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Abstract

We consider a production system consisting of several fabrication lines feeding an assembly station.
The machines in the fabrication lines and at assembly are assumed to have general processing time
distributions. Releases to the system are governed by the kanban release mechanism. We first derive
an approximation for the throughput of this system by replacing the assembly system under kanban
release by an equivalent system under CONWIP release and by making use of an approximation for
the throughput of a CONWIP assembly system (Duenyas, 1992). Comparisons with simulation show
that this approximation is robust over a wide range of conditions.

We also address the issue of which release mechanism is more effective in obtaining a desired
throughput level with the minimum possible Work-In-Process Inventory level in the system. We
present both analytical and simulation results to demonstrate that the CONWIP release policy seems

to be a more effective release policy for assembly systems.

1 Introduction

Assembly-like queues are prevalent in many manufacturing systems. Production systems where sev-
eral sub-assemblies are produced in separate fabrication lines and then assembled together give rise to
assembly-like queues. A typical example is in electronics manufacturing where multi-plane circuit boards

(PCB’s) are manufactured by fabricating the layers separately and then laminating them together.



Despite their prevalance in many manufacturing environments, surprisingly little work has been done
on these queues. The majority of commercial queueing network packages do not handle assemblies (see
Snowdon and Ammons (1988) for a survey). In fact, most of the queueing models in the literature
that do handle assemblies assume that the fabrication lines feeding assembly consist of a single machine,
an assumption which limits their applicability (e.g., Ammar(1980), Bhat(1986), Bonomi(1987), Hopp
and Simon(1989), and Lipper and Sengupta(1986)). Gershwin (1991) and Mascolo et al. (1991) have
focused on assembly systems with acyclic or tree structured networks and their models allow for multiple
machines including many assembly/disassembly machines. However, both these papers focus only on
systems where all machines have equal processing times. The analysis of more complicated assembly
systems has been carried out through the use of simulation (e.g., Baker, Powell and Pyke, 1990, 1993).
Although simulation is a powerful tool, it is very time consuming for optimization purposes.

The scarcity of models for assembly systems is even more surprising given the magnitude of research
activity that has focused on release control in manufacturing systems in the last decade. Whereas release
control in tandem systems is important as a mechanism to control WIP costs and cycle times in the
facility, in assembly systems release control also acts as a feedback mechanism to ensure that the system
is stable. Assembly systems are unstable unless some feedback mechanism is used to link releases to
outputs (Harrison, 1973). Therefore, release control in assembly systems is significant both to control
inventory carrying costs, and also to ensure stability of the system. However, the recent literature on
release control has almost entirely focused on tandem systems. In many manufacturing systems, the
method for controlling releases is MRP, in which releases are scheduled by subtracting fixed lead times
from due dates. Pull systems, such as kanban (Monden (1983), Ohno (1988)), have recently become very
popular due to the success of Japanese just-in-time methods. A variety of researchers have developed
models of tandem systems under pull release mechanisms. Examples include Deleersnyder et al. (1989),
Mitra and Mitrani (1990), Duenyas et al. (1991), Spearman (1992), Buzacott et al. (1992), and Tayur
(1992a, 1992b). Uzsoy and Martin-Vega (1991) provide a recent survey of kanban-based pull systems, and
Uzsoy et al. (1992) provide a comprehensive survey of models of shop-floor control mechanisms in the

semiconductor industry. However, despite the great interest in kanban, most approximations for even the



simplest tandem kanban lines have rather restrictive assumptions, such as exponential processing times.
This is in contrast to tandem production lines under the CONWIP release mechanism, which can be
modelled as closed queueing networks. Robust approximations have been developed for closed queueing
networks with general processing times (e.g., Shanthikumar and Gocmen (1983), Whitt (1984)).

Several recent papers have focused on assembly systems under “pull” release mechanisms. Duenyas
and Hopp (1992a) derive approximations for these systems under the assumption that all processing times
are exponential. Duenyas and Hopp (1992b) treat the case where processing times are deterministic, but
machines are subject to random failures. Finally, Duenyas (1992) derives an approximation for machines
with general processing times. In all of these papers, the CONWIP release mechanism is used to release
work into the system.

Under the CONWIP release mechanism, the release of work into the system is controlled by cards as
in kanban. The total number of cards in each line is held constant. Each time a job is completed, its card
is removed and sent to the front of the line to authorize the start of a new job. Hence, if the assembly
operation requires several subassemblies, upon completion of the assembly operation a card would be
sent to the first machine in each line, authorizing the start of work on a new unit. Once jobs are released
to the first machine in each line, they are then “pushed” through the system.

When a card arrives to the first machine, a new job is not necessarily released to the system im-
mediately. The card only authorizes the operator at the first machine to release a new job when she is
done processing the job she is working on. This is due to the fact that releasing a new job before the
operator at the first machine is ready to work on it would only lead to the job waiting at a queue in
front of machine 1. Therefore, in a CONWIP assembly system, the first machine in each fabrication line
would have at most 1 unit of WIP being worked on, although at any time, there may be several cards
unattached to jobs at those machines. Figure 1 is a schematic representation of an assembly system with
two lines under the CONWIP release mechanism.

An alternative to the CONWIP release mechanism described above is to use the kanban release
mechanism for assembly systems. In a kanban assembly system, each machine is allocated one or more

cards. If there is an unattached card on the bulletin board of the first machine in the fabrication line,
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Figure 1: CONWIP Assembly System
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Figure 2: Kanban Assembly System

a new job is released and the card is attached to that job. Once this job’s processing is finished on the
first machine, the job moves to the input buffer of the next machine if there is a card (unatt#ched to
any job) on the bulletin board of the second machine. In this case, the card from machine 1 that was
attached to the job is detached and sent back to the bulletin board of the first machine and the card on
the bulletin board of the second machine is attached to the job. Otherwise, the job waits in the output
hopper of the first machine until a card becomes available at the second machine. The movement of the
jobs through the other machines in each fabrication line and to the assembly machine follows the same
procedure. When a job from each line is available at the assembly machine, the assembly machine carries
out the assembly 6peration. We note that the assembly machine has separate cards for subassemblies
from different fabrication lines. Figure 2 is a schematic representation of the kanban release mechanism
for assembly systems.

In this paper, we focus on assembly systems under the kanban release mechanism. Our focus on these



systems is motivated by their prevalance in industry and the fact that practitioners can currently only use
simulation to predict the performance of these systems due to the lack of any analytical models. Hence,
the first contribution of this paper is to provide a simple, robust approximation for the throughput of
these systems. To derive an approximation for the throughput of assembly systems under the kanban
release mechanism, we make use of a state space approximation first introduced by Akyildiz (1988) to
approximate the throughput of closed queueing networks with blocking. The state space approximation
replaces the kanban assembly system by an approximately equivalent CONWIP assembly system. We
can then use the results in Duenyas (1992) for the throughput of CONWIP assembly systems to obtain
an approximation for the throughput of assembly systems under the kanban release mechanism.

The second contribution of this paper is to address the question of which of the two release mechanisms
desribed above is more effective for assembly systems. We show that if the objective is to achieve a given
throughput level with the minimum possible number of cards (which corresponds to minimizing the
maximum possible WIP on the shop floor), then recent results on the superiority of the CONWIP release
mechanism for a tandem system (e.g., Spearman, 1992) easily carry over to the assembly case. We also
undertake a detailed simulation study to address the question of which release mechanism is more effective
in achieving a given throughput level with the minimum possible average WIP in the system.

The remainder of this paper is organized as follows. In the next section, we introduce the notation
and problem formulation. Seﬁtion 3 describes our approximation. In Section 4, we test the performance
of our approximation against simulation results. We compare the effectiveness of kanban and CONWIP

release mechanisms for assembly systems in Section 5. Section 6 concludes the paper.

2 Problem Formulation

We consider k production lines with m; machines in line j as shown in Figure 2. In line j, the i*» machine,
machine (j,7) has n;; kanban cards allocated to it. The assembly machine has seperate cards for jobs
from each faubricz;tion line. Thus, there are n;y, 11 cards at assembly for jobs from line j. Hence, when
a job is completed at the last station in line 7, if a card is available at assembly for that type of job, the

job is moved to the assembly station. When one job from each fabrication line is available, the assembly



operation begins. The movement of the jobs in the fabrication lines is according to the kanban discipline
as described above. Raw material is always assumed to be available at the first station. We assume that
successive processing times at machine (j,¢) (at the assembly machine) are independent with finite mean,
zji (z4) and variance o, (d%).

When the assembly of a job is finished, an output occurs, and the cards attached to the job (note
that there are k cards attached to the job at assembly, one for each sub-assembly) are sent back to the

bulletin board at assembly. We define N; as the number of outputs until time ¢, starting from time 0.

We are interested in finding the throughput, 6 = lim;_,., N:/t.

3 An Approximation for Throughput

Our approximation for the throughput of the kanban assembly system is based on a state-space approx-
imation developed by Akyildiz (1988). In Akyildiz (1988), the state space approximation was used to
approximate the throughput of a closed queueing network with blocking with the throughput of an ap-
proximately equivalent closed queueing network without blocking. In this paper, we use a similar idea to
approximate the throughput of tandem and assembly systems under the kanban release mechanism by
tandem and assembly systems under CONWIP release. We first describe how our approximation works

for a tandem kanban system, then we show how to extend it to an assembly system.

3.1 Tandem Kanban System

In this section, we derive an approximation for a tandem kanban system with M stations. Machine ¢ is
assumed to have n; cards allocated to it. In order to compute an approximation, we need to compute the
size of the state space of a tandem kanban system, where the state space consists of all the possible ways
in which jobs can be distributed in the system, given the card counts for each station. As previously
noted in Tayur (1992a), the distribution of jobs in a tandem kanban system with M stations can be
completely chara;:terized by an M — 1-vector where the j** element of the vector represents the difference
between the number of jobs in the output hopper of cell j, and the number of unattached cards in the

bulletin board of cell j + 1. For example, in a 2-station tandem kanban line with n; cards in station



1 and n, cards in station 2, the state of the system can be described by a single number from the set
{n1,n1 = 1,...,—ny}. Therefore, the state space is of size ny + n; + 1. Note that when the state of the
system is ny, nq jobs are in the output hopper of station 1, and there are no unattached cards in station 2
(therefore n; jobs are waiting to be processed in station 2), and station 1 is idle. Similarly, the state —n;
corresponds to the case where there are no jobs in station 1’s output hopper and n; unattached cards on
the bulletin board of station 2. The size of the state space of a tandem kanban system can be calculated

by the following recursion where Y; is the number of states (Tayur, 1992a).

Xy=npy+1

Yy = 1

X = (het + D Xom + (At (s +1)/2)%  m=M,...,2
Y1 = Xn + 11V

We also note the well known fact that the number of ways N jobs can be distributed in a closed

M+N-1
queueing network with M machines is given by . Therefore, since a tandem CONWIP

M-1
system can be represented by a closed queueing network, this expression also gives the size of the state

space for a tandem CONWIP system.

Given the above expressions for the size of the state space in tandem CONWIP and kanban systems,
we first note that the number of states in a tandem CONWIP system with 2 machines and N cards
is given by N + 1. As we previously stated, the size of the state space in a 2-machine kanban system
is ny + ng + 1. Therefore, if n; + ny = N, then the size of the state space for kanban and CONWIP
tandem systems is the same. It is easy to show that a 2-machine kanban system with ny + ng = N
total cards has the same throughput as a 2-machine CONWIP system with N cards. Therefore, for a
2-machine system, the kanban and CONWIP release mechanisms result in the same size state space, and
the same throughput. It is rather interesting to note that Akyildiz(1988) similarly points out that for
each 2-station closed queueing network with blocking, there exists a 2-station closed queueing network
without blocking and fewer jobs such that the two networks have the same throughput and the same
number of states.

For a kanban system with more than 2 machines, a tandem CONWIP system that has the same



number of states as a tandem kanban system does not necessarily exist. In fact, as Tayur(1992a) has
shown, for the same number of total cards in the system, CONWIP always has a larger state space than
kanban. Let the size of the state space of the kanban system, as computed by the recursion above be
given by Skyn. For the same system with CONWIP release, let N; be the largest card count resulting
in a tandem CONWIP system with fewer states than Sk,,. We let S¢(N;) be the number of states for
this CONWIP system (hence, Sc(N1) < Skan < Sc(N7 + 1)) and 0¢(N;) represent the throughput of
this CONWIP system. Our throughput approximation for the tandem kanban system is then given by a

linear interpolation of the throughput of the CONWIP systems with N; and Ny + 1 cards. Letting 6,,

represent the approximation for the throughput of the kanban system, we get

(Skan = Sc(M1))(0c (M + 1) — bc(M1))

bap = 0o(M1) + Sc(M +1) = So(M,)

(1)

The remaining issue in our approximation is the throughput of the CONWIP system, 6c(N;). Clearly,
if all the processing times are exponential, then the throughput of the tandem CONWIP system can
be computed exactly, by using Mean Value Analysis (MVA) (Reiser and Lavenberg, 1980). However,
exact results for the throughput of closed queueing networks with general processing times do not exist.
Therefore, when processing times are general, we use an approximation due to Shanthikumar and Gocmen
(1983) for the throughput of a closed queueing network. This approximation is very simple to code and
has been shown to be robust for a wide variety of cases when processing times at each station have
coefficients of variation less than 1. Since, in almost all practical situations, processing time distributions
encountered in manufacturing satisfy this condition, we make use of this approximation by Shanthikumar
and Gocmen. Despite the fact that we are using approximations at two levels, the results in Section 4
show that our approximation is robust. We next describe our approximation for the throughput of an

assembly system under the kanban release mechanism.

3.2 Kanban Assembly Systems

Our procedure for estimating the throughput of a kanban assembly system is based on approximating
the assembly system under the kanban release mechanism by one under CONWIP release. We can then

use the approximation developed in Duenyas (1992) for the throughput of an assembly system under



CONWIP release to derive an estimate of the throughput of the original system. In an assembly system
under CONWIP release, as described in Section 2, card counts have to be specified for each fabrication
line.

Given an assembly system with k fabrication lines, and m; stations in line j,5 = 1,...,k, the first
step of our approximation finds the equivalent card counts in each line of a CONWIP assembly system.
To do that, we treat each fabrication line along with the assembly machine as a single tandem line. We
can then use the procedure described above for a tandem kanban line, and find the equivalent card counts
for a CONWIP line. For example, for the tandem line consisting of fabrication line i, along with the
assembly machine, we first compute the number of states under kanban release. We let this number be
St .. As described above, we let Nilbe largest card count resulting in a smaller size state space than S}
under CONWIP release. We let S¢(N;) be the number of states for this tandem line under CONWIP
release and N; cards. We denote the throughput of the CONWIP assembly system with N; cards in line
t,i=1,...,k as c(Nq,..., Ni). In this case, since there are two possibilities for card count for each line
(e.g., Ny or Ny + 1 for line 1, N3 or N3 + 1 for line 2 etc.), we use a very simple interpolation heuristic
to obtain our approximation. The first step is to compute the marginal decrease in throughput resulting

from decreasing the number of cards in line ¢ by one, which we denote by d;.
di=0c(N1+1,No+1,...,Ni+1,...,Ne + 1) = (M + 1L, Ng +1,...,N;,.. . N+ 1) (2)

Having computed d; for each ¢, we use a simple linear interpolation to compute our approximation for

the throughput of the kanban assembly system. The approximation, 8, is given by

aapzma‘x{HC(NlaN%7Nk);0C(N1+17N2+177Nk+1 Zd (SC](VN_*:I;.;) SlEan))} (3)

i=1
Notice that (3) involves the maximum of two terms. The maximum in (3) guarantees that the simple
linear interpolation we use does not result in any value smaller than §o(Ny, Ny, ..., Ni). The remaining
issue is that of computing the terms 6¢(.) in (3). As we have previously noted, we can make use of an
approximation recently developed by Duenyas(1992) for the throughput of CONWIP assembly systems
for this purpose. We describe how this approximation works for assembly systems with 2 fabrication lines

in the Appendix. Readers are referred to Duenyas (1992) for description of the algorithm for assembly



systems with more than 2 lines and for further details on this approximation.

4 Computational Results

In this section, we report the results of our simulation study in which we tested the performance of
our approximations. We tested our approximation both on tandem and assembly systems. We used a
GPSS/H program to simulate the tandem and assembly kanban systems. Each simulation run lasted
21000 time units, and we initialized the system after the first 1000 time units to account for initial bias.
The average of 10 runs gave us our simulation estimate for the throughput. Whereas each simulation
run took several minutes on a 486 machine, our approximation always gave results in less than a second.
Below, we report some representative examples to demonstrate the performance of our approximation.
As an example of the performance of our approximation on tandem lines, we used an example from
Mitra and Mitrani (1990). This is a tandem kanban line with 6 machines and each machine has an
exponential processing time distribution with rate 4. Figure 3 displays the throughput of the system when
the number of cards that each machine is allocated is varied from 1 to 6. Figure 3 displays the simulation
value for the throughput, as well as the value obtained by the Mitra and Mitrani approximation and
our approximation. In this case, both approximations behaved very well, although the approximation by
Mitra and Mitrani (1990) was slightly better. The maximum error in the Mitra and Mitrani approximation
was 2.7 %, while the maximum error in our approximation was 3.1 %. However, we must note that our
approximation produced results much more rapidly than the Mitra and Mitrani approximation which
became considerably slower as the number of cards in the system was increased. Furthermore, as we
previously noted, a significant advantage of our approximation is that for tandem systems, it can easily
be used along with the Shanthikumar and Gocmen approximation for closed queueing networks to obtain
approximations when processing times are not exponential. In Figure 4, we display the results for the
same network considered above, but with all the machines having Erlang-2 processing times with rate 4.
Again, our appro;(imation behaved very well. For each case it took a 486 computer less than a second to
compute the approximation. These examples are representative of our experience with tandem systems.

We display eleven cases as examples of our experience with the approximation in the case of assembly

10
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systems. In eight of these cases, there are 2 fabrication lines, and each fabrication line has 3 machines.
These examples include cases where the assembly machine is the bottleneck, the bottleneck is in fabri-
cation, as well as balanced cases. In Examples 1-4, all machines have exponential processing times. In
Example 1, all the machines have mean processing times equal to 1. In Example 2, all the machines in
the two fabrication lines have mean processing times equal to 1, however the assembly machine is the
bottleneck with mean processing time equal to 2. Example 3 is the same as Example 2, but in this case
the assembly machine’s mean processing time is 0.4, and therefore the assembly machine is faster than
all other machines. Whereas Examples 1-3 have balanced fabrication lines, in Example 4, the two lines
are not balanced. In this example, all machines in fabrication line 2 as well as the assembly machine
have mean processing times equal to 1. However, all machines in fabrication line 1 have mean processing
times equal to 3. In Examples 5-8, all processing times have Erlang-2 processing times. Apart from this
difference in processing time distribution, the networks in Examples 5,6,7 and 8 are exactly the same as
in, respectively, Examples 1,2,3, and 4. Therefore, these examples test the effect of a different coefficient
of variation on the approximation.

In Examples 9 and 10, there are 2 fabrication lines, but each line has 4 machines. Furthermore,
whereas Examples 1-8 had lines where all the machines in each line had the same mean processing time,
in Examples 9 and 10 the machines in each line have mean processing times that are not all identical.
In Example 9 the machines in line 1 have Erlang-2 processing times while in line 2 the machines have
Erlang-4 processing times. In line 1, the first two machines have mean processing times of 1.5, the
third machine has a mean of 2.0 and the fourth machine has a mean of 2.5. The first three machines
in the second line have mean processing times of 1.0 and the fourth machine has a mean of 1.5. The
processing time of the assembly machine has an exponential distribution with mean 3.0. In Example
10 the 4 machines in line 1 have Erlang-3 processing times, where the first machine has mean 1.5, the
second machine has mean 2.5, the third machine has mean 1.0 and the fourth machine has mean 2.0.
The machines in the other line and assembly have Erlang-4 processing times with means 1.2, 2.2, 2.0, 2.0
and 2.0 respectively. An important difference between Examples 9 and 10 is that the bottleneck machine

has been moved from assembly to fabrication. Example 11 has three fabrication lines and four machines
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Kanban Allocation | 4, Oap | Toerr
12,,1,1211 0517|0513 -08
1,2,2,1;1,2,2,1 0.584 | 0.570 | -2.4
132,1:1,32,1 | 0.604 | 0.610| 1.0
2,2,2,2;2,2,2,2 0.641 | 0.620 | -3.3
1,33,1:1,331 | 0.659 | 0.646 | -2.0
1,8,7,1;1,7,7,1 0.803 | 0.799 | -0.5

1,17,18,1:1,17,18,1 | 0.902 | 0.902 | 0.0

Table 1: Results for Example 1

Kanban Allocation | 4, Oop | Toerr
1,1,1,1;1,1,1,1 0.363 | 0.357 | -1.7
1,12,1:1,12,1 | 0.413 | 0.405 | -1.9
1,3,2,1;1,3,2,1 0.442 | 0.456 | 3.0
2222:2222 | 0464|0460 | -0.9
2,3,3,2;2,3,3,2 0.48310.484 | 0.2
14411441 | 0484|0487 | 0.6

Table 2: Results for Example 2

in each line. All machines except the assembly machine have Erlang-2 distributions with mean 1.0, while
the assembly machine has an Erlang-2 distribution with mean 2.0.

The results for Examples 1-11 are in Tables 1-11. In each table, the first column gives the allocation
of cards to machines. For example, the first allocation in Table 1 (1,2,1,1;1,2,1,1) means that the three
machines in each fabrication line were allocated, respectively 1,2 and 1 cards, while the assembly machine
was allocated 1 card each for jobs from each line. In these tables, 8, denotes the throughput obtained by
simulation, while 8,, denotes the throughput obtained by our approximation. Finally, we also give the
percentage difference between the simulation results and the approximation results.

As it can be seen from Tables 1-11, our approximation behaved very well for all of the test problems
considered. The maximum error, in all cases considered, was less than 4 %, and the average error was
much lower than that. The approximation behaved very well for different values of coefficient of variation
of processing time and also for different network configurations. These examples are representative of our

general experience with our approximation.
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Kanban Allocation | 4, Oop | Toerr
1,3,2,1;1,3,2,1 0.675 | 0.660 | -2.2
1,3,3,151,3,3,1 0.706 | 0.699 | -1.0
3,3,4,3;1,6,5,1 0.791 1 0.804 | 1.6
1,6,5,1;1,6,5,1 0.805] 0.810 ] 0.6

1,13,14,1;1,13,13,1 | 0.902 | 0.917 | 1.7

Table 3: Results for Example 3

Kanban Allocation | 4, Oop | Toerr
1,1,1,1;1,1,1,1 0.187 ] 0.192 | 2.7
1,2,L,1,1,1,1 | 0215 0.215 | 0.0
12,2,:1,1,1,1 0229|0232 1.3
133,L:1,1,1,1 | 0251|0254 1.2
14,3,1;1,1,1,1 0.261 | 0.261 | 0.0

1,11,11,1:1,1,1,1 | 0.302 | 0.304 | 0.7
Table 4: Results for Example 4

Kanban Allocation | 4, 0., | Joerr
12,1,;1,2,1,1 | 0614|0611 -0.5
1,2,2,1;1,2,2,1 0.693 { 0.702 | 1.3
2,3,3,2:2,332: | 0.806 | 0.792 | -1.7
1,44,1;1,44,1 0.812 | 0.803 | -1.1
1,0,9,1:189.1 | 0.901 | 0.899 | -0.2

Table 5: Results for Example 5

Kanban Allocation | 6, Oap | Toerr
11,1,1;1,1,1,1 | 0417|0410 | -1.7
2,1,1,1;2,1,1,1 0.422 [ 0.430 | 1.9
1,22,1:1.2,1,1 | 0.451 | 0.466 | 3.3
1,32,1:1,22,1 | 0.480 | 0.485 | 1.0
2,2,2,2;2,2,2,2 0.494 | 0.493 | -0.2
2,3,3,2;2,3,3,2 0.499 | 0.499 | 0.0

Table 6: Results for Example 6
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Kanban Allocation | 4, 0o | Toerr
1,1,2,1;1,1,2,1 0.656 | 0.656 | 0.0
1,2,2,1;1,2,1,1 | 0.708 | 0.684 | -3.3
1,2,2,1;2,2,1,1 0.727 | 0.706 | -2.9
1,3,3,1;1,3,3,1 0.806 | 0.804 | -0.2
1,7,7,1;,1,6,7,1 0.900 | 0.911 | 1.2

Table 7: Results for Example 7

Kanban Allocation | 4, b | Toerr
1,2,1,1;1,1,1,1 0.244 { 0.249 | 2.0
222222292 0270|0280 | 3.7
1,32,1:1,1,1,1 | 0272|0276 | 1.5
333,3:1,1.1,1 |0.201]0298 | 2.4
1,6,6,1;1,1,1,1 0.302 | 0.306 | 1.3

Table 8: Results for Example 8
Kanban Allocation | 6, 0o | Joerr
T1,121;1,1,1,1,1 | 02620254 -3.1
1,2,1,2,1:1,1,1,1,1 | 0.265 | 0.266 | 0.4
1,2,1,2,1;1,1,1,2,1 | 0.271 [ 0.275| 1.5
1,2,1,3,1;1,1,1,2,1 | 0.289 | 0.287 | -0.7
1,2,2,3,1;1,1,1,2,1 | 0.295 | 0.295 | 0.0
1,2,2,3,1;1,1,2,2,1 | 0.295 | 0.300 | 1.7
Table 9: Results for Example 9
Kanban Allocation | 4, Oop | Toerr
1,2,1,1,1;1,2,1,1,1L | 0.331|0.320 | -3.3
1,2,1,2,1;1,2,1,1,1 | 0.344 | 0.335 | -2.6
1,2,1,2,1;1,2,2,1,1 | 0.359 | 0.354 | -1.4
1,2,1,2,1;1,2,2,2,1 | 0.373 | 0.360 | -3.5
1,3,1,2,1;1,2,2,2,1 | 0.380 | 0.371 | -2.4
1,3,2,2,1;1,2,2,2,1 | 0.384 | 0.380 | -1.0

Table 10: Results for Example 10
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Kanban Allocation 6, Oop | Toerr
1,1,2,1,1;1,1,2,1,1;1,1,2,1,1 | 0.421 | 0.431 | 2.4
1,2,2,2,1;1,2,2,2,1;1,2,2,2,1 | 0.475 | 0.480 | 1.1
2.1,1,1,1:2,1,1,1,1:2,1,1,1,1 | 0.404 | 0.418 | 3.5
1,1,1,1,1;1,1,1,1,1:1,1,1,1,1 | 0.401 | 0.386 | -3.9
2,2,2,2.9:222929:22229 | 0.493 | 0.493 | 0.0

Table 11: Results for Example 11

The computational results displayed above indicate that our approximation is very useful for initial
analysis. This is due to the fact that our approximation is very fast (in all of the examples considered
above, we obtained results in less than a second on a 486 computer) and pretty robust. Hence, it can
be used in the process of design to rule out many cases. For example, an important consideration in the
design of many kanban systems is to ensure that a given production level will be met with the minimum
possible inventory. This problem has two components. The first is to ensure that there are “enough”
kanban cards in the system. The second is to ensure that these cards are allocated optimally. Our
approximation can be used for these problems in order to rule out many possibilities in a very rapid
manner. Simulation can then be used on a limited number of cases to choose the best possible design.
For example, if a facility would like to achieve a throughput level 6, then our approximation can be
used initially to eliminate many different possible designs. Then, a conservative approach would be to
use simulation on all the possible designs for which our approximation estimated a throughput level of
between 0.976 and 1.036, given that our approximation’s worst case errors seem to be between 3 and 4
percent.

An interesting problem that has been addressed before for tandem kanban lines (e.g., Mitra and
Mitrani(1990), and Tayur (1992b)) is the question of how to allocate a fixed number of cards to maximize
throughput. Tayur(1992b) discovered that for balanced or nearly balanced systems, the heuristic that
allocates cards in order to achieve the largest state space works very well. We note that our approximation
also predicts that throughput is highest when cards are allocated in this manner within each line in an
assembly system. However, this allocation is not necessarily optimal when the system is unbalanced. Yet,

our approximation still behaved very well because often the difference in throughput obtained by the best
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allocation and the state space maximizing allocation of cards within each line is very small (e.g., less
than 2-3 %). We note, however, that the best allocation of cards to each line and to each machine is an
open and difficult problem for kanban assembly systems. Given this much greater difficulty of allocation
of cards in a kanban system as compared to a CONWIP system, a question of practical importance is
whether all the extra work involved in designing a kanban assembly system is worth it. This question is

especially significant given kanban’s widespread use. We address this question in the next section.

5 Comparison of Release Mechanisms

In Section 3, we developed an approximation to estimate the throughput of an assembly system under
kanban release. In previous work (e.g., Duenyas and Hopp, 1992a and Duenyas 1992), we had also
derived an approximation for assembly systems under CONWIP release. In this section, we compare the
performance of these two systems.

This question has been previously addressed in several papers (e.g., Spearman, 1992, Spearman and
Zazanis (1992), Tayur (1992a)). One result that has previously been shown in these papers is that given
a fixed number of cards, CONWIP achives a higher throughput than kanban. This result immediately

generalizes to assembly systems in the following

Proposition 1 Assume that we are given an assembiy system with k lines and m; machines in each
fabrication line, and a total of N cards to control releases. Let Oc be the throughput of the system when
CONWIP is used to release jobs, and the N cards are allocated to the fabrication lines optimally. Let 0y
be the throughput of the system when Kanban is used to control releases, and the N cards are allocated to

each line and each machine optimally. Then

Oc > Ok.

Proof: The proof is similiar to the proof of this result for the tandem case in Spearman (1992) and
Spearman and Zazanis (1992) and is omitted.
As we previously noted, the number of cards in a kanban or CONWIP system corresponds to the

maximum possible inventory on the shop floor since at any point in time, there may be cards that do not
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have any inventory attached to them in the system. As we noted in Section 1, in a CONWIP system, there
may be cards unattached to any jobs in front of machine 1 in each line. Hence, the above proposition only
compares the performance of the two release mechanisms with respect to the objective of maximizing
throughput subject to a given level of maximum WIP on the shop floor. An alternative objective is
to meet a given throughput level with the minimum average WIP on the shop floor. Unfortunately,
analytical results on the superiority of one release mechanism over another under this objective do not
exist even for tandem systems. Spearman (1992), and Muckstadt and Tayur (1991) have compared the
performance of CONWIP and kanban for serial systems using simulation, however they have reached
conflicting conclusions. Spearman (1992) considered a serial make-to-order system in which customer
demand occurs at random time intervals. He focused on the mean and variance of the time until the
customer’s order is filled. In the limited number of examples in his paper, for the same average WIP in the
system, CONWIP seems to outperform kanban in customer service where customer service is measured by
the mean wait time a customer experiences until her order is filled. However, Spearman (1992) notes that
in his study, card counts for kanban were set according to a procedure advocated in several practitoner
texts on kanban (e.g., Hall (1983)). Since these procedures do not necessarily allocate cards to machines
optimally, the results of this study do not necessarily show that CONWIP would outperform kanban
when cards are allocated to machines optimally in kanban.

The other study where svuch a comparison is made is Muckstadt and Tayur (1991). In this case,
the authors address the question of which release mechanism achieves a target throughput level in a
serial system with less average WIP. Muckstadt and Tayur compute the best allocation of kanbans by
simulation. In their experiments, CONWIP is always outperformed by kanban by significant margins.
However, their count of average WIP in CONWIP includes the inventory in front of machine 1. As we
have noted in Section 1, there is really no point in releasing a new unit to the first machine of a line in a
CONWIP system until the machine is ready to process it. Furthermore given the assumption that raw
material is always available, even if raw material is released to the first machines in each line as soon
as a card arrives to the first machine, this would only mean that raw material that was already bought

is moved from one location in the plant (e.g., raw materials storage) to another (to the first machine).

18



No value is added to the material until the first machine begins processing it. Hence, when accounting
for WIP in a CONWIP or kanban system, we should only take into account those jobs to which value
has already been added. (Muckstadt and Tayur claim that even if WIP is accounted for in this manner,
kanban still outperforms CONWIP in their examples, although by a smaller margin.) Clearly, by the
same reasoning, in a kanban system there should be only one unit of WIP on the first machine as well. In
fact, Tayur (1992a) has shown that the first and last machine in a serial kanban line is always allocated

only 1 card. This result also carries over to assembly systems.

Proposition 2 The optimal solution to the problem of allocating a fized number of kanbans to machines
in a kanban assembly system will always have only 1 card allocated to the first machine on each fabrication

line. Furthermore, the assembly machine will also have only 1 card for sub-assemblies from each line.

Proof: The proof is similiar to that in Tayur (1992a) for serial systems and is omitted.

In comparing the performance of kanban and CONWIP release mechanisms in the context of assembly
systems, we need to take the difficulty of finding the optimal allocations of cards into account. Whereas
in CONWIP, the only problem is the allocation of cards to lines, in kanban there is also the problem of
allocating cards in each line to the particular machines. Clearly, the allocation problem is a much more
difficult combinatorial problem in kanban. However, this additional difficulty might be worth it if kanban
significantly decreased average WIP required to achieve a throughput level compared to CONWIP. To
discover whether this is true, we undertook a simulation study. For example networks 1,2,4,5,6 and 8 in
the previous section, we determined the kanban and CONWIP allocations that meet a given throughput
level with the minimum possible average WIP in the system. We also did the same for a new example
(Example 12) with two fabrication lines where the three machines in line 1 have mean processing times
of 1, 3 and 2, each of the machines in line 2 has a mean processing time of 1, and the assembly has mean
0.4..Each of the machines in Example 12 has an exponential processing time. We note once again that
these examples include cases with balanced and unbalanced lines, as well as the bottleneck in different
locations. Hence, they cover a wide range of situations.

We present our results in Tables 12-18 in which information is presented in the following manner:

fiar = the throughput value targeted, Kanban Allocation is the best allocation of cards that achieves
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fior | Kanban Allocation | 8k | WIPken | CONWIP | 0.0n | WIPeon
0.44 1,1,1,1;1,1,1,1 0.462 | 6.695 3,3 0.442 | 5.638 .
0.50 1,1,2,1;1,1,2,1 0.528 | 7.937 4,4 0.516 | 7.359
0.55 1,2,2,1;1,1,2,1 0.550 | 9.048 5,5 0.571 | 9.041
0.60 1,2,3,1;1,2,2,1 0.603 | 10.758 6,6 0.616 | 10.701
0.65 1,3,3,1;1,3,3,1 0.659 | 13.364 7,7 0.652 | 12.350
0.80 1,7,8,1;1,7,7,1 0.805 | 26.456 15,15 0.804 | 25.128
0.90 | 1,17,18,1;1,17,18,1 | 0.902 | 57.714 34,34 10.902 | 55.101
Table 12: WIP Comparison for Example 1
0ior | Kanban Allocation | Oren | WIPka, | CONWIP | 8.0 | WIP,on
040 | 1,121,121 |0413| 8983 44 | 0400 7.623
0.42 1,1,2,151,1,3,1 0.425 | 9.851 5,5 0.433 | 9.488
044 | 1,131:1,131 |0.442| 10.608 6,5 | 0.444 | 10.436
0.46 1,1,4,1,1,1,4,1 0.461 | 12.249 6,7 0.462 | 12.319
048 | 1.2,5,1:12,51 | 0.485| 16.610 88 | 0.482| 15.178

Table 13: WIP Comparison for Example 2

the target throughput, 0., = the throughput of the kanban allocation, W Py,, = the average work in
process in the kanban system, CONWIP is the allocation of cards that achieves the throughput target
using CONWIP, 6., = the throughput of the CONWIP allocation, WIP,,, = the average work in
process in the CONWIP system.

The results in Tables 12-18 clearly show that the kanban release mechanism does not seem to perform

better with respect to average WIP in the system. Although there were a couple of cases where kanban

outperformed CONWIP by a very small margin, in many other cases the CONWIP release mechanism

8,ar | Kanban Allocation | Okan | WI1Psan | CONWIP | Ocon | WIP.on
0.17] IL,1,L,;I,1,1,1 ]0.187| 6.503 3,1 0.177 | 3.736
020 | 1,1,2,1;1,1,1,1 |0.204| 6.819 5,1 0.210 | 5.525
022 | 1,221;1,1,1,1 |0.22| 7.717 6,1 0.221 | 6.409
024 | 1,331;1,1,1,1 |0251| 8.892 6,2 0.243 | 6.923
026 | 143,1;1,1,1,1 |0.261| 9.682 8,2 0.261 | 8.413
0.30 | 1,11,11,1;1,1,1,1 | 0.302 | 18.049 20,2 | 0.301| 17.017

Table 14: WIP Comparison for Example 4
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0:0r | Kanban Allocation | 0y, | WIPg,, | CONWIP | 6., | WIP.,,
0.60 1,1,2,1;1,1,2,1 0.627 | 8.131 4,4 0.604 | 7.467
0.65 1,1,2,1;1,2,2,1 0.650 | 9.284 5,5 0.669 | 9.157
0.70 1,2,3,1;1,2,2,1 0.711| 11.028 6,6 0.717 | 10.804
0.75 1,3,3,1;1,3,3,1 0.766 | 13.585 7,7 0.755 | 12.431
0.80 1,4,4,1;1,3,4,1 0.801 | 15.762 9,9 0.807 | 15.635
090 | 1,9,9,1;1,89,1 |0.901| 31.295 | 18,18 |0.900| 29.979
Table 15: WIP Comparison for Example 5
;.- | Kanban Allocation | 6o, | WIPke, | CONWIP | 6.0n | WIP,,,
0.40 1,1,1,1;1,1,1,1 0417 | 7.574 34 0.415| 6.831
042 1,1,2,1:1,1,1,1. |0.436| 8531 44 |0450]| 7.770
0.44 1,1,2,1;1,1,2,1 0.466 | 9.395 4.4 0.450 | 7.770
0.46 1,1,2,1;1,1,2,1 0.466 | 9.395 4,5 0.461 | 8.742
0.48 1,1,3,1;1,1,3,1 0.486 | 11.219 6,5 0.483 | 10.676
~ Table 16: WIP Comparison for Example 6
0:or | Kanban Allocation | Ok | WIPke, | CONWIP | 6,n | WIP.,,
0.20 1,1,1,1;1,1,1,1 0.212 | 6.663 4,1 0.220 | 4.747
0.22 1,1,2,151,1,1,1 0.230 | 6.972 4,1 0.220 | 4.747
0:24 | 12,1,1;1,1,1,1 | 0244 | 7.520 42 | 0241 5.493
0.26 1,2,3,1;1,1,1,1 0.264 | 8.188 6,2 0.271 | 6.966
0.30 1,6,6,1;1,1,1,1 0.301 | 12.402 12,2 0.302 | 11.171
Table 17: WIP Comparison for Example 8
0:0r | Kanban Allocation | Okan, | WIPie, | CONWIP | 8,n | WIP,,,
0.255 1,1,1,1;1,1,1,1 0.256 | 6.444 3,2 0.266 | 4.899
0.280 1,1,2,1;1,1,1,1 0.281 | 6.730 4,2 0.288 | 5.876
0.300 1,2,2,1;1,1,1,1 0.302 | 7.797 5,2 0.303 | 6.858
0.310 1,2,3,1;1,1,1,1 0.311 8.057 6,2 0.312 | 7.849
0.320 1,3,3,1;1,1,1,1 0.321 | 9.126 7,2 0.320 | 8.840

Table 18: WIP Comparison for Example 12
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outperformed kanban by a large margin. In fact, the average WIP in one example was as much as 30 %
higher when kanban was used than when CONWIP was used. These results seem to indicate that for
assembly systems, the CONWIP release mechanism may be a more appropriate release mechanism than
the kanban release mechanism since it is simpler to implement and at least in our experiments seems to
perform at least as well as kanban. However, further research needs to be carried out to find out if there

are cases where kanban might be more appropriate.

6 Conclusions and Further Research

In this paper, we derived an approximation for the throughput of kanban assembly lines. The approxi-
mation is based on a state-space approximation originally developed by Akyildiz. We tested our approx-
imation on a variety of examples and found that the approximation works very well. Some advantages
of this approximation is that unlike most other work on kanban systems, it does not require exponential
processing times and can handle general processing times, the robustness of the approximation, and the
fact that it can easily be used for design of kanban assembly lines since the approximation is not compu-
tationally expensive. Since the kanban release mechanism is used widely in industry, our approximation
should aid manufacturers in analyzing and designing their production lines.

We also addressed the question of whether the kanban or CONWIP release mechanism is more appro-
priate for assembly systems. We showed that the well known result for tandem systems that CONWIP
reaches a target throughput level with less mazimum WIP in the system easily carries over to the as-
sembly case. We also conducted a simulation experiment to find out which release mechanism is more
successful in obtaining a throughput level with less average WIP in the system. For the experiments
that we conducted, CONWIP performed better than kanban with respect to this objective as well. How-
ever, further research is necessary to find out if there are certain con&itions that make kanban a more
app.ropria,te release mechanism.

Further research should also characterize the variance of the output process from kanban and CON-
WIP assembly systems. In a recent and very comprehensive survey of the research on manufacturing flow

line systems, Dallery and Gershwin (1992) write that this issue has been entirely neglected by researchers
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even though the standard deviation of weekly production in many factories can be over 10 % of the mean.
Recently, some approximations for the variance of the number produced in a given period in a tandem
CONWIP line were derived in Duenyas and Hopp (1990) and Duenyas et al. (1991). However, further

research is necessary to develop approximations and structural results for more general systems.
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Appendix

In this appendix, we describe the approximation for throughput developed in Duenyas (1992) for assembly
systems under CONWIP release. For brevity, we describe the approximation for the 2-line éase, readers are
referred to Duenyas (1992) for more details.

Consider a CONWIP assembly system with two lines (with n; cards in line 1, and n; cards in line 2) as in
Figure 2. We let W) be the amount of time that a job from line 1 has to wait at assembly for a job from line 2.
To calculate EW;, we condition on the position of the jobs in line 2 at the time that the job from line 1 arrives at
assembly. Let N; be the number of jobs in line 2, machine i. Also, denote the number of jobs from line 2 waiting in
front of assembly as Ny, 4+1. Obviously, if Npm,41 > 0, then there is at least one job from line 2 already waiting at
assembly, and henée the expected delay that a job from line 1 experiences waiting for a job from line 2 at assembly

is 0 in this case. In general, we have

ma+1 ma+1 ma+1
EWy= Y E[WiIN:>0, Y N, =0P(N; >0, Y Ny =0) (4)

i=1 p=i+l p=i+1

ma+1 ma+1 ma+1
EWE= Y E[WZN:>0, Y, Ny =0]P(N:>0, ) Np=0) (5)

i=1 p=i+1 p=i+l

and

Var[Wy] = EW} — (EW,)? (6)

Calculating the conditional expectations in (4) and (5) requires that we also condition on the amount of
processing that the job in line 2 ”closest to” assembly has had at the machine that it is being processed at the time
the job from line 1 arrives at assembly. However, since our aim is to get a rough estimate of the expectea waiting
time, we ignore the amount of processing that the job may already have had and approximate the conditional

expectation by

mo+1 m3
EWiIN: >0, Y Ny =0l ) 23, (7)
p=i+l p=i
Similarly, we let
ma+1 ma ma
EWN: >0, > N, =0 =Y ot + (O 22)’ (8)
p=i+l p=i p=t

Approximating the probabilities in (4) is more difficult however, since we do not know the distribution of the
jobs in the network. Hence, we approximate these by supposing that while jobs in line 1 have to wait for jobs
in line 2 for their assembly operation, jobs in line 2 are independent of jobs in line 1 and start their assembly
operation regardless of whether or not there are jobs from line 1 in assembly. This makes line 2 a regular closed

queueing network, and we can use the approximation by Shanthikumar and Gocmen to calculate utilizations for
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line 2. Furthermore, the approximation procedure by Shanthikumar and Gocmen approximates the closed queueing
network by a load-dependent exponential queueing network, and calculates Buzen’s coefficients (Buzen (1983)) for
this network at each iteration. Let G(i,7),i=0,...,ny,5 = 1,...,my+1 denote the Buzen’s coefficients calculated
by the Shanthikumar and Gocmen approximation procedure on its last iteration for the closed queueing network

formed by line 2 and the assembly machine. Then, we have

m2+1 . .
G(n2,1) = G(ng,1-1)
P[N; , N, = 0] ~ 9

Hence, we can estimate the first and second moments of the expected delay that jobs from line 1 experience
waiting for jobs from line 2 by using (4), (5), (6) along with (7), (8), and (9).

Notice that just as jobs from line 1 wait for jobs from line 2 at assembly, the reverse is true as well. Hence, to
capture the effect that both lines have on each other, we also need to calculate EW,. In fact, the approximation
does this recursively. The first step in the approximation is to start with the network formed by fabrication line
1 and the assembly machine (we denote this network by {Fi/F4/n1}) and to calculate EW;, and Var[W;] by
assuming jobs in line 1 do not have to wait for jobs from line 2. Since we have approximated the time that jobs in
line 2 wait for jobs from line 1 by a random variable with mean EW, and variance Var[W5], we next compute EW)
and Var[W;] by assuming that the network formed by line 2 and the assembly machine where jobs experience an
additional wait W5 is a regular closed network, and we use {F2/F4 +W,/n,} (where F4 + W, denotes a processing
time with mean z4 + EW, and variance 04 + Var[W,]) and the above equations to compute EW; and Var[W;],
and continue in this manner until throughput converges. Below is a summary for the procedure to obtain an

approximate value (0,,) for the .hhroughput of a CONWIP assembly system:

Procedure for Computing ,, (2 lines)

1. For ¢ = 1,2 compute 8{F;/Fa/n;}, using the throughput approximation for closed queueing networks in
Shanthikumar and Gocmen . Let h = argmin;0{F;/F4/n;}. Renumber line h as line 1. Let §; =

min; 0;{F;/F4/ni}. Let EW; =0, and Var[W; = 0)].
2. Compute EW,, and Var[W5] using (4) and (6), and {Fy/Fa + W1/n;}.
3. Compute EW), and Var[W;] using (4) and (6), and {F2/F4 + Wy/ny}.

4. Oup = 0{F1/Fa + Wi/n1}. If |04p — 61] < € for a prespecified ¢, then stop. Else, let §; = fap, go to 2.
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