
a component of  DL. Set 

j" u(x), x e K(L) ,  
v(x)  I, L, x e D \ K ( L ) .  

Then v is A-subharmonic in D. 

PROOF: Suppose first that  u is continuous in a neighborhood of D. 
Then v is continuous in D. Let U CC D be a domain and let h C C(U) 
be A-harmonic in U with v _< h in OU. If the open set V = {x E 
U : h(x) < v(x)} is not empty, then necessarily v = u in V. Thus for 
y E OV we have l im,-~y, ,ev u(x) = lim,--.y, ,ev v(x) = h(y), whence 
v = u _< h < v in V, which is absurd. It follows that  v is A-subharmonie 

if u is continuous. 
To prove the general case, we pick a decreasing sequence of functions 

uj such that  uj ---* u in D and each uj is A-subharmonic in a fixed 
neighborhood of D, see Proposition 2.9. Fix a point xo C K ( L )  and let 
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Kj(L)  be the x0-component  of the compact  set {ttj • L} n D. Then  
Kj(L)  D Kj+I(L). Sett ing 

y ~s(x), x e I~5(L), 
v j ( x )  I L, x e D\Kj (L) ,  

we obtain a decreasing sequence of A-subharmonic  functions converging 
to an A-subharmonic  function v0 in D. We show tha t  v0 = v in D. 
Indeed, it can be easily inferred tha t  K(L)  = CljIQ(L), whence for 
x e K(L)  we have vo(x) = limvj(x) = l imuj(x)  = u(x). If, on the 
other  hand, x e D\K(L) ,  then x is not in Kj(L)  for j big enough, 
whence vo(x) = L = v(x). Thus  v0 = v is A-subharmonic  in D as 
required. The  l emma is proved. 

Next we recall the definition for the variational p-capacity. If F is 
a compact  subset of a ball B, the p-capacity of the pair (F, B) is the 
number  

B) = inf JB IVuIP dx 
i *  

Capp(F, 

where u runs through the set {u ~ C g ( B )  : u > 1 on F} .  If U C B is 
open, we set 

capp(U, B) --- sup capp(F, B); 
F C U  compact 

and, finally, for an arbitrary E C B 

cap , (E ,  B) = inf capp(U, B). 
UDE open 

The  number  capp(E,  B) is the variational p-capacity of the pair (E, B). 
It is s t andard  tha t  for a Borel set E C B 

capp(E ,B)  = sup capp(F,B) .  
F C E  compact 

If E is a subset of a ball B, then  one denotes by ] ~ ( B ;  A) the A-potential 
of E in B. The  f u n c t i o n / ~  = ] ~ ( B ;  A) is the lower regularization of 
the r~duite R~ = inf{u : u is non-negative and A-superharmonic  in B 
with u _> 1 on E},  

. ~ ( x )  =- l iminf  n~(y ) .  
y---+x 

Basically classical arguments can be used to show that the function ~ 
is A-superharmonic  in B; see [11] for this. 
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The  following lemma,  which is essential ly due to V. G. Maz!ya  [16], is 
L e m m a  5.2 in [9] (in [9] it was assumed  tha t  E is compac t  and t < p __< n 
bu t  the  general case is similar). 

3.3. LEMMA. Let  E be a Borel set in a B  = B(z0,~rr ) ,  0 < ~ < 1, and  

let u = / ~ ( B ; A )  be the A-potent ia l  o f  E in B.  Then 

p ~  rt I 

u(x)  >__ c r , - t  c a p p ( E , B ) , - 1  

D 

for a11 x E erB. The constant c depends only on n, p, a , /3 ,  and or. 

By using L e m m a  3.3 we derive a Wiene r - type  es t imate  for A-subharmonic  
funct ions,  el. [3, L e m m a  1], [16]. For brevi ty,  we wri te  

r E ,  s) = eapp (E  f-I B ( z ,  s), B ( z ,  2s))s  p ' n .  

3.4. LEMlVIAo Suppose that  u is A-subharmonic  in B = B(xo ,  r) and 
0 <_ u < 1. Let  U = {x e B :  u(x)  < lu (xo )} .  Then 

(3.5) u(xo) <_ 2exp  -ca  r 
d0 

where ca = c l (n ,p ,a , / 3 )  > O. 

P R O O F :  W r i t e  U 1 = max(u  - -  lU(Zo),O). Then  E = {ul = 0} D U, and  
we m a y  clearly assume tha t  E r 0. If we denote  ak = Pp(xo, E ,  2 -kr ) ,  
k = 1, 2, ..., it is not  difficult to show tha t  

oo it~2 
E af~ -1 > c ~ p ( x o , E , s ) p  ~-~-l ds 
k = l  ,]0 8 

where  c > 0 depends  only on n and p. Thus  it suffices to verify tha t  

(3.6) ul (xo)  <_ exp -C l  a~ --=f . 
k = l  

To do this, let va = / ~ k l  (B; A) be  the  A-poten t ia l  of E1 = -~['] 1 B  in B.  
By L e m m a  3.3 

t .._k_ 

min Vl _> car ----r _> 1 - e -cai~-I , 
1 B  -$ 

and since I - ul >__ vl ,  we ob ta in  

_1__ 
m a x u a  ~ e - c a { - 1  

1 B  
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where c = c(n,p,a, fl) > 0. Now the function u2 = e r 
subharmonic with 0 _< u2 < 1 in gB1 and we similarly obtain 

whence 

m a x u 2  ~ e - C a ~  -1  , 
�88 

1 1 

m a x u l  < e - 4 ~ f : ~ + ~ : ~ )  
�88 

Continuing this way we arrive at the estimate 

1 
k 

- - c  . 
maN:  u 1 < e E.~=I a f  -1  
2 - k B  

and letting k --+ oo yields (3.6). The lemma is thereby proved. 

U 1 i s  A -  

PROOF OF PROPOSITION 3.1: To start with, we state the following 
simple consequence of the Poincar4 inequality: if E is a Borel set in R ~, 
x E R ~, and s > 0, then 

(3.7) 

where 

O(z,E,~) < c~,p(x,E,~) 

0(x, E, s) = IE n B(x, s)l 

and c = c(n,p) > 0. Indeed, it clearly sumces to prove (3.7) for 
compact sets E and in that  case the Poincard inequality implies for 

e Cg~ 2,)), ~ _> 1 on E n ~(x ,  ,), 

JB (~,28) JB(~,28) 

The est imate (3.?) is now immediate. 
We proceed to prove the assertion in Proposition 3.1. For i = 1,2 

3 - -  let Ki be the xi-component of the set {u >__ e} A gB. We assume that  
K1 fl K2 = ~ and derive a lower bound for Ix1 - z21. 

Set 
J" ~(~), x e K1, 

3 ~- Vl(X) e, x E 7B\I<1, 
3 and Ul = vl - s .  Then Ul is A-subharmonic in ~B by Lemma 3.2. Since 

0 < Ul < 1 and Ul(Xl) > c, Lemma 3.4 implies 

( 3 . 8 )  g _~< 2 e x p  - - c  1 ~pp(Xl,El,.S)p 1~-1 
J 0  
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where E1 ~-~ 3 B \ I ( 1  C {X ~ 3 B  : tt1(X ) < } t t l (X l )  }. Suppose that 
e(~l ,  E~, ~) _> ~ > 0 for 0 < ~ < ~ < ~x < ~/S. Then by (3:7) aria (3,S) 

C < 2 exp . c c ~  :-f = 2 exp  --cc~ -:-~ 
2 3 2 / /  

or  

81 ~ C382 
1 

where c3 = (2/c)  cc~=p , c = c(n,p,  a,/9) :> 0. By inductio~ one easily 
infers that there is a decreasing sequence of numbers  r / 8  = so > 81 ~> 
s2 > ... > 0 converging to zero such tha t  for j = 0, 1, 2, ... 

t 

(3.9) 2~j+1 _ ~i -< c4si+l, c4 = 2(2/c)ccF ' ,  c = 4 n ,  p,~,/9) > 0, 

and 

(3.1o) o(x~,E~,~j+~) < ~ .  

Similarly as above we set 

u(x),  x E I(2, 
v2(x) = e, x C } B \ K 2 ,  

3 0} and  u2 = v2 - e. 'Then u2 is A-subharmonic  in ~B and  {u2 > C 
K2 C E l .  We invoke the inequal i ty  (2.11) and  deduce f rom (3.9) and  
(3.10) t ha t  

sup u2 <_ co2 -[ u2 clx 
B(xl,sj +1) J B(zl,s~) 

_<co2~ [{u2 > O } F I B ( x l , s j )  i sup uu 
IB (x l , s j ) ]  B(zl,sj) 

<_ co2~c2 sup u2 
B(zl,sj) 

�9 -J 9J( ..J --< "'" ~ ~o" ~2 sup u2. 
B(~i,~/S) 

1 It follows We now choose c2 = c2(n,p, e, o G/9) > 0 such tha t  co2~c2 = 7" 
t ha t  

sup u2 _< 2 - j  sup u2 _< 2 - j .  
B(xl,sj+I) B(xl,r/8) 

If]Xl-X21 __ 82, the proof  is finished since s2 _> c~2so = 5o(n,p,c,o~,/9}r" ~ > 
0 by (3.9). We m a y  thus  suppose t ha t  Ix~ - x2[ < s2. Let j0 be the  
integer  such tha t  sjo+2 <_ ]Xl - x21 < Sjo+l. Then  

e _ sup u2 ~ 2 - j~ 
B(xl,Sjo+l) 

or j0 < log �89  2. It again follows tha t  ]x~ - x2[ > sj0+2 > c-~ j~ = 
6o(n,p, ~, a, /9) r > O, and  the  proof  of Propos i t ion  3.1 is complete.  
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We close this section by stating a suitable corollary to Proposition 3.1. 

3.11. LEMMA. Suppose that u is A-subharmonic in a bah B = B(xo,  r) 
such that u(xo) >_ L Jr- ~ > --c~ and suPB u ~ L -F M < o o ,  where c 
and M are posit ive constants. There is 6o = 6o(n, p, a, fl, c, M)  > 0 such 
that i f  ]x - x01 < 6or and u(x) >_ L + r then x can be joined to Xo by a 

3-- cont inuum F, P C 7B,  such that u > L on F. 

PROOF: Consider the A-subharmonic function v = M--~ max(0, u + ~ - 
L) in B. Then  0 _< v < 1 and v(xo) _> 2e', e' - ~--~ > 0 . -  ~ By 
Proposition 3.1 there is a number  60 = 6o(n ,p ,e ' ,a ,  fl) > 0 such that  
if tx - x01 < (~0r and v(x) _> 2e', then x and x0 belong to the same 

3-- If now u(x) > L + E and Ix x0l < (~0r, component  of {v >_ e'} M ~B. _ - 
then v(x) >__ 2~' and hence x and x0 belong to the same component of 

a - -  {u>L}n3-- {v >_ e'} Q ~B = _ ~B. The lemma follows. 

4. TRACTS AND GROWTH 

In this section we study tracts and growth of entire A-subharmonic 
functions in R n. Our results extend works of M. N. M. Talpur, see [8, 
pp. 177-185], and V. M. Miklyukov [17]. 

4.1. L i m i t  c o m p o n e n t s .  Suppose that  u is A-subharmonic in ~. If 
x0 E f/ and u(xo) >_ L > - e c ,  as in [8, p. 177] we define the limit 
component  K = K ( x o , L , ~ )  of the set {u ~ L} to be the union of 
all continua which lie in ~,  contain x0, and on which u > L. Equiva- 
lently, if ~j  CC Qj+l CC gl is any exhaustion of ~,  Uj~j = ~, then 
K(xo,  L, a )  = UjK(Xo, L,-~j) where K(x0, L,-~j) is the x0-component 
of the compact set {u >_ L} Q ~ j .  

4.2. LEMMA. Suppose that u is A-subharmonic in ~ and K = [((xo, L, ~) 
is a l imit component  of  {u >_ L}.  Set 

v(x) = { .(x), x e K, 
L, x e ~ \ K .  

Then v is A-subharmonic in ~.  

PROOF: Let ~j  CC ~j+l  CC ~ be an exhaustion of ~,  and let / ( j  be 
the x0-component of {u _ L} Q ~ j .  Then K = UjKj .  By Lemma 3.2 
the functions 

f x e Kj, 
vj(x) { L, x C a j \ K j ,  

are A-subharmonic in ~j .  Clearly vj(x)  < Vj+l(X) for x E ~ j ,  and 
l imvj (z )  = v(x) for x E ~. It thus remains to show that  v is u.s.c, at 

459 



HEINONEN 

each point x E f / ( see  [11]). To do this, we argue as in [8, p. 179]: Since 
the claim is immediate for x not in K,  we may assume that  x E K.  
Suppose first x E K.  If e > 0 is given, there is a neighborhood U 
o f x  such that  u(y) < u(x) J- r = v(x) + e for y in U. Thus, v(y) <_ 
max(u(y ) ,L)  < v (x )+r  for y in U, whence v is u.s.c, at x. Next suppose 
that  z E K \ K .  Then v(x) = L, and if u(x) <_ L, we obtain as above 
that  v is u.s.c, at x; thus suppose u(x) > L. Let B = B(x ,  r) be a ball 
such that  2B C f/ and let K1 be the x-component of {y E t2 : u(y) >_ 
L} n B. Then K1 n K = 0, since otherwise x would be in K.  Given e, 
0 < e < u(x) - L, there is by Lemma 3.11 a neighborhood U of x such 
that  u(y) < L + e  whenevery  is in U\K1.  Since v = L i n  K1. then 
v(y) < L + e = v(x) + e for y in U, and we conclude that  v is u.s.c, at 
x. This completes the proof of the lemma. 

A limit component K = K(xo,  L, fl) of {u _> L} is said to be thin if 
u _= L in K; otherwise we call K thick. We next show that  the number 
of thick limit components is limited in that  there are only countably 
many of them; this is no longer true for thin limit components as shown 
by Talpur [19]. 

4.3. PROPOSITION. Suppose that u is A-subharmonic in f~ and that 
It" = K(Xo, L, fl) is a limit component of {u >_ L}. Then K N Oa r @ 
(or K is unbounded i f  t2 = N'~). If K is thick, then K has positive 
n - m e a s u r e .  

PROOF: The first assertion is clear if K is thick, for otherwise the func- 
tion v in Lemma 4.2 would violate the maximum principle. If K is thin, 
the argument goes exactly as in [8, pp. 180 181]. 

To prove the second assertion, suppose that  K is thick. Let v be 
the A-subharmonic function in Lemma 4.2. Then there is y E K such 
that  v(g) > L, and by (2.8) there is a neighborhood U of y such that  
e s s supuv  > L. It follows that  0 < I{v > L} _< KI as desired. (Observe 
that  K is F~, hence measurable.) 

4.4. THEOREM. Suppose that u is A-subharmonic in R '~ and not bounded 
above. Let K be a Emit component of {u >_ L} such that u <_ M < 
0 n  I ~ .  

(a) I f  p >_ n, then K is thin. 
(b) I f  p < n and K is thick, then there is at least one thick compo- 

nent K1 of {u >_ L 1 } which is disjoint from K; moreover, u is 
unbounded on each such thick component. 

PROOF: Suppose first that  p _> n and u is bounded on some thick com- 
ponent K.  Then the function v in Lemma 4.2 is a bounded, non.constant  
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A-subharmonic function in R n. However, it follows from [10, (2.25)], see 
also [11, 5.4], that ,  if p > n, such functions do not exist. This establishes 
(a). 

The proof of (b) is more involved. We use the ideas from the proof of 
Proposit ion 3.1. 

Thus, let p < n and let K be a thick limit component of {u >_ L} 
such tha t  u < M < ec on K.  Since u is not bounded above, necessarily 
u(y) > M for some y C N n, and it follows that  there is a thick limit 
component,  say K1 of {u _> L1}, which is disjoint from K. Set 

f ~ (x )  - L, �9 e K, 
v(~)  [ 0, otherwise; 

U(X)--L1, x E K1, 

vl(x) = 0, otherwise. 

The functions v and Vl are non-negative, and they are also A-subharmonic 
in N n by Lemma 4.2. Choose r0 > 0 such that  v(xo), vl(yo) _> ~ > 0 for 
some z0,y0 E B(O, ro). Since v < M'  = M - L, it follows from Lemma 
3.4 that  for all r > 0 

( /o s _< 2M' exp - c l  ~p(x0, E, s 

where E = {x E R n : v(x) = 0}. By arguing as in the proof of Propo- 
sition 3.1 we find a sequence r : so > sl > s2 > ... > 0 converging to 
zero such tha t  

2S j+ 1 ~_~ 8j _~ C58j+ 1 

and 

e(zo, E, s~'+l) < c~ 

where ~ = ~ ( n , p , ~ , Z , ~ , M ' )  > O, ~ = c ~ ( ~ , p , ~ , Z )  = 2 - 1 - %  1 > O, 
and j = 0, 1, 2, .... 

Since {Vl > 0} C E, again as in the proof of Proposition 3.1 we obtain 

sup 
B(~o,Si+O 

f 
Vl ~ C02~+ Vl dx 

J B(xo,s~) 

_< co2~ t{~1 > o} n B(xo,~DI 
IB(~o,~j)l 

< co2~c2 sup vl < 1 sup 
- B ( ~ o , ~ j )  - 2 B ( ~ o , ~ s )  

... ~ 2 - j  sup  Vl : 2-JM1 
B(xo,r) 

sup vl 
B(xo,sj) 

Vl 
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where M1 = supa ,  t~ 1.  NOW for each j one can choose r = r(j) > 0 such 
that  B(0, r0) C B(xo, sj+l), whence 

s .~ sup Vl < 2"J2d~, 
B(z0,sj+l) 

and letting j ---+ oo yields M1 = oo as required. The proof of Theorem 
4.4 is complete. 

4.5. COROLLARY. Suppose that u is A-subharmonic in ~ and not 
bounded above. There is a number  L0 such that if  L > Lo, then u is 
unbounded on each thick Emit component of {u > L}. 

PROOF: If there is a thick limit component  K such that u < L0 < co 
on K,  then by Theorem 4.4 u is unbounded on each thick component  of 
{u > L}, L > Z0. 

4.6. T r a c t s .  Suppose that  u is A-subharmonic in R n and not bounded 
above. If L0 is the number  in Corollary 4.5, then, for L0 < L1 < L2, 
each thick limit component  of {u _> L1 } contains at least one thick limit 
component  of {u _> L2}. Therefore, the limit 

lim N ( L )  = No 
L--,oo 

exists where N(L) is the number  of thick limit components of {u > L}. 
The number  No, 0 __< No _< (x), is the number  of  tracts of an entire 
A-subharmonic function (we define No = 0 if and only if g is bounded 
above).  Note that  if No < oc, then there is L1 < c<) such that each 
thick limit component  of {u _> L} contains exactly one limit component  
of {u _> L'} for L1 < L < L ' .  

The above terminology is again adapted from [8]. 

We close this section by proving a result which can be viewed as a 
generalization of the celebrated theorem of L. V. Ahlfors, see e.g. [1], 
[8, p. 184]. 

The lower order & of an entire A-subharmonic function u is defined as 

= lira inf log M(r) 
r--+o, log r 

where M(r) = suPB(0,r ) u. 

4.7. THEOREM. There is an increasing continuous function A : [0, oo] --~ 
[0, oo] such that if  u is an entire A-subharmonic function in [~n and if  
No is the number of tracts of u, then the lower order of u is not less than 
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~(No). The function ~ depend~ only on n,p,~, and ~, and ~(t) -~ ~ as 
t--+ c~. 

PROOF: The  proof  is reminiscent  of the one given in [8, pp. 174-!76]. 
Since the  submean-va lue  p rope r ty  has to be replaced by the weaker  
inequal i ty  (2.11), the  results are not  as sharp as in the  subharmonie  
case. For  convenience we sketch the proof. 

We m a y  suppose t ha t  No > 2c0 where co >__ 1 is the cons tan t  in (2.11). 
F ix  an  integer  l, 2c0 < l _< No, and  choose a ball B0 = B(0,  r0) such tha t  
there  are l dist inct  th ick l imit  components  Kj  of {u > Lj }, j = 1, 2,..., l, 
which intersect  B0 and  on which u is unbounded .  Define the  funct ions 

{~(~) - Ls, x e Ks, 
vj(x)  = 0, otherwise; 

t hen  each vj is non-negat ive  and  A-subharmonic  in R n. Moreover,  we 
m a y  assume t h a t  Ms(r  ) = suPB(0,r ) vj > 0 for all r > r0. Let 

oj(~)  = o(o,  {vj > o} ,~)  

and  

vj dx. r s ( ~ )  = .(o,~) 

For 7 > 1 and  k = 0, 1, 2, ... denote  rk = rot  k. 
implies for j = 1, ..., l and  k = 0, 1, 2, ... 

The formula (2.11) 

_< co Os(~k+,)MS(rk+,). 

Thus 
l 

I I  Ms(~) _< y 
j = l  

where we also not iced  tha t  

I-I Mj(rk+, ) ,  
j = l  

1/t 
l 

<I 1 
- 7 ~ o,(rk+1) <_ 7" 

j=l 
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( 7 ) ~  1 Since co/I < 1, we m a y  choose  3' so t h a t  -~- ~ = 7; o b s e r v e  t h a t  

7 = 7(n,P,(~, f l ,  l) --* 1 as I --+ oe. The re fo re ,  

1 
M 0 ( r k )  _< ~ M 0 ( r k + l )  

(If w h e r e  -~fo (rk ) = l 

~ k + l  r0, 

M0( 0 
I t  follows that 

1/t  
, a n d  h e n c e  for  

_< 2-kMo(r). 

_< M0( ) 

a n y  r,  3'kr 0 _< r < 

= ~ --+ oo w h e r e  p log v as [ --+ ce.  Th i s  es tab l i shes  t he  des i red  conc lu s ion  

s ince we  h a v e  Mo ( to)  > O. 

5. THE COMPLETION OF THE PROOF OF THEOREM 1.2 

Suppose that u is A-subharmonic in [~n and not bounded above. We 

first remark that the considerations in Section 3 immediately leads to the 
existence of an asymptotic continuum F along which u tends to infinity 

(by an asymptotic continuum we mean a closed connected set which 
eventually leaves every ball B(0, R) in Rn). In particular, it is easily 
seen that if u is continuous, then one can choose F to be sectionally 
polygonal path. See [8, pp. 186 187] for the proofs. 

It was further shown in [8] that the existence of an asymptotic contin- 
uum indeed guarantees the existence of an asymptotic path once a local 

estimate similar to Lemma 3.11 is established. The argument in [8, pp. 
188 191] is merely topological and can be copied almost verbatim. It is 
left to the reader to check the details. 

We conclude that Theorem 1.2 is completely established. 
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