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Abstract

We develop structural results and an approximation for the throughput of an as-
sembly system fed by multi-station fabrication lines where releases are governed by
the CONWIP protocol and all machines have deterministic processing times but are
subject to random outages. This formulation is motivated by a printed circuit board
manufacturing process.

We demonstrate that while throughput of such systems is nondecreasing in machine
speed, there are cases where throughput declines when mean time between failures
(MTBF) increases or mean time to repair (MTTR) decreases. Using the concept of
“deterministic steady state,” which describes the behavior of the system in the absence
of failures, we derive a simple, closed-form aproximation for throughput. Comparisons
with simulation show that this approximation is robust over a wide range of conditions.
Finally, we observe that, throughput tends to be higher when the bottleneck is located
in fabrication rather than assembly.

1 Introduction

Queueing network models are attractive tools for planning, design, and control of manufac-
turing systems because of their ability to capture and evaluate the effects of variability and
congestion. Such models provide a useful complement to simulation (see Suri and Diehl
1987) and a basis for optimization. Because of their attractiveness, a number of commercial
software packages have appeared and continue to appear on the market (see Snowdon and
Ammons 1988 for a survey of queueing network packages).

One very real and important aspect of electronics and other manufacturing systems that
has not yet been satisfactorily addressed in queueing network models is assembly operations.
In the instance that motivated this study, multi-plane printed circuit boards (PCB’s) are
manufactured by fabricating the layers separately and then laminating them together. De-
spite the central role of assembly in this and other manufacturing systems, relatively little



analytical work has been done to model assembly-like queues. The bulk of the queueing
models that explicitly handle assemblies represent the fabrication lines feeding the assembly
operation as single machines, an assumption that limits their applicability to most manu-
facturing systems (Ammar 1980, Bhat 1986, Bonomi 1987, Hopp and Simon 1989, Lipper
and Sengupta 1987, Simon and Hopp 1988). To date, the only analytic model of assembly
systems that allows multiple station tandem fabrication lines feeding assembly is that by
Duenyas and Hopp (1991). However, this model is restricted to the case where all processing
times are exponential. The study of more general realistic systems has largely been limited
to simulation studies (Baker, Powell and Pyke 1990a, 1990b). Because simulation by itself
is tedious to use in a planning context and nearly impossible to use in a repetitive control
context, there is a compelling need for better analytical models.

In queueing network models of tandem production, the issue of scheduling releases is
often ignored (e.g., arrivals are assumed to occur according to a Poisson or other renewal
process). However, if the fabrication lines feeding assembly are treated as independent ar-
rival streams, an assembly-like queue can easily become unstable (Harrison 1977). Hence,
it is important to explicitly represent the scheduling linkage between releases to the var-
ious fabrication lines feeding assembly. In many manufacturing systems, the method for
controlling releases is MRP, in which releases are scheduled by subtracting fixed lead times
from due dates. More recently, in the wake of the success of Japanese just-in-time methods,
pull systems, such as kanban (Monden 1983, Ohno 1988), have become more widely used
in industry.

Assembly systems operating under kanban can be modeled using Markov methods (see
Hopp and Simon 1989). However, representing multi-station kanban fabrication lines feeding
assembly requires a very complex Markov model, due to the blocking caused by kanban and
the matching required at assembly. Instead, in this paper, we will restrict attention to the
CONWIP (CONstant Work-In-Process) production control scheme, which offers many of the
benefits of kanban (e.g., WIP control and more predictable outputs) but is simpler to model
(see Spearman, Woodruff and Hopp 1989 and Spearman and Zazanis 1989 for discussions
of CONWIP). In the simplest implementation of CONWIP, a new job is not started in
a line until an existing job exits the line and jobs are pushed between machines in the
line in first-come-first-served sequence. In an assembly system operating under CONWIP
(illustrated in Figure 1), jobs exit only from assembly. Hence, all fabrication lines begin a
new job whenever an assembly is completed. However, these simultaneously released jobs
need not be intended for the same assembly, since it is quite possible that the fabrication
lines have different WIP levels.

A second important modeling assumption required to represent an assembly system as
a queueing network is the distribution of processing times on machines. One possibility,
which is attractive from a computational standpoint, is the exponential. Duenyas and Hopp
(1991) developed computational procedures and structural results for the assembly system
operating under CONWIP where all fabrication and assembly times are exponentially dis-
tributed. But in many applications, including printed circuit board (PCB) manufacture,
operations are either automated or highly structured, so that under normal conditions,
processing times are nearly deterministic. Examples of PCB manufacturing processes that
exhibit such regularity include lamination, trimming, drilling, copper plating, photographic
expose, etching, coating, and optical inspection The variability in these operations comes
more from outages than from any intrinsic variability in the process. To capture this type of
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behavior, we will assume that fabrication and assembly times are deterministic except when
the machine is “down,” and assume that times between failures and times to repair are ran-
domly distributed. We term this assumption the deterministic-processing-random-outages
(DPRO) assumption and note that it has been used in the modeling literature in a variety
of contexts (see e.g., Akella and Kumar 1986, Buzacott 1971, Kimemia and Gershwin 1983,
Sharifnia 1988, Wijngaard 1979).

Given that an assembly system operating under CONWIP and DPRO is of practical
interest, it remains to arrive at a useful method for computing the parameters describing
its behavior (in particular, throughput), so that we can derive planning and optimization
procedures. One approach would be to replace the DPRO processing times with exponen-
tial processing times with matching means and use the previous work of Duenyas and Hopp
(1991). However, as Hopp and Spearman (1991) demonstrate, replacing DPRO systems
by corresponding exponential systems does not work well even for tandem closed queueing
networks not involving assembly. There is no reason to expect such a substitution to work
any better when assembly is considered. Furthermore, the approach of Duenyas and Hopp
for exponential systems is an approximation, so there could be a problem of error com-
pounding from the multiple levels of approximation. Because of this, we choose to analyze
the DPRO system directly and derive an approximation based on the particular behavior
of this system. The result is an analytically tractable means for computing throughput of
CONWIP assembly systems, which represents the DPRO counterpart to the exponential
results of Duenyas and Hopp.

The remainder of this paper is organized as follows. Section 2 introduces our notation
and problem formulation. In Section 3, we derive some key structural results for the system,
and in particular develop an approximate upper bound for throughput in an assembly



system. We use this upper bound to derive an approximation for the throughput in Section
4. In Section 5, we test our approximation against simulation for several different test
problems. Section 6 concludes the paper.

2 Problem Formulation

We consider k fabrication lines feeding an assembly machine, where line j consists of m;
single-machine workstations and contains n; jobs, as shown in Figure 1. We denote the
machines in line j by (j,4), where (j,1) is the first machine and (j, m;) is the last machine
in the line. Jobs are processed in order on machines (j,7),¢ = 1,...,m; and then proceed
to the assembly machine.

Under the DPRO assumption, service times are deterministic and we denote the service
time of fabrication machine (j,) as 7j;. The service time of the assembly machine is also
deterministic and is denoted by 74. Also under DPRO, machines are subject to failure and
the time between failures for fabrication machine (j,7) is assumed exponential with rate
Aji. Repair times for fabrication machine (j, ) are also assumed exponential with rate p; ;.
Failures and repairs of the assembly are exponential with rates A4 and p4, respectively.

The time a job spends at a machine (not in the queue) is taken to be the sum of its
required processing time plus the times of any failures that occur during processing (i.e.,
failures induce a preempt/resume, rather than preempt/repeat, disruption of jobs). An
output occurs when service at the assembly is completed. Under the CONWIP protocol,
this sends a signal to machines (j,1),5=1,...,k, to add a new job to their queues.

We begin observing the output process at time ¢ = 0 and define N; as the number
of outputs until time ¢. We are interested in finding the throughput for the system, § =
lim; . N¢/t. By Little’s law, the problem is equivalent to finding the average cycle time
(flow time, round-trip time) for any one of the lines.

3 Structural Results

Let {7, A, /74,24, p4/n} denote the assembly system shown in Figure 1 and let {7, A,
B/Ta, A4, pa/n} represent the throughput of this system. We define 7 to be a two-
dimensional array containing the service times of all fabrication machines. Similarly, A,
and p are arrays containing the failure and repair rates of the fabrication machines and n
is an array containing the number of jobs in each line. For purposes of analysis, we define
{TryAry e /TAs A4s ia/ 7, } to be a closed tandem queueing network that consists of machines
(ry1),...,(r,m,) in sequence with the assembly machine at the end (where the assembly
machine does not “assemble”, but instead processes single jobs. In the hypothetical line
corresponding to this network, jobs flow in sequence from machine (r,1) to (r,m,) and then
to the assembly machine. To represent CONWIP, we assume that after completing work
at the assembly, jobs return to machine (r,1). Let 8{r., A, ir /T4, A4, pa/n.} denote the
throughput of this hypothetical system.

Our first structural result shows that the throughput of these hypothetical lines represent
upper bounds on the throughput of the assembly system.

Proposition 1 8{7, A\, u/74, A4, pa/n} < min, 0{7, \r, pir/Ta, A4, pa/nr}



Proof: We begin by generating the successive failure and repair times at each machine
(J,%) and at the assembly. We let TJ‘,i denote the I;, downtime for machine (j,4). Similarly,
we let T!, denote the /** downtime for the assembly machine. We note that TJ{’,- is a time
interval. We let T;; denote the union of these intervals for machine 7 in line j. We define
fji(a,Tj;) as the time a job that starts being processed on machine i in line j at time a
loses to machine failures. We let the successive service completion times for machines and
assembly in system {7, A, /T4, A4, b4/n} be denoted by

X(jv'.)J’ X(J,l).';” X(],l),B’ ............
XA,I ’ XA,Q, XA,g, .............

and those for system {,, A, tir/74, A4, ba/n-} be denoted by

):((m‘),lz X(’v*).'z’ X’(,.,,-)';;, ............
Xa1,X4,2, X433 ceeennnnne

Without loss of generality, we can start both systems with all jobs in front of the first
machine in each line (machines (j,1)). Then for system {7, A, u/74, A4, pa/n}, we have

XGiye = Yiiye + 760 T f ¥y Tid) (3.1)

where Y(; ;) , is the time at which the pth job is ready to be processed at machine i of line
J and is given by

Yina=0 (3:2)

Yo = X1 forl<psn (3.3)

Yi1),p = maz(Xa,p-nj» X(j1)p-1) forp>n; (3.4)
Yii)p = maz(X(ji-1)p X(i)p-1) fori=2,...,m; (3.5)
Yap = maz(mjax X(j’mj),p,XA,p_l) (3.6)

Similarly for system {7, A, tr/T4, A4, 4/ 7 }, we have

X(r,i),p = Y(r,i),p + T(r,i) + f(}“,(r,i),pa Tr,i) (37)
where )
Y(r,l),l =0 (3.8)
Y(,.,l),p = X(,,l),p_l forl1<p<mj (3.9)
f’(,,l)'p = max(X'A,p_nJ,X(,,l)'p_l) for p > n; (3.10)
f’(,.,,'),p = maz(j((r,i—l),p,X(r,i),p—l) fori=2,...,m; (3.11)
?A'P = maz(x(r,m,),p,XA,p—l) (3.12)
Suppose that for some positive integer p, we have

Xiriyp 2 Xrjyp fori=1,...,m (3.13)

and .
Xap 2 Xap (3.14)

5 .



Clearly, (3.13) and (3.14) hold for p = 1. Notice that for any a; and a3 such that a; < a,
ay + 70 + f(a1,T;) € a2 + 75 + f(ag,Tj;). That is, if a job is available at any machine
earlier to be processed, then it will come out earlier or at the same time as before, regardless
of the machine’s failure schedule. Using this fact along with (3.1), (3.4), (3.5), (3.6), (3.7),
(3.10), (3.11), and (3.12), we get

Xrirprr 2 Xy o (3.15)

and )
Xap+1 2 Xaph (3.16)

Thus, we have shown that for all p > 1, we have X4, > X Ap- Since p/X 4, converges to

0{T7 ’\7 /‘/TAa /\Ay /‘A/n}$ and p/XA.P converges to O{T,., Ary ur/TAv ’\Ay /J'A/n'r}7 the pI'OpOSi-
tion is proven. O

Proposition 1 provides an upper bound for the throughput of the assembly system. Un-
fortunately, there is currently no computationally tractable way to calculate the throughput
of a tandem closed queueing network under the DPRO assumption exactly. However, Hopp
and Spearman (1991) have developed an approximation for such a system. We can use
their approximation along with Proposition 1 to obtain an approximate upper bound for
the assembly system.

Let 7(,4) represent the processing time of the slowest machine in line r disregarding
failures (i.e., b = argmaz;7(, ;). We can use the Hopp and Spearman approximation by
treating the assembly machine as the last machine for each line, just as we did in the
proof of Proposition 1. That is, we consider k different tandem closed queueing networks,
where network ¢ (¢ = 1,...,k) consists of n; + 1 machines where the n; + 1% machine is
the assembly machine. (Again, the assembly machine does not “assemble,” but acts like
an additional fabrication machine at the end of each line). Then their approximation for
0{7ry Ar, ir /T4, A4, b4/ 7, }, which we denote by 4, is given by

Trb

s Fﬁ— otherwise

i=1 i

R Z if m, > M,
6, = (3.17)

where “
Mr - Z::l Trvi
T(r.b)
1 + Eg¢b r t( ﬁr,i)

ezp( /‘r:zr)
,Br,i———'_" r|+'—"‘1_ez —Hri\T(rb) = Tr,i
niTeod) [ M( Pl=tri(T(r,p) )

nr+1

r = meTy Z Tri

1+ 3 i ’\rt(u, = Yr,i)
1 + Z'¢b Kri

€&r =



1 1 exp(—phr i(T(rp) = Tri
Vri = ———————[m(Tri + 1/ phri) - =t = 72
My T(rb) + gr pri v B
gr = —2¢

Hence, by Proposition 1, an approximate upper bound on {7, A, /74, Aa, pa/n} is

(my — 1+ exp(—pirigr))]

U = miné,.
r

In the next section, we use this bound to develop an approximation for the throughput of
the assembly system.

In the same manner in which we proved that the hypothetical tandem lines, {r,, A,,
tr/TAs A4y pa/ne}, 7 = 1,...,m,, achieve higher throughputs than the assembly system,
we can prove the (rather obvious) result that throughput is a nonincreasing function of
processing times.

Proposition 2 Iff > 1 and 7y > 74, then 0{7, A\, /T4, A4, pa/n} < O{r, A\, pu/7a, A4, pua/n}
Proof: The proof is very similar to that of Proposition 1 and is omitted. O

One is tempted to use the same sample path proof approach to demonstrate that
throughput increases whenever failure rates, A and A4 decrease or repair rates, u and pu
increase. However, this apparently intuitive result is not even true for all DPRO systems.

As a simple counter-example, consider a two machine tandem network with one job
and suppose that both machines have deterministic processing times equal to one minute.
Further suppose that only machine 1 experiences failures and they last exactly one minute
and occur with a spacing of one minute (i.e., from end of one failure to beginning of the
next). If we start the system with the job at machine 1 and the first failure occurs at t = 1,
then failures occur only when the job is being processed at machine 2, and have no effect on
throughput. Hence, a job will exit every two minutes, for a throughput of 0.5 jobs/minute
(30 jobs/hour).

Now suppose we reduce the failure times (i.e., the duration of the repair) from one
minute to 30 seconds in duration. Then the first failure occurs at ¢ = 1, the second at
t = 2.5, the third at ¢t = 4, and so on. But, in the previous case, a job was processed on
machine 1 during the interval between ¢t = 2 and ¢t = 3. Hence, the failure at ¢t = 2.5 causes
this job to be delayed. Similar delays occur in subsequent jobs. In fact, it is simple to
show that every other job is delayed at machine 1 for 30 seconds. Hence, a job is output
on average every 2.25 minutes, for a throughput of 0.44 jobs/minute (26.67 jobs/hour).
Shorter failures cause throughput to decrease in this case. '

This same example can be used to show that longer times between failures can cause
throughput to decrease. For instance, if failures remain of duration 1 minute, but times
between failures are increased to 1.5 minutes, the result is to delay each job at machine 1
(other than the first job) by 30 seconds. Hence, the output rate falls to 1 job every 2.5
minutes for a thoughput of 0.4 jobs/minute (24 jobs/hour).

This counter-intuitive behavior is also exhibited by assembly systems with more than
one fabrication line and more than two stations per line if the failure and repair times are
deterministic. Presumably there are some conditions on the independence and randomness
of the failure times that would ensure that throughput is increasing in repair rate and
decreasing in failure rate. However, it would seem that the sample path proof technique
used for Propositions 1 and 2 is not adequate for demonstrating this result.



4 An Approximation for Throughput

In this section, we derive an approximation for 6{, A, u/74, A4, ua/n}. To do this, we make
two levels of approximations. First, we observe that

I
Mo+ Ap d
where 0 is the throughput of the system with when the bottleneck machine (which is defined
by b = argmaz(j‘i)r(j'i)) is completely reliable. However, calculating § directly is not easy,
so we make a second level of approximation.

Our second level of approximation is based on the idea of “deterministic steady state”
(DSS) introduced by Hopp and Spearman (1991). A deterministic assembly system in
which all lines have at least a minimum number of jobs reaches a cyclic behavior, which
we term DSS, in which the bottleneck machine never becomes starved and the amount of
work at each machine moves through the same cycle over and over again. The minimum
number of jobs required in line j to ensure that the bottleneck never starves is M;, where
M; = (ta+ 221 Gq))/m. mj > M;,j=1,...,k, then the bottleneck machine never
becomes starved in (DSS), however all non-bottleneck machines will be cyclically starved,
and the eventual cycle of work at each machine is independent of the initial distribution of
WIP. If m; < M;, for some j = 1,...,k then a DSS cycle will be reached, but the bottleneck
will starve and the nature of the cycle may depend on the initial distribution of WIP. (See
Hopp and Spearman (1991) for further discussion of DSS.)

One difference between the tandem closed queueing network considered by Hopp and
Spearman (1991), and the assembly system here is that there are critical WIP levels for each
line M; (in a tandem closed queueing network, there is only one critical WIP level, since
there is only one line). Furthermore, these critical WIP levels depend on the location of
the bottleneck. In particular, it makes a difference whether assembly, which is shared by all
lines, or one of the fabrication machines is the bottleneck. Because of this, we develop two
different approximations for § under these two different situations. By using the resulting
approximations in (4.18), we get an approximation for the throughput of the assembly
system.

0{7-7 ’\,V‘/TAv ’\Aa #A/n} = (418)

4.1 Bottleneck at Assembly

We first consider the case where the assembly machine is the bottleneck, i.e., 74 > 7,7 =
1,...,k,3=1,...,n;. In this case, M; = (14 + Z?_jl 7;i)/Ta. What this means is that
if each line j has m; jobs, where m; > M;, then assembly is never starved under DSS.
Therefore, as long as there are no failures, the system’s throughput will be 1/74, since the
bottleneck will always be busy. Because, the bottleneck emits one job every 74 time units,
it acts to pace the line, so that all the other machines will get a new job every 74 time
units, will take 7;; time units to process it, and hence will be busy 7;;/74 of the time.

WIP Above M;

We can use the above properties of (DSS) to derive an approximation for the case where
the assembly machine is the bottleneck and m; > M; for all lines, as follows:

s

TA

b~ (4.19)



where § is the fraction of the time for which the assembly is not starved in the system where
the bottleneck is completely reliable, and the following assumptions hold:

(A1) Each time a non-bottleneck machine fails, no other non-bottleneck machine fails until
that machine is repaired.

(A2) At the time of a non-bottleneck machine failure, WIP in the system is equally likely
to be in any configuration along the DSS cycle.

Notice that (4.19) would be exact if § represented the true fraction of time assembly is
not starved. Unfortunately, § cannot be computed in any straightforward fashion, so we
approximate it by performing our computations under the conditions of Assumptions (A1)
and (A2). Hence, the quality of our overall approximation depends on the extent to which
these assumptions are naturally satisfied. In general, if failure rates are low with respect
to repair rates, and the rate at which DSS is reached, then Assumptions (A1) and (A2)
will aproximate reality. In the next section, we present simulation results under different
conditions to provide a direct test of their utility.

To use Assumptions (A1) and (A2) to derive an expression for §, we note that under
Assumption (A1) the system alternates between a period where all the machines are up, and
one where one non-bottleneck machine is down. By virtue of Assumption (A2), the point
where the failed machine has been repaired and all the machines are "up” is a regeneration
point. Then, invoking renewal reward theory, § = E[P;]/E[T}], where T is the time of the
first regeneration and E[P] is the expected time work is available at the bottleneck during
a regenerative cycle.

We can compute the expected length of the regenerative cycle as the sum of the expected
down time (which will depend on which machine failed) plus the expected up time of all
machines, which yields,

kO 1 1
E[h)=3 3 & il +5 (4.20)
Jj=li=1 K
where -
]
A= Z E A
j:l =1

To calculate the expected time that work is available at the bottleneck during a cycle, we
first note that a job from line §, arriving at assembly will spend z; = (m; — 1)T4 = 02, 75
waiting to begin assembly. This time represents a cushion against WIP gaps caused by
failures of machines in that line. That is, as long as that particular job is not delayed for
more than 2; time units, the assembly machine will not be starved. Under Assumptions
(Al) and (A2), there is no interaction between failures, and DSS is reached after each
failure. Hence, each time a failure occurs in one of the machines, the cushion represented
by z; is the only factor that protects the assembly machine.

Of course, in reality, sometimes failures occur before DSS is reached. For example, a
failure in one line may starve the assembly causing jobs from other lines to wait in front of
the assembly machine. If a failure occurs in one of the other lines at that point, then the |
WIP cushion in that line may very well be greater than z;. We examine the extent to which
such events “average out” with respect to throughput in our simulation tests in Section 5.



To calculate §, under Assumption (A1) and (A2), we define X to be a random variable
representing the length of the outage at the assembly machine caused by the failure of
non-bottleneck machine (j,:). For each station (j,1), we define a cyclic clock where time
0 corresponds to the start of the busy period and ends at the end of the idle period. We
let U be the time of the failure on this cyclic clock. Thus, the failure will either occur in a
busy (B) period, or an idle (I) period. If a failure occurs while the machine is idle, then we
let V represent the length of time until the next job arrives to the machine. We denote the
time the machine is down by Y. Then, as in Hopp and Spearman (1991), we write

maz{0,Y - z;} fUeB

maz{0,Y - z; -V} fUe€eI (421)

Mﬂa%ﬂ:{

We uncondition on Y by noting that Y is exponentially distributed with rate 4;;, and on
U by noting that P(U € B) = 7;;/7a, P(U € I) = (4 — 7;;)/74 and that {U € I} implies
that V is uniformly distributed on [0,74 — 7;;]. Then, defining 3;; to be the expected value
of X given that machine (j,1) failed,we get

ex iz
B = R L L el - D) (4.22)
KjiTA i

Hence, the expected time work is available at the bottleneck during a regenerative cycle is
given by:

k nj

E[P]=3 3 % Mi L + (4.23)

j=1i=1 ll’]v

Using (4.23) and (4.20), we can write §, the fraction of time that the bottleneck is not
starved by nonbottleneck failures as,

1+ Sh=1 T2 A, z(“], Bi.)
L+ S5 Ty 5 o

By using (4.24), along with (4.18), and (4.19), we get an approximation for the throughput
of the assembly system, 6,,, where

(4.24)

pa 0
6., = — 4.25
o pa+A4Ta (4.25)

Finally, we note that we can refine our approximation by incorporating the approximate
upper bound U, derived in the previous section. In some cases, 6,; may be greater than
U. However, U is an approximate upper bound. Hence, it is reasonble to use 8,, as an
approximation for the assembly system, where

8ap = min{8a1, U} (4.26)

WIP Below M;

If one or more of the lines have WIP levels that are lower than the critical WIP levels for
those particular lines, then the bottleneck will periodically starve in DSS. The system will be
driven by the slowest line. To approximate the throughput in this case, we first consider all

10 .



the lines that have WIP levels below M;. Suppose line j has WIP level m; < M;. Then, if we
considered the closed queueing network that consists of line j and the assembly machine, the
throughput of this closed queueing network, with no failures, would be m;/(302, 75 +74).
The DSS cycle in this case would depend on the initial distribution of WIP. If all the jobs
in this regular closed queueing network with no failures were at the assembly when we
start the process, then the DSS cycle will involve exactly one starvation period of length
g = Y2, 7ii — (m; — 1)74 of the bottleneck per round trip of job. If we start with other
initial WIP allocations, this starvation period may be broken into several intervals. We
ignore this latter case, since it only complicates the analysis without affecting the accuracy
of our approximation.

In the assembly system with no failures, the throughput will be governed by the slowest
line. That is, for all lines that have m; < M;, we calculate m;/(":2, 7;i + Ta), and the
throughput of this system with no failures will be the minimum of these values. The WIP
in the slowest line will exhibit the behavior described above for a tandem closed queueing
network. (Since this is the slowest line and there are no failures, a job from this line arriving
at assembly will always find a job from the other lines.) That is, if line r is the slowest
line, and we start the system with all the jobs in each line in front of assembly, then the
assembly machine will have a cycle where it processes m, jobs, then it will be idle for
g =311 Tri— (m, — 1)T4 time units. Then the same cycle will begin again. For all other
machines in line r, there will be a period, of duration, 7, ;, where the machine is processing
a job and then an idle period of duration 74 — 7, ;. Every m, jobs, the idle period will be of
duration 74 — 7 ;4 g. Hence, a failure in one of the machines in line r will starve assembly if
it occurs while a job is being processed, or if it occurs while the machine is idle and it lasts
more than 74 — 7.; + g or 74 — 7; time units depending on the duration of that particular
idle period.

The effects of a failure of a non-bottleneck machine in any other line than r on the
bottleneck machine is slightly more complex. A job from any other line always arrives to
the assembly machine earlier than a job from line r in the system with no failures. On

. ' . . ' o ) ’: TritTA _ _ n; g .
average, a job from line j,j # r will wait 2; = m; Z"'L——m, TA — 3,21 Tji time units
after it joins the assembly queue before its assembly begins. We note that this is an average
value. However, in the following approximation, we will treat it as if it is exact (that is,
as if a job from line j will wait z; time units every time.) In general, WIP levels below
M; are not likely to be used in practical situations, and as we will show later, our simple
approximation for this case works well.

Having defined z; as above (with z, = 0 for the slowest line) we define, for each machine
in the network, I to represent the idle times with duration 74 — 7;; and I to represent the
idle time with duration 74 — 7j; + g. Defining X,Y,V and U as in the previous section, we
get

maz{0,Y - z;} ifUeB
E[X|U,V,Y]={ maz{0,Y -V -2z} ifUel (4.27)
maz{0,Y -V -z} ifUel.

We uncondition on Y, U and V by noting that P(U € B) = m,7;;/(m,74 + g), P(U €
I)=(m, = 1)(ta=71:)/(mera+9), P(U€I)= (14— T1ji +9)/(m;7a + g). We define as
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previously, J3;; to be the expected value of X given that machine (3, ) failed. Then, we get

exp(—p;iz) 1 exp—4;i(T4 = 7ji)]
PR ind 4 Nl Lot RANSEN /%S0 € NS Iy JYPUPS BN
Bji MaTA + 9 Pj,i[ r(Tiit1/ 1) i (
We can use (4.28) in (4.24) to get 6, the fraction of time that the bottleneck is not starved
by the failure of a non-bottleneck machine. Then, our approximation for the throughput is
KA my

= )
Atpa Yl mritTA

Finally, we again refine our approximation by using U and (4.26).

m,~1+ezp(—p;:g))] (4.28)

Ba1 (4.29)

4.2 Bottleneck in Fabrication

We next consider the case where the bottleneck is in one of the fabrication lines. The
analysis in this case is similiar to the previous case. Assume that the bottleneck is in line
r, and its processing time is 7,;. We first derive the critical WIP levels. For line 7, this is
given by M; = (T4 + 502, Tii)/ Trb-

If m; > M; for all j, then the bottleneck does not starve in DSS. Our analysis is similiar
to the previous section. A job in line r, will spend z, = m,m, — Y12, 7; time units in the
queue in front of the bottleneck. Hence, a job in line r can be delayed 2, time units by
the failure of a non-bottleneck machine in line r, or by the failure of the assembly machine,
without causing the bottleneck to starve. If a machine in any of the other lines fails, then
this will delay the arrival of that job to the assembly machine. But, as long as a job is
not delayed in the assembly machine by more than 2, time units, this does not starve the
bottleneck.

The one critical difference between this case and that with the bottleneck at assembly is
that we must also consider the fact that the jobs in the faster lines spend some time in front of
the assembly machine waiting for jobs from line r. This wait is equal to m;7,p—74 —Z:Zl Tji
time units. Hence, the amount of time that a job in line j can be delayed without causing
starvation in the bottleneck machine in line r is equal to z; = 2z, + m;Tw, — T4 — T2 Tii.

Having defined the z; values in this manner, the rest of the analysis is the same as in
the previous subsection, and the approximation is given by

Oap = maz{f,1, U}

where 5
Hrb
0.4 = n__ 4.30
o1 Krb + Arb Trb ( )
where ) 1
5o L+ X iagen 2iilas = Bid) + Aalz; — Ba)
- n; A
1+ T8, T, st %‘}
and

exp(—H;i%) 1
i = T‘,'+ 1-ezpl—- i Trb — Tji
Pii HiiTrb [7is Nj,i( Pl=1s(7rs = 73)])]

The approximation for the case where m; < M; for one or more lines in this case is
similiar to that of the previous case. Since, as we noted before, M; is typically a very low
WIP level from a practical standpoint, since it causes the bottleneck to starve regularly
even without failures, we refrain from discussing this case in more detail.
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5 Computational Results

The real test of any approximation is how well it works over a range of cases. To test
the approximation described above, we generated a variety of problems, and compared the
throughput of the system from simulation, f,, with our approximation results. To provide a
balanced test, we tried to consider scenarios that are both “good” and “bad” with regard to
satisfying Assumptions (A1) and (A2). Assumption (A1) will be approximately satisfied if
machine availabilities are high. Assumption (A2) will tend to hold if times between failures
are long relative to processing times and the bottleneck is sharp (so that WIP accumulates
in its DSS configuration rapidly). Hence, we would expect our approximation to work well
for unbalanced systems with high machine availabilities. The critical question we must
address with our simulation analyses is how robust the approximation is for systems that
do not have these characteristics.

The cases summarized in Table 1 represent a range of scenarios that might be en-
countered in practice. Case 1 represents a system with perfectly balanced fabrication and
assembly, high availability (90.91%), and assembly and relatively long, infrequent failures.
(In real circuit board manufacturing applications, availabilities are typically even higher
(e.g., in excess of 95%) and failures are typically longer and less frequent, which would
tend to make our approximation work even better than indicated by our “high availability”
examples.) Case 2 represents a system with a pronounced bottleneck at assembly, high
availabilities (88.89%), and shorter, more frequent failures. Case 3 is identical to Case 1
except that the bottleneck has lower availability (66.7 %). Case 4 is identical to Case 2,
except that the bottleneck has been exchanged between assembly and fabrication. Case 5
represents a “large” example, with two 5-machine fabrication lines feeding assembly, high
availabilities with long, infrequent failures, and a less pronounced bottleneck at assembly.
Case 6 represents a less reliable system, with availability of assembly of only 55.5% and
availability of fabrication machines of only 71.43%, with short frequent failures. This last
example is deliberately intended to cause the approximation to work poorly. Case 7 is
identical to Case 5 except that the bottleneck has been exchanged between assembly and
fabrication.

For each case, we examined the accuracy of the approximation for a variety of WIP
allocations. We made use of a MOR-DS (Curry, Deuermeyer, Feldman 1989) program to
simulate the systems for different WIP allocations. For each case, we simulated the system
for 100000 time units 10 times and recorded the throughput each time. The throughput
we report represents the average of the 10 runs. Each simulation run (10 values) lasted
about 8 minutes on a 486 machine, while the computation involved in our approximation
took negligable time (less than 1 second for each of the examples considered). The values
resulting from simulation from our approximation are reported in Tables 2 through 6.

Case 1 is well-suited to the approximation by virtue of having high availability with
long infrequent failures, but is poorly suited to it by virtue of being balanced. Evidently,
the favorable failure and repair characteristics offset the balance problem to a large extent.
As shown in Table 2, the approximation works well for this example, with the maximum
error of 4.3%.

Example 2 is in some sense the reverse of Example 1. This example is well-suited to
the approximation by virtue of having a sharp bottleneck at assembly, but is poorly suited
to it by virtue of having short frequent failures. Interestingly, as shown in Table 3 the
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Parameter || Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7
TA 1 2 1 1 3.5 2 0.8
1/pa 100 8 20 8 150 10 150
1/Aa 10 1 10 1 10 8 10
11 1 1 1 2 1.7 0.5 1.7
1/ 11 100 8 100 8 150 10 150
1/pn 10 1 | 10 1 10 4 10
T2 1 1 1 1 2.1 1 2.1
1/A12 100 8 100 8 150 10 150
1/p12 10 1 10 1 10 4 10
T13 - 1 - 1 1.3 1.3
/A3 - 8 - 8 150 - 150
1//1,13 - 1 - 1 10 - 10
Ti4 - - - - 0.6 0.6
1/A14 - - - - 150 150
1//114 - - - - 10 10
T15 - 2.5 - 2.5
1/A15 - - - - 150 - 150
1/,[115 - - - - 10 - 10
21 1 1 1 1 0.8 0.8 3.5
1/An 100 8 100 8 150 10 150
1/pun 10 1 10 1 10 4 10
T22 1 1 1 1 14 1 1.4
1/A22 100 8 100 8 150 10 150
1/pa22 10 1 10 1 10 4 10
T23 - 1 - 1 3.0 - 3.0
1/A23 - 8 8 150 150
1/pa3 - 1 - 1 10 10
To4 - - - - 1.0 - 1.0
1/)a4 - - - - 150 - 150
1//1,24 - - - - 10 10
T25 - - - - 1.1 1.1
1/A25 - - - - 150 150
1/pas - - - - 10 10

Table 1: Summary of Data for Examples.
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ny | ng 6, 0. | Toerr
31 4]0.643 ]| 0.661 2.8
31 310.634 | 0.649 2.4
21 210.432 1 0.436 0.9
41 410.64710.674 4.2
5] 510.667 | 0.696 4.3
2| 30.440 | 0.447 1.6

Table 2: Results for Example 1.

ny | Ng 0, Oap %err
2| 210.28410.280 | -1.5
3| 3(0.383(0.387| 1.0
4| 310.400|0412| 3.0
4| 410428 (0437 2.1
5| 3104050415 2.5
5| 40.434 | 0.440 14
5| 510442 | 0443 | 2.3

Table 3: Results for Example 2.

approximation also works well for this case, with a maximum error around 3%. It seems
that having either a distinct bottleneck or high availabilities with long infrequent failures
is sufficient for the approximation to perform well.

Clearly, another way in which the bottleneck can be sharp, all other things being equal,
is for it to have a lower availability than the other machines. If this is the case, then, as
in the case where the bottleneck has longer processing times, WIP will tend to accumulate
quickly at the bottleneck and hence the system will frequently be in (or close to) DSS at the
time of nonbottleneck failures. In Example 3, we tested this assumption. The fabrication
machines in this example are identical to those in Example 1. The assembly machine has
the same processing time as in Example 1 but it fails more often, resulting in an availability
of 66.7%. Evidently, a sharp bottleneck due to availability also causes the approximation
to work well, as evidenced by Table 4, which shows a maximum error of 1.6%.

In Example 4, we consider the same system as Example 2, but with the bottleneck
machine in one of the fabrication lines. Specifically, we exchange the assembly machine
with machine 1 in fabrication line 1. As shown in Table 5, the approximation has similar
accuracy to that exhibited for Example 2. Apparently, the location of the bottleneck does
not critically affect the accuracy of the approximation. Note, however, that the throughput
is affected by the location of the bottleneck. The throughput for the case with the bottleneck
in fabrication is higher than that for the case with the bottleneck in assembly for every
allocation of WIP. We discuss this issue further below.

In Example 5 the fabrication lines are not balanced and the system is larger than all
of the previous examples, consisting of a total of 11 machines. Moreover, the bottleneck,
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ny | ng 6, 0ap | Yoerr
2] 2103230320 -1.0
2| 3103330328 -1.6
3| 310.468 | 0.476 1.7
3| 410.482]0.485 0.6
4 410498 |0.494| -0.8
5] 510.505]0.511 1.2

Table 4: Results for Example 3

ny | ng 'R 0ap | Toerr
31 310.400](0.411 2.8
41 310.429 | 0.440 2.6
3| 410.404 | 0.415 2.7
41 410434 0.440 14
41 510437 0.441 0.9
51 410441 0.444 0.7
5| 510443 | 0.444 0.2

Table 5: Results for Example 4.

which is at assembly is not as pronounced as in Examples 2 and 4. In spite of these factors,
however, the approximation works well, with errors for all WIP allocations within 3%, as
shown in Table 6.

Examples 1 through 5 had all machines with availabilities close to 0.90. Even though
in practice, availabilities are typically this high or higher, we tested our approximation
against simulation for a system with low availabilities to see how much it is degraded.
Example 6, as we noted earlier, has availability of assembly of only 55.5% and availability
of fabrication machines of only 71.43% with short frequent failures. However, it does have
a sharp bottleneck at assembly. Table 6 shows that while the approximation does not work

ny | no 0, | 0Oap | Terr
2| 210.109 | 0.109 | 0.0
3| 310.156 | 0.155 | -0.7
3| 40404 0415 2.7
4| 410434 | 0.440 14
41 510437 0.441 0.9
5| 40441 0.444 0.7
5| 510443 | 0.444 0.2

Table 6: Results for Example 5.
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n | ny s | 0,y | Toerr
3| 210.167|0.161 | -3.6
31 3101930190 | -1.6
3| 402020208 3.0
4| 310.200|0.206 | 3.0
4| 4102180224 | 2.8
5| 5023|0246 | 4.3
3] 5102100219 43

Table 7: Results for Example 6.

as well as in the previous examples, which is expected, since DSS would virtually never be
reached in this system, the approximation still yields results within 4.3% of the simulation
values.

Finally, we return the the issue that arose in our discussion of Examples 2 and 4 re-
garding the placement of the bottleneck. There we observed that if we interchange the
assembly machine with a fabrication machine thereby moving the bottleneck to fabrication
the throughput went up. This result, if general, would have implications for allocation of
resources in a fabrication/assembly operation. For instance, if a manager has the option of
moving a worker from fabrication to assembly, which would decrease capacity of fabrication
but increase it at assembly, should he/she do it?

We can address this question via our approximation and through simulation. First, to
use the approximation, we begin by considering the case with no failures. Clearly, under
these conditions, if m, > M, for each line, then the position of the bottleneck does not
matter since the system will produce at the rate of the bottleneck regardless of the position
of the bottleneck. However, when there are failures, our approximate analysis indicates that
it is better to have the bottleneck operation in one of the fabrication lines.

As an illustration of why this is the case, consider a system with two fabrication lines.
Let z,, and 2z; be the time cushions against failures for line 1 and line 2 for this system.
Suppose we switch the assembly machine with machine ¢ in line 1. Denote the new time
cushions as z; and 2'2. It is clear that z; = z; and 2'2 = 20+ T4 — T1; + 21 > 22. Since the
time cushion against failures for line 2 increases, we would expect the throughput for this
system to be higher.

Next, to see whether the behavior predicted by the approximation for this simple case
holds for more general examples, we ran a number of simulations. In each case, we found
that the throughput increased when the bottleneck was moved from assembly to fabrication.
Examples 2 and 4 illustrate one such example. As another, compare Example 7 with
Example 5. The only difference between Examples 7 and 5 is that the bottleneck has
been moved from assembly to the first machine of fabrication line 2. Table 8 compares the
simulated throughputs for the two systems with §; denoting the throughput of the system in
Example 5 and 8, denoting the throughput of the system in Example 7. These results again
show that moving the bottleneck from assembly to fabrication increase the throughput for
every WIP allocation. In this particular example, the increase in throughput was as high
as 21.3%.
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Ny | N2 01 02 %dlf
2| 2(0.109|0.118 | 8.3
3| 3(0.156|0.169| 8.3
2| 410122 0.148 | 21.3
3| 4)0.166 | 0.185 | 11.1
4| 4/0.185)0.197 | 6.5
5| 41019510204 | 4.6
5| 510.203]|0217| 6.9

Table 8: Effect of Location of Bottleneck.

6 Conclusions

We have given a simple, closed-form expression that relates the throughput of an assembly
system with DPRO machines operating under the CONWIP protocol to the allocation of
WIP in the various fabrication lines. This approximation works particularly well when
there is a sharp bottleneck and times between failures are long relative to processing rates.
However, it appears to be quite robust to violation of these conditions.

By using our approximation and the results leading up to it, we have also made the
following structural observations concerning CONWIP assembly systems under the DPRO
assumption:

1. Throughput is an increasing function of processing rates.

2. Throughput is not necessarily an increasing function of repair rates or failure times.

3. Given an identical set of machines, throughput tends to be higher if the bottleneck is
located in fabrication rather than assembly.
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