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Abstract

We consider a production system consisting of several fabrication lines feeding an
assembly station. The machines in the fabrication lines and at assembly are assumed
to have general processing time distributions. Releases to the system are governed by
the CONWIP protocol. We model this system as an assembly-like queue and develop
approximations for the throughput of the system. Comparisons with simulations show
that this approximation is robust over a wide range of conditions. Finally, we observe
that throughput tends to be higher when machines with higher mean processing times

and /or higher variances are in fabrication rather than assembly.

1 Introduction

Assembly-like queues arise in a variety of practical situations. They are especially prevalent
in manufacturing systems. A typical example in electronics manufacturing is the produc-
tion of multi-plane circuit boards (PCB’s) which are manufactured by fabricating the layers
separately and then laminating them together. In fact, any production system where sev-
eral sub-assemblies are produced separately, and then assembled together will give rise to

assembly-like queues.



Despite the prevalence of assembly-like queues in many manufacturing environments,
little work has been done on these queues due to their analytical intractability. The majority
of queueing network models do not handle assemblies. The bulk of the queueing models
that handle assemblies represent the fabrication lines feeding assembly as single machines,
an assumption that limits their applicability (Ammar (1980), Bhat (1986), Bonomi (1987),
Hopp and Simon (1989), and Lipper and Sengupta (1986)). Gershwin (1991) and Mascolo
et al. (1991) have focused on assembly systems with acyclic or tree structured networks and
their models allow for multiple machines including many assembly/disassembly machines.
However, they only treat the case where all the machines are assumed to have the same
processing time distribution. Baker et al. (1990, 1993) have used simulation to address the
problem of allocating work in assembly systems. Other work has concentrated on obtaining
structural results such as monotonicity and concavity results for these networks (e.g., Adan
and Van der Wal (1989), Ammar and Gershwin (1989), Bacelli et al. (1989)). In a recent
and very comprehensive survey of manufacturing flow line systems, Dallery and Gershwin
(1992) noted the lack of approximations for assembly systems and emphasized the need for
more work in this area.

An issue that complicates the modelling of assembly systems is that assembly-like queues
are unstable unless some feedback mechanism is used to link releases to outputs (Harrison
(1973)). In many manufacturing systems, the method for controlling releases is MRP, in
which releases are scheduled by subtracting fixed lead times from due dates. More recently,
pull systems, such as kanban, have become popular due to the success of Japanese just-in-
time methods. (Monden(1983)).Despite the great interest in pull systems in the last decade,
assembly systems under pull release mechanisms have received very little interest. Duenyas
and Hopp (1992a, 1992b) focus on assembly systems under the CONWIP (Constant Work-
In-Process) release mechanism. Duenyas and Hopp (1992a) assume that all machines have
exponential processing time distributions, while Duenyas and Hopp (1992b) assume that

the machines have deterministic processing times and are subject to random failures. The
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Figure 1: CONWIP Assembly System

time between failures as well as the time between repairs is assumed to be exponentially
distributed.

Assembly systems operating under kanban can be modelled using Markov models if all
the machines are assumed to have exponential processing time distributions. However, this
requires a very large state space for any realistic system. Also, in most manufacturing
systems, the processing times are less variable than the exponential. For these reasons,
in this paper, we will restrict our attention to the CONWIP (CONstant Work-In-Process)
production control system. CONWIP is a broadly applicable pull system that offers many of
the benefits of kanban (e.g., WIP control), but is simpler to model than kanban. Spearman
et al. (1989, 1990) discuss the advantages of CONWIP, while Spearman and Zazanis (1992)
show that a tandem CONWIP system always has higher throughput than the equivalent
kanban system when both systems have the same number of cards in the system. These
advantages of CONWIP, combined with the relative simplicity of modeling it makes it an
attractive pull mechanism.

In a CONWIP system, the total amount of work is held constant by authorizing pro-

duction of a new unit only when an output occurs. Release mechanisms based on keeping



the total amount of work in the system constant are very common in industry, especially
in wafer fabrication (Ehteshami et al., 1992). The regulation of the amount of work in a
CONWIP system can be accomplished with cards as in the kanban system. Each time a
job is completed, its card is removed, and sent to the front of the line to authorize the start
of a new job. We note that once production is authorized at the first machine, jobs are
pushed between machines elsewhere in the line. In an assembly system operating under
CONWIP (displayed in Figure 1), jobs exit only from the assembly. Hence, whenever a job
is finished at the assembly machine, a card is sent to the first machine in each fabrication
line authorizing the start of work on a new unit. However, note that these simultaneously
released jobs are not necessarily for the same assembly unless all the fabrication lines have
the same card counts (WIP levels).

In this paper, we develop an approximation for throughput, and average WIP levels at
each machine, for a CONWIP assembly system where all machines are assumed to have
general processing time distributions. The approximation in this paper generalizes the ap-
proach in Duenyas and Hopp (1992a) where a throughput approximation was derived under
the assumption that processing times are exponential. The approximation in this paper can
be used along with simulation in the configuration of fabrication/assembly lines. In partic-
ular, the approximation can be used along with the procedures developed in Duenyas and
Hopp (1992a) for the problems of setting WIP levels and capacity allocation. Therefore, our
approximation can be used by practitioners implementing a CONWIP release mechanism
for design and analysis of their assembly systems.

The remainder of this paper is organized as follows. In the next section, we introduce our
notation and problem formulation. In Section 3, we develop an upper-bound for throughput
and compute this upper bound approximately by making use of an approximation for the
throughput of closed queueing networks with general processing times by Shantikumar and
Gocmen (1983). In Section 4, we make use of this upper bound to develop an approximation

for the throughput of the assembly system. In Section 5, we conduct a simulation study to



test our approximation against simulation and show that the approximation seems to be

robust for a broad range of cases. Section 6 concludes the paper.

2 Problem Formulation

We consider k production lines with m; machines and n; jobs at each line j as shown in
Figure 1. At each line j, jobs start at machine (j,1) and after being processed at machine
(J,%) move to machine (j,i + 1). We assume that successive processing times at machine
(j,1) are independent with finite mean, z;; and variance ‘732,.‘-

After completing work at machine (j,m;), a job joins the assembly queue. If there is
at least one job from each line in the assembly queue, then the assembly operation begins.
Assembly times are independent and have finite mean, m4 and variance 0. When the
processing at assembly is finished, an output occurs and this sends a signal to machines
(4,1),j = 1,...,k to add a new job to their queues. We define N; as the number of outputs
until time ¢, starting from time 0. We are interested in finding the throughput for the
system, 0 = lim;_ o, N¢/t.

In the special case where each line has exactly one job (i.e., n; = 1 for each line), it
is possible (but, very tedious) to obtain an exact expression for the average cycle time
and hence for the throughput, given the distribution of processing times at each machine,
since the times between outputs are i.i.d. in this case. However, for values of n; greater

than 1, neither the interoutput times nor the cycle times are i.i.d.. Hence, we develop an

approximation for throughput, which we describe in the next two sections.

3 An Upper Bound for Throughput

In this section, we develop an upper bound for the throughput of our assembly system. We
let Fj; denote the “information” that we have on the processing time at machine (j,). For

example, if we know the distribution of the processing time, then Fj; denotes the c.d.f. of



the distribution. However, in our approximation, we will only need the first two moments
of the processing time. Hence, if we only have that information, we can let Fj; be an

array that consists of the mean and variance of the processing time at machine (j,1) (i.e.

Y
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F;i = [zj4,07;]). Welet F be a two-dimensional array containing the F;; values. We also
denote the processing time “information” for the assembly operation by F4. The work-in-
process inventory in fabrication line j is n;, and n is an array containing the n; values. We
let {F/F4/n}denote the assembly system shown in Figure 1. Let §{F/F4/n} denote the
steady-state average throughput of {F/F4/n}.

To obtain an upper bound on the throughput of the assembly system, we compare
the assembly system in Figure 1 to several tandem closed queueing networks. In partic-
ular, let {F,./F4/n,} denote a closed tandem queueing network that consists of machines
(r,1),...,(r,m,) in sequence with the assembly machine at the end (where the assembly
machine no longer “assembles”, but instead, processes single jobs). In this case, jobs start
at machine (r,1), move to (r, + 1) after (r,¢) and to the assembly machine after (r,m,).

After completing work at the assembly, jobs return to machine (r,1). Let 0{F,/F4/n.}

denote the throughput of this system. Then, we have the following
Proposition 1 (Duenyas and Hopp (1992a))

0{F/Fa/n} < min 8{F,/Fa/n.}. (3.1)

The above proposition provides an upper bound for the throughput of the assembly
system. Using Proposition 1, the throughput of an assembly system with k fabrication
lines is bounded above by the minimum of the throughput of k closed queueing networks
formed from the assembly system. However, we note that for closed queueing networks with
general processing times, exact results for throughput are not available although very effec-
tive approximations have been developed (e.g., Whitt(1984) and Shantikumar and Gocmen
(1983)). Therefore, we can only compute an approximation for this upper bound. In calcu-

lating approximations for an upper bound on throughput and for throughput, we make use



of the approximation procedure developed by Shantikumar and Gocmen for estimating the
throughput of a closed queuing network. This approximation requires only the knowledge of
the mean and the variance of the processing time at each station. Hence, for our assembly
system, we will also require only the information on mean and variance of processing times
at each station. The approach of Shantikumar and Gocmen is based on decomposing the

closed queueing network. Their approach can be summarized as follows:

Procedure for estimating the throughput of a closed queueing network (Shan-

tikumar and Gocmen (1983))

1. Obtain an initial approximation for the server utilizations by replacing the general

processing times by exponential processing times.

2. Evaluate approximations for the arrival rate and the squared coefficient of variation

of the arrival process to each machine.

3. Treat each server in isolation. Using the approximation for the arrival process, ob-
tained in step 2 for the arrival process, obtain an approximate probability distribution
for the number of jobs in an equivalent single server (GI/G/1) queue. Find the load-
dependent service rates {u,} for the single server queue (M/M(n)/1) with Poisson
input and exponential service times that has the same arrival rate, mean service time,
and the same probability distribution of the number of jobs in the system as that of

the GI/G/1 queue.

4. Obtain a new approximation for the server utilizations of the servers in the network
with the general service times replaced by exponential service times with load depen-
dent service rates obtained in Step 3. If the new values for server utilizations are

sufficiently close to the previous ones, then stop, else go to step 2.

We refer the reader to Shantikumar and Gocmen (1983) for further details on the
throughput approximation for a closed queueing network. We can use the above approxima-

tion for closed queueing networks along with Proposition 1 to obtain an approximate upper



bound on the throughput of the assembly system. However, we note that Shantikumar
and Gocmen point out that their approximation is not guaranteed to converge if the coeffi-
cient of variation of the processing times is greater than 1. However, as we have previously
noted, in most manufacturing systems, processing times have distributions that are much
less variable than the exponential. Therefore, assuming that the coefficient of variation of
the processing time is less than 1 is not a restrictive assumption in most practical situations.
Since, in developing our approximation for the throughput of the assembly system, we will
make use of the approximation by Shantikumar and Gocmen for closed queueing networks,
we will also restrict our attention to systems with machines that have coefficient of variation
of processing time less than 1. We next use the upper bound developed in this section in a

procedure for estimating the throughput of the assembly system.

4 An Approximation for Throughput

Our approximation procedure is based on estimating the delay that a job from a particular
line experiences waiting for jobs from other lines before its assembly can begin. A job in a
certain line r is delayed at assembly if, when it is that particular job’s turn to be served by
the assembly machine, there is not at least one job from all other lines. When this occurs,
the job in line r has to wait for the other jobs to arrive. Hence, to develop an approximation
for the throughput, we first develop an approximation for this delay. We start by developing
our approximation for a system with two lines, and then generalize our approach to more
than two lines.

Consider an assembly system with only two lines. We let W; be the amount of time
that a job from line 1 has to wait at assembly for a job from line 2. To calculate EW;, we
condition on the position of the jobs in line 2 at the time that the job from line 1 arrives
at assembly. Let N; be the number of jobs in line 2, machine i. Also, denote the number
of jobs from line 2 waiting in front of assembly as Np,,4+;. Obviously, if Np,41 > 0, then

there is at least one job from line 2 already waiting at assembly, and hence the expected



delay that a job from line 1 experiences waiting for a job from line 2 at assembly is 0 in

this case. In general, we have

mo+1 ma+1 mo+1

EWy = Y E[WiIN;>0, Y N, =0]P(N; >0, Y N, =0) (4.2)
1=1 p=i+1 p=1+1
ma+1 ma+1 ma+1
EWl2 = E E[Wle,‘ >0, Z Np = 0]P(Ni >0, Z Np = 0) (4.3)
i=1 p=i+l p=i+1
and
Var[Wi] = EW} - (EW;)? (4.4)

Calculating the conditional expectations in (4.2) and (4.3) requires that we also condition
on the amount of processing that the job in line 2 "closest to” assembly has had at the
machine that it is being processed at the time the job from line 1 arrives at assembly.
However, since our aim is to get a rough estimate of the expected waiting time, we ignore
the amount of processing that the job may already have had and approximate the conditional

expectation by

ma+1 ma
EWiIN; >0, ) Ny=0]=) o, (4.5)
p=i+1 p=i
Similarly, we let
moy+1 my ma
E[W{|N; >0, Z Ny = 0]~ Zag,p + (Z 22,)* (4.6)
p=i+l p=i p=i

Approximating the probabilities in (4.2) is more difficult however, since we do not know
the distribution of the jobs in the network. Hence, we approximate these by supposing
that while jobs in line 1 have to wait for jobs in line 2 for their assembly operation, jobs
in line 2 are independent of jobs in line 1 and start their assembly operation regardless of
whether or not there are jobs from line 1 in assembly. This makes line 2 a regular closed
queueing network, and we can use the approximation by Shantikumar and Gocmen to
calculate utilizations for line 2. Furthermore, the approximation procedure by Shantikumar
and Gocmen approximates the closed queueing network by a load-dependent exponential
queueing network, and calculates Buzen’s coefficients (Buzen (1983)) for this network at

each iteration. Let G(4,7),t = 0,...,n2,j = 1,...,m + 1 denote the Buzen’s coefficients



calculated by the Shantikumar and Gocmen approximation procedure on its last iteration

for the closed queueing network formed by line 2 and the assembly machine. Then, we have

ma+1 . .
G(ny,1) = G(ng,1 - 1)
P{N; > 0, N, =0]~ 4.7
[ pgl 14 ] G(n2,m2 + 1) ( )

Hence, we can estimate the first and second moments of the expected delay that jobs
from line 1 experience waiting for jobs from line 2 by using (4.2), (4.3), (4.4) along with
(4.5), (4.6), and (4.7). Given that we have obtained an estimate of the delay that jobs from
line 1 experience waiting for jobs from line 2, one obvious way to obtain an approximation
for the throughput would be to treat line 1 itself as a closed queueing network. However,
since jobs in line 1 experience a delay at assembly, we would change the assembly machine’s

mean processing time to z, and its variance to 0%, where
/
Ty=14+EW, (4.8)

and

o = o} + Var[Wi] (4.9)

Then, we would have a new closed queueing network formed by all the machines from line
1 along with the “revised” assembly machine. We describe this new network by {F/F4 +
Wi/n,} where F4 + W, denotes that the mean and variance of delay experienced by jobs
from line 1 waiting for jobs from line 2 at assembly has been added, respectively, to the mean
and variance of the processing time at assembly. We could then use the Shantikumar and
Gocmen approximation for closed queueing networks once again to obtain an approximation
for the throughput. Notice however, that just as jobs from line 1 wait for jobs from line 2
at assembly, the reverse is true as well. Hence, to capture the effect that both lines have on
each other, we also need to calculate EW,. In fact, we propose starting with {F;/F4/n1} to
calculate EW;, and Var[W>), then using { F2/F4 + W2/n2} to calculate EW1, and Var([W1]
and continuing in this manner until the throughput converges. The only remaining issue
that we have to resolve is the choice of line 1 and line 2. We let line 1 be the line that sets

the upper bound on throughput. That is, we let A = argmin,0{F;/F4/n.}. We renumber
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line h as line 1 since that line actually is “closest” to the throughput of the network. We
can now present our procedure for computing the throughput estimate 6,, for the assembly

system.

Procedure for Computing 6,, (2 lines)

1. For i = 1,2 compute 8{F;/Fa/n;}, using the throughput approximation for closed
queueing networks in Shantikumar and Gocmen. Let h = argmin,0{F;/F4/n;}.
Renumber line h as line 1. Let 6; = min,0;{F;/Fa/n;}. Let EW; = 0, and
VarWw; = 0.

2. Compute EW,, and Var[W;)] using (4.2) and (4.4), and {F1/F4 + Wy /n;}.
3. Compute EW,, and Var[W;] using (4.2) and (4.4), and {F2/F4 + W2 /n,}.

4. 0,5 = O{F1/Fa + Wy/n1}. If |04 — 04| < € for a prespecified ¢, then stop. Else, let

61 = 04y, go to 2.

We note that the above procedure uses the approximation in Shantikumar and Gocmen
for closed queueing networks twice in each iteration. Since that procedure provides only
approximate values for the utilization of machines, and the throughput of the closed queue-
ing network, and not the actual values, we can not guarantee that the above procedure
will converge. However, in the large number of experiments that we performed, we could
not find a case where the above procedure did not converge. In fact, convergence was so
quick that using € = 10~3, in all our test problems the procedure stopped after at most 5
iterations.

We can use a similiar approach to derive an approximation for assembly systems with
more than two lines. In the case where there are k lines in the system, assembly will not
begin unless all k lines have at least one job at the assembly machine. To calculate the delay
that jobs from line 1 experience waiting for jobs from other lines, we now assume that lines

2,...,k are independent closed queueing networks. To illustrate the nature of the calculations
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involved, we consider an example with 3 lines. We can again condition on the position of
the jobs in lines 2 and 3 closest to assembly at the time a job from line 1 arrives to the
assembly machine. Denote the position of the job closest to assembly in line j as Z;. For
example, if in line 2 the job closest to the assembly machine is at machine 3, then Z; = 3.
Similarly, if in line 3, there is already a job at assembly, then Z3 = m3 + 1. (Clearly, Z;=1
corresponds to {N;; > O,Z:’__f,-tll ;» = 0}, where N;; is the number of jobs in machine

(j,4)). Then, we can write

ma+1ma+1
EWi= Y Y EWi|Z=i,23=jP(Zy=1i,2; = j) (4.10)

=1 ;=1
Since, we are assuming that lines 2 and 3 along with the assembly machine behave as

independent closed queueing networks, we have

ma2+1m3+1
EWil~ Y > EWi|2,=1i,23 = j]P(Z; = i)P(Zs = j) (4.11)

i=1 ;=1

The probabilities in (4.11) can be computed as in the 2-line case. The calculation of the
conditional expectations is more complicated. If Z; = mg + 1, then we are left with the
case where jobs from line 1 are waiting for jobs from line 3 only, and then using the same

approximation as in the two line case, we can write

m3
EWiZy=my+1,Z3=j] =) 23 (4.12)
P=J
msa m3
EWl\Zy=ma+1,Z3=j]~ ) 03, + () zap)° (4.13)
p=j p=j

The case where Z3 = m3 + 1 is identical.

In the case where Z; = ¢t and Z3 = j, and ¢ < m; + 1, and j < m3 + 1, getting an
estimate of the first two moments of the delay that a job from line 1 experiences, waiting
for the jobs from other lines before it can be assembled, is more complicated. Since the
only information that we have on the processing times at each machine is the mean and
the variance, this problem reduces to a problem of estimating the mean and variance of the
maximum of k¥ random variables each with known mean and variance. This problem is a

difficult theoretical problem and even though some results have been developed for bounding
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the mean (e.g., Birge and Dula, 1991), we are not aware of approximations for the variance.
However, we note that in our assembly system, we assumed that each machine’s processing
time has a coefficient of variation less than 1. Note that the expression for fhe expected
delay that a job from line 1 experiences given the positions of the other jobs in the other lines
involves the convolution of processing times and convolution of random variables results in
random variables with lower coefficients of variation. To obtain a rough approximation of
the expected delay, we disregard the variability of the processing times and assume that

they are deterministic. This results in the following expressions for the delay:

map m3
EWi|Zy=i,Z3 = jl 2 max{)_ 224, ) 23;} i#me+Li#ms+1l (4.14)
p=i p=J

EWXZy =i,23 = j)~ (EWh|Z2 = 4,23 =5])* i#me+1,j#ma+1 (4.15)

Even though equations (4.10-4.15) provide a very rough approximation of the delay
experienced by a job in line 1 waiting for jobs from other lines at assembly, our simulation
results, which we report in the next section, indicate that it is adequate for the purposes
of estimating the throughput of the system, and average WIP levels at each station. As in
the 2-line case, just as jobs in line 1 experience a delay waiting for jobs from other lines,
jobs in the other lines will experience delays as well. Hence, we again formulate a recursive

procedure which we present below:
Procedure for computing 6, (k lines)
1. Let h = argmin,8{F,/Fy/n,}. Renumber line h asline 1. Let §; = min.0{F,/F4/n.}.

Renumber the other lines arbitrarily. Let EW; = 0 and Var[W;] = 0 for all ¢ =
1,...,k.

2. For i = 2,...,k, compute the new values of EW; and Var{W;] (denote the new

values by EW,; and Var[W;]) from the closed queueing networks {F/Fa + W;/n.}

1)

r=1,...,k,r # i, using equations (4.10)-(4.15).
3. Let EW; = EW, and Var[W;] = Var[W;] fori=2,...,k

13



4. Compute EW, and Var[W;] using {F,/Fs + W,/n.} r = 2,...,k and equations
(4.10)-(4.15).

5. Let EW; = EW,, and Var[W;] = Var[W,]

6. Let 8ap = 0{F1/Fg + Wy/n1}. If |05, — 61| < € then stop. Else, 8; = 8,,. Go to 2.

In this case, the algorithm makes use of the Shantikumar and Gocmen approximation
k times in each iteration. However, as we describe in the next section, we found that the
convergence of the approximation procedure was very rapid in all of the examples that we
tested.

The above approximation procedures can also be used to obtain an estimate of the
average WIP levels at each station. To do this, we note that we are approximating each line
r by the closed queueing network {F,/F4 + W, /n.}, generated in the last iteration of the
above algorithm. Hence, applying the Shantikumar and Gocmen approximation procedure
for closed queueing networks to {F;/F4+ W, /n,}, we can obtain an estimate of the average
WIP levels at each station in line r. We test the accuracy of this procedure in the next

section.

5 Computational Results

In this section, we report the results of our simulation study in which we tested the perfor-
mance of our approximation over a range of cases. To test our approximation, we generated
a variety of problems with 2,3 and 4 lines, and compared the throughput of the system
from simulation, 6,, with our approximation results. Table 1 summarizes the scenarios that
we tested in our simulation study. They are representative of the range of scenarios that
could be observed in practice. They include cases with balanced and unbalanced fabrica-
tion lines, fast or slow assembly operations, and coefficient of variation of processing times

ranging from 0 to 1. For each case, we examined the accuracy of our approximation for a
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variety of WIP allocations. To simulate the assembly systems, we made use of a MOR-DS
(Curry et al., 1989) program. For each WIP allocation, we simulated the system 10 times
for 52000 time units, and the first 2000 time units of each run was truncated. We recorded
the throughput each time and the average of 10 values gave us ,. Each simulation run (10
values) lasted about 15 minutes on a 486 machine, while the computation involved in our
approximation took negligible time (less than 1 second for each example we considered). In
fact, convergence was so quick that the value of the approximation after 2 iterations was
always very close to the value of the approximation when ¢ < 0.001.

The first three examples that we considered were balanced systems. In the first case,
there were 2 fabrication lines and each line had 3 machines. All the fabrication machines
and thé assembly machine had processing time distributions that were Erlang-2 with mean
1. The simulation and approximation results are displayed in Table 2. The approxima-
tion behaved very well in this case and the accuracy was within 1.2 %. We next tested
the approximation on balanced systems that were more and less variable than the one in
Example 1. The system in Example 2 was identical to the system in Example 1. However,
all the processing times had Erlang-4 distributions with mean 1. Hence, the variability was
lower in this case. The approximation overestimated the throughput for all the WIP levels
in this case. However, the results were still very good and the maximum error was 3.2 %.
The system in Example 3 was again the same as in Example 1. However, in this case the
first machine in each line was deterministic, while all the other machines in the fabrication
lines and the assembly machine had exponential processing time distributions. The mean
processing time was 1 for all machines. The approximation behaved very well again and
the maximum error was about 1.4 %.

The next three examples tested the effect of the location of the bottleneck on the ap-
proximation. In Example 4, we again considered a system with 2 lines and 3 machines in
each line. In this case, the first machine in each line had an Erlang-2 distribution with

mean 1, the second machine in each line had an Erlang-4 distribution with mean 1, and
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Number of Location of | Number of Machines in
Example | Fabrication Lines | Bottleneck Each Line
1-3 2 Balanced 3-3
4 2 Assembly 3-3
56 2 Fabrication 3-3
7 2 Fabrication 4-3
8 3 Fabrication 4-4-4
9 3 Fabrication 2-3-4
10 4 Balanced 3-3-3-3

Table 1: Description of Examples

ny | ng A 0ap | Toerr
31 3105110516 1.0
4| 40.604 | 0.611 1.2
5| 51(0.673|0.677 | 0.6
6| 607220725 | 04
4| 60646 | 0.649 | 0.5
5| 710.702 | 0.707 | 0.7
8| 8/0.782|0.789 | 0.9
10|10 (0827|0828 | 0.1
Table 2: Results for Example 1
ny | na 6, fap | Toerr
3| 3/0.575 059 | 2.6
4] 4(0.688 | 0.706 | 2.6
5| 5[0.759 0775 | 21
6| 608060819 1.6
4| 610724 | 0.747 | 3.2
5| 71(0.788 10803 | 1.9
8| 81]0.864 | 0870 | 0.7
10| 10 { 0.895 | 0.900 | 0.6

Table 3: Results for Example 2
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n | no 9, Bap | Toerr
31 3104760475 | -0.3
4| 40.555 | 0.557 0.4
5| 5106140618 0.7
71 710.693 | 0.703 14
31 5105170514 | -0.6
4| 60591059 | -0.2
91 910.756 | 0.757 0.1
6| 6]0.660 | 0.666 0.9

Table 4: Results for Example 3

the processing at the third machine in each line was deterministic and lasted 1 time unit.
The assembly machine had an exponential distribution with mean 2.5. The approximation
again behaved very well, and the maximum error was only 1.7 %. Next, we exchanged the
assembly machine with the third machine in line 1 of Example 4 to create an example where
the bottleneck is in fabrication. That is, Example 5 was identical to Example 4 except that
the third machine in line 1 is exponential with mean 2.5, and the assembly machine is
deterministic with duration 1. The results for this example are displayed in Table 6. The
maximum error was greater in this case. However, the approximation was still very close
to the simulation value for nearly all WIP allocations. Notice also that a comparison of
Table 5 and Table 6 shows how the placement of the bottleneck in fabrication improved the
throughput for all WIP levels. We return to this issue at the end of this section.

The next example that we considered (Example 6) had an assembly machine that was
considerably faster than all the other machines in the network. The first machine in both
fabrication lines had an Erlang-2 distribution with mean 1, and the second and third ma-
chines in both lines were exponential with mean 1. The assembly machine was exponential
with mean 0.3. The results for Example 6 are displayed in Table 7. Again, even though
the maximum error was 3.8 %, the approximation behaved very well for nearly all WIP
allocations.

In Examples 1-6, there were two fabrication lines and the two fabrication lines were
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n | ng 0, | Bap | Toerr
2|1 21027910275 | -1.5
4| 21029 | 0291 | -14
3] 31034310339 -1.2
4| 403730372 -0.3
6| 6]0394)039% | 03
6| 4(0381]0.378 | -08
4| 3103520347 | -14
31 202920287 | -1.7

Table 5: Results for Example 4

n | ng 0, Bap | Toerr
21 2102880278 | -3.5
41 210.363 | 0.364 0.3
31 310.346 | 0.346 0.0
4| 4103810378 -0.8
6 603980397 -0.3
6| 40397039 | -0.3
41 3(0379]0375 | -1.0
3| 2103380334 -1.2

Table 6: Results for Example 5

ny | ng 8, fap | Toerr
3 3105210501 -3.8
4| 4]0.602 058 | -2.7
6] 60704069 | -0.8
8| 8]0.764 | 0.768 0.5
10 | 10 | 0.807 | 0.813 0.7
5| 7106890684 | -0.8
71 910766 | 0.760 | -0.8

Table 7: Results for Example 6

18




identical. To see whether having fabrication lines that are not identical or having more
than 2 fabrication lines affects the accuracy of the approximation, we generated Examples
7-10. In Example 7, the first fabrication line had 4 machines and the second had 3 machines.
The distributions for the machines in the first line were respectively Erlang-2 with mean 1,
exponential with mean 1.5, deterministic with duration 0.5 and exponential with mean 0.2.
The second line had 3 machines with distributions Erlang-2 with mean 1, Erlang-2 with
mean 1.5 and Erlang-2 with mean 0.5. Finally, the assembly station also had an Erlang-2
distribution with mean 1. The results for Example 7 are displayed in Table 8. Again, the
results were within 3 % of simulation values.

Examples 8 and 9 have three fabrication lines, while Example 10 has 4 fabrication lines.
Example 8 is system with 3 lines and 4 machines in each line. All machines except the
assembly machine have Erlang-2 distributions with mean 1, while the assembly machine
has an Erlang-2 distribution with mean 2. The results were again pretty good and the
maximum error was 2.0 %. In Example 9, the first line had 2 machines and the second
and third lines had, respectively, 3 and 4 machines. The processing time distributions (and
means) for line 1 were: Deterministic (0.75), Exponential (1.5), while the distributions (and
means) for line 2 were: Deterministic (1), Erlang-2 (1), Exponential (1). Finally, for line 3,
they were: Deterministic (1), Erlang-4 (1), Erlang-2 (1), and Exponential (1). The assembly
machine was éxponential with mean 0.8. The approximation had a slightly harder time in
this case, though the results were still within 3.5 %. In Example 10, there were 4 fabrication
lines with 3 machines in each fabrication line. All the machines in the fabrication line as
well as the assembly machine had Erlang-2 processing times with mean 1. Despite the
increase in the number of lines, the approximation did very well, and the maximum error
was only 2.1 %.

These ten examples are representative of our experience that the approximation for
throughput behaves very well for a wide range of systems. In all cases, the maximum

error was within 3.5 %. Also, factors such as the location of the bottleneck, the number
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ny | ng 9, 00p %err
21 21035 | 0344 | -3.1
3| 3104540451 | -0.7
4| 40519 0.520 1.9
6| 605880594 | 10
5| 410.540 | 0.546 1.1
4| 304880485 | -0.7
3] 210395038 | -2.5

Table 8: Results for Example 7

ny | ny | n3 8, Oap | Toerr
3 3| 30342 0.349 2.0
41 4| 4104110414 0.7
51 5| 50455 (0454 | -0.3
6 6| 604760477 | 0.2
3| 4] 51037710378 0.3
5 6| 70467 | 0.466 0.3

Table 9: Results for Example 8

ny | ng | N3 9, Bap %err
3] 3| 3{0450 {0435 | -3.4
5| 5| 510579 |0.590 1.9
T 7| 7106390644 | 0.8
5| 4| 4]0545 (0554 | 1.7
5 6| 5058|0595 | 1.2
4| 5| 405270538 | 21
4| 4| 60547 | 0533 | -2.6

Table 10: Results for Example 9

Ny | ng N3 | Ny 0, 0‘,, %err
2 2| 2| 2|0347|0350| 0.9
31 3| 3| 30469 (0479 | 2.1
4| 4| 4| 40564 (0574 | 18
5/ 5| 5| 506320640 | 1.3
91 9| 9| 9{0781{0784| 04

Table 11: Results for Example 10
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of lines, and whether the lines are balanced or not did not have a significant effect on the
quality of the approximation. The quality of the approximation did not get worse as the
number of lines were increased, although the amount of computation involved increased.
Yet, even when examples with 7 or 8 lines were considered, convergence was very quick,
and we obtained answers in just a few seconds on a 486 computer.

As we pointed out in the previous section, our approximation procedure can also be used
to estimate the average number of jobs at each station. For each example presented above,
we also tested how our approximation performed when estimating average WIP levels at
each station. As a typical example, we present in Table 12 the average WIP levels at each
station in line 1 of the network of Example 7. We let n{; be the average WIP level in line
1, machine j obtained by simulation, and we let n;f be the average WIP levels obtained
by our approximation. Similarly, nj, and ny¥} denote the average WIP levels (obtained
by simulation and approximation) from line 1 at the assembly machine. As it can be seen
from Table 12, the approximation was successful in estimating the average WIP levels at
each machine. The results for Line 2 were similiar and this case is representative of our
experience with the accuracy of the approximation in estimating average WIP levels at each
machine.

We also tested the approximation in Duenyas and Hopp (1992a) for the throughput of
assembly systems, and compared it against the approximation developed in this paper. The
Duenyas and Hopp approximation (we will refer to it as (DHAPP)) was developed under
the assumption that all processing times are exponential. Hence, it requires only mean pro-
cessing time values as input. We have found that the two approximations give comparable
results when all processing times are indeed exponential. However, when processing times
are not exponential, (DHAPP) does not perform well. In particular, for systems where
the processing times are less variable than the exponential distribution, (DHAPP) tends to
underestimate throughput significantly. As an example, consider a 2-line assembly system

where both lines have 3 machines with mean processing times of 2, and the assembly ma-
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3 ap 3 ap s ap s ap 3 ap
Ny | My | M2 Mg | Mz M3 | Mg | Mg | Ma | Ma

0.40 | 0.39 | 0.67 | 0.65 | 0.19 | 0.18 | 0.07 | 0.07 | 0.67 | 0.71
0.58 | 0.58 | 1.07 | 1.09 | 0.25 | 0.24 | 0.09 | 0.10 | 1.01 | 0.99
0.7110.75| 1.60 | 1.59 | 0.29 | 0.29 | 0.10 | 0.11 | 1.30 | 1.26
0.96 | 1.00 | 2.82 | 2.77 | 0.34 | 0.35 | 0.12 | 0.13 | 1.77 | 1.74
0.75 084 | 204|203 |031]032]|0.11}0.12]| 179 | 169
0.63 {070 | 145|147 (028|028 |0.10 | 0.11 | 1.54 | 1.45

O DN~

Wl v

Table 12: Approximation of WIP Levels

ny | n2 6, fap | % dif | DHAPP | % dif
2| 210.187 | 0.190 1.6 0.153 | -18.2
3| 31]0.254 | 0.264 3.9 0.197 | -22.4
5| 50315 | 0.322 2.2 0.252 | -20.0
2] 41]0.205 | 0.211 29 0.169 | -17.6
3| 510.270 | 0.280 3.7 0.240 | -11.1
4| 60307 | 0314 2.3 0.287 | -6.5

Table 13: Comparison of DHAPP and our approximation

chine has a mean processing time of 3. However, the processing times in the first, second
and third machines in each line have, respectively, Erlang-2, Erlang-4, and deterministic
distributions. The assembly machine has an Erlang-4 distribution. The performance of the
approximation derived in this paper, 6,5, and of (DHAPP) for this example is displayed in
Table 13. Not surprisingly, DHAPP underestimates the throughput in every case, and for
each case considered the performance of DHAPP is very bad. These results clearly indicate
that unless the processing times are exponential, the approximation developed in this paper
outperforms DHAPP.

We now return to the issue of the effect of the location of the bottleneck on the through-
put of the assembly system. The only difference between Examples 4 and 5 was that we
interchanged the assembly machine with one of the fabrication machines, thereby mov-
ing the bottleneck from assembly to fabrication. In Table 14, we tabulate the percentage
increase in throughput that this exchange resulted in. 6; denotes the throughput of the

system when the bottleneck is at assembly, and 6, denotes the throughput of the system
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when the bottleneck is at fabrication. The results indicate that this exchange could lead to
an increase in throughput which can be as high as 23 %. We note that in all the examples
that we tested, we observed this behavior. We note that for systems where all the processing
times have the exponential distribution, Duenyas and Hopp (1992a) made a similiar obser-
vation that exchanging the assembly machine with a fabrication machine that has a lower
mean processing time improves throughput. Our simulation results indicate that this result
generalizes to systems with general processing times. This observation has implications for
capacity allocation. For example, if the bottleneck is at assembly, and a manager has the
option to move a worker from fabrication to assembly, thereby decreasing the capacity at
fabrication, but increasing it at assembly, the above observation indicates that the exchange
may improve throughput.

In our simulation experiments, we also observed that even if the bottleneck machine
and one of the fabrication machines have the same mean processing time, if the fabrica-
tion machine is less variable than the bottleneck machine, exchanging them improves the
throughput. As an example of this behavior, consider the assembly system in Example 3.
In that example, the first machine in both lines was deterministic with duration 1, while the
second and third machines in both lines as well as the assembly machine was exponential
with mean 1. Now, assume that we exchange the assembly machine with the first machine
in line 1. In Table 15, we tabulate the percentage improvement that this exchange causes
for different WIP levels. Although the improvement in throughput was less pronounced
in this case than in the previous example, this exchange still improved the throughput as

much as 6.0 %.

6 Conclusions and Further Research

In this paper, we derived approximations for the throughput and average WIP levels for an
assembly-like queueing system with general processing time distributions. We conducted a

simulation study which indicates that our approximation is robust under a wide variety of
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n N9 01 02 % dlf
2| 210.279 | 0.288 3.2
4| 21029 | 0363 | 23.0
4| 410373 0.381 2.1
6| 6]0.394 | 0.399 1.3
6| 40381 0.397 4.2
4| 310352 0.379 1.7

Table 14: Effect of Location of Bottleneck

ny | ny 6, 8, | % dif
31 310476 | 0.484 1.6
4| 41 0.555 | 0.563 14
5| 5] 0.614 | 0.628 2.3
71 710.693 | 0.710 2.5
51 3(0.517 | 0.548 6.0
6| 41]0.591 ] 0.623 5.4

Table 15: Effect of the Variance at Assembly

conditions. The approximation developed in this paper can be used, in conjunction with
simulation, to aid decision makers in the configuration of fabrication/assembly lines. We
also observed that a bottleneck at assembly limits throughput more than an equivalent
bottleneck in fabrication. Exchanging (in terms of capacity, not functionality) a machine at
assembly with a faster or less variable machine at fabrication increases throughput. Further

research should address the following questions:

1. In this paper, we focused on the throughput of the assembly system. Further research
should characterize the cycle time variance and the variance of the cumulative output
process until a fixed time ¢. This problem was addressed for a tandem CONWIP
systein in Duenyas and Hopp (1990), however it has not been addressed for assembly

systems.

2. In this paper, we developed approximations for throughput for an assembly system
under the CONWIP protocol. Further research should characterize the throughput of

assembly systems under different release mechanisms such as kanban. Furthermore,
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further research is needed to compare the performance of different release mechanisms

for assembly systems.
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