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Abstract

We consider the interrelated problems of (1) quoting a due date to each customer
arriving to a production system modeled as a single-server queue and (2) sequencing
customer orders once they are in the system. We allow several different classes of
customers, each with different preferences for leadtime and price. We first formulate the
problem of quoting due dates under the assumption that customer orders are processed
on a FCFS basis. Next, we consider the case where the firm has the option to schedule
orders in other than FCFS order. For this case, we develop a heuristic for quoting due
dates and sequencing orders. Simulation results suggest that policies that take into
account customer price and due date preferences in scheduling and quoting due dates
significantly outperform due date setting policies that do not.

1 Introduction

In many manufacturing environments, firms compete on the basis of delivery lead ti

as well as price. Recently, there has been a considerable amount of practitioner literat
focusing on customer responsiveness (e.g., Blackburn 1991, Schemenner 1988, Stalk
Hout 1990, Thomas 1990, 1991). It has been observed that in many industries, compa:
that can promise shorter due date lead times and can deliver on time feel less pressured to
compete on the basis of price. As Stalk points out (in Blackburn 1991, p. 69)

Response time is the final measure of how close a company is to its customers— how
long must a customer wait from the point at which he or she asks for something until
the company delivers it. Time-based competitors direct the benefits of their value-
delivery systems towards the most attractive customers, the ones that are willing to
pay for responsiveness, fast delivery and choice. The unattractive customers- those
who will not pay for responsiveness and instead are willing to wait for the best price-
are left for the competition.

The growing pressure on companies to perform on the basis of responsiveness has led to
increased research on how to set due dates. Early research on scheduling assumed that due
dates were exogenously set by the sales department and that the production schedulers had
no input on setting these due dates. Hence, the responsibility of the production scheduler



was either to optimize the performance of the shop (e.g., minimize average flow times) with-
out taking due dates into consideration, or to schedule jobs in order to minimize tardiness
or lateness with respect to the given due dates. More recently, researchers have focused on
the combined problem of quoting customer due dates and sequencing orders. (Baker 1984,
Baker and Bertrand 1981, 1982, Bertrand, 1983, Eilon and Chowdhury 1976, Seidmann
and Smith 1981, Shantikumar and Sumita 1988, Wein 1991), as well as on using leadtime
estimates to improve the sequencing of orders (Vepsalainen and Morton, 1987, 1988).

The most common approach to the due date setting and sequencing problem is to
minimize the average weighted due date lead time (the due date of a job minus its arrival
time) while maintaining a certain service level (e.g., an upper bound on the proportion of
tardy jobs or an upper bound on average tardiness). The results in the above cited papers
indicate that due dates based on estimates of shop congestion and the estimated duration of
the processing time of jobs lead to significantly lower average due dates. Baker and Bertrand
(1982) suggest three parametric due date setting rules. The three rules quote customers
due date lead times of a constant, a constant plus the expected processing time of the job
and a constant times the expected processing time of the job, none of which depend on
the amount of congestion in the system. Bookbinder and Noor (1985) derive a rule that
takes into account the level of congestion in the system. Wein (1991) considers the problem
of minimizing average weighted due date lead time for a multiclass M /G/1 queue, subject
to constraints on the proportion of tardy jobs or the average tardiness. Wein uses the cu
rule (weighted shortest expected processing time rule) for sequencing the customers since
the cu rule minimizes the average weighted flow time. He then derives an expression for
the conditional sojourn time distribution of jobs from each class. Using this distribution,
the customer is quoted the minimum due date that satisfies the service constraint. This
method leads to significant improvement in average weighted lead times. A particularly
interesting conclusion of Wein’s study is that proper due date setting offers a much larger
improvement in performance than priority sequencing. Wein and Chevalier (1990) make
the same observation for a two-station shop.

All of the above papers consider due date setting and priority sequencing from the
scheduler’s point of view. Due dates are selected to minimize holding costs, tardiness,
fraction of late jobs etc., while trying to quote the customer the minimum possible due
date. An implicit assumption in these papers is that each customer that is quoted a due
date places an order. That is, whether the customer places an order does not depend on the
date quoted him/her. As firms increasingly compete on the basis of lead time, the due date
lead time quoted a customer will have a strong effect on whether he/she actually places an
order. Hence, in quoting the customer a due date, the firm has to take into consideration
the customers’ preferences for due dates. An added complication is that a company always
has a certain group of customers who are willing to wait longer in exchange for a lower
price, and certain customers who are willing to pay more for quick service. A question
that many companies face is what due dates to quote to different types of customers with
different price and due date preferences. In an environment where the sales department
and the customer negotiate the price and the due dates, this question is of real practical
importance. The algorithms developed previously suggest an “optimal” due date which the
sales department would quote to the customer, but do not indicate how the sales department
should negotiate with the customer using this information. For example, suppose that our
due date setting procedure indicates that an arriving customer should be assigned due date



lead time a,. Further suppose that the customer indicates that he/she will place an order
only if the order can be delivered in a; < a; days. Should the sales department accept this
offer? For what values of a; should an order still be accepted? Given that the offer was
accepted with due date ay, what changes should to be made in the sequence of orders to
be processed? These questions are not answered by previous work on due date setting and
motivate the work of this paper.

To our knowledge, the only two papers that address customer preferences in due date
setting and sequencing are Wein et al. (1990) and Duenyas and Hopp (1992). Wein et
al. (1990) consider an M/M/1 queue with a single customer class. The Poisson arrival
rate of customers is a function of the customers’ expected cost of obtaining service where
the expected cost equals the quoted price plus a cost proportional to lead time plus a cost
proportional to perceived expected tardiness. Wein et al. obtain optimal price and due
date setting policies under five different scenarios under the assumption that the system
operates under the FCFS discipline. Duenyas and Hopp (1992) also consider a system with
a single customer class. They assume that customers arrive to the system (e.g., to the sales
department to make inquiries) according to a random process, are quoted a due date lead
time a, which may depend on the congestion level in the shop. The customer then places
an order with probability p(a), where p(a) is a decreasing function of a. If the customer
order is late, then the firm pays a penalty. They consider: (1) the case where orders are
processed in a FCFS manner and (2) the case where the firm can choose the sequence of
orders. For the second case, they prove that once customers are quoted a due date, orders
are always processed according to the Earliest Due Date (EDD) protocol.

In this paper, we extend the framework of Duenyas and Hopp to the case where there
are several customer classes with different price and lead time preferences with regard
to a single product. We consider the problem of due date setting and order sequencing
problems in the setting of a multiclass M/G/1 queue. Our intent is to demonstrate the
importance of considering customer preference information in setting due dates and to
develop a framework for utilizing this information when available. Our hope is to extend
this framework in the future to the case where the facililty has more than one machine and
where different customer classes demand different products.

The rest of this paper is organized as follows. In Section 2, we formulate the due date
setting problem under the assumption that orders are processed in a FCFS manner. In
Section 3, we formulate the problem of quoting due dates and sequencing orders under the
assumption that the firm has the option to sequence customers in other than FCFS order.
For that case, we suggest a heuristic based on the results of the FCFS case from Section 2.
In Section 4, we present simulation results that compare the performance of our due date
setting and sequencing procedure with other due date setting procedures that do not take
customer preferences into account. The paper concludes in Section 5.

2 Setting Due Dates under FCFS Sequencing

In this section, we formulate the problem of quoting customer due dates when customer
orders are serviced in a FCFS manner. We assume that there are n different classes of
customers each demanding the same single product. Customers from different classes differ
with respect to their preferences for price and leadtime. Customers from class 7 arrive to
the sales department according to a Poisson process with rate ); to inquire about due dates.



The company quotes the customer a due date lead time. The probability that a customer
from class ¢ places an order when quoted due date lead time a is p;(a). (We assume that
pi(a) is continuous and decreasing in a). In this way, we differentiate between the arrival
rate of class i customers to the sales department to inquire about due dates and the effective
arrival rate of customer orders to the factory, which depends on the quoted lead times to
different customers. Once an order is placed, we assume that it is not cancelled. Orders
are filled one at a time and we let F denote the c.d.f. of the production time, where F
is continuous with derivatives f and f’. An order from a class ¢ customer generates net
revenue R;. However, if the order is not filled on time, the firm incurs a penalty. We
assume that an order that is z time units late incurs a penalty cz. This penalty may reflect
the loss-of-goodwill, as well as extra shipping and handling costs due to the tardiness. As
Wein et al. note, in some service industries, such as banking and pizza delivery, the server
actually reimburses the customer for any tardiness experienced. In those cases, this penalty
may reflect the cost of the reimbursement.

We note that it is possible to formulate an analogous due date setting, pricing and
sequencing problem by assuming that: (1) a customer from class ¢ places an order with
probability p;(R,a), and (2) a customer can be quoted different lead times and different
prices depending on the congestion in the system. It is not difficult to extend the analysis in
this paper to that case. However, setting prices dynamically, based on the congestion level in
the system is not possible in most situations, since this would require changing prices almost
continuously. While quoting different lead times at different times is generally acceptable,
most companies do not change their prices on a minute by minute basis.

Our assumption that the company faces several different customer classes applies in
many practical situations. For example, the company may be able to apply price discrimi-
nation in different geographical regions, so long as customers in the same region are always
quoted the same price, or customers in different regions may accept different lead times
(thereby having different p;(a) functions). Similarly, the company may announce a price
policy that depends on the urgency of the order. An example would be that customers
that place orders to be delivered in a lead time of less than a time units would be charged
a certain price, while those placing orders to be delivered later would be charged another
(lower) price. However, if the congestion level in the system is low, and the new customer’s
order can be processed quickly, the firm may choose to promise a customer with an urgent
order a lead time even less than a to get the customer’s order. Qur modeling assumptions
are valid in all of these situations.

We denote the system state at customer arrival points by (k,t), where k denotes the
number of orders waiting to be processed, and ¢ denotes the amount of time that the first
order has already been processed. We denote by a;;,t, the optimal lead time quote to a
customer from class i in state (k,t). We can then formulate the problem of quoting optimal
lead times as a Semi-Markov Decision Process. We let g be the average profit per customer
arrival, and v;;’, denote the relative value function. We can write the SMDP recursion as

9+ vhy = maxpi(a)(Ri = ¢hya(0) + whyy) + (1 - pi(e))(w}) (2.1)

where

(@)= [ oz - a)dFi(z)

and F} = F' x Fy_; where Fj is the k-fold convolution of F and F* denotes the c.d.f. of



the remaining processing time of a job that has already been processed for ¢ time units.
Clearly, ¢} (a) represents the expected tardiness cost of a customer quoted lead time a in

state (k,t). Let Y represent the (random) interarrival time (which is exponential with rate
Yoie1 Ai), and define

k+1
Q:(k, P{ZX <Y +1,) X; >Y+tY+t—ZX <7lX; >t} (2.2)
j=1 J=1 1=1

and

=¥ {z / o QT +voz Qi) (23)
=1 j=k 0 7=0

and s; = Ai/(L7=1 ;) Qt(k,r) is the joint conditional probability of completing exactly
k services during an interarrival time and having the k + 1°* customer in service for 7 time
units or less, given that we began with the current customer in service for ¢ time units,
assuming that we have an infinite supply of customers to serve.

We first prove that under the condition that p;(a) is concave in a for ¢ = 1,...,n, the
optimal lead time in (2.1) is higher than if we quote customer lead times myopically by
disregarding the congestion effects of customers that place orders. For example, if we did
not take into account future arrivals of customers, we would quote the due date dfc,t to a
customer from class ¢ in state (k,t) where

&i,t =arg mga.xp.'(a)(R.' - ‘P?c+1(a))

However, quoting due dates in this manner does not take into account that by accepting
this customer’s order, we may also be forced to quote the next customer a longer lead time
due to the increased congestion in the system. The following theorem states this result
formally.

Theorem 1 Assume that p(a) is concave. Then, &};'t < afc’t.

Proof: It is straightforward to show recursively that w},, < wi. By the definition of &};’t,
we have

Pi‘(dz,t)(Ri - ‘Pfc+1(d§c,t)) + p(d};,t)(c(l - F15+1(&i,t)) =0

Hence, we have

Pk (R = 0hpa (@) + whyp = wh) + P(@ke)(e(1 = Féya(dh,) 2 0 (24)

The result follows by the fact that substituting any a < d;;,t for &;;J causes the left hand
side of (2.4) to increase. O.

The above theorem indicates that quoting due dates without taking into account the
increased congestion that each order brings into the system leads to quoting lead times
that are lower than the optimal lead times. We note that as formulated above, the due



date setting problem is a Semi-Markov Decision Process with uncountable state and ac-
tion spaces. Hence, unless the processing times are exponentially distributed, we need to
discretize the processing time distribution to obtain an approximate solution. One way to
do this would be to discretize the processing time distribution so that at customer arrival
points, the amount of time that the first order has been processed, t, is in some discrete set
t1,...,tm. (For example, if the processing time is uniform between 0 and 1, then we assume
that an arriving job finds the first job has had processing for 0,1/n, 2/n, ..(n — 1)/n time
units). The transitions between these discrete states can be approximated from the original
processing time distribution. We can then use a successive approximation algorithm where
we start by setting all w;’ values equal to 0. We can calculate the optimal lead times and
v}, values from (2.1) and update the wy’ values by using (2.3). We continue in this manner
until a prespecified level of accuracy is reached.

For the special case of exponential service times, we can calculate the optimal due date
lead times exactly since the amount of processing that the first job has already had does
not affect its remaining processing time. In this case, (2.1) becomes

g+ vk = maxpi(a)(Ri — @ry1(a) + weea) + (1= pia) wy (2.5)

where p11(a) = [[° c(z—a)dFrt1(z), Feta(2) is the c.d.f. of the Erlang-(k+1) distribution,

and
n

k-1 00
we =Y si{) ] gvk-j + %0 ) 4} (2.6)
i=1 Jj=0 j=k

where ¢; represents the probability that j customers are served between two successive
customer arrivals. In this case, we can use the successive approximation algorithm described
above to calculate the optimal lead times exactly. We can also use the SMDP formulation
to show that the due date quoted to a customer from class 4 is increasing in the number of
customer orders already in the system. We state the result in the following theorem:

Theorem 2 If for all i, there ezists a finite @' such that p;(a) = 0,a > &', and pi(a) is
concave in a for all i, then the optimal solution to (2.5) has aj, increasing in k for each 1.

Proof: The proof is in the Appendix.

Theorem 2 is rather intuitive. It states that as the number of orders in the system
increases, each type of customer is quoted increasing lead times. A second structural result
of interest would be an ordering with respect to the due dates quoted to different customers.
To show such a result, we need to make assumptions about the different types of customers.
One reasonable set of assumptions is: (1) customers who are willing to pay more for quick
service would have a lower probability of placing an order when quoted the same due date
as those customers who would like to pay less and (2) the less patient customers are more
sensitive to changes in lead times. Under these conditions, there is an ordering on the due
dates quoted to different customers such that the customers who place the more profitable
orders and are less willing to wait are quoted shorter due date lead times.

Theorem 3 If p;(a) is concave in a for all i and if for i # j and all a, R; > R;, pi(a) <
p;(a) and pi(a) < p)(a) then o}, < a},, in for any k and t.

Proof: The proof is similiar to the proof of Theorem 1. O.



3 Setting Due Dates and Sequencing Orders

In the previous section, we assumed that each customer order is filled in FCFS order. Even
though in some environments, this may be a reasonable assumption (in cases where the
customers have information about the status of orders and are displeased to learn that
orders are not being processed in the order they arrived), in most situations this is not a
reasonable assumption.

In most practical situations, the company is free to choose the sequence in which the
orders are to be filled. It may be attractive to use a non-FCFS sequence. For instance, the
company may choose to quote the more profitable customers shorter due dates and place
their orders in front of existing orders from more patient customers. To accomodate this
possibility, in this section we formulate the combined problem of quoting due dates and
sequencing orders.

To model the case where the firm decides the sequence of orders, we must keep track
of how much time is left on the due date of each order. To do this, we define states as
(4,u,k,ty,...,tx) where i denotes the class of the newly arrived customer, u denotes the
amount of time that the order currently in process has already been processed, k denotes
the number of orders in the system and t;,...,t; denote the remaining time until the due
dates of these orders. We note that t; could be negative, in which case ¢; denotes how much
time has passed since the due date of the j** order. We assume that the first job cannot be
preempted.

Letting v;(u, k, t1, ..., t;, ..., k) denote the relative value function, we can write the SMDP
recursion as

g+ vi(”ﬁ k’ ty... 7tj7tk) = ma‘xa,j=2,...,k+l{pi(a)(Ri - ¢;‘(a) - Zf:; SO}‘-{-l(tI) - QO;‘(t[)
+w(u,k +1,t,.. . 21,8, t5,. ., t)) + (1 = pi(a))w(u, k, by, ..., t)
(3.7
where

o) = [ da - 0)aF(@)

and F} is defined as in Section 2.

Note that in this case the firm chooses not only the lead time to quote but also where
to place the new order if the customer decides to place an order. If the order is placed
in the jt* position, then the expected amount of time that orders j through k are delayed
increases. Hence, the expected costs include the delay cost of the new order ¢%(a), and the
additional delay cost of the orders that are displaced (Ef;j @fa(t) = @i (). As in the
previous section, the w values denote the expected profits after the new order is placed.
However, in this case they are slightly more complicated. We let h(t) denote the density of
the inter-arrival time and define

i 1+1 1
QLi,r) = P{Y}_X; <t+u,) X;>t+ut+u-) X;<7X)>u}
Jj=1 j=1 =1

Then, we have

w(u, kb1, ..o te) = i sif [ h)(TE20 [0 vi(Tok = Jytigr =8, tk — )dQL(j, 7)+
'U,'(O) ;?.;k f::o dQEL(]’T))} (3 8)



The above formulation of the due date setting and sequencing problem is a Semi-Markov
Decision Process with uncountable state and action spaces. Since an exact solution seems
out of the question, we now turn to the development of a heuristic for this problem. This
heuristic will make use of the following structural results.

Theorem 4 Customer orders are processed in an EDD manner.

Proof: The proof is similiar to the proof of the EDD result for a single customer class in
Duenyas and Hopp (1992) and is omitted. O

Theorem 5 If p;(a) is concave in a for all i, then a lower bound on the optimal due date
if the new customer of class i is placed in the j*h position is given by ¥; where

k
¥; = argmax{pi(a)(Ri - 9}(a) = )_ ¢l (t1) - ¢}'(81))} (39)

=5

Proof: The proof is similiar to the proof of Theorem 1. O.

Theorems 4 and 5 are useful in decreasing the region in which one must search to find
the optimal solution. By Theorem 4, if we place the new customer in the j** position, then
the lead time quote must be in [t;_;,t;]. Furthermore it follows from Theorem 5 that (1) if
P; < tj_1, then the lead time quote is in [t;_;,t;]; (2) if t;_1 < 9; < t;, then the lead time
quote is in [¢;,t;], and (3) if ¢; > t;, the best possible quote if we place the customer in the
jt* position is t;. However, Theorems 4 and 5 do not tell us where to place the customer’s
order. Nevertheless, Theorems 4 and 5 help in ruling out some positions. For example, if
the immediate reward earned by a customer placing an order and being placed in position
J and quoted lead time ¢; is less than 0 (i.e., R; — ¢¥(t;) - Zf;j @tq(t) — @i (t1) < 0) then
we can conclude that the customer order will not be placed in the jt* position under an
optimal policy.

The above analysis immediately suggests a myopic heuristic for quoting customer due
dates and sequencing orders:

Myopic Heuristic for Quoting Due Dates (H1)

1. For j =2,..k+1, compute H; = R; - go;-‘(tj)-—zf;j etv1(t) — 9} (t). If H; <0, then
rule out position j. Let j' be the first position for which H; > 0.

2. For j =j',...,k + 1 compute 9, using (3.9)
3. forj=74,...,k+1,let
Pilti)(Ri = ¢ (ti) = Thej ol () - @1 (1)) if % > t;
i

Bj = pitic1)(Ri — ¢4y (ti-1) = Thj @b (t) — @f(h) i 95 < tj-q
pi(W;)(Ri — %41 (%5) = Thej o1 (0) — @(8)) iftjy <9<t

4. Let s = argmax;—;r . k41 Bj. Place the customer’s order in position s if customer
decides to place an order. Quote the customer a lead time of v, if t,_; < 9, < t,, a
lead time of t, if ¥ > t, and a lead time of t,_; otherwise.



The above heuristic is myopic because it does not take into account the future effects
of the current decision. The purpose here is to maximize the expected revenue minus the
displacement costs from the current customer. Hence, the major drawback of this heuristic
policy is that it fails to account for the fact that if we accept a lower revenue customer now,
the increased congestion in the system may lead us to lose a high revenue customer in the
future. Hence, it is very important to consider the cost to the firm arising from increased
congestion when an order is accepted. To do this, we first note that (3.7) can be rewritten
as

g + vi(uv k7t1, oo vtjatk) = ’U)(U, k’tl’ v 7tk) + maXa,j=2,...,k+1{Pi(a)(Ri - (P;‘(a)_
Siei Pl (t) = @i(t) + w(u, k4 Lty o1, 0,8, ) — w(u, byt t))
(3.10)

In our myopic heuristic, we were ignoring the term w(u,k + 1,¢,,..., ti-1,a, tj,...,
tk)—w(u,k,t1,...,t). One way to think about this term is that it represents the congestion
cost due to the arrival of a new order to the system. Since, there are an uncountable number
of states and hence an uncountable number of different congestion costs, it is not possible
to calculate this cost exactly. To incorporate this cost in our due date setting procedure,
we develop a second heuristic for the due date setting and sequencing problem by using
the congestion costs obtained from the FCFS case in the previous section. The assumption
underlying this second heuristic is that when a new order joins the system, the major portion
of the congestion cost is due to the fact that there is an extra order in the system. That
is, we assume that the above term depends more on the number of orders already in the
system than the due dates of the orders.

As an example for this kind of reasoning, consider the case where we are trying to
decide whether to place the customer in the second or third position and quote him/her a
lead time of a; or a3. In the first case, the increased congestion cost is given by w(u,k +
1,t1,a,t9,t3,..., tg41) —w(u,k,ty,...,t;) while in the second case, it is given by w(u,k +
1,t1,t,a3,t3,...,tk41) — w(u, k,tq,...,t,). However, note that if the next arrival occurs
after three services, whether we placed this order in the second or third position will make
no difference since the state of the system will be the same in both cases. If the next arrival
occurs before three services, whether we placed this order in the second or third place will
make a difference only if there is considerable slack in these orders’ due dates. However, in
all cases, the fact that there is an extra order in the system will make a difference when the
next customer arrives. For example, if the next customer is a high revenue customer, the
firm will incur extra displacement costs when placing his/her order in front of other orders.
If the firm decides to place the new order last, the firm will have to quote a higher due date
since it will now be placing the new order in the k + 1° position instead of the k.

Using this assumption that a major portion of the increased congestion cost is due
to the existance of an extra order in the system, we approximate the congestion costs
w(u, k + 1,81, t5,0, 41, .. tk) —w(u,k,ty,...,t) by Wiyy — Wi Where wi, ; — wi is
obtained by solving (2.1). We can now present our modified heuristic.

Modified Heuristic for Setting Due Dates (H2)
1. Solve SMDP (2.1) for the FCFS case to obtain w}, , — w.

2. For j=2,..,k+1, compute H; = (R; - p¥(t;) - Zf;j el (t)— o (t) + wiy g —wi).
If Hj <0, then rule out position j. Let j' be the first position for which H; > 0.



3. For j =j',...,k 4+ 1 compute 9; using

k
¥; = argmax pi(a)(Ri - ¢f(a) = (Yol (t) = ' (0) + wjyy —wf)  (3.10)
=5

4, Forj=7,...,k+1, let

pilt;)(Ri — @¥(t;) - (T <Pl}c‘+1(tz) - ¢i(t)) + wiyy — wi) if ;> t;
Bj = ¢ pi(tj-1)(Ri - %"(t:’—l) - lEZl:j ‘P;‘+1(t1) - i (t)) + w;c‘+1 —wg) iy <t
Pi(¥;)(Ri — ¢} (%) = (Ci=j el (t) — @ (4)) + wity, — w}) iftj_1 <9 <ty

5. Let s = argmax;=;/ k41 B;. Place the customer in position s if the customer decides
to place an order. Quote the customer a lead time of ¥, if t,_; < 1, < t,, a lead time
of ts if ¥, > t;, and a lead time of t,_; otherwise.

The above procedure can also be used for negotiating with customers with respect to
due dates and price. Suppose that a customer of class i arrives to the sales department
and asks for a due date quote. Assume that the firm quotes due date a;, and the heuristic
indicates that if the customer places an order, the order should be placed in position s;.
Let z; = B,,. However, once quoted the due date, the customer states that he/she will
place an order if the company can deliver before as, (a3 < a;) time units. Now, assuming
that the customer will indeed place an order if the firm accepts this offer, this means that
the customer has revealed his/her due date preference. Then, using pi(a) = 1 if a < az,
with p;(a) = 0 otherwise, the modified heuristic can be used to compute the position, s3,
for the new order. Let z; = B,, obtained with this new probability function. If 25 > 2z,
then the firm should accept the customer’s order. Otherwise, the firm can make a counter
offer, for example, asking the customer to pay z; — z; more than the usual price since other
orders already in the system will be delayed for the customer.

In the next section, we conduct a simulation experiment where we test the performance
of the two heuristics developed in this section and of the due date setting rules in the
literature which do not take into account customer preferences in setting due dates.

4 A Simulation Study

In this section, we describe the due date setting rules that we tested in our simulation study.
We tested six different due date setting rules on a set of problems with two customer classes.
Customer arrivals to the sales department were Poisson distributed while processing times
were exponential with rate p.

The first two heuristics that we tested were the modified heuristic and the myopic
heuristic from Section 3. We compared these heuristics to four other heuristics from the
literature. One problem that we have to address before comparing these different heuristics
is that all the due date setting rules in the literature require the specification of a service
level, either average tardiness or the proportion of late orders. Hence, to compare the
heuristics in this paper with those in the literature, using simulation, we computed the
average tardiness of jobs obtained by using the modified heuristic. (Of the two heuristics
developed in this paper, the modified heuristic always gave better solutions) For the average
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tardiness obtained by the modified heuristic, we computed, by simulation, the performance
of the due date setting rules in the literature. Hence, the modified heuristic and the four
due date setting rules from the literature are all compared under the same average tardiness
constraint.

The first of the heuristics from the literature (CONS) quotes a constant lead time to
each customer. We note that since, in this paper, we assume that the firm produces a
single product, all the due date setting rules described in Baker and Bertrand would quote
a constant lead time to customers. The constant lead time that results in the same average
tardiness as the modified heuristic is computed by simulation.

The second heuristic from the literature that we test in this paper is a policy that
depends on the congestion level in the system. This heuristic, developed by Eilon and
Chowdhury, and modified by Bookbinder and Noor quotes all customers a due date of Dy
when there are k orders in the system, where

Dp=2u" 4 efpt(k +1)] (4.12)

where ¢ is the constant to be determined by simulation to satisfy the average tardiness
constraint. We refer to this policy as the (STATE DEPENDENT) policy as in Wein (1991).

The final two policies that we tested are two policies that we modified from Wein (1991).
For a multiclass M/G/1 queue where customers from different classes have different pri-
orities, Wein derived one non-parametric and two parametric rules for setting due dates.
However, we note that Wein (1991) assumes that the effective arrival rate of customer or-
ders to the system is constant and does not depend on the due dates quoted. The first
parametric rule is a function of the mean sojourn time of an order, ES;(k;,k;), where the
mean sojourn time depends on the class of the customer as well as the number of orders
from each class already in the system. This parametric rule quotes the customer the lead
time aES;(ky, k), where a is set by simulation. We note that the cu rule is used in se-
quencing customers. Hence, the expected sojourn time of high priority customers depends
only on how many high priority customers there are in the system, (along with the amount
of time left until the job currently being processed is finished), while the sojourn time of
low priority customers also depends on the high priority jobs that will arrive in the fu-
ture. The second parametric rule quotes an arriving customer from class ¢, the lead time
E[Si(k1,k2)] + Bo[Si(k1, k2)] where o[Si(k1,k2)] is the standard deviation of a class i order
that joins the system when there are k; high priority and k; low priority orders already in
the system, and § is set by simulation. Finally, Wein’s non-parametric rule quotes a due
date a to a customer from class 7, where

o0

r= / (z — a)dSi(ky, k2)
Tr=a

where 7 is the average tardiness.

We chose to test modifications of the parametric rules in Wein in our simulation study.
We can not use Wein’s parametric rules directly, since the arrival of orders into the system
in our problem depends on the lead times quoted to the customers. However, we can modify
Wein’s due date setting rules by taking this dependence into account. To do this, we must
define which class of customers has a high priority. It is natural to assign a higher priority
to those customers that are willing to pay more and wait less. We must also rederive the
expected sojourn times of customers. It is clear that the sojourn time distributions for the
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high priority customers are not affected by the assumptions of our problem. However, a
major difficulty of deriving sojourn times for the low priority class is that the arrival rates
of the high priority customers (who will be placed in front of the low priority ones) actually
depend on the lead times quoted to them. Hence, to be able to carry out an analysis, we
need to fix the lead times quoted to the high priority customers. One way of doing this is to
quote them the lead times in Wein’s non-parametric rule. That is, a high priority customer
arriving when there are already k; high priority orders in the system is quoted lead time
a1(ky) where
[o.]
r= / (z - ay(k1))dFop (2) (4.13)
a1 (k1)

where 7 is the average tardiness, and Fiy; is the Erlang-(k+1) distribution. (Note that
since orders that are currently being processed can not be preempted, we assume that a
low priority order becomes high priority as soon as its processing begins). Next, we can
utilize the lead times obtained in (4.13) to derive the mean and variance of sojourn times
for the low priority customers. To do this, we first let A;(k;) denote the effective arrival
rate of high priority orders to the system when there are already k; high priority orders in
the system (i.e., A;(k1) = A1p1(a1(k1))). Note that, in order to compute the sojourn time
of a particular low priority order, we need only keep track of future processing completions
and future arrivals of high priority orders (since other low priority orders arriving in the
future will be processed after this particular low priority order). Assume that a low priority
customer places an order when there are already k; high priority orders, and k; low priority
orders in the system. We let Sy(k1, k) denote the (random) sojourn time of this order. The
next event will either be a service completion or arrival of a high priority order. We denote
the (random) time until the next event as Z(k;). Z(ky) is exponential with rate u + Ay (k).
Let I, denote the identity function which equals 1 if the next event is an arrival and 0 if it
is the completion of an order. Then we can write

Sz(kl,kg) = Z(kl) + IaSQ(kl + 1,k2) + (1 - Ia)Sz(kl - 1,k2) fOI‘ kl > 1 (4.14)

and
Sa(1,k2) = Z(1) + 1,52(2,k2) + (1-1,)82(1,ky — 1) for ky > 1 (4.15)

with
52(1’0) = Z(l) + Ia52(2’0) + (1 - Ia)52(0,0) (416)

and 52(0,0) is exponential with rate p.

Taking the expectation in (4.14), (4.15), and (4.16) gives us a system of equations for
calculating mean sojourn times. Similarly, squaring both sides in (4.14), (4.15) and (4.16)
and taking expectations gives us the second moment of sojourn times. Hence the first
heuristic (W1) modified from Wein (1991) quotes the low priority customers the due dates
aESa(k1,k2) and the second one (W2) quotes the due dates ESy(ky,kz) + B0[Sy(k1, k2)),
where o and J are set by simulation. Both heuristics quote the high priority customers the
due dates obtained by solving (4.13).

We tested our heuristic on several different test problems. We considered a variety
of different conditions such as different levels of utilization, and different types of p;(a)
functions (linear, concave, convex). In this section, we report the results on 6 representative
cases. For each of the test problems, we simulated the system for 2000 time units 10 times
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Class 1 Class 2

Case p1(a) Ry | A p2(a) Ry | A

1 1 if a<0 2 105 1 if a<?2 1 109
1-a/3 f 0<a<3 1-(a-2)/4 if 2<a<6
if a>3 0 if a>6

2 1 if a<0 2 110 1 if a<?2 1|15
l1-a/3 if 0<a<3 1-(a-2)/4 if 2<a<6
0 if a>3 0 if a>6

3 1 if a<0 2 (05 1 if a<0 1109
e=9/2 if a>0 e/t if a>0

4 1 if a<l1 1.5 { 0.7 1 if a<4 1107
1-(a-12/9 if 1<a<4 1-(a—4)?2/9 if 4<a<7
0 if a>4 0 if a>"

5 1 if a<l 1108 1 if a<4 1 {08
1-(a-1?/9 if 1<a<4 1-(a—4)?/9 if 4<a<7
0 if a>4 0 if a>"

6 1 if a<0 2 {08 1 if a<3 1 {08
1-a/5 if 0<a<b 1-(a-3)/5 if 3<a<8
0 if a>5 0 if a>8

Table 1: Input Data for Cases 1-6.

and averaged the total profits accumulated until time 2000 under each due date setting
rule. Each simulation run took less than 5 minutes on a 486 computer. Since, the arrival
of nearly 3000 customers was simulated in each run, this indicates that all the heuristics
including the modified heuristic, generated due dates very rapidly. In all of our problems
g =1, and for cases 1-5, the tardiness penalty per unit time was ¢ = 1. The arrival rates,
the revenues and the p;(a) functions were changed in each problem. The input data for our
test problems are displayed in Table 1. For each test problem, we report the total profits
obtained in 2000 time units (), the utilization (p), and the average tardiness per order (7)
in Table 2. We also report the standard deviation for the profits, utilization and average
tardiness in parantheses.

The first test case is one with medium utilization and linear, downward sloping p;i(a)
curves. The arrival rate of the high revenue customers was lower than the arrival rate of
the low revenue customers. Case 2 was the same as case 1 except that the arrival rates
of both classes of customers were higher, resulting in higher utilization for the system. In
both cases, the modified heuristic gave the best results. This is not surprising, since the
modified and the myopic heuristics use more information about customer preferences than
the other heuristics for setting due dates. However, note that the myopic heuristic did
not do particularly well, especially in the case with higher rates of arrival. The reason
for this is that since the myopic heuristic is not taking into account the increased cost of
congestion, it is accepting more customers into the system, and in many cases displacing
them to place a new order in front of one already in the system. For these reasons, the
myopic heuristic resulted in larger average tardiness per order, and hence lower profits.
The two heuristics based on Wein’s work gave the next best results. This is also expected
since, in their modified versions, these two heuristics are utilizing some information about
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customer preferences. In particular, they are using the information on the arrival rates of
the higher priority customer class at different congestion levels. We note that in all our test
problems, we found no significant difference between the two heuristics (W1) and (W2).

Case 3 was similiar to case 1. The p;(a) functions were changed to see the effect of convex
functions. There was very little difference in the results, with the modified heuristic giving
the best results. In Case 4, we tested a case with strictly concave lead time preference
functions. Again, the modified heuristic gave the best results, with heuristics (W1) and
(W2) giving the next best results.

In Cases 1-4, the net revenue obtained from a higher revenue order was much higher
than the revenue obtained from a low revenue order. In Case 5, we tested an example
where the difference between the revenues obtained from different classes of customers was
low. The modified heuristic still gave the best results. However, the difference between the
modified heuristic and the two heuristics (W1) and (W2) was lower in this case.

In all of the cases we have described so far, the tardiness cost was the same for all
customer classes. This may be a reasonable assumption in many cases. For example,
today’s patient customer may have an urgent order the next time he/she places an order. If
this customer experiences some tardiness now, he/she may be less likely to place an order
next time with an urgent order. Similarly, the company may have a policy of reimbursing
all customers at the same rate for any tardiness experienced. However, even though having
the same tardiness cost for all customer classes may be a reasonable assumption, we would
still like to know how the different heuristics compare under the assumption of different
tardiness costs.

A major difficulty of analyzing the case with different tardiness costs is that Theorem 4
which states that customer orders are processed in an EDD manner once a due date is set
for an order is not valid for the case where the different classes of customers have different
tardiness costs. In particular, whereas in the case with identical tardiness costs, we need to
consider the sequence of the orders in the system only when we are quoting a due date to
a new customer, with different tardiness costs, it may be optimal to resequence after each
service completion. We also note that the cu rule for sequencing orders is not optimal for
this case, since the cp rule minimizes the average weighted flow time for orders, and not the
tardiness costs (i.e., the cu rule would be optimal if all orders had a due date of 0, or all
orders were already late). However, the results in Wein (1991) and the cases that we have
tested indicate that due date setting has a much larger impact on profits than sequencing.
Hence, for this problem, we ignored the fact that it may be profitable to resequence after each
service, and still considered the two heuristics described in Section 3. The only difference
is that, we now keep track of not only the remaning time of each order until its due date,
but also its class. Hence, in step 3 of the modified algorithm, when we compute the ¥;
values, we modify the ¢}(t;) values so that they now depend on the class of the customers
displaced, (i.e., we replace ¢¥(a) by ¢ ;(a) where @!.(a) = [;° ci(z — a)dF}(z) ) so that
displacing an order with a high tardiness penalty costs more than displacing one with a low
tardiness penalty if both have the same due date. We used the modified and the myopic
heuristics described in Section 3 with this slight change for the cases where the different
customer classes have different tardiness costs.

Case 6 is an example where the two customer classes have different tardiness costs. Each
order by a customer from class 1 brings in a net revenue of $2, while each order from a class
2 customer brings in a net revenue of $1. If a high revenue order is late, the tardiness cost
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Case

Modified

Myopic

CONS

STATE D.

W1

W2

1484 (25)
0.70 (0.01)
0.24 (0.01)

1330 (32)
0.80 (0.01)
0.4 (0.02)

712 (44)
0.62 (0.02)
0.24 (0.01)

1019 (38)
0.65 (0.01)
0.24 (0.01)

1204 (20)
0.69 (0.01)
0.24 (0.01)

1208 (29)
0.68 (0.01)
0.24 (0.01)

1892 (43)
0.80 (0.01)
0.28 (0.01)

1192 (29)
0.94 (0.01)
0.65 (0.03)

801 (31)
0.55 (0.02)
0.28 (0.04)

1226 (67)
0.81 (0.02)
0.27 (0.03)

1398 (50)
0.87 (0.01)
0.28 (0.02)

1407 (67)
0.87 (0.02)
0.28 (0.03)

1608 (25)
0.61 (0.01)
0.37 (0.02)

1525 (37)
0.76 (0.02)
0.51 (0.03)

917 (34)
0.50 (0.02)
0.37 (0.03)

1093 (29)
0.65 (0.02)
0.37 (0.03)

1366 (10)
0.66 (0.03)
0.37 (0.01)

1353 (26)
0.65 (0.02)
0.37 (0.01)

1721 (40)
0.80 (0.02)
0.15 (0.01)

1327 (35)
0.88 (0.02)
0.4 (0.02)

901 (51)
0.52 (0.01)
0.15 (0.02)

1392 (44)
0.76 (0.02)
0.15 (0.02)

1446 (43)
0.75 (0.02)
0.15 (0.02)

1439 (49)
0.76 (0.02)
0.15 (0.01)

1568 (28)
0.84 (0.01)
0.10 (0.01)

1212 (54)
0.90 (0.02)
0.36 (0.02)

926 (55)
0.52 (0.01)
0.10 (0.01)

1408 (27)
0.77 (0.02)
0.10 (0.01)

1416 (17)
0.77 (0.02)
0.10 (0.01)

1404 (37)
0.76 (0.02)
0.10 (0.01)

9o 39T A4 A9 Ao Ao 3

1948 (41)
0.80 (0.02)
0.11 (0.01)

1398 (64)
0.89 (0.02)
0.41 (0.03)

925 (66)
0.50 (0.01)
0.11 (0.01)

1589 (42)
0.73 (0.01)
0.11 (0.01)

1639 (36)
0.72 (0.02)
0.11 (0.01)

1645 (40)
0.73 (0.02)
0.11 (0.01)

Table 2: Results for Cases 1-6.

is $2 per unit time, while if a low revenue order is late, then the tardiness cost is $1 per
unit time. The results for this case were similiar to the results for Cases 1-5. The modified
heuristic gave the best results, resulting in nearly 20% percent higher profit than the best
among the other heuristics.

These six cases are representative of our experience with the due date setting rules
developed in this paper and those from the literature. Qur observations can be summarized
as follows:

1. The modified heuristic gave the best results, easily outperforming all other due date
setting rules. The difference in profits obtained by using the modified heuristic and
the other heuristics varied between 11% and 136%. The difference in performance
between the modified heuristic, and the other due date setting rules become more
pronounced at high utilization levels (as much as 35 % between the modified heuristic
and W2 in Case 2). The computational requirements of the modified heuristic were
very minor. In contrast, the myopic heuristic performed poorly demonstrating the
importance of considering the effects of increased congestion if an order is accepted,
when quoting due dates.

2. The two heuristics modified from Wein (1991) also performed very well. We note that
these heuristics require less information about customer preferences than the modified
heuristic. To implement these due date setting rules, the only information necessary
is the arrival rate of higher priority orders at different congestion levels. There was
very little difference between (W1) and (W2) suggesting that it may be enough to
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calculate the expected sojourn times. Hence, in cases where it may be difficult to
estimate the customers’ lead time preferences, these two heuristics requiring minor
data collection are very good alternatives to the modified heuristic.

3. The state dependent rule did not perform as well as the three rules mentioned above.
However, if there is no data on customer preferences, it seems to be the best alterna-
tive.

5 Conclusions and Further Research

In this paper, we formulated the problem of quoting due dates and sequencing customer
orders in a manufacturing system. We have demonstrated the importance of considering
customer preferences for price and due dates in the due date setting process. We have
developed a heuristic that performed very well in our simulation study relative to other due
date setting rules in the literature. We suggested a way to use this heuristic in bargaining
with customers with respect to due dates and price. We also found that in cases where the
company does not have much information on customer due date preferences, two heuristics
modified from Wein (1991) performed very well. The difference in the performance of the
various heuristics is due to how explicitly each heuristic considers the dependence of demand
to quoted lead times in setting due dates and sequencing orders. The results in this paper
indicate that companies that collect data on how their demand depends on the lead times
they quote customers and utilize this data in their lead time quoting procedures may be
able to realize an important competitive advantage.

Much remains to be done in the area of setting lead times and sequencing orders. A set
of research topics that seem promising are:

1. Developing an understanding of the dependence of customer demand on the quoted
lead times. Considerable research has been done on characterizing the price sensitivity
of demand in different industries. The recent practitioner literature indicates that
in many industries demand is also sensitive to lead times. Empirical work on the
dependence of demand on quoted lead times is necessary to make use of due date
setting models in practical settings.

2. Incorporating the long-term consequences of failing to deliver orders on time. In
this paper, we made the assumption common in the literature, that the tardiness
cost captures the consequences of failing to deliver orders on time. In particular,
each tardiness cost corresponds to an average tardiness so that if a firm uses average
tardiness as a service constraint, a simple search can be used to find the corresponding
tardiness cost. However, in some cases it may be reasonable to assume that a customer
whose order is tardy several times, will have a lower probability of placing an order
(or even requesting a due date quote) next time. More modeling and empirical work
is necessary to address this issue. This problem appears to be difficult both due to
the difficulty of collecting empirical data (e.g., is a customer whose order was late one
time, and early two times previously, more or less likely to place an order?) and also
due to modeling difficulties.

3. Incorporating multiple machines and/or multiple products. In this paper, we treated
a simple case, with one machine and one product type. Addressing the realistic
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situations of multiple machines and/or multiple products will require more complex
queueing models and larger state spaces. The resulting analysis is likely, therefore, to
be a challenging topic for further work.

Appendix

In this appendix, we prove Theorem 2. We first note that there exists a level of orders in the
system k such that for all k£ > k, the optimal decision is to reject customers from any class (i.e.,
to quote lead times such that customers from all classes will place an order with probability 0)
Obviously an upper bound on k is {sup; inf, @k, (@;) > R;}, which is the point where the expected
tardiness cost associated with any customer is larger than the revenue generated by his/her order.
Hence, we can restrict our problem to a finite state space problem.

The problem of choosing optimal lead times at arrival points is equivalent to the problem of
choosing arrival rates to an M/M/1 queue (since by quoting lead time a to customers from class i,
we are setting their effective arrival rate in state k to A;pi(ai)). The state 0 is reachable under any
stationary policy, hence by Ross (1983) a stationary policy is optimal.

We let 7, (k, j) be the expected profit between one visit from state k to state j under stationary
policy o, and t,(k,j) be the expected number of customers that arrive to the system (but do not
necessarily place an order) until that visit to state j. Letting g, be the long run average profit
per customer who inquires about due dates, we have g, = w,(k,k)/t,(k,k). If g* is the optimal
average profit per inquiring customer, then we have 7, (k, k) — g*t,(k, k) < 0 with equality obtained
by the optimal policy c*. We use a result due to Stidham and Weber (1989) that for any g, the
quantity 7, (k, k) — gt,(k, k) equals the total g-revised profit (the profit obtained by subtracting g
from expected revenues in each state) obtained between any two visits to state k. That is, solving the
problem of maximizing g*-revised profits between any two visits to state k is equivalent to solving
(2.5). Letting m(k,0) denote the optimal expected g*-revised profit starting in state k until state 0
is reached for the first time, and a} denote the lead time quote to class i customers in state k, by
renewal-reward theory we can write:

—g* A+ Y {Aipi(a})(Ri — ors1(al) + w(k + 1,0)) + Mi(1 = pi(a))7(k,0)} + pr(k — 1,0)

k,0
( ) a,“, ,ak A+p

where A = Y7, Ai. Arranging terms, and using the fact that x(k,0) = n(k,k —1) + 7(k — 1,0), we
get . .
—g"A+ 30 Aipi(ak)(Ri = @rqa(ay) + 7(k + 1, K))
: p
k

m(k,k— 1) = max

1
a0

It is straightforward to show by induction on k (starting from k and continuing until 0) that
m(k, k — 1) is decreasing in k. Moreover, the first-order condition for the optimality of the lead time
quoted to a customer from class 7 in state k is

vl (@) (R = prer(ar) + w(k + 1, k) + Aipi(ak)(e(1 = Fiyy(ai)) = 0

Now, m(k+2,k+1) < m(k+1,k) and r+2(a}) > pr41(a}), hence R; — —prp2(al) +m(k+2,k+1) <
Ri = pr4a(al) + m(k +1,k). Also, c(1 = F},(a})) > ¢(1 - F},,(a})). Hence, we have

Nipi(a})(Ri = @r4a(a}) + m(k + 2,k + 1)) + Aipi(a} ) (c(1 — Fi4(ai) 2 0

Since substituting any a < ai will cause the left hand side to increase, we conclude that a 2 ai.
Since the problem of maximizing expected g-revised profits until reaching state 0 is equivalent to
problem (2.5), Theorem 2 has been proven. O
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